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...................................... 1. Životopis uchazečky

1 Životopis uchazečky

Jméno: Ing. et Bc. Renata Štysová Rychtáriková, Ph.D.
Narozena: 3. března 1983 v Jihlavě
Trvalé bydliště: Vilová čtvrť 197, 373 33 Nové Hrady
Národnost: česká
Rodinný stav: vdaná, jeden syn (nar. 2017)

Vzdělání a kvalifikace

2011 Ph.D. (Biotechnologie) – společná akreditace ÚCHP AV ČR a FPBT
VŠCHT Praha

2006 Bc. (Učitelství odborných předmětů) – VŠCHT Praha
2006 Ing. (Konzervace potravin a technologie masa) – FPBT VŠCHT

Praha
2001 maturita (všeobecné sedmileté studium) – Gymnázium Otokara

Březiny v Telči

Zaměstnání

od 1/2023 Ministerstvo průmyslu a obchodu ČR, Praha – externí
hodnotitel projektů OP TAK a OP PIK – DPČ

od 12/2012 Ústav komplexních systémů FROV JU, Nové Hrady
– postupně postdoktorand, vědecký pracovník a akademický
pracovník v Laboratoři experimentálních komplexních systémů

8/2011–1/2013 FARMEKO, VOŠZ a SOŠ, s.r.o., Jihlava – učitel (Klinická
biochemie, Mikrobiologie, toxikologie a hygiena, Biochemie a
biotechnologie, Farmakognosie)

7/2011 Safibra, s.r.o., Říčany u Prahy – výzkumný a školicí pracov-
ník přípravy optických biosenzorů

9/2006–6/2011 Ústav chemických procesů AV ČR, v. v. i., Praha –
vědecký pracovník–doktorand v Laboratoři imobilizovaných bio-
materiálů a optických senzorů

Cestovní granty na konference..1. Československá mikroskopická společnost – EMC 2016, Lyon, Francie
(2016)..2. ESF-EMBO EMBO – ESF-EMBO Symposium, Sant Feliu de Guixols,
Španělsko (2007)
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Výzkumné projekty

Hlavní řešitel..1. Návrh a ověření metody pro analýzu částic v provozních ka-
palinách pomocí mikroskopu s průtokovou celou, MPO Inovační
vouchery VI, 12/2022–7/2022, 587 tis. Kč, pro ASTOS Machinery a.s.,
Aš...2. Testování principů mikroskopického sledování kvality navíjení
mikrospirály wolframového vlákna pro žárovky, MPO Inovační
vouchery VI, 12/2022–7/2022, 604 tis. Kč, pro dataPartner s.r.o., České
Budějovice...3. Testování principů mikroskopického sledování kvality navíjení
mikrospirály wolframového vlákna pro žárovky, MPO Inovační
vouchery, 12/2022–7/2023, 46 tis. Kč, pro dataPartner s.r.o., České Budě-
jovice...4. Výzkum v oblasti buněčné imunity, otevřený účet FROV JČU
financovaný ze soukromých zdrojů, 27 tis. Kč..5. Konsolidace software jednoduchého mikroskopu velmi vysokého
rozlišení NanoTruth, TAČR Gamma, TG03010027, 4/2018–12/2019,
218 tis. Kč.

Spoluřešitel-zodpovědný řešitel za FROV JU..1. Lamelový sedimentační systém filtrace nové generace, TAČR
Trend PP1 Technologičtí lídři, 1/2024–6/2026, rozpočet FROV JU 6 328
tis. Kč (90% dotace) – spolupráce s firmami ASTOS Machinery a.s. a
MACHINERY DESIGN s.r.o. (Ing. Martin Valíček)...2. Vývoj procesu hodnocení kadaverózních rohovkových lamel po-
mocí inovace mikroskopických systémů pro celulární analýzu,
MPO Aplikace, 9/2021–5/2023, rozpočet FROV JU 3 218 tis. Kč (85%
dotace) – spolupráce s firmami PrimeCell Bioscience a Národním centrem
tkání a buněk (MUDr. Šárka Sekorová, Mgr. Martina Tlamková)

Člen řešitelského týmu..1. Velká výzkumná infrastruktura CENAKVA – LM2023038, MŠMT
ČR, 1/2023–12/2026...2. Velká výzkumná infrastruktura CENAKVA – LM2018099, MŠMT
ČR, 1/2018–12/2022...3. Image HeadStart – Interreg V-A Rakousko-ČR – ERDF ATCZ133,
1/2020–12/2022..4. Individualizované pozorování chování pro bezpečnostní aplikace
– PoC 02-22 TAČR GAMA TG 03010027, 1/2017–12/2019.
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...................................... 1. Životopis uchazečky..5. Jihočeské výzkumné centrum akvakultury a biodiverzity hydro-
cenóz – LM2018099, 1/2019–12/2020...6. Kompetenzzentrum MechanoBiologie – Interreg V-A Rakousko-ČR
– ERDF ATCZ133, 3/2017–8/2020..7. Postdok JU – MŠMT ČR, 12/2012–6/2015..8. Jihočeské výzkumné centrum akvakultury a biodiverzity hyd-
rocenóz (CENAKVA) – MŠMT OP VaVpI CZ.1.05/2.1.00/01.0024,
2010–2013...9. Jihočeské výzkumné centrum akvakultury a biodiverzity hydro-
cenóz – udržitelnost (CENAKVA II) – MŠMT LO1205 pod programem
NPU I....10. Rozvoj CENAKVA – MŠMT CZ.1.05/2.1.00/19.0380....11. Distribuované uložiště dat velkého objemu založené na znalost-
ním modelu pro biomedicínu, bezpečnost potravin a další biolo-
gické aplikace – TA ČR TA0101214, 2011–2015....12. Singletový kyslík produkovaný senzitizátory na pevných anor-
ganických nosičích: Fotodesinfekční materiály a sondy – GA ČR
203/06/1244, 2006–2008....13. Optické chemické senzory (OPTISENS) – mezinárodní spolupráce
s Univerzitou v Mariboru, Slovinsko, MŠMT KONTAKT MEB 090817,
3/2008–2009....14. Interakce organicko-anorganických nosičů s imobilizovaným bio-
logickým materiálem – MŠMT, COST OC121, 3/2006–3/2009....15. Struktura a syntetické aplikace komplexů přechodných kovů – spo-
lupráce s ÚFCH JH AV ČR, UK a VŠCHT, MŠMT LC06070, 3/2006–2010....16. Monitorování a remediace znečištění životního prostředí pokro-
čilými organicko-anorganickými materiály (MOREPIM) – MŠMT
KONTAKT ME 892, 5/2007–2011....17. Celobuněčný optický senzor (WOCOS) – MŠMT KONTAKT ME
893, 5/2007–2011.

Další certifikáty a školení

9/2022 Osvědčení „Manažer kvality zkušební, kalibrační a zdravotnické la-
boratoře – základní znalosti a dovednosti“ v rozsahu norem ČSN
EN ISO/IEC 17025:2018, ČSN EN ISO 15189:2013 a ČSN EN ISO
19011:2019 (č. 1257/2022)

11/2021 Osvědčení vybraného posuzovatele pro senzorickou analýzu v rozsahu
požadavků normy ČSN ISO 8586:2015 (ev. č. 161121-4, platné 5 let)

9/2015 Biological Samples for Electron Microscopy, České Budějovice, Ing. J.
Nebesářová

10/2013 Microscopy and Image Analysis workshop, Vodňany, prof. Ch. Rouvière
a prof. C. Matthews
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6/2009 COST865 2009 Summer School, Early Stage Researcher Training on

Bioencapsulation, Anzère, Švýcarsko, prof. D. Poncelet
5/2008 Immunochemistry 2008, VŠCHT Praha, prof. J. Daussant
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............ 2. Vyjádření vztahu k VUT a důvodů pro předložení návrhu ke jmenování na VUT

2 Vyjádření vztahu k VUT a důvodů pro předložení
návrhu ke jmenování na VUT

S děkanem FCH VUT prof. Michalem Veselým jsem spolupracovala na vydání
tří jazykových mutací skript pro výuku předmětu Chemie II na FROV JU:..1. Rychtáriková R., Štys D.: Moderní laboratorní cvičení z organické fyzikální

chemie a analýzy. VUT Brno (2023), 50 stran, ISBN 978-80-214-6146-8,
elektronicky...2. Rychtáriková R., Štys D.: Modern laboratory practices in physical organic
chemistry and analysis. VUT Brno (2023), 50 stran, ISBN 978-80-214-
6145-1, elektronicky...3. Rychtáriková R., Štys D.: Moderne Laborübungen in organischer phy-
sikalischer Chemie und Analytik. VUT Brno (2023), 52 stran, ISBN
978-80-214-6144-4, elektronicky.

Recenzent: doc. Ing. Josef Trögl, Ph.D.
Korektor němčiny: Prof. Gottfried Köhler

Učebnice je základem inovace předmětu Chemie II a slouží pro výuku relevant-
ních laboratorních cvičení (převážně organická chemie a spektroskopie malých
organických molekul) v 1. ročníku denního a kombinovaného bakalářského
studia oborů Ochrana vod a Rybářství na FROV JU. Je založena na dvou
originálních komplexních laboratorních cvičeních ze spektroskopie organických
látek sestavených autory. Laboratorním cvičením předchází teorie absorpč-
ních molekulových spekter, elektrochemie, pufrů a interakce organické látky
s prostředím. V laboratorních cvičeních se využívá k přípravě pufrů systém
měřicích sond AquaSheriff komunikující s uživatelem přes webovou aplikaci.
Měřicí systém byl vyvinut na ÚKS FROV Nové Hrady. Na vývoji systému
AquaSheriff jsem se podílela zejména jako tester a sepsala jsem k němu návody.
Můj autorský podíl je 75 %.

Vzhledem ke skutečnosti, že FROV JU, na které odborně a pedagogicky půso-
bím, nemá akreditaci habilitačního řízení v oboru Fyzikální chemie, do něhož
předložená habilitační práce spadá, obrátila jsem se na FCH VUT.
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3 Doklady o dosaženém vysokoškolském vzdělání a
získaných příslušných titulech
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4 Pedagogická praxe

Předmět VŠ (typ studia) Rozsah Počet
semestrů

Druh Počet studentů

Fyzikální biologie (Ph.D., denní, PřF JU) 3-týdenní kurz v aj, 1 ze
2 cvičících, LS 2013-2018

3 C, pov. 10+9+9

Chemie II (Bc., denní, FROV JU) 2 h/týden, od LS 2017 7 C, pov. 22 + 14 + 17 + 18 +
24 + 12 + 22 + 22

Chemie II (Bc., kombinované, FROV JU) 1 h/týden, od LS 2017 7 C, L, pov. 5 + 4 + 5 + 4 + 2 +
4 + 3 + 9

Bioinformatika (Ph.D., denní + kombino-
vané, čj a aj, FROV JU)

týdenní kurz, 1 ze 4 vyu-
čujících, od LS 2021

3 P, C, L, vol. 7 + 4 + 1 + 0

Zpracování obrazu (Ph.D., denní + kom-
binované, FCHI VŠCHT, LS 2019)

3-denní kurz, 1 ze 3 před-
nášejících

1 P, C, vol. 2

Technické normy (Bc., denní, FROV JU) 2 h/týden, jediný vyuču-
jící, garant předmětu, od
ZS 2021

3 P, C, pov. 9 + 6 + 1

Technické normy (Bc., kombinované
FROV JU, garant předmětu)

2 h/týden, jediný vyuču-
jící, garant předmětu, od
ZS 2022

3 P, C, pov. 1 + 0

Modelování přírodních systémů (Bc.,
denní + kombinované FROV JU)

2 h/týden, 1 ze 2 vyučují-
cích, od LS 2022

1 C, vol. 10 + 0 + 0

P – přednáška, C – cvičení, L – laboratoře, pov. – povinné, vol. – volitelné, LS – letní semestr, ZS – zimní semestr
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....................................... 4. Pedagogická praxe

V letech 2013-2014, kdy působil prof. Dalibor Štys na MŠMT, vedla
výzkumný tým.

Školitel a školitel specialista VŠKP

Dizertační práce na PřF JU..1. Ganna Platonova: Contribution to information analysis in digital light
microscopy, předpokládaná obhajoba 11/2024.. Spoluautorka 2 publikací s IF (Lonhus a kol., Sci. Rep. 2020; Platonova a kol.,

Photonics 2021). Nyní zaměstnána v ÚJF AV ČR Řež..2. Ali Ghaznavi: Cell segmentation from wide-field light microscopy images
using CNNs, obhájeno 26. 6. 2023.. Spoluautor 3 publikací s IF (Ghaznavi a kol., Symmetry 2024; Ghaznavi a kol.,

Comp. Biol. Med. 2022; Lonhus a kol., Eur. Phys. J.-Spec. Top. 2021). Nyní postdok na Bundesanstalt für Materialforschung ung -prüfung, Berlín, Ně-
mecko..3. Kirill Lonhus: Investigating intrinsic behavioural parameters of autono-

mous objects based on motion, obhájeno 2. 2. 2022.. Spoluautor 5 publikací s IF (Lonhus a kol., Complex Intell. Syst. 2023; Platonova
a kol., Photonics 2021; Lonhus a kol., Eur. Phys. J.-Spec. Top. 2021; Lonhus a
kol., Sci. Rep. 2020; Lonhus a kol., Symmetry 2019), 1 recenzované publikace
(Macková a kol., Vodní hospodářství 2022) a 7 aplikovaných výstupů. Nyní vědecký pracovník FROV JU..4. Anna Zhyrova: State trajectory approach to the interpretation of self-

organization in the Belousov-Zhabotinsky reaction, obhájeno 24. 11. 2017.. Spoluautorka 1 publikace s IF (Štys a kol., Eur. Phys. J.-Spec. Top. 2019),
3 příspěvků v konferenčním sborníku na WOS a 1 příspěvku v recenzovaném
konferenčního sborníku. Nyní zaměstnána v Robert Bosch, spol. s r. o., České Budějovice..5. Tomáš Náhlík: Microscopy – Point Spread Function, Focus, Resolution,

obhájeno 15. 1. 2016. Spoluautor 1 publikace s IF (Rychtáriková a kol., Ultramicroscopy 2017), 3
příspěvků v konferenčním sborníku na WOS, 3 příspěvků v recenzovaném konfe-
renčním sborníku, 1 monografie a 4 softwarů. Nyní odborný asistent VŠTE České Budějovice

Bakalářské práce na Universita degli Studi di Padova..1. Alisa Plaksina: Caffeine-induced changes in a shoal behaviour of Tiger
Barb (Puntigrus tetrazona), obhájeno 13. 10. 2021.
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Bakalářské práce na FROV JU..1. Jan Košek: Studium dynamiky živých lidských buněk v odezvě na běžné
kontaminanty vod s cílem vývoje citlivého specifického analytického po-
stupu, obhájeno 6. 6. 2023...2. Eliška Pejcharová: Změny hejnového chování akvarijních ryb v přítomnosti
kontaminantu, obhájeno 14. 6. 2022. Prezentováno na 2 konferencích...3. Barbora Macková: Změny hejnové hierarchie ryb jako citlivý indikátor
bioaktivních látek, obhájeno 14. 6. 2021. Spoluautorka Macková a kol.,
Vodní hospodářství 2022...4. Miroslav Slivoně: Vliv běžných pesticidů na lidské buňky, obhájeno 1. 7.
2020.

Mezinárodní letní školy FROV JU Nové Hrady

- 1- až 2-měsíční výzkumné projekty z optické mikroskopie a zpracování digitál-
ního obrazu..1. Alisa Plaksina (Università degli Studi di Padova, 2021)..2. Olesya Nikitina (V. N. Karazin Kharkiv National University, Ukrajina,

2016)..3. Claudia del Carmen Diaz Armás (Tecnico de Monterrey, Mexiko, 2016)..4. Raul Suarez Rodrigez (Universidad de Las Palmas de Gran Canaria,
Španělsko, 2015)..5. Kateryna Akulich (V. N. Karazin Kharkiv National University, Ukrajina,
2015)..6. Marco Goméz (Tecnico de Monterrey, Mexiko, 2014)..7. Kevin Shi (University of Princeton, USA, 2013) – spoluautor 1 publikace
s IF (Rychtáriková a kol., Ultramicroscopy 2017)..8. Adam Charvát (Gymnázium J. V. Jirsíka, České Budějovice, 2014)..9. Lucie Draslarová (Česko-anglické gymnázium, České Budějovice, 2014)...10. Markéta Novotná (Česko-anglické gymnázium, České Budějovice, 2014) –
spoluautorka 1 recenzované publikace (Rychtáriková a kol., PURPLSOC
2014)...11. Magdalena Koutová (Gymnázium Česká a Olympijských nadějí, České
Budějovice, 2013)...12. Marie Hyblová (Gymnázium Česká a Olympijských nadějí, České Budějo-
vice, 2013)

Kurzy a školení. Superresolution microscopy from brightfield images, Letní školy FROV
JU Nové Hrady – 45-min přednáška (aj), 13. 7. 2016.Konfokální a superrozlišovací mikroskopie, Jihočeský vědecko-technický
park, České Budějovice – 40-min přednáška, 23. 2. 2016

12



....................................... 4. Pedagogická praxe

. COST Microscopy and Image Analysis Training Course, FROV JU Vodňany
– 120-min přednáška (aj), 16.–20. 3. 2015

Výuka na VOŠ

8/2011–1/2014 – FARMEKO, VOŠZ a SOŠ, Jihlava. Farmakognozie (0/2/0) – přednášky pro denní i kombinované studium
Diplomovaný farmaceutický asistent

Výuka na SŠ

8/2011–1/2014 – FARMEKO, VOŠZ a SOŠ, Jihlava.Klinická biochemie (0/1/3/4), Cvičení z klinické biochemie (0/0/3/4) –
teoretická a praktická výuka pro obor Laboratorní asistent.Mikrobiologie, hygiena a toxikologie (0/2/0/0). Biochemie a biotechnologie (0/0/3/0) – teoretická výuka pro obor Ekologie
a životní prostředí. vedení školního kola Chemické olympiády. příprava elektronických studijních materiálů

1–2/2006 – Střední průmyslová škola masné technologie, Navrátilova
15, Praha – pedagogická praxe.Obecná a anorganické chemie – teoretická výuka pro obor Přírodovědné

lyceum.Mikrobiologie a Technologie masa – teoretická výuka pro obor Technologie
zpracování masa a masných výrobků
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................................................
5 Odborné a vědecké stáže

9/2019 Ankara University, Faculty of Veterinary Medicine,
Department of Toxicology and Pharmacology, An-
kara, Turecko (doc. Begum Yurdakok Dikmen)
Téma: Teaching Activities Focused on the Veterinary Phar-
macology and Toxicology Field (týdenní stáž Erasmus+)

10–11/2016 Donau University of Krems, Faculty of Health and
Medicine, Krems an der Donau, Rakousko (prof. M.
B. Fischer)
Téma: 3D Live Cell Imaging - a Technical Solution (měsíční
stáž Aktion AT-CZ + týdenní stáž Erasmus+)

3–6, 9–12/2014 European Molecular Biology Laboratory, Advanced
Light Microscopy Facility, Heidelberg, Německo (Dr.
Rainer Pepperkok a Dr. Yury Belyaev)
Téma: 3D Modelling of diffracting organelles inside the living
cells (6-měsíční stáž Postdok JU)

7–8/2012 Univerzita Karlova v Praze, Matematicko-fyzikální
fakulta, Česká republika (RNDr. P. Gabriel)
Téma: Vývoj optického senzoru pro měření pH v kvasném
průmyslu (2-měsíční stáž)

11–12/2008, 8/2009 University of Maribor, Faculty of Mechanical En-
gineering, Center of Sensor Technology, Maribor,
Slovinsko (prof. A. Lobnik)
Téma: Optické chemické senzory – OPTISENS – Příprava
senzorů pro měření pH, paraoxonu a biogenních aminů v
potravinách a životním prostředí (MŠMT KONTAKT)

10/2008 Swedish University of Agriculture Sciences, Depart-
ment of Chemistry, Uppsala, Švédsko (prof. V. Kessler)
Téma: „Biokompatibilní titaničité hydrosoly a hydrogely s
navázanými porfyriny“ – Příprava materiálů pro dezinfekci
ran a léčbu rakoviny (2-týdenní COST865 STSM)

7/2005 Coca-Cola HBC Česká republika, Praha – Asistent
kontroly kvality – Kontrola kvality obalových materiálů (3-
týdenní stáž)
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.................... 6. Seznam publikovaných prací a realizovaných inženýrských děl

6 Seznam publikovaných prací a realizovaných
inženýrských děl

Článek v časopise WoS a Scopus

H-index 6, IF/SJR udáváno pro rok publikace, * korespondující autor..1. Ghaznavi A., Rychtáriková R., Císař P., Ziaei M.M., Štys D.: Symmetry
Breaking in the U-Net: Hybrid Deep-Learning Multi-Class Segmentation
of HeLa Cells in Reflected Light Microscopy Images. Symmetry 16, 227
(2024). Q2; IF 2,7, cit. 1

1. Ning W et al: Constr Build Mater 434:136770 (2024)...2. Lonhus K., Štys D., Rychtáriková R.*: Quantification of Collective
Behaviour via Causality Analysis. Complex Intell. Syst. 9, 5807–5816
(2023). Q1; IF 5..3. Ghaznavi A., Rychtáriková R.*, Saberioon M., Štys D.: Cell Segmen-
tation from Telecentric Bright-field Transmitted Light Microscopy Images
Using a Residual Attention U-Net: A Case Study on HeLa Line. Comp.
Biol. Med. 147, 105805 (2022). Q1; IF 6,7, cit. 14

1. Carrafini F et al: Lect Notes Comp Sci 14976:104-117 (2024).
2. Hattori S et al: Appl Sci 14(17):7958 (2024).
3. Wang Q et al: Electronics 13(17):3430 (2024).
4. Wu H et al: Opt Laser Technol 179:111311 (2024).
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Entropy for Observation of Inner Dynamics Inside of an Unlabeled Living
Cell in Bright-Field Microscopy, Interdisciplinary Symposium on Complex
Systems, Florencie, Itálie, 15.–18. září 2014.

České konference..1. Rychtáriková R., Pejcharová E., Lonhus K.: Změny hejnového chování
akvarijních ryb v přítomnosti kontaminantu. XX. Toxikologická konfe-
rence: Toxicita a biodegradabilita odpadů a látek významných ve vodním
prostředí. Vodňany, Česká republika, 24.–25. srpna 2022...2. Štys D., Lonhus K., Karpov M., Larin I., Rychtáriková R.: Kapesní
spektrofotometr UU´Spe. XX. Toxikologická konference: Toxicita a biode-
gradabilita odpadů a látek významných ve vodním prostředí. Vodňany,
Česká republika, 24.–25. 8. 2022...3. Pejcharová E., Lonhus K., Rychtáriková R., Štys D.: Vysoce citlivá a
specifická biodetekce polutantů. Elektronický sborník prezentací z kon-
ference Pitná voda 2020–2021, ISBN 978-80-905238-4-5. Ed. Petr Dolejš
(WET Team)...4. Rychtáriková R., Lonhus K., Slivoně M., Štys D.: Citlivá detekce nových
(i starých) polutantů založená na změnách intracelulární pohyblivosti
živočišných buněk. Elektronický sborník prezentací z konference Pitná
voda 2020–2021, ISBN 978-80-905238-4-5. Ed. Petr Dolejš (WET Team).

43 plakátových sdělení na mezinárodních a národních
konferencích
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A) ODBORNÁ OBLAST
pol. * korespondující autor bod.

1 Recenzovaný odborný článek (výsledek Jimp), Q1**)
Lonhus K., Štys D., Rychtáriková R.*: Quantification of Collective Behaviour via Causality Analysis.
Complex Intell. Syst. 9, 5807–5816 (2023). 40
Ghaznavi A., Rychtáriková R.*, Saberioon M., Štys D.: Cell Segmentation from Telecentric Bright-field 
Transmitted Light Microscopy Images Using a Residual Attention U-Net: A Case Study on HeLa Line. 
Comp. Biol. Med. 147, 105805 (2022). 40
Lonhus K., Rychtáriková R., Platonova G., Štys D.: Quasi-Spectral Characterization of Intracellular 
Regions in Bright-Field Light Microscopy Images. Sci. Rep. 10, 18346 (2020). 40
Rychtáriková R.*, Náhlík T., Shi K., Malakhova D., Macháček P., Smaha R., Urban J., Štys D.: Super-
Resolved 3-D Imaging of Live Cells’ Organelles from Bright-Field Photon Transmission Micrographs,
Ultramicroscopy 179, 1–14 (2017). 40
Rychtarikova R.*, Seisenbaeva G. A., Kuncova G., Kessler V. G.: Biocompatible Titania Hydrogels 
with Chemically Triggered Release of a Photosensitive Dye. J. Sol-Gel Sci. Technol. 62(3), 370–377 
(2012). 40

Rychtarikova R.*, Sabata S., Hetflejs J., Kuncova G.: Composites with Photosensitive 5,10,15,20-
Tetrakis(N -methylpyridinium-4-yl)porphy-rin Entrapped into Silica Gels. J. Sol-Gel Sci. Technol. 61(1), 
119–125 (2012). 40

2 Recenzovaný odborný článek (výsledek Jimp), Q2**)
Ghaznavi A., Rychtáriková R., Císař P., Ziaei M.M., Štys D.: Symmetry Breaking in the U-Net: Hybrid
Deep-Learning Multi-Class Segmentation of HeLa Cells in Reflected Light Microscopy Images.
Symmetry 16, 227 (2024). 20
Platonova G., Štys D., Souček P., Lonhus K., Valenta J., Rychtáriková R.*: Spectroscopic Approach to
Correction and Visualization of Bright-Field Light Transmission Microscopy Biological Data. Photonics 
8(8), 333 (2021). 20
Lonhus K., Rychtáriková R., Ghaznavi A., Štys D.: Estimation of Rheological Parameters for Unstained 
Living Cells. Eur. Phys. J.-Spec. Top. 230(4), 1105–1112 (2021). 20
Lonhus K., Štys D., Saberioon M., Rychtáriková R.: Segmentation of Laterally Symmetric Objects:
Application to Images of Collective Animal Behavior. Symmetry 11(7), 866 (2019). 20
Štys D., Rychtáriková R.*, Zhyrova A., Štys K.M., Jizba P.: Noisy Hodgepodge Machine and the 
Observed Mesoscopic Behaviour in the Non-Stirred Belousov-Zhabotinsky Reaction: Optimal Noise and 
Hidden Noise in the Hodgepodge Machine, Eur. Phys. J.-Spec. Top. 227, 2361–2374 (2019).

20
Rychtáriková R.*, Korbel J., Macháček P., Štys D.: Point Divergence Gain and Multidimensional Data 
Sequence Analysis. Entropy 20(2), 106 (2018). 20
Rychtáriková R.*, Korbel J., Macháček P., Císař P., Urban J., Štys D.: Point Information Gain and 
Multidimensional Data Analysis, Entropy 18(10), 372 (2016). 20

3 Recenzovaný odborný článek (výsledek Jimp), Q3**)
Rychtarikova R.*, Sabata S., Hetflejs J., Kuncova G.: Photodynamic Efficiency of Porphyrins 
Encapsulated into Polysilsesquioxanes. Chem. Pap., 66(4), 269–277 (2012). 10
Rychtáriková R.*, Kuncová G.: Imobilizované fotosenzitizátory singletového kyslíku a jejich účinek na
mikroorganismy. Chem. Listy 103(10), 800–813 (2009). 10
Šabata S., Hetflejš J., Rychtáriková R., Kuncová G., Lang K., Kubát P.: Immobilization of Porphyrins in 
Poly(hydroxymethyl-siloxane). Chem. Pap. 63(4), 438–444 (2009). 10

4 Recenzovaný odborný článek (výsledek Jimp), Q4 **) 
Malakhova D., Stys D., Rychtarikova R.: Adjustment of Dynamic High Resolution Images of Living 
Cells by Combination of an Optical Microscopy in Transmitting Light, Atomic Force Microscopy and 
Image Information Analysis, Chem. Listy 107(SI), Suppl. 3, S402–S404 (2013). 5
Rychtáriková R.*, Kuncová G.: Metoda vyhodnocování antimikrobiální aktivity počítačovým 
prahováním barev. Chem. Listy, 105(6), 493–498 (2011). 5



5 Recenzovaný odborný článek (výsledek Jsc) **)
Urban J., Rychtáriková R., Macháček P., Štys D., Urbanová P., Císař P.: Optimization of Computational 
Burden of the Point Information Gain. Acta Polytech. 59(6), 593–600 (2019). 2.5
Rychtáriková R.*, Urban J., Štys D.: Žampa´s Systems Theory: a Comprehensive Theory of 
Measurement in Dynamic Systems, Acta Polytech. 58(2), 128–143 (2018). 2.5
Rychtáriková R.*, Štys D.: Observation of Dynamics Inside an Unlabeled Live Cell Using a Bright-Field 
Photon Microscopy: Evaluation of Organelles’ Trajectories. IWBBIO 2017, Proceedings, Part II, LNBI 
10209, Ortuno and Rojas (eds.), Springer, Switzerland, 2017, pp. 700–711. 2.5
Rychtáriková R.*, Steiner G., Fischer M. B., Štys D.: Information Limits of Optical Microscopy: 
Application to Fluorescently Labelled Tissue Section. IWBBIO 2017, Proceedings, Part I, LNBI 10208, 
Ortuno and Rojas (eds.), Springer, Switzerland, 2017, pp. 485–496. 2.5
Zhyrova A., Rychtáriková R., Štys D.: Recognition of Stages in the Belousov-Zhabotinsky Reaction 
Using Information Entropy. IWBBIO 2017, Proceedings, Part I, LNBI 10208, Ortuno and Rojas (eds.), 
Springer, Switzerland, 2017, pp. 335–346. 2.5
Štys D., Náhlík T., Macháček P., Rychtáriková R., Saberioon M.: Least Information Loss (LIL)
conversion of digital images and lessons learned for scientific image inspection. IWBBIO 2016, LNBI 
9656, Ortuno and Rojas (eds.), Springer, Switzerland, 2016, pp. 527–536. 2.5
Císař P., Náhlík T., Rychtáriková R., Macháček P.: Visual Exploration of Principles of Microscopic
Image Intensities Formation using Image Explorer Software. IWBBIO 2016, LNBI 9656, Ortuno and
Rojas (eds.), Springer, Switzerland, 2016, pp. 537–544. 2.5
Rychtáriková R.*: Clustering of Multi-Image Sets Using Rényi Information Entropy. IWBBIO 2016,
LNBI 9656, Ortuno and Rojas (eds.), Springer, Switzerland, 2016, pp. 517–526. 5
Štys D., Náhlík T., Zhyrova A., Rychtáriková R., Papáček Š., Císař P.: Model of the Belousov-
Zhabotinsky Reaction. HPCSE 2015, LNCS 9611, Kozubek, Blaheta, Šístek, Rozložník, Čermák (Eds.),
Springer, Switzerland, 2016, pp. 171–185. 2.5
Štys D., Urban J., Rychtáriková R., Zhyrova A., Císař P.: Measurement in Biological Systems from the
Self-Organisation Point of View. IWBBIO 2015, Part II, LNCS 9044, Ortuno and Rojas (eds.), Springer,
Switzerland, 2015, pp. 431–443. 2.5
Bárta A., Císař P., Soloviov D., Souček P., Štys D., Papáček Š., Pautsina A., Rychtáriková R., Urban J.:
BioWes – from Design of Experiment, through Protocol to Repository, Control, Standardization and Back-
Tracking. IWBBIO 2015, Part II, LNCS 9044, Ortuno and Rojas (eds.), Springer, Switzerland, 2015, pp.
426–430. 2.5

6 Recenzovaný odborný článek (výsledek Jost) **)

Malečková D., Rychtáriková R., Urban J.: Obraz, informace, entropie (Czech) Image, Information,
Entropy: Image Analysis Using Rényi Entropy. ProInflow: časopis pro informační vědy 11(2), 30–39
(2019). 2.5
Macková B., Lonhus K., Rychtáriková R.*: Využití změn hejnové hierarchie ryb pro citlivou indikaci 
bioaktivních látek ve vodním prostředí. Vodní hospodářství 2, 21–26, 2022. 2.5

7 Odborná kniha (výsledek B, za 1 stranu) **)
Rychtáriková R., Náhlík T.: System information approach to digital light microscopy. FROV JU České 
Budějovice (2023), ISBN 978-80-7514-185-9, 124 str. 49.6

9 Stať ve sborníku (výsledek D) **)
Štys D., Lonhus K., Karpov M., Rychtáriková R.: Visible Truth – digitální světelné mikroskopy (nejen)
pro kontrolu kvality. CAE Forum 2023, Praha, Česká republika, 14.–15. září 2023. 1
Rychtáriková R.*, Malečková D., Urban J., Bárta A., Novotná M., Zhyrova A., Náhlík T., Štys D.:
Study of Human Perception with the Usage of Information Entropy Analysis of Patterns, in PURPLSOC:
Pursuit of Pattern Language for Societal Challenges/PURPLSOC The Workshop 2014 1), Baumgartner
and Sickinger (eds.), pp. 366–384, ISBN 978-3-7375-5458-9, epubli GmbH (Verlag), 2015, Austria.

1



Zhyrova A., Rychtáriková R., Náhlík T., Štys D.: The Path of Aging: Self-Organization in Nature and 15
Properties, in PURPLSOC: Pursuit of Pattern Language for Societal Challenges/PURPLSOC The
Workshop 2014 1), Baumgartner and Sickinger (Eds.), pp. 385–410, ISBN 978-3-7375-5458-9, epubli
GmbH (Verlag), 2015, Austria. 1
Rychtáriková R.*, Náhlík T., Smaha R., Urban J., Štys D. Jr., Císař P., Štys D.: Multifractality in
Imaging: Application of Information Entropy for Observation of Inner Dynamics Inside of an Unlabeled
Living Cell in Bright-Field Microscopy. In ISCS14, Sanayei et al. (eds.), Springer, Switzerland, 2015, pp.
261–267. 1

10 Citace jiným autorem podle WoS

59 118

14 Ověřená technologie (výsledek Z)
Tlamková M., Kopečková K., Sekorová Š., Špirka D., Rychtáriková R., Štys D., 2023: Postup 
hodnocení a přípravy transplantátu z oční rohovky. 5

17 Prototyp (výsledek G)
Lonhus K., Karpov M., Larin I., Rychtáriková R., Štys D., 2024: PADES. Uplatněno v ASTOS
Machinery a.s., Aš. 5
Rychtáriková R., Štys D., Sekorová Š., Špirka D., Tlamková M., Kopečková K., 2023: Mikroskop
Visible Truth UltraEasy. 5
Rychtáriková R., Štys D., Sekorová Š., Špirka D., Tlamková M., Kopečková K., 2023: Upravený Zeiss 
Stemi 508. 5

18 Funkční vzorek (výsledek G)
Lonhus K., Karpov M., Larin I., Rychtáriková R., Štys D., 2024: Filiqa 1.1. Uplatněno v OSRAM Česká
republika, s.r.o., Bruntál. 5
Lonhus K., Karpov M., Larin I., Rychtáriková R., Štys D., 2024: Filiqa 0.1. Uplatněno v OSRAM Česká
republika, s.r.o., Bruntál. 5
Lonhus K., Rychtáriková R., Štys D., 2021. Kapesní VIS (potenciálně near UV–VIS–near IR)
spektrofotometr. 5
Štys D., Rychtáriková R., 2021. Mikroskop Futurescope. 5
Rychtáriková R., Štys D., 2020. Mikroskop NanoTruth. 5

25 Získání externího grantu (řešitel, spoluřešitel)
Lamelový sedimentační systém filtrace nové generace, TAČR Trend PP1 Technologičtí lídři,
1/2024–6/2026, rozpočet FROV JU 6 328 tis. Kč (90% dotace) – spolupráce s firmami ASTOS
Machinery a.s. a MACHINERY DESIGN s.r.o. (Ing. Martin Valíček). 40
Vývoj procesu hodnocení kadaverózních rohovkových lamel pomocí inovace mikroskopických
systémů pro celulární analýzu, MPO Aplikace, 9/2021–5/2023, rozpočet FROV JU 3 218 tis. Kč (85%
dotace) – spolupráce s firmami PrimeCell Bioscience a Národním centrem tkání a buněk (MUDr. Šárka
Sekorová, Mgr. Martina Tlamková) 40

Návrh a ověření metody pro analýzu částic v provozních kapalinách pomocí mikroskopu
s průtokovou celou, MPO Inovační vouchery VI, 12/2022–7/2022, 587 tis. Kč, pro ASTOS Machinery
a.s., Aš. 40
Testování principů mikroskopického sledování kvality navíjení mikrospirály wolframového vlákna 
pro žárovky, MPO Inovační vouchery VI, 12/2022–7/2022, 604 tis. Kč, pro dataPartner s.r.o., České 
Budějovice. 40
Konsolidace software jednoduchého mikroskopu velmi vysokého rozlišení NanoTruth, TAČR 
Gamma, TG03010027, 4/2018–12/2019, 218 tis. Kč. 40

SOUČET 871.6

MINIMUM 600



B) PEDAGOGICKÁ OBLAST
pol. bod.

1 Za každý rok pedagogického působení na vysoké škole na plný úvazek (částečné úvazky se sčítají)

12 300

5 Garantování předmětů (za každý rok)
od 9/2021 – Technické normy  – semestrální Bc. kurz pro obor Ochrana vod 15

6 Zavedení nového předmětu nebo zásadní inovace předmětu
Chemie 2  – semestrální Bc. kurz pro obory Ochrana vod a Rybářství, celková inovace předmětu, 
zodpovědna za inovaci laboratorních cvičení 10

Bioinformatika/Bioinformatics  – semestrální Bc. kurz pro obory Ochrana vodních ekosystémů, zavádění 
nového předmětu v rámci nového studijního oboru, zodpovědna za inovaci oblasti světelné mikroskopie 10

8 Vedení úspěšně obhájené bakalářské práce
Alisa Plaksina: Caffeine-induced changes in a shoal behaviour of Tiger Barb (Puntigrus tetrazona ), 
obhájeno 13. 10. 2021. 3
Jan Košek: Studium dynamiky živých lidských buněk v odezvě na běžné kontaminanty vod s cílem vývoje 
citlivého specifického analytického postupu, obhájeno 6. 6. 2023. 3
Eliška Pejcharová: Změny hejnového chování akvarijních ryb v přítomnosti kontaminantu, obhájeno 14. 
6. 2022. 3
Barbora Macková: Změny hejnové hierarchie ryb jako citlivý indikátor bioaktivních látek, obhájeno 14. 6. 
2021. 3
Miroslav Slivoně: Vliv běžných pesticidů na lidské buňky, obhájeno 1. 7. 2020. 3

12 Školitel specialista studenta, který získal Ph.D.
Ali Ghaznavi: Cell segmentation from wide-field light microscopy images using CNNs, obhájeno 26. 6.
2023. 10
Kirill Lonhus: Investigating intrinsic behavioural parameters of autonomous objects based on motion,
obhájeno 2. 2. 2022. 10
Anna Zhyrova: State trajectory approach to the interpretation of self-organization in the Belousov-
Zhabotinsky reaction, obhájeno 24. 11. 2017. 10
Tomáš Náhlík: Microscopy – Point Spread Function, Focus, Resolution, obhájeno 15. 1. 2016 10

13 Učebnice s ISBN (za 1 stranu)
Rychtáriková R., Náhlík T.: Systémově informační přístup k digitální světelné mikroskopii. FROV JU 
České Budějovice (2023), ISBN 978-80-7514-193-4, 124 str. 49.6

14 Skripta s ISBN (za 1 stranu)
Rychtáriková R., Štys D.: Moderní laboratorní cvičení z organické fyzikální chemie a analýzy. VUT
Brno (2023), ISBN 978-80-214-6146-8, 50 str. 20
Rychtáriková R., Štys D.: Modern laboratory practices in physical organic chemistry and analysis. VUT
Brno (2023), ISBN 978-80-214-6145-1, 50 str. 20
Rychtáriková R., Štys D.: Moderne Laborübungen in organischer physikalischer Chemie und Analytik. 
VUT Brno (2023), ISBN 978-80-214-6144-4, 52 str. 20.8

SOUČET 500.4

MINIMUM 200
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8 Vyjádření uchazečky k bodovému hodnocení

Odborná oblast

V odborné oblasti (část A) dosahuje uchazečka dle tabulky kvantifikovaných
hodnotících oborových kritérií FCH VUT 871.6 b. z povinných 600 b.

Silnými stránkami této oblasti je. relativně vysoký počet udělených externích grantů jako PI nebo co-PI (srov-
náno dle výše finanční podpory) 1× TAČR Trend 10, 1× MPO Aplikace,
2× MPO Inovační vouchery, 1× TAČR Gama, a z toho vyplývající. vysoký počet aplikovaných výsledků (1× ověřená technologie, 3× prototyp
a 4× funkční vzorek). Kromě těchto kvantifikovaných aplikovaných výstupů
žadatelka vykázala ještě 8× software (kap. 6).. vysoký podíl práce uchazečky na publikacích. Včetně monografie, studijních
opor a recenzovaných článků bez IF je uváděna 19× jako první, 5× jako
poslední, 18× jako korespondující, případně 9× jako druhá autorka.

Slabšími stránkami této oblasti je. hraniční počet publikací s IF (18 vs. 15 povinných). Jedním z důvodů je
relativně vysoký počet článků publikovaných v recenzovaných technických
sbornících vydavatelství Springer (9× Q2 dle SJR, citováno na WoS bez
IF). Dalším důvodem je nízký počet spoluautorů na publikacích, kdy na
práci spolupracoval s uchazečkou většinou pouze její nadřízený, případně
další 1–2 studenti.. hraniční počet citací (59 dle Scopus vs. 50 povinných). Důvodem je obecně
nižší citovanost matematicko-fyzikálních článků.

Pedagogická oblast

V pedagogické oblasti (část B) dosahuje uchazečka dle tabulky kvantifiko-
vaných hodnotících oborových kritérií FCH VUT 500.4 b. z povinných 200
b.

Silnou stránkou této oblasti je. relativně vysoký počet studijních opor (1× učebnice ve dvou jazykových
mutacích, viz monografie; 1× skripta ve třech jazykových mutacích). Tyto
studijní opory byly základem inovace a zavádění nových studijních před-
mětů na FROV JU a ZTF JU (viz položka 6B).

Slabou stránkou této oblasti je. nedostatečný počet povinně vykazovaných ukončených bakalářských či
diplomových prací (5 vs. 6 povinných). Nicméně uchazečka vykazuje 4
ukončené doktorské práce jako školitel-specialista, další doktorská práce
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............................8. Vyjádření uchazečky k bodovému hodnocení

bude pravděpodobně obhájena do konce 11/2024 (kap. 3). Hlavním dů-
vodem je nízký počet (v jednotkách) studentů ukončujících každoročně
na FROV JU bakalářské či magisterské studium a vysoký počet školitelů.
Naopak FROV JU se prezentuje jako fakulta výzkumná a vykazuje tedy
vysoký počet studentů doktorského studia.
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9 Pět nejvýznamnějších publikací

Noisy hodgepodge machine and the observed mesoscopic
behavior in the non-stirred Belousov-Zhabotinsky reaction

D. Štys, R. Rychtáriková, A. Zhyrova, K. M. Štys a P. Jizba, Noisy hodgepodge
machine and the observed mesoscopic behavior in the non-stirred Belousov-
Zhabotinsky reaction, The European Physical Journal – Special Topics 227
(2019), 2361–2374.

Jedná se o základní fyzikálně-chemický výzkum principů samoorganizace na
příkladu Bělousovy-Žabotinského reakce, jejího experimentálního měření a
matematického modelování. Tato práce navazuje na předchozí publikace. D. Štys, T. Náhlík, A. Zhyrova, R. Rychtáriková, Š. Papáček a P. Císař, Model of

the Belousov-Zhabotinsky reaction, In: Kozubek, Blaheta, Šístek, Rozložník a Čermák
(Ed.) High Performance Computing in Science and Engineering (HPCSE) 2015, Lecture
Notes in Computer Science 9611, Springer, Switzerland (2016), pp. 171–185.. A. Zhyrova, R. Rychtáriková a D. Štys, Recognition of stages in the Belousov-
Zhabotinsky reaction using information entropy: Implications to cell biology, In: Ortuño
a Rojas (Ed.) International Conference on Bioinformatics and Biomedical Enginee-
ring (IWBBIO) 2017, Part I, Lecture Notes in Computer Science 10208, Springer,
Switzerland (2017), pp. 335–346.

Do všech předchozích modelů vnesli autoři náhodnou složku (šum) nevědomky,
případně zaváděli pouze jeden druh šumu, a to gaussovský. My jsme šum cíleně
modelovali pro jednotlivé procesy, čímž jsme dosáhli velmi dobré shody modelu
s experimentem.

32



Eur. Phys. J. Special Topics 227, 2361–2374 (2019)
c© EDP Sciences, Springer-Verlag GmbH Germany,

part of Springer Nature, 2019
https://doi.org/10.1140/epjst/e2018-800045-4

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Noisy hodgepodge machine and the observed
mesoscopic behavior in the non-stirred
Belousov–Zhabotinsky reaction?

Optimal noise and hidden noise in the hodgepodge machine
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Abstract. In this paper, we have modified one of the simplest multi-
level cellular automata – a hodgepodge machine, so as to represent
the best match for the chemical trajectory observed in the Belousov–
Zhabotinsky reaction (BZR) in a thin layered planar setting. By
introducing a noise term into the model, we were able to transform the
central regular structure into the circular target pattern. We further
analyze influences of the neighborhood (diffusion process) and inter-
nal excitation type of noise. We find that the configurations of ignition
points, which give the target patterns, occur only in the interval of the
neighborhood excitation noise from 30% to 34% and at the internal
excitation noise of 12%. We argue that the BZR occurs on a semi-
regular grid – a chemical analogy to a Bénard cell in the viscous fluid,
and we discuss the size of the relevant elementary cell. In this way, the
BZR is a quintessential example of mesoscopic process, in particular,
it does follow neither the deterministic rules of the microscopic sys-
tem nor the tenet of Boltzmannian statistic physics that only the most
frequent events are observed.

1 Introduction

Properties of multi-level cellular automata [1,2] have been examined so far only spo-
radically. What is known, however, is that their state trajectory critically depends
on the number of available levels [3] and that they can be divided into a few-level

? Supplementary material in the form of one zip file available from the Journal web page at
https://doi.org/10.1140/epjst/e2018-800045-4

a e-mail: rrychtarikova@frov.jcu.cz
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automata and true multilevel automata [4]. The border between a few and true mul-
tilevel automata was examined only for the so-called square Moore neighborhood
and was found to be around 24 levels [3]. Such automata have apparently a sufficient
number of levels which allows the system to behave only according to the internal
evolution rule (e.g., ratio of constants) independently of the number of levels itself [4].

The hodgepodge machine [5] is a type of multi-level cellular automaton which mim-
ics well the final phase of the Belousov–Zhabotinsky reaction (BZR). The hodgepodge
machine is the simplest of the models which intends to mimic qualitatively the fea-
tures observed when the BZR is performed in a thin layer. In the context of this
paper it is important to mention the simulation of Garcia-Ojarvo and Schimansky-
Geier [6] who used the FitzHugh-Nagumo model [7,8] for description of the rise and
decay of the excitation. The simulation was performed on a square lattice and may
be thus directly compared to the hodgepodge machine. When an adequate level of
the Gaussian noise was added, the coexistence of spirals and waves, similar to that in
the hodgepodge machine, was observed. The FitzHugh-Nagumo model was originally
developed for description of the electrical pulse in the neural system but may be also
interpreted in terms of a chemical simplified reaction-diffusion system of chemical
transformations.

In our simulations, we modified the model so that it was possible to start from
a few ignition points – situation observed in realistic experiments [4]. This enabled
us to examine influences of the ignition points as well as the early phases of the
trajectory. Eventually, we achieved such a behavior of the hodgepodge machine which
is qualitatively compatible with the BZR and consists from an early phase of large
center structures – octagons filled by complicated cross-like structures – and ends
with a mixture of spirals and waves [4]. The latter suggests that it could be some
conceptual overlap between our model and the discrete dynamic networks paradigm
proposed in [9].

Our aim here is to promote the idea that the BZR as a typical demonstration
of mesoscopic dynamics, i.e., it is neither microscopic, i.e. fully deterministic, nor
macroscopic, i.e. represented only by the most probable microstate. The paper is
structured as follows: In Section 2, we examine influences of noise on the outputs
from the noise-enriched hodgepodge machine (NHM) and discuss the relevance it
bears on the BZR. In Section 3, we present results of our simulations and show
that the conventional, i.e., “noise-free” hodgepodge machine is in fact a hidden-noise
cellular automaton. We also show that many details of the NHM find their direct
analogues in the BZR. We further explain the lag phase in the beginning of the
BZR using a chemical mechanism analogous to the formation of a regular grid by
a Bénard–Rayleigh convection process [10]. Various remarks and generalizations are
addressed in Section 4.

2 Materials and methods

2.1 Performance of the chemical reaction

The experiments were performed using the BZR recipe [11]. The reaction mixture
included 0.34-M sodium bromate, 0.2-M sulphuric acid, 0.057-M sodium bromide (all
from Penta), 0.11-M malonic acid (Sigma-Aldrich) as substrates and a redox indicator
and 0.12-M 1,10-phenanthroline ferrous complex (Penta) as a catalyst. All reagents
were mixed by hand directly in a 200-mm Petri dish in the sequence mentioned above
for 1 min. A special thermostat, which was constructed from a Plexiglas aquarium
and a low-temperature circulating water bath-chiller, fixed a reaction temperature
at 26 ◦C.
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The chemical waves were recorded by a Nikon D90 camera in the regime of Time
lapse (10 s/snapshot) with exposure compensation +2/3 EV, ISO 320, aperture f/18,
and shutter speed 1/10 s. The original 12-bit NEF raw image format was losslessly
transformed to the 12-bit PNG format. The complete courses of the experiment are
provided in Videos S1 and S2.

The experiment on a re-started BZR was performed by a manual re-shaking of
the reaction vessel after reaching the state of dense waves. The photos of course of
the experiment were taken in the time interval of 2 s and consists of 9 cycles of the
lengths of 48, 25, 44, 24, 25, 18, 11, 15, and 32 images, respectively.

2.2 Noisy hodgepodge machine model

The NHM of the BZR is essentially the same as in [4] but with the addition of a noise
term. We adjusted Wilensky’s NetLogo model [12]: The model was run on a square
1-Mpx grid. Ignition centers in state(t = 0) ∈ [0,maxstate] were randomly set on the
grid as

state(t = 0) = random-exponential[meanPosition(maxstate + 1)] , (1)

where maxstate is the maximally achievable number of levels of the cell state. Mul-
tiplication of each cell state by the meanPosition of the exponential distribution
ensured that the simulation started with a small number of the ignition points. Each
time step t proceeded in four possible ways:

– When a cell was at the state(t) = 0, so-called quiescent, it was “infected” by
surrounding cells according to the equation

state(t + 1) = (1 + PTN)

[
prec

(
a

k1

)
+ prec

(
b

k2

)]
, (2)

where a and b is a number of cells at the state ∈ (0,maxstate) and state =
maxstate, respectively, k1 and k2 are characteristic constants of the process.

– When a cell was at the state(t) ∈ (0,maxstate), its new state was calculated
as

state(t + 1) = prec

[
state(t) +

∑8
n=1 staten(t)

a + b + 1
(1 + IEN) + g(1 + EEN)

]
,(3)

where staten(t) is a state of the nth cell in the Moore neighborhood, which
directly surrounds the examined cell, and g = 28 is another arbitrary constant.

– When a cell was at the state(t) > maxstate, then

state(t + 1) = maxstate . (4)

– When a cell achieved the state(t) = maxstate, then

state(t + 1) = 0 . (5)

In equations (1) and (2), the numerical precision (prec) of 10 decimal points allowed
us to realize up to 9× 1012 states. The individual white noises in equations (1) and
(2) were named
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– the phase transition noise (PTN): it affects the transition from the state 0 to
the first non-zero state,

– the internal excitation noise (IEN): it affects the change of the state due to
processes inside the cell, i.e., it influences the constant g [4], and

– the neighborhood (external) excitation noise (EEN): it affects processes related
to the values of neighboring cells.

The influences of these kinds of noise were tested by systematic changes of their values.
Examples of qualitatively different cases are described in some detail in the following
section and shown in Videos S3–S8. The full model is provided in Material S1.

3 Results

3.1 Modeling the Belousov–Zhabotinsky reaction in excitable media
and the constructive role of noise

The BZR behavior is not easily comprehensible in terms of the standard Law of Mass
Action (which represents the “canonical method” for interpretation of the chemical
reactivity) due to the fact that the reaction space is separated into regularly evolv-
ing/traveling structures and, thus, one has to consider a large number of interlocked
chemical processes. In this work, we report a new stochastic model of the BZR based
on the cellular automaton. The model retains some of the key features of the multi-
level hodgepodge machine but outperforms this hodgepodge machine in the ability to
faithfully mimic the onset stage of the BZR and in the potential to correctly describe
the morphology of the evolving wave-spiral patterns.

Figure 1a compares a late (ergodic) stage of the BZR (full data are accessible via
S1 Video) at our least spatially constrained (a 200-mm Petri dish) and roil (gentle
mixing at 1400 rpm using an orbital mixer) conditions with one of our Wilensky-like
model. The structures of the model, which are astonishingly similar to the experiment,
arise only at the particular ratio of the model constants independently of the height
of the noise. (The most regular spirals and waves, best comparable to the model, are
expected to arise in a very gently pre-mixed, homogenous solution of a thin layer in
a vessel of the unlimited size which does not spatially constrain evolving waves.) In
order to achieve this morphological similarity between the BZR and our simulation,
we implemented the following changes into the Wilensky model:

– the enlargement of the cellular grid to 1000× 1000,

– start from a very few points which enabled to analyze the behavior of individual
centers of emanation,

– a sequence of switching the values of cell states from natural to decimal numbers
which extended the span of each cellular state,

– the addition of a uniform white noise to each automaton step which compen-
sated for our limited knowledge of precise underlying mechanism, and

– the extension of the number of achievable states maxstate and rate of the
internal cell excitation g up to 2000 and 280, respectively, to smooth the model
waves.

The first modification – usage of the larger grid – suppressed to some extent the
influence of the non-idealities of the periodic boundaries on the evolution of the model
system.
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Fig. 1. Illustration of the key aspects of the B–Z model. (a) Comparison of the BZR (i)
with the simulation with the levels of noise 9%, 14% and 30% for process 1, 2a, and 2b,
respectively, and k1 = 3 and k2 = 3 (ii). Images were expanded so as to have comparable
widths of traveling waves. (b) Starting points of the simulations (steps 2, 4, 14, 16). The
noise-free simulation with natural number states, k1 = 3 and k2 = 3 in step 2000 (i), the
noise-free simulation with natural number states, k1 = 2 and k2 = 2 in step 2596 (ii) and
the process described under a in step 18 400 (iii). (c) Final states (limit sets) of processes
defined in b. For all processes, g = 28 and maxstate = 200. In the simulation, the black and
white corresponds to 0 and maxstate, respectively. Original datasets are supplied in S1 File.
The unquestionably inspection of the data has to be done using the original data matrices
as demonstrated in Figure 1.

The second intervention into the Wilensky model was performed through a
random-exponential function for generation of the starting (ignition) points. This
modification, which was originally implemented to start the process from these few
centers (ignition points), quite surprisingly increased the morphological similarity
between the BZRs and the simulation. The results are depicted in Figures 1b and 1c.
In Figure 1b, we present early simulation steps 2, 4, 14, and 16 in process 1 after the
ignition. For k1 = 3 and k2 = 3, at least two non-zero points in a proper configuration
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a, b were required for the evolution of the waves in the simulation, since at least one
addend in process 1 has to be equal to 1. In this case, the early evolution yielded
octagons (Fig. 1b, i), while the final state was populated by spirals (Fig. 1c, i). In
contrast, if k1 = 2 and k2 = 2, then, e.g. state(t+ 1) = round( 1

2 ) + round( 0
2 ) = 1 and

the non-zero cell was surrounded by evolving wave of 8 cells in state(t + 1) = 1. This
early evolution resulted in squares with central circular objects (Fig. 1b, ii) which
further led to the filamentous structures (Fig. 1c, ii).

The next step softened the definition of the state by allowing 1 decimal place
in equations (1) and (2). This modification, however, neglected the condition of the
asymmetry for the ignition process and, as a consequence, the development of tra-
jectories could start from any non-zero. Thus, as such, this modification leads only
to fuzzy distribution of points. Indeed, increase of the number of decimal places did
not have any further effect.

In other words, the implementation of white noise compensated for the need of
multiple neighboring points for the realization of the waves’ ignition. The different
options for setting the ignition points occur randomly and are thus the noise them-
selves. By the term noise we understand a process with its own internal mechanism
which occurs at a rate faster than the rate of the main process (i.e., waves’ formation)
which it affects. Thus, the original hodgepodge machine was an unrecognized noisy
cellular automaton.

The only effect of higher number of decimal points were smoother edges in the
spiral shape.

The detailed comparison of the models and experiment is given in Figure 2a. The
sequence of simulated structures is the following:

– The simulation grid is filled with systems of square dense waves. This has not
been observed in the experiment and we interpret it as a lag phase, which
precedes the observed formation of circular waves.

– Circular structures emanate from the center of square waves.

– At the certain state, the simulation grid is nearly covered by large circular struc-
tures. A few spirals occur at places where the regular wavefront was distorted
and break into a first generation of spirals.

– The final state is similar to that in the simulation where the states are natural
numbers, k1 = 3, and k2 = 3, however, the waves are about 2 grid elements
thicker.

Let us mention further key similarities between our simulation and actual
experiments (Figs. 2b and 2c):

– The chemical waves do not interfere like material waves but merge.

– The chemical waves do not maintain the shape (as, e.g., solitons [13]).

– The morphology of interacting patterns (merger of patterns) in simulations has
comparable traits as in real experiments.

– Quantitative features of the limit sets, i.e., the last evolutionary stage of the
wave-spiral patterns can be set as close as possible to actual experimental data
by an appropriate choice of the parameter range.

3.2 Influence of the noise

In Figure 3, we show a sketch of the research on the increase of neighborhood and
internal kinds of excitation noise. Most cases gave a typical trajectory as shown in
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Fig. 2. Similarities between the trajectories of the simulation and of the BZR. (a) Selected
states of the simulation (i) and corresponding images from the course of the experiment (ii).
The early stage of the experiment corresponds to the lag phase of the experiment when no
waves evolve. For the later stages of the simulation, corresponding structures were found in
the experiment. (b) Sections of images which show wave merging. Similar behavior has not
been found for material waves and another wavelike structures and indicates that threshold-
range cellular automata (i) are proper models for phenomena observed in the BZR (ii).
(c) States in formation of spirals. In the simulation (i), the distortion of the dense waves
leads to their merging which is the source of formation of spirals. In the experiment (ii),
the source of the distortion is often a bubble of carbon dioxide. Otherwise, the formation of
spirals is similar to the experiment. For all processes, g = 28, maxstate = 200, k1 = 3 and
k2 = 3. In the simulation, the black and white corresponds to 0 and maxstate, respectively.

Figure 1. Images in Figure 3 show sections of the 1600th step of the simulation,
where the spiral-based structures prevail over the central circular target pattern. We
observed some remnants of the circular structures followed by spirals and waves evolv-
ing around them. However, both central circular structures and systems of spirals and
waves slightly differ. The exception occurred at neighborhood and internal excitation
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Fig. 3. Sections of steps 1600 of the simulations at different levels of external (the first
number) and internal (the second number) excitation noise. The Roman numeral II (bottom
middle) denotes the second experiment. Only at the internal and external (neighborhood)
excitation noise of 30% and 12% (bottom left), respectively, mutual geometries of initial
ignition points for which no spirals were formed were found. At any higher density of ignition
points and different geometries, spirals were formed even at these combinations of noises.

noise of 30% and 12%, respectively (bottom left and bottom middle), where, in some
cases, we did not observe any spirals. In contrast, the combination of neighborhood
and internal excitation noise of 30% and 16% (bottom right) resulted in the fast
evolution of spirals and waves which prevented the formation of circular waves.

3.3 Re-shaking experiment

Figure 4 shows the course of the experiment on the re-started BZR. The process
(cycle 1 ) started by the evolution of circular waves. Each sub-experiment was stopped
after reaching a phase of dense waves and the reaction vessel was re-shaken. This
process was repeated 9 times. Upon re-shaking, the waves gradually lost regularity
and became thicker, the diameters of target patterns increased (cycle 3 ) and the waves
evolved mainly at the vessel’s border (cycle 4 ). Similar phenomena were observed in a
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Fig. 4. Re-start of the B-Z reaction (9 cycles). The number ratio X/Y means the Xth image
from a Y-image series.

Petri dish of a smaller diameter. Further thickening of waves (cycle 5 ) led eventually
to merging of circular waves (cycle 6 ) up to a complete filling of circular waves’ centres
(cycle 9 ). The next mixing did not lead to re-formation of the red-colored state.

In the early phase and, namely, upon gentle mixing (as shown in Fig. 1) the circular
waves are highly regular. At later stages, upon re-shaking, the wavefronts became
undulated and more similar to those observed in the NHM simulation. Finally, the
waves thickened to the extent that the formation of structures was no more possible.

This experiment demonstrates that the depletion of reactants does not change
the shape of observed waves and their course (order) but causes thickening of the
traveling waves and shortens time to reaching the ergodic state. The ergodic state,
both in the experiment and in the model, is characterized by a coexistence of spirals
and waves.

3.4 Mesoscopicity and the size of the elementary spatial unit

When noise matters, an observed process is typically mesoscopic. It does follow nei-
ther the deterministic rules of the microscopic (or purely mechanical) system nor the
statistical-physics tenet of Boltzmannian statistic physics that only the most frequent
events are observed. The success of the simulation described in this article is based
on the existence of the minimal spatial element to which all processes are referred.
Indeed the simplest explanation is that the space is segregated into elementary units
similar to those observed in viscous fluids at temperature gradients, i.e., to the Bénard
cells [10]. With this hypothesis, we have examined the size of the elementary unit.

Figure 5 shows the analysis of wave profiles in the hodgepodge model. Figure 5a
shows the influence of the g/maxstate ratio on the final phase of the model in the
noise-free and discrete system when no decimal numbers are allowed. The g/maxstate
ratio corresponds to the number of timesteps of the simulation at which the maximal
excitation was achieved. The timestep may be also understood as a measure of the
ratio between a ”diffusive” process (the first term in Eq. (3)) and a zero-order chemical
reaction (the second term in Eq. (3)) when the first term is always realized in one
timestep. A low g/maxstate ratio, i.e., a fast reaction process in comparison to the
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Fig. 5. Ratio of processes 2a and 2b determines the size of elementary unit and the type
of state trajectory. (a) Images of later states of simulation at different g/maxstate ratios,
k1 = 3, k2 = 3 and noise = 0. At g/maxstate = 1000/2000 (i), spirals evolve into forms
of ram’s horns. To the opposite, g/maxstate = 10/2000 (ii) does not form spirals. At
g/maxstate = 1/2000 (iv), the process is fully diffusive. At g/maxstate = 280/2000 (iii),
the trajectory is almost identical to the experimental trajectory. (b) The intensity profiles of
waves at different g/maxstate ratios. Decrease of the g/maxstate ratio leads to the broad-
ening of waves. The intensity profile of the circular structure is very noisy. In the simulation,
the black and white corresponds to 0 and maxstate, respectively.
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diffusive one, leads to narrow waves and short spirals (e.g., Fig. 5a-iii). At a very low
g/maxstate ratio, waves do not fully develop and spirals do not arise (e.g., Fig. 5a-iv).

Figure 5b depicts several profiles of waves taken in the direction orthogonal to the
wave development. As shown, the formation of wave in the system with and without
the introduced noise, respectively, takes different times. In the noise-free processes
(e.g., at the g/maxstate of 28/200 and 280/2000, upper), the wave is fully formed in
10 steps, while, in the simulation when noise is induced (see g/maxstate = 28/200),
the formation of the wave takes 13 steps. At g/maxstate = 100/2000 (lower left),
the waves are as broad so that they do not fully separate. For comparison, Figure 5b
includes the profile of the early circular wave (lower right).

The striking similarity of the simulation to real experiment intensity profiles of
dense waves (Figs. 1, 5 and 6) motivated us to guess the number of molecules per an
elementary spatial unit (i.e., the pixel of experimental wave). The number of elemen-
tary units per the width of the wave was in the range of 10–20. Since the average width
of the wave was 1.5 mm, the elementary unit had 0.07–0.15 mm. The solution above
the elementary unit had thickness and volume of 0.5 mm and 10−2 mm3, respectively.
Then, the solution contained ca. 3×1013 and 1010 molecules of water and reactants
per elementary unit, respectively. This number lies within the thermodynamic limit.
The source of the mesoscopicity has to be sought in the physico–chemical dynamics.
It means that only a few energetic/re-organizational events occur within a given time.
Since an elementary spatial unit contains roughly 1010 molecules of reactants, it is
likely that we are dealing with a phase separation which gives rise to structures of an
analogous type as, e.g., in liquid crystals [13].

4 Conclusions

In the BZR, the target circular waves are always overcome by dense waves and spirals.
Dense waves are typically evolving at the border of a Petri dish due to the non-
idealities of the spatial geometry, while spirals evolve from the origin located at the
center from micro-bubbles (again from a spatial inhomogeneities).

The re-shaken experiment excludes any simple chemical interpretation of the
decay of observed structures. It is not the depletion of chemicals which leads to
the transformation of circular waves – target patterns – to dense waves and, finally,
to the mixture of spirals and dense waves. In the wide range of concentrations, when
the thickness of waves is not broader than the diameter of the Petri dish, the general
behavior of the BZR is qualitatively identical. The self-organization in the BZR is a
process which is separated from a concrete chemical reaction. This fact justifies the
search for a model of self-organization which would describe the reaction and ignore
the actual chemical process.

In the numerical simulations presented in this article, it has been found that,
at certain configurations of ignition points, there is a lower and upper limit of the
noise at which the whole simulation grid is filled with circular structures – target
patterns – and the spirals-waves phase never occurs. This happens when combination
of neighborhood (external) excitation noise (EEN) is from 30% to 34% with the
internal excitation noise (IEN) of 12%. The spatial inhomogeneity which lead to the
evolution of spirals and waves at unfavorable conditions is not properly described
by this model. However, at certain combinations of the geometry of ignition points,
spirals are formed even in this case.

The spirals are formed also in the original hodgepodge machine. This can be
observed in cases when the ignition constants k1 and k2 are bigger than 2. Our
interpretation of this fact is that the multitude of possible realizations of the ignition
points serves as a kind of noise. Thus, for the formation of spirals and waves, the
noise is a necessary condition. This noise is in fact the phase transition noise (PTN)



2372 The European Physical Journal Special Topics

Fig. 6. Analysis of traveling waves in the Belousov–Zhabotinsky experiment. (a) Figure
with identified wave profiles. (b) Intensity profile of the early circular wave (1) and later
dense wave (2). Three colors represent camera channels.

but of a very specific spatial distribution. In our numerical simulations this PTN was
mimicked by a combination of the proper IEN and EEN .

Differences in structures and dynamics shown in the re-shaking experiment
(Fig. 4) – the undulation of circular waves, thickening, doubling of wavefront, etc.
– indicate that there exist numerous individual processes which play a rôle in the
formation of the patterns in the BZR. All these processes have rates comparable to
the bottleneck process which determines the characteristic reaction time. Unfortu-
nately, at present it does not exist experimental procedure for identification of these
processes. We know a lot of chemicals but we do not know which breakage of indi-
vidual chemical bond or diffusion constant corresponds to the bottleneck process.
As described in [4], this is analogous to the thickening of the wave observed in the
“noise-free” hodgepodge machine due to the decrease of the g/maxstate ratio. Thus,
the model has a potential to explain this aspect of the experiment as well.

We conclude that the noisy hodgepodge machine – NHM – is one of the simplest
(if not the simplest) approximations to all natural processes occurring in a plane
and leading to formation of coexistence of spirals and waves as well as to diffusive
structures. It provides all basic stages observed in the experiment and indicates (and
restricts) possible geometrical and kinetic rules. The ratio of two slowest processes
close to 7:2 and the g/maxstate value 1:7 lead to the best approximation of observed
reality [4]. In the experiment, we observe the dominant “hodgepodge” process com-
bined with a number of individual processes. The competing processes, occurring at



Non-Equilibrium Dynamics 2373

a slower but comparable rate, have the character of noise which may be even spa-
tially non-isotropic. They are only roughly simulated by the white noise used in the
NHM. Using the different kinds of noise, the circular waves are stabilized and several
frequencies are observed.

In any case, the dynamical co-existence of spirals and dense waves is the ergodic
state in all observed cases. It is clear that the ergodic state is not a state of chemical
equilibrium. Even the homogenously blue color observed at the end of the re-shaking
experiment is not the chemical equilibrium state. It is still a dynamic state where the
blue waves cannot be observed. The true chemical equilibrium occurs only when all

Fe2+ ions are oxidized and precipitated in the form of iron(III) oxide.
In summary, this article supports the hypothesis that the BZR consists of an

initial (lag) phase in which a regular grid of spatial cells is formed. Within this grid,
the process of chemical “communication” occurs due to diffusion between these cells.
Inside each of the cell develops a process whose chemical character may be, perhaps,
described by one of the schemes developed for oscillating process in the mixed vessel.

The earlier observation of Garcia-Ojarvo and Schimansky-Geier [6] who showed
that noise induces the formation of spirals in the FitzHugh-Nagumo model on a
regular grid was at least qualitatively identical to our observation of spirals and waves
at the late ergodic stage of the BZR. Possibly, the same mechanism of generation of
spirals and waves may be applied to the whole class of similar real excitable media
operating in “two-dimensional” conditions, e.g., in a sufficiently thin layer or in a
living cell monolayer. The ergodic pattern in the final phase of the systems of the
excitable media can be thus achieved either as a result of “noise” generated due to
two or more non-zero cells in the vicinity of the ignition point, or by introduction
of two different levels of flat (white) noise into “reaction” and “diffusion” element
of the excitable medium, respectively, or by the application of the Gaussian noise to
the resulted value. This fact that the same final ergodic state is achieved by three
different way demonstrates that the coexistence of spiral and waves is a final state
for a wide spectrum of noisy excitable media.

The stringent correspondence of the simulation on a discrete grid to the chemi-
cal experiment strongly supports the hypothesis on the formation of a grid of cells
analogous to the Bénard cells in viscous liquid [10] or to elementary cells in liq-
uid crystals [13]. This observation opens numerous new questions, namely, to which
extent the continuous differential equations are appropriate tools for description of
natural processes, at least those which lead to spirals or turbulences.

This work was supported by the Ministry of Education, Youth and Sports of the
Czech Republic – projects CENAKVA (No. CZ.1.05/2.1.00/01.0024), CENAKVA II
(No. LO1205 under the NPU I program), the CENAKVA Centre Development (No.
CZ.1.05/2.1.00/19.0380) – and from the European Regional Development Fund in frame
of the project Kompetenzzentrum MechanoBiologie (ATCZ133) in the Interreg V-A Austria
– Czech Republic programme and by project GAJU 017/2016/Z. P.J. was supported by the
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Abstract: We introduce novel information-entropic variables—a Point Divergence Gain (Ω(l→m)
α ),

a Point Divergence Gain Entropy (Iα), and a Point Divergence Gain Entropy Density (Pα)—which
are derived from the Rényi entropy and describe spatio-temporal changes between two consecutive
discrete multidimensional distributions. The behavior of Ω(l→m)

α is simulated for typical distributions
and, together with Iα and Pα, applied in analysis and characterization of series of multidimensional
datasets of computer-based and real images.

Keywords: point divergence gain (PDG); Rényi entropy; data processing

1. Introduction

Extracting the information from raw data obtained from, e.g., a set of experiments, is a
challenging task. Quantifying the information gained by a single point of a time series, a pixel
in an image, or a single measurement is important in understanding which points bring the most
information about the underlying system. This task is especially delicate in case of time-series and
image processing because the information is not only stored in the elements, but also in the interactions
between successive points in a time series. Similar, when extracting information from an image,
not all pixels have the same information content. This type of information is sometimes called local
information because the information depends not only on the frequency of the phenomenon but also
on the position of the element in the structure. The most important task is to identify the sources of
information and to quantify them. Naturally, it is possible to use standard data-processing techniques
based on quantities from information theory like, e.g., Kullback–Leibler divergence. On the other hand,
the mathematical rigorousness is typically compensated by an increased computational complexity.
For this end, a simple quantity called Point Information Gain and its relative macroscopic variables—a
Point Information Gain Entropy and a Point Information Gain Entropy Density—were introduced
in [1]. In [2], mathematical properties of the Point Information Gain were extensively discussed
and applications to real-image data processing were pointed out. From the mathematical point
of view, the Point Information Gain represents a change of information after removing an element of
a particular phenomena from a distribution. The method is based on the Rényi entropy, which has
been already extensively used in multifractal analysis and data processing (see e.g., Refs. [2–5] and
references therein).

Entropy 2018, 20, 106; doi:10.3390/e20020106 www.mdpi.com/journal/entropy
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In this article, we introduce an analogous variable to the Point Information Gain. This new
variable locally determines an information change after an exchange of a given element in a discrete
set. We use a simple concept of entropy difference between the original set and the set with the
exchanged element. The resulting value is called Point Divergence Gain Ω(l→m)

α [6,7]. The main
idea is to describe the importance of changes in the series of images (typically representing a video
record from an experiment) and extract the most important information from it. Similar to the Point
Information Gain Entropy and the Point Information Gain Entropy Density, the macroscopic variables
called a Point Divergence Gain Entropy Iα and a Point Divergence Gain Entropy Density Pα are
defined to characterize subsequent changes in a multidimensional discrete distribution by one number.
The goal of this article is to examine and demonstrate some properties of these variables and use
them for examination of time-spatial changes of information in sets of discrete multidimensional data,
namely series of images in image processing and analysis, after the exchange of a pixel of a particular
intensity for a pixel at the same position in the consecutive image. The main reason for choosing
the Point Divergence Gain as the relevant quantity for the analysis of spatio-temporal changes is the
fact that it represents an information gain of each pixel change. One can also consider model-based
approaches based on the theory of random-fields, which can be more predictive in some cases. On the
other hand, the model-free approach based on entropy gives us typically more relevant information for
real data, where it is typically difficult to find an appropriate model. For the overview of model-based
approaches in the random field theory, one can consult, e.g., Refs. [8–10].

The paper is organized as follows: in Section 2, we define the main quantity of the paper,
i.e., the Point Divergence Gain and the related quantities and discuss its theoretical properties.
In Section 3, we show applications of the Point Divergence Gain to image processing for both
computer-based and real sequences of images. We show that the Point Divergence Gain can be
used as a measure of difference for clustering methods and detects the most prominent behaviour
of a system. In Section 4, we explain the presented methods and finer technical details necessary
for the analysis including algorithms. Section 5 is dedicated to conclusions. All image data, scripts
for histogram processing, and Image Info Extractor Professional software for image processing are
available via sftp://160.217.215.193:13332/pdg (user: anonymous; password: anonymous.).

2. Basic Properties of Point Divergence Gain and Derived Quantities

2.1. Point Divergence Gain

Recently, a quantity called Point Information Gain (PIG, Γ(i)
α ) [6,7] and its generalization based on

the Rényi entropy [2] have been introduced. We show how to apply the concept of PIG to sequence of
multidimensional data frames.

Let us assume a set of variables with k possible outcomes (e.g., possible colours of each pixel).
The Γ(i)

α is a simple variable based on entropy difference and enables us to quantify an information
gain of each phenomenon. It is simply defined as a difference between entropy of an original
discrete distribution

P = {pj}k
j=1 =

{n1

n
, . . . ,

nk
n

}
, (1)

which typically describes a frequency histogram of possible outcomes. Let us also define a distribution,
where one occurrence of the i-th phenomenon is omitted, i.e.,

P(i) =
{

p(i)j

}k

j=1
=

{
n1

n− 1
, . . . ,

ni − 1
n− 1

, . . . ,
nk

n− 1

}
. (2)

Thus, the Point Information Gain is defined as

Γ(i)
α ≡ Γ(i)

α (P) = Hα

(
P(i)
)
−Hα(P), (3)



Entropy 2018, 20, 106 3 of 17

where Hα is the Rényi entropy (Despite all computer implementations being calculated as log2,
the following derivations are written in natural logarithm, i.e., ln.)

Hα(P) =
1

α− 1
ln ∑

i
pα

i . (4)

The Rényi entropy represents a one-parametric class of information quantities tightly related
to multifractal dynamics and enables us to focus on certain parts of the distribution [11]. Unlike the
typically used Rényi’s relative entropy [3,4,11–17], the Point Information Gain Γ(i)

α is a simple,
computationally tractable quantity. Its mathematical properties have been extensively discussed
in [2]. On the same basis, we can define a Point Divergence Gain (PDG, Ω(l→m)

α ), where a discrete
distribution P(i) is replaced by a distribution

P(l→m) =
{

p(l→m)
j

}k

j=1
=

{
n1

n
, . . . ,

nl − 1
n

, . . . ,
nm + 1

n
, . . . ,

nk
n

}
, (5)

which can be obtained from the original distribution P, where the occurrence of the examined l-th
phenomenon (nl ∈ N+) is removed and supplied by a point of the occurrence of the m-th phenomenon
(nm ∈ N0). The main idea behind the definition is to quantify the information change in the subsequent
image, if only one point is changed. Analogous to the Point Information Gain Γ(i)

α , the Point Divergence
Gain can be defined as

Ω(l→m)
α ≡ Ω(l→m)

α (P) = Hα

(
P(l→m)

)
−Hα(P). (6)

Let us first show its connection to the Point Information Gain Γ(i)
α . Since P(l) = P(l→m,m), it is

possible to express the Point Divergence Gain as

Ω(l→m)
α (P) = Hα

(
P(l→m)

)
−Hα

(
P(l→m,m)

)
+Hα

(
P(l)

)
−Hα(P) = Γ(l)

α (P)− Γ(m)
α (P(l→m)). (7)

Let us investigate mathematical properties of the PDG. The Ω(l→m)
α can be rewritten as

Ω(l→m)
α = Hα

(
P(l→m)

)
−Hα(P)

=
1

1− α
ln

(
k

∑
j=1

(
p(l→m)

j

)α
)
− 1

1− α
ln

(
k

∑
j=1

pα
j

)
=

1
1− α

ln




∑k
j=1

(
p(l→m)

j

)α

∑k
i=1 pα

j


 . (8)

By plugging the relative frequencies from Equations (1) and (5) into Equation (8), we obtain

Ω(l→m)
α =

1
1− α

ln


 (nl − 1)α + (nm + 1)α + ∑k

j=1,j 6=l,m nα
j

∑k
j=1 nα

j




=
1

1− α
ln


 (nl − 1)α + (nm + 1)α + ∑k

j=1 nα
j − nα

l − nα
m

∑k
j=1 nα

j




=
1

1− α
ln


 (nl − 1)α − nα

l + (nm + 1)α − nα
m

∑k
j=1 nα

j

+ 1


 . (9)

As seen in Equation (9), the variable Ω(l→m)
α does not depend (contrary to the Γ(i)

α ) on n but
depends only on the number of elements of each phenomenon j. In Equation (9), let us design the
nominator ∑k

j=1 nα
j , which is constant and related to the original distribution (histogram) of elements

and to the parameter α, as Cα. It gives us the final form
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Ω(l→m)
α =

1
1− α

ln
[
(nl − 1)α − nα

l + (nm + 1)α − nα
m

Cα
+ 1
]

. (10)

Equation (10) demonstrates that, for a particular distribution, Ω(l→m)
α is a function only of the

parameter α and frequencies of occurrences of the phenomena nl and nm in the original distribution,
between which the exchange of the element occurs. Equation (10) further shows that if the exchange
of the element occurs between phenomena l and m of the same (similar) frequencies of occurrence
(i.e., nl ≈ nm), the value of Ω(l→m)

α equals 0. If we remove a rare point and supply it by a high-frequency
point (i.e., nl � nm), the value of Ω(l→m)

α is negative, and vice versa. Low values of parameter α separate
low-frequency events as Ω(l→m)

α = 0, whereas high α emphasize high-frequency events as Ω(l→m)
α � 0

or Ω(l→m)
α � 0 and merge rare events into Ω(l→m)

α = 0. With respect to the previous discussion and
practical utilization of this notion, we emphasize that, for real systems with large n, the Ω(l→m)

α are
rather small numbers.

In the 3D plots of Figure 1, we demonstrate Ω(l→m)
α -transformations of four thoroughly studied

distributions—the Cauchy, Gauss (symmetrical), Lévy, and Rayleigh distribution (asymmetric;
all specified in Section 4.1)—for α = {0.5; 1.0; 2.0; 4.0}, where each point presents the exchange
of the element between bins l and m (Algorithm 1). In this case, the (a)symmetry of the distribution is
always maintained.

Figure 1. The Ωα-transformations of the discrete (a) Cauchy; (b) Gauss; (c) Lévy; and (d) Rayleigh
distribution for α = {0.5; 1.0; 2.0; 4.0} (Section 4.1).
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Algorithm 1: Calculation of a point divergence gain matrix (Ωα) for typical histograms.
Input: n-bin histogram h; α, where α ≥ 0 ∧ α 6= 1
Output: Ωα

1 Ωα =zeros(n, n); % create a zero square matrix Ωα of the size of n× n
2 Cα = sum(h.∧α)); % calculate the constant Cα for the given distribution and α

3 for l = 1 to n do

4 if h(l) 6= 0 then

5 for l = 1 to n do
6 Ωα(l, m) =

log2(((h(l)− 1)∧α− h(l)∧α + (h(m) + 1)∧α− h(m)∧α)/Cα + 1)/(1− α);
7 end

8 else
9 Ωα(l,:) = NaN;

10 end
11 % if the bin l of the histogram h is occupied, calculate Ωα at each position (l,m) according to

Equation (10), else set the not-a-number into the row l of the Ωα matrix

12 end

Now we will consider the specific case α = 2 (collision entropy) for which Equation (10) can be
simplified to

Ω(l→m)
2 = − ln

[
2
C2

(nm − nl + 1) + 1
]
= − ln

[
2
C2

(∆n(l→m) + 1) + 1
]

. (11)

For a specific difference ∆n(x→y) = D, Equation (11) can be approximated by the 1st-order
Taylor sequence

Ω(l→m)
2 ≈ − ln

[
2
C2

(D + 1) + 1
]
− 2

2(D + 1) + C2
(∆n(l→m) − D)

= − 2
2D + 2 + C2

∆n(l→m) +
2D

2D + 2 + C2
− ln

[
2D
C2

+ C2 + 1
]

. (12)

Equations (11) and (12) show that, for each unique ∆n(x→y), the Ω(l→m)
2 depends only on the

difference between the bins l and m, which the exchange of the element occurs between, and this
dependence is almost linear. In other words, this explains why, for all distributions in Figure 2,
the dependencies Ω(l→m)

2 = f (nm, nm − nl) are planes.
For α → 1, the Rényi entropy becomes the ordinary Shannon entropy [18] and we obtain

(cf. Equation (4))

H1(P) = −
k

∑
j=1

pj ln pj = −
k

∑
j=1

nj

n
ln

nj

n
= −

k

∑
j=1,j 6=l,m

nj

n
ln

nj

n
− nm

n
ln

nm

n
− nl

n
ln

nl
n

(13)

and

H1(P(l→m)) = −nm + 1
n

ln
nm + 1

n
− nl − 1

n
ln

nl − 1
n
−

k

∑
j=1,j 6=l,m

nj

n
ln

nj

n
. (14)
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The difference of these entropies (cf. Equation (9)) is gradually giving

Ω(l→m)
1 = −nm + 1

n
ln

nm + 1
n

− nl − 1
n

ln
nl − 1

n
+

nm

n
ln

nm

n
+

nl
n

ln
nl
n

= −nm + 1
n

ln(nm + 1) +
nm + 1

n
ln n− nl − 1

n
ln(nl − 1) +

nl − 1
n

ln n +
nm

n
ln nm

−nm

n
ln n +

nl
n

ln nl −
nl
n

ln n

= (
nm + 1

n
+

nl − 1
n
− nm

n
− nl

n
)

︸ ︷︷ ︸
=0

ln n− nm

n
ln(nm + 1)− 1

n
ln(nm + 1)− nl

n
ln(nl − 1)

+
1
n

ln(nl − 1) +
nm

n
ln nm +

nl
n

ln nl

=
1
n
(nm ln

nm

nm + 1
+ nl ln

nl
nl − 1

+ ln
nl − 1
nm + 1

). (15)

One can see that relation (15) is defined for nl ∈ N \ {0, 1} and nm ∈ N+ and is approximately
equal to 0 for nl , nm � 0 (the Cauchy and Rayleigh distribution for α = 1 in Figure 3).

For nl ∈ N+ and nm ∈ N0, from Equation (10), further implies:

1. If α = 0, then Ω(l→m)
0 = 0.

2. If α→ ∞, then Ω(l→m)
∞ → 0.

Figure 2. The dependencies Ωα = f (nm, nm − nl) for the discrete (a) Cauchy; (b) Gauss; (c) Lévy;
and (d) Rayleigh distribution at α = {0.5; 1.0; 2.0; 4.0} (Section 4.1).
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Figure 3. The dependencies Ωα = f (nl , nm) for the discrete (a) Cauchy; (b) Gauss; (c) Lévy; and
(d) Rayleigh distribution at α = {0.5; 1.0; 2.0; 4.0} (Section 4.1).

2.2. Point Divergence Gain Entropy and Point Divergence Gain Entropy Density

In this section, we introduce two new variables that help us to investigate changes between two
(typically consecutive) points of time series. A typical example can be provided by video processing,
where each element of a time or spatial series is represented by a frame. Let us have two data frames
Ib = {a1, . . . , an} and Ib = {b1, . . . , bn} (For simplicity, we use only one index which corresponds to a
one-dimensional frame. In case of images, we have typically two-dimensional frames and the elements
are described by two indexes, e.g., x and y positions.). At each position i ∈ {1, . . . , n}, it is possible to
replace the value ai by the value of the following frame, i.e., bi. The resulting Ω(ai→bi)

α then quantifies
how much information is gained/lost, when, at the i-th position, we replace the value ai for the value
bi. A Point Divergence Gain Entropy (PDGE, Iα) is defined as a sum of absolute values of all PDGs for
all pixels, i.e.,

Iα(Ia; Ib) =
n

∑
i=1
|Ω(ai→bi)

α | =
k

∑
l=1

k

∑
m=1

nlm|Ω(l→m)
α |, (16)

where nlm denotes the number of present substitutions l → m, when we transform Ia → Ib.
The absolute value ensures that the contribution of the transformation of a rare point to a frequent
point (negative Ωα) and a frequent point to a rare point (positive Ωα) do not cancel each other
and both contribute to the resulting PDGE. Typically, appearance or disappearance of a rare point
(and replacement by a frequent value—typically background colour) carries important information
about the experiment. The PDGE can be understood as an absolute information change.
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Moreover, it is possible to introduce other macroscopic quantity—a Point Divergence Gain Entropy
Density (PDGED, Pα), where we do not sum over all pixels, but only over all realized transitions l → m.
Thus, the PDGED can be defined as

Pα(Ia; Ib) =
k

∑
l=1

k

∑
m=1

χlm|Ω(l→m)
α |, (17)

where

χlm =

{
1, nlm ≥ 1,
0, nlm = 0.

(18)

Let us emphasize that two transitions a1 → b1 and a2 → b2, where the frequencies of the
occurrences of the phenomena a1 and a2 are equal and of the phenomena b1 and b2 are equal as well,
give two unique values of the Ω(ai→bi)

α . In the computation of the PDGED, this is arranged by a hash
function (Algorithm 2). We can understand the quantity PDGED as an absolute information change of
all realized transitions of phenomena m→ l.

Algorithm 2: Calculation of a point information gain matrix (Ωα) and values Pα and Iα for two
consecutive images of a time-spatial series.

Input: 2 consecutive images I1 and I2 of the size m× n; α, where α ≥ 0 ∧ α 6= 1
Output: Ωα

1 h = hist(I1); % create an intensity histogram h of the image I1

2 Cα = sum(h.∧α); % calculate the constant Cα for the given distribution and α

3 Ωα = I1. ∗ 0; % create a zero matrix Ωα of the size of the I1

4 hashMap = containers.Map; % declare an empty hash-map (the key-value array)

5 for i = 1 to (m× n) do
6 Ωα(i) = log2(((h(I1(i + 1))− 1)∧α− h(I1(i + 1))∧α + (h(I2(i + 1)))∧α−

h(I2(i + 1))∧α)/Cα + 1)/(1− α);
7 % for each element i of the image I1, calculate a value Ωα after replacement of the intensity
8 at the position i in the histogram of image I1 by the intensity at the same position in the
9 image I2 (Equation (10))

10 v = I(i); % read a value of the element (intensity) at the position i
11 checkSum = calcCheckSum(h, v);
12 % calculate checkSum using a hash-function effective enough (e.g., MD4, MD5, SHA1)

13 if not hashMap.isKey(checkSum) then
14 hashMap(checkSum) = Ωα(i);
15 % if the hash-map does not contain the key, insert a new element with the key
16 checkSum, where the inserted value is the Ωα at the position i
17 end
18 end

19 Iα = sum(sum(abs(Ωα)));
20 % calculate Iα as a sum of all elements in the matrix Ωα (Equation (16))
21 Pα = sum(abs(values(hashMap)));
22 % calculate Pα as a sum of all elements in the matrix hashMap (Equation (17))
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If the aim is to assess the influence of elements of a high occurrence on the time-spatial changes
in the image series, it is recommended to use PDGE where each element is weighted by its number
of occurrences. If the aim is to suppress the influence of these extreme values, it is better to
compute PDGED.

Let us consider a time-series V , where each time step contains one frame, so V = {I1, I2, . . . }.
The series V can be, e.g., a sequence of images (a video) obtained from some experiment, etc. For each
time step, it is possible to calculate Iα(t) = Iα(It; It+s), resp. Pα(t) = Pα(It; It+s), where s is the
time lag. Typically, we assume s = 1, i.e., consecutive frames with a constant time step.

3. Application of Point Divergence Gain and Its Entropies in Image Processing

The generalized Point Divergence Gain Ω(l→m)
α in Equation (10) was originally used for

characterization of dynamic changes in image series, namely in z-stacks of raw RGB data of unmodified
live cells obtained via scanning along the z-axis using video-enhanced digital bright-field transmission
microscopy [6,7]. In these two references, this new mathematical approach utilizes 8- and 12-bit
intensity histograms of two consecutive images for pixel-by-pixel intensity weighted (parameterized)
subtraction of these images to suppress the camera-based noise and to enhance the image contrast
(In case of calibrated digital camera-based images, where the value of each point of the image reflects a
number of incident photons, or, in case of computer-based images, it can be sufficient to use a simple
subtraction for evaluation of time-spatial changes in the image series.).

For this paper, we chose other (grayscale) digital image series (Table 1) in order to demonstrate
other applications of the PDG mathematical approach in image processing and analysis. Moreover,
we newly introduce applications of the additive macroscopic variables Point Divergence Gain Entropy
Iα and Point Divergence Gain Entropy Density Pα.

Table 1. Specifications of image series.

Series Source Bit-Depth Number of Img. Resolution Origin

Toy Vehicle [19] 8-bit 10 512 × 512 camera
Walter Cronkite [19] 8-bit 16 256 × 256 camera
Simulated BZ [20–22] 8-bit 10,521 1001 × 1001 computer-based a

Ring-fluorescence 12-bit 1058 548 × 720 experimental b

Ring-diffraction 8-bit c 1242 252 × 280 experimental b

a A set of a noisy hotch-potch machine simulation of the Belousov–Zhabotinsky reaction [20–22] at 200 achievable
states with the internal excitation of 10, and phase transition, internal excitation, and external neighbourhood kind
of noise of 0, 0.25, and 0.15, respectively. b The microscopic series of a 6-µm standard microring (FocalCheckTM,
cat. No. F36909, Life TechnologiesTM (Eugene, OR, USA)) were acquired using the CellObserver microscope
(Zeiss, Oberkochen, Germany) at the EMBL (Heidelberg, Germany). For both light processes, the green region
of the visible spectrum was selected using an emission and transmission optical filter, respectively. In case of
the diffraction, the point spread function was separated and the background intensities was disposed using
Algorithm 1 in [7]. c The 12-bit depth was reduced using a Least Information Lost algorithm [23], which,
by shifting the intensity bins, filled all empty bins in the histogram obtained from the whole data series up
and rescaled these intensities between their minimal and maximal value.

3.1. Image Origin and Specification

Owing to the relation of the Ω(l→m)
α to the Rényi entropy, the Iα and Pα as macroscopic variables

can determine a fractal origin of images by plotting Iα = f I(α) and Pα = fP(α) spectra. If we deal
with an image multifractality, the dependency Iα = f I(α) or the dependency Pα = fP(α) shows a peak.
In case of a unifractality, these dependences are monotonous. It is demonstrated in Figures 4 and 5.
There can be no doubts that the origin of the simulated Belousov–Zhabotinsky reaction (Figure 4) is
multifractal. This statement is further strengthened by the courses of the dependencies Iα = f I(α)

and Pα = fP(α), where we can see peaks with maxima at α ∈ (1, 2). On the contrary, a pair of images
in Figure 5 (moving toys of cars) is a mixture of the objects of different fractal origin. In this case,
whereas the course of f I(α) is monotonous and thus shows a unifractal characteristics, the dependence
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fP(α) has a maximum at α = 0.6 and thus demonstrates some multifractal features in the image.
This is due to the fact that, since each information contribution is counted only once, the Pα is more
sensitive to the phenomena, which occur less frequently in the image. The monotonic course of the
Pα would be achieved only when a sequence of time-evolved Euclidian objects was transformed into
the values Ω(l→m)

α .

Figure 4. The Iα, Pα, and Ωα for a pair of multifractal grayscale images. I. The Iα and Pα spectra, II. 8-bit
visualization of Ωα-values for α = {0.99; 2.0}.

As mentioned in Section 2.2, the variables Iα and Pα measure absolute information change between
a pair of images and characterize a similarity between these images. Therefore, these variables can find
a practical utilization in auto-focusing in both light and electron digital microscopy. The in-focus object
can be defined as an image with the global extreme of Iα or Pα. In other characteristics, this image
fulfils the Nijboer–Zernike definition [24]: it is the smallest and darkest image in light or electron
diffraction or the smallest and brightest image in light fluorescence (Section 3.3).



Entropy 2018, 20, 106 11 of 17

Figure 5. The Iα, Pα, and Ωα for a pair of real-life grayscale images. I. the Iα and Pα spectra; II. 8-bit
visualization of Ωα-values for α = {0.99; 2.0}.

3.2. Image Filtering and Segmentation

Segmentation is a type of filtering of specific features in an image. The parameter α and the
related value of Ω(l→m)

α enable us to filter the parts of two consecutive images, which are either stable
or differently variable in time. This can be employed in a 3D image reconstruction by thresholding and
joining Ω(l→m)

α = 0 from two consecutive images or in image tracking via thresholding of the highest
and lowest Ω(l→m)

α in a first image and the following image, respectively.
This is illustrated using simple examples in Figures 4 and 5 where the highest (red-coded) and

lowest (blue-coded) values of the Ω(l→m)
α show the position of the object in the second and the first

image of the image sequence, respectively. Compared with the Ω(l→m)
0.99 , the variance between the

extremes of the Ω(l→m)
2.00 is wider and the number of points Ω(l→m)

2.00 = 0 is lower.
In digital light transmission microscopy, this mathematical method enabled us to find time stable

intracellular objects inside live mammalian cells from consecutive pixels that fulfilled the equality
Ω(l→m)

α = 0 for α = 4.00 [6] or α = 5.00 [7]. In these cases, the high value of α ensured merging rare
points in the image, suppressing the camera noise that was reflected in the images and, thus, modelling
the shape of organelles. The rest of image escaped the observation. In the next paper [25], this method
was extended to widefield fluorescent data.
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As in the case of the Point Information Gain [2], the process of image segmentation of objects of
a certain shape can be further improved by usage of the surroundings of this shape from which the
intensity histogram is created for each pixel in the image.

3.3. Clustering of Image Sets

Finally, we used the Point Divergence Gain to detect the most relevant information contained in
a sequence of images, capturing, e.g., an experiment. For this end, we used Iα or Pα as quantities of
information change in the consecutive images and applied the clustering methods on them. The values
of Iα or Pα are small numbers (Section 2.1). Due to the computation rounding of small numbers of
the Iα and the Pα and for a better characterization of the image multifractality, in clustering, we use
α-dependent spectra of these variables than a sole number at one α.

The dependence of the label of the cluster on the order of the image in the series is the smoothest
for joint vectors [Iα, Pα]. The similarity of these vectors (and thus images as well) is described in a space
of principal components, e.g., [26], and classified by standard clustering algorithms such as k-means++
algorithm [27]. In comparison to the entropies and entropy densities related to the Γ(i)

α , the clustering
using the Iα and the Pα is more sensitive to changes in the patterns (intensities) and does not require
other specification of images by local entropies computed from a specific type of surroundings around
each pixel.

The described clustering method was examined on z-stacks obtained using light microscopy.
The z-stacks were classified into 2–6 clusters (groups) when patterns of each image was described
by 26 numbers, i.e., by vectors [Iα, Pα] at 13 α (Figures 6a and 7a). These clusters were evaluated on
the basis of the sizes of intensity changes between images. These five classification graphs of the
gradually splitting clusters (Figures 6a and 7a, middle) further demonstrate the mutual similarity
among the micrographs in each data series. The typical (middle) image of each cluster is shown in
Figures 6b and 7b.

Firstly, we shall deal with a z-stack with 1057 images of a microring obtained using a widefield
fluorescent microscope. The results of clustering illustrate a canonically repetitive properties of
the so-called point spread function as the image of the observed object goes to and from its focus.
In this case, the image group containing the real focus of the maximal Iα and Pα at low α (Section 3.1)
is successfully determined by clustering into two clusters (Figure 6a). However, we will aim for a
description of the results for five clusters. The central Cluster 5 (94 images) can be called an object’s
focal region with image levels where parts of the object have their own focus. The in-focus cluster is
asymmetrically surrounded by Cluster 4 (131 and 53 images below and above Cluster 5, respectively),
which was set on the basis of the occurrence of the lower peaks of Iα and Pα at low α. Cluster 3
(190 and 150 images below and above the focus, respectively) is typical of constant Iα and Pα for all α.
Cluster 2 contains img. 176–214 and the last 126 images. These images are characteristic of constant Iα

and decreasing/increasing Pα at α ≥ 2. Cluster 1 (the first 175 images) is prevalently dominated by
increasing Iα and decreasing Pα at high α.

Before the calculation of the Iα and Pα, the undesirable background intensities were removed
from the images obtained using optical transmission microscopy. The rest of each image was rescaled
into 8 bits (Section 4.2). The results of clustering of these images (Figure 7a) are similar to fluorescent
data (Figure 6a). The light transmission point spread function is symmetrical around its focus as
well but the pixels at the same x, y-positions below and above the focus have opposite, dark vs.
bright, intensities. Furthermore, the transitional regions between the clusters are longer than for the
fluorescent data. The central, in-focus, part of the z-stack (img. 427–561 in Cluster 4) with the highest
peaks of Iα and Pα is unambiguously separated using four clusters. The focus itself lies at the 505th
image. This central part of the z-stack is surrounded by eight groups of images which were, due to
their similarity, objectively classified into three clusters. Cluster 1 was formed by images 1–78, 376–426,
and 562–661. These images show peaks of middle values of the Iα and Pα. Images 79–153, 292–375, and
662–703 were classified into Cluster 2 (dominated by the local minimum of the Iα at α < 1). Cluster 3
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is related to the images with the lowest values of the Iα together with the lowest values and local
peaks of the Pα for α < 1 and for α < 1, respectively. This cluster contains images 154–291 and the last
537 images of the series.

Figure 6. The results of clustering of a z-stack of grayscale microscopic images of a microring
obtained using a fluorescence mode. (a) the dependencies of (upper) the Pα and (lower) the
Iα vs. order of the image in the z-stack for α = {0.5; 0.99; 2.0; 4.0} and (middle) clustering
(k-means, squared Euclidian distance, 2–6 groups) of the z-stack using connected spectra [Iα, Pα]
for α = {0.1; 0.3; 0.5; 0.7; 0.99; 1.3; 1.5; 1.7; 2.0; 2.5; 3.0; 3.5; 4.0}; (b) the typical (middle) group’s images
for clustering into five groups (in (a), middle). The original 12-bit images are visualized in 8 bits using
the Least Information Loss conversion [23].

Let us mention that, in the clustering process, the Iα and Pα can recognize outliers such as
incorrectly saved images or images with illumination artifacts.
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Figure 7. The results of clustering of a z-stack of grayscale microscopic images of a microring
obtained using a diffraction mode. (a) the dependencies of (upper) the Pα and (lower) the Iα vs.
order of the image in the z-stack for α = {0.5; 0.99; 2.0; 4.0} and (middle) clustering (k-means,
squared Euclidian distance, 2–6 groups) of the z-stack using connected spectra [Iα, Pα] for α =

{0.1; 0.3; 0.5; 0.7; 0.99; 1.3; 1.5; 1.7; 2.0; 2.5; 3.0; 3.5; 4.0}; (b) the typical (middle) group’s images for
clustering into 5 groups (in (a), middle). The original 12-bit images are visualized in 8 bits using
the Least Information Loss conversion [23].
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4. Materials and Methods

4.1. Processing of Typical Histograms

For the Cauchy, Lévy, Gauss, and Rayleigh distributions, dependences of the Ω(l→m)
α on the

number of elements in bins l and m were calculated for α = {0.1, 0.3, 0.5, 0.7, 0.99, 1.3, 1.5, 1.7, 2.0,
2.5, 3.0, 3.5, 4.0} using a pdg_histograms.m Matlabr 2014 script (Mathworks, Natick, MA, USA).
The following probability density functions f (x) were studied:

1. Lévy distribution:

f (x) = round


10c

exp
(
− 1

2x

)

√
2πx3


 , x ∈ N,

{
x ∈ [1, 256], c ∈ {5, 7},
x ∈ [1, 85], c = 3,

(19)

2. Cauchy distribution:

f (x) = round
[

10c 1
π (1 + x2)

]
, x ∈ Z,

{
x ∈ [−127, 127], c = 7,

x ∈ [−44, 44], c = 3.5,
(20)

3. Gauss distribution:

f (x) = round


10c

exp
(
− x2

2σ2

)

σ
√

2π


 , x ∈ Z,





x ∈ [−4, 4], c = 4, σ = 1,

x ∈ [−29, 29], c = 3, σ = 10,

x ∈ [−36, 36], c = 4, σ = 10,

x ∈ [−64, 64], c = 10, σ = 10,

(21)

4. Rayleigh distribution:

f (x) = round
[

10c x
b2 exp

(
− x2

2b2

)]
, x ∈ N, x ∈ [1, 108], c = 10, b = 16. (22)

In Figure 1, the Cauchy and Lévy distributions at c = 7 and the Gauss distribution at parameters
c = 10 and σ = 10 are depicted.

4.2. Image Processing and Analysis

Image analysis based on calculation of the Ω(l→m)
α , Iα, and Pα is demonstrated on five standard

grayscale multi-image series (Table 1). All images were processed using Whole Image mode in an
Image Info Extractor Professional software (Institute of Complex Systems, FFPW, USB, Nové Hrady,
Czech Republic). A pair of images 5000–5001 of a simulated Belousov–Zhabotinsky (BZ) reaction and
a pair of images motion01.512–motion02.512 were recalculated for 40 values of α = {0.1, 0.2, ..., 0.9,
0.99, 1.1, 1.2, ..., 4.0}. The rest of series were processed for 13 values of α = {0.1, 0.3, 0.5, 0.7, 0.99, 1.3,
1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0}. The transformation at 13 α was followed by clustering of the matrices
[Pα, Iα] vs. Img. by k-means method (squared Euclidian distance metrics). Due to a high data variance
in the BZ simulation, the clustering was preceded by the z-score standardization of the matrices over α.
The resulted indices of clusters were reclassified to be consecutive (i.e., the first image of the series and
the first image of the following group are classified into gr. 1 and 2, respectively, etc.).

5. Conclusions

In this paper, we derived novel variables from the Rényi entropy—a Point Divergence Gain
Ω(l→m)

α , a Point Divergence Gain Entropy Iα, and a Point Divergence Gain Entropy Density Pα. We have
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discussed their theoretical properties and made a brief comparison with the related quantity called
Point Information Gain Γi

α [2]. Moreover, we have shown that the Ω(l→m)
α and related quantities can

find their applications in multidimensional data analysis, particularly in video processing. However,
due to element-by-element computation, we can characterize time-spatial (4-D) changes much more
sensitively than using, e.g., the previously derived Γi

α. The Ω(l→m)
α can be considered as a microstate

of the information changes in the space-time. However, the Ω(l→m)
α , Iα, and Pα show a property

that is similar to the Γi
α and its relative macroscopic variables. Due to the derivation from the Rényi

entropy, they are good descriptors of multifractility. Therefore, they can be utilized to characterize
patterns in datasets and to classify the (sub)data into groups of similar properties. This has been
successfully utilized in clustering of multi-image sets, image filtration, and image segmentation,
namely in microscopic digital imaging.

Acknowledgments: This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic—projects CENAKVA (No. CZ.1.05/2.1.00/01.0024), CENAKVA II (No. LO1205 under the NPU I
program), the CENAKVA Centre Development (No. CZ.1.05/2.1.00/19.0380)—and from the European Regional
Development Fund in frame of the project Kompetenzzentrum MechanoBiologie (ATCZ133) in the Interreg V-A
Austria—Czech Republic programme. J.K. acknowledges the financial support from the Czech Science Foundation
Grant No. 17-33812L and the Austrian Science Fund, Grant No. I 3073-N32.

Author Contributions: Renata Rychtáriková is the main author of the text and tested the algorithms; Jan Korbel
is responsible for the theoretical part of the article; Petr Macháček is the developer of the Image Info Extractor
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Quasi‑spectral characterization 
of intracellular regions 
in bright‑field light microscopy 
images
Kirill Lonhus*, Renata Rychtáriková, Ganna Platonova & Dalibor Štys

Investigation of cell structure is hardly imaginable without bright‑field microscopy. Numerous 
modifications such as depth‑wise scanning or videoenhancement make this method being state‑of‑
the‑art. This raises a question what maximal information can be extracted from ordinary (but well 
acquired) bright‑field images in a model‑free way. Here we introduce a method of a physically correct 
extraction of features for each pixel when these features resemble a transparency spectrum. The 
method is compatible with existent ordinary bright‑field microscopes and requires mathematically 
sophisticated data processing. Unsupervised clustering of the spectra yields reasonable semantic 
segmentation of unstained living cells without any a priori information about their structures. 
Despite the lack of reference data (to prove strictly that the proposed feature vectors coincide with 
transparency), we believe that this method is the right approach to an intracellular (semi)quantitative 
and qualitative chemical analysis.

List of symbols
Bmn  Set of pixels that form lines between pixels m and n
c  Colour of a camera filter or an image channel; for colour camera c = {red, green, blue}
C  Number of image channels
Dk  Central intensity gradient in pixel k ∈ Bmn in calculation of Gmn

E  Energy absorbed by a camera sensor during an exposure time te
Ek  Parameter in computation of Gmn which indicates if the pixel k is classified as an region edge
f  Variable which reflects a dependence between the spectral energy and the sensor response; f = 1
Fc(�)  Spectral quantum efficiency of a camera filter c
Fm  Spectral quantum efficiency of a pixel m
Gmn  Measure of discontinuousness between pixels m and n
i  Label of a discrete wavelength; i = {1, 2, . . . ,w}
iter  Iteration
it_max  Maximal iteration (predetermined)
Ic  Pixel intensity at colour channel c
k  Pixel in the set Bmn

Lc  Light effectively incoming onto a camera sensor, i.e. onto a camera filter
m, n  Pixel labels
Mi  Intensity value in the image
N  Number of pixels in the set Nm

Nm  Set of pixels with the Euclidean distance to the pixel m equal or less than TED
q  Parameter related to the degree of discontinuousness in spectral regions
�r  Position vector for a pixel at coordinates (x, y)
S  Integral of the spectrum measured by the fibre spectrophotometer in each point Si
S(�)  Light spectrum of a light source
te  Camera exposure time
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T  Thermodynamic temperature; kelvin [K]
Tm(�i)  Transparency spectrum of pixel m at wavelength �i
Tn(�i)  Transparency spectrum of pixel n at wavelength �i
T(x, y, �)  Transparency spectrum of a medium at each pixel in general
Tb  Bias parameter in computation of Gmn ; Tb = 0.9
TED  Threshold for the selection of the neighbourhood of pixel m, i.e., the Euclidean distance between 

pixels m and n; TED = 1
�u  Change of a pixel position vector
w  Number of discrete wavelengths
x, y  Vertical and horizontal pixel coordinates
ǫ  Parameter which reflects the studied pixel’s neighbourhood size in general
�  Light wavelength; nanometer [nm]

Bright-field microscopy in videoenhancement mode shows an unprecedented success as a method of living object 
investigation since it is cheap and non-intrusive in preparation of samples, and, in its innovative set-up1, has 
an excellent spatial and temporal resolution, which opens many possibilities for automation. Classical image-
processing techniques such as feature extraction or convolution neural networks do not work so well due to 
huge variability in microworld data. It calls for image pre-processing techniques that would utilize all available 
information to supply rich, physically relevant feature vectors in subsequent methods of analysis.

Indeed, classical bright-field microscopy measures properties of incoming light affected by a sample. If multi-
photon processes are negligible and, then, intensities are reasonable, a linear response model can be used. Then, 
a medium observed in such a model can be fully characterized by a transparency spectrum T(�r) defined for 
each pixel. Such a spectrum can give ultimate information about the medium and boost subsequent machine 
learning methods significantly.

The most convenient, classical way of obtaining such a spectrum is to modify a measuring device (micro-
scope). It is mostly done using single scanning  interferometers2, matrices of  them3, matrices of color filter  arrays4, 
or other adjustable  media5,6. Such technical arrangements can be further successfully coupled with machine 
learning methods as  well7. Purely instrumental methods are certainly the most correct but require sophisticated 
equipment and are not fully compatible with typical bright-field techniques like depth-wise z-scanning. Due to 
both hardware and algorithms, this makes these methods rather a separated group than a subtype of the bright-
field methods.

For classical bright-field microscopy, the most approaches rely on trained (or fitted) models based on a set 
of reference images with known  properties8. Most mature methods rely on the principal component  analysis9 
or sparse spatial  features10. Some of such techniques do not aim to full-spectral reconstruction but rather to a 
more effective colour resolution (which has been very useful in distinguishing fluorescence peaks)11. The main 
disadvantage of such methods is the global approach, which is feasible only for homogeneous images. Most 
“local” methods include different artificial neural  networks12. and can work well if they are trained with a refer-
ence dataset that is similar to the observed system. The data of this kind almost never occurs in microscopy due 
to bigger variability of objects in microworld (for the reason that, e.g., known objects are artificial, an investigated 
system is living, or the in-focus position can be ambiguous). This gives a cutting edge to physically inspired 
methods which make no assumption about type of observed object and does not use special equipment except 
of a classical bright-field microscope.

Theoretical model
For most biologically relevant objects multi-photon interactions can be  neglected13. Thus, a linear response model 
can be used for description of the measurement process. The model consists of four entities (Fig. 1) which are 
physically characterized as follows: 

1. Light source gives a light spectrum S(�) , which is assumed constant and spatially homogeneous.
2. Medium is, in each point of the projection onto a camera sensor plane, characterized by an unknown trans-

parency spectrum T(x, y, �).
3. Camera filter, where each camera channel c is characterized by a quantum efficiency curve Fc(�).
4. Camera sensor is described (by purely phenomenological approach) by exposure time te and energy load 

curve Ic = f (E) , where Ic is the pixel sensor output (intensity) and E is energy absorbed by the pixel sensor 
during the exposure time. We assume that the image is not saturated and, thus, f(E) can be approximated 
linearly.

Mathematically, it can be expressed as

where Ic is the image intensity at a given pixel. All observable, biologically relevant, processes are slow compared 
with the camera exposure time (usually in a few ms) and, therefore, the outer integral can be eliminated. More 
importantly, let variable f, which reflects the dependence between the spectral energy and the sensor response, 
be 1. The multiplication inside the internal integral is commutative, which allows us to introduce an effective 
incoming light Lc(�) = S(�) · Fc(�) . These all mathematical treatments give the reduced equation for the meas-
urement process as

(1)Ic = f ·

∫ te

0

∫
�max

�min

S(�) · T(�) · Fc(�) · d� · dt,
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Intentionally, this simple model does not include any properties of optics, sophisticated models of light-
matter interactions, and spatial components (focus, sample surface, etc.). The aim of the method is to describe 
an observed object in the best way, with minimal assumptions on its nature or features.

Model extension for continuous media
In order to extract a transparency profile from the proposed model, one has to solve an inverse problem for a 
system of three integral equations (in case of a 3-channel, RGB, camera). This cannot be solved directly, since 
the model is heavily underdetermined. (In this text, by terms “transparency” and “spectrum” we mean “quasi-
transparency” and “quasi-spectrum” since this method determines only the properties of a microscopy image 
which are similar to the transparency spectra but not the transparency itself).

Additional information can be squeezed from the physical meaning of the observed image—neighbouring 
pixels are not fully independent. The observed object usually has no purely vertical parts (which is quite typical 
for cell-like structures) and other Z-axis related changes are not  fast14. If this holds, the image can be treated 
as a continuous projection of the object’s surface (in optical meaning) onto the camera sensor. In this case, the 
neighbouring pixels correspond to neighbouring points in the object.

In addition, let us assume that the object’s volume can be divided into subvolumes in a way that the transpar-
ency spectra inside a subvolume will be spatially continuous (in L2 meaning). This assumption is quite weak, 
because it can be satisfied only if the volumetric image has a subvolume of the size which is equal to the voxel size.

For biological samples which show almost no strong gradients of structural changes holds that the pixel 
demarcates the projected image. Formally, this criterion can be expressed as

where �u is a random vector and q, ǫ are small numbers. This equation closely resembles the Lyapunov stability 
criterion. The ǫ reflects the neighbourhood size and q is related to the degree of discontinuousness. It can be 
violated, if �u crosses a border between objects, but not inside a single object.

Optimization procedure
For pixel m, the combination of optimization criteria in Eqs. (2) and (3) gives (in discrete form)

where C is the number of channels, w is the number of discrete wavelengths, Gmn is a measure of discontinuous-
ness between pixels m and n. The Nm is a set of points, which have the Euclidean distance to the pixel m equal or 
less than TED . Authors used TED = 1 , but a larger neighbourhood may improve convergence speed. The integral 
in the first part of Eq. (4) is supposed to be solved numerically. Authors used the Simpson integration  method15 
with discretization ||�i|| = 48.

The trickiest issue in Eq. (4) is calculation of discontinuousness measure Gmn . We defined it as

where Dk is a central gradient in pixel k, Tb is a bias parameter (authors used Tb = 0.9 ), and Bmn is a set of points, 
which form lines between pixels m and n. The set of such points is calculated using the Bresenham  algorithm16. 
The Ek indicates whether pixel k is classified as an edge. For this we used the Canny edge detection  algorithm17 
applied to a gradient matrix smoothed by a 2D Gaussian filter with the standard deviation  equal18 to 0.5.

(2)Ic =

∫
�max

�min

Lc(�) · T(�) · d�.

(3)
∫

�max

�min

|T(�r, �)− T(�r + �u, �)|2d� < q, ∀|�u| < ǫ,

(4)Fm =

C∑
c=1

e
|
∫
�w
�0

Lc(�)·Tm(�)d� − Im| − C +
1

N

∑
n∈Nm

Gmn

w∑
i=1

[Tm(�i)− Tn(�i)]
2,

(5)Gmn =
1

Lmn

∏
k∈Bmn

{[Ek = 0] + [Ek �= 0] · (1− Tb) · (1− Dk)},

Figure 1.  Measurement process model.
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The gradient calculation is different for the first and further iterations. In the first iteration, there is no valid 
spectral guess, and the gradients and the edge detection are calculated for the original image. The used edge 
detection algorithm requires a single-channel (grayscale) image, however, the input image is RGB. We used the 
principal component analysis (PCA)19,20 and retained only the first principal component in order to obtain the 
maximal information on the grayscale representation of data.

In the non-first iterations, there is a spectral guess and, instead of the gradient, we used the cross-correlation 
with zero lag: Dk = Tk−1(�) ⋆ Tk+1(�) . The vertical and horizontal gradient were merged by the Euclidean norm.

For numerical optimization of Eq. (4), the covariance matrix adaptation evolution strategy (CMA-ES)21 was 
proved to be a suitable robust global optimization  method22. Due to the mean-field nature of the second part 
of Eq. (4), the method is iterative with, usually, 20–40 iterations to converge. In each iteration step and for each 
pixel, the minimization is conducted until a predefined value of loss function is achieved. Different schedules 
of tolerance changes can be applied, authors used the simplest one—linear decrease. The algorithm flow chart 
is presented in Fig. 2.

Microscopy system and camera calibration
In order to obtain reasonable local spectra, we must ensure that camera sensor pixels have homogeneous 
responses. From hardware point of view, they are printed as semiconductor structures and cannot be changed. 
Therefore, we introduced a spectral calibration in the form of post-processing routine, which is designed for 
obtaining equal responses from all camera pixels.

The first part of calibration is experimental and aimed at measuring each pixel’s sensitivity. We took a pho-
tograph of the background through a set of gray layers with varying transparency, covering a 2-mm thick glass 
(type Step ND Filter NDL-10S-4). After that, we replaced the microscope objective by a fibre of a spectropho-
tometer (Ocean Optics USB 4000 VIS-NIR-ES) to record spectra corresponding to each of the filters, see Fig. 3a.

The second part is computational. For each pixel, we constructed a piece-wise function S(M), where S is an 
integral of the spectrum measured by the fibre spectrometer in each point Si and Mi is an intensity value in the 
image. Between these points, the function S(M) is linearly interpolated, see Fig. 3d. For a colour camera that 
we used, the algorithm is slightly different. Most of the RGB cameras are equipped with a Bayer filter, which 
effectively discriminates 3 sorts of pixels. Each ‘sort’ has a different dependence of the quantum efficiency on 
the wavelength, see Fig. 3b. These dependencies are usually supplied by the camera producer. In this case, the 
recorded spectrum should be multiplied by the corresponding efficiency curve prior to the integration. The result 
of the multiplication is shown in Fig. 3c.

The proposed method of calibration is universal, applicable to any camera producing raw data, and is not 
based on any assumption about nature of image or underlying acquisition processes. The algorithm itself is 
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Figure 2.  The flow chart of the method. The magenta lines denote the routes for the 1st iteration. The red and 
blue lines show the direct and indirect feedback between iterations, respectively.
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Figure 3.  (a) Light spectra of grayscale layers measured by a fibre spectrophotometer, (b) declared spectra 
of RGB camera filters, (c) calculated spectra of incoming light reaching the blue camera channel. The integral 
under the curve (c) was used as a calibration value for the construction of the calibration curve. (d) Calibration 
curves for selected blue camera pixels lying in the same column (pixel indices are depicted).
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post-processing technique and requires calibration images and data from spectrometer. All results described 
below were obtained after this image correction. The calibration and correction routines are implemented as a 
native application and are freely available.

Results
The method essentially requires only three specific inputs: an image, incoming light spectrum, and camera filter 
profiles. The camera filter profiles are usually supplied with the camera or can be measured directly using an 
adjustable monochromatic light source. The incoming light spectrum is less straightforward, because the light 
emitted by the source is somehow altered by the light path. A convenient way is to replace the objective inlet 
by a cosine corrector with a spectrometer and measure the incident light spectrum. This implies that, in case of 
any substantial changes in the optical path (e.g., like the objective replacement), the incoming light spectrum 
has to be remeasured. In practice, it makes no problem to measure a set of spectra corresponding to a different 
objective, iris settings, etc.

The proposed method appears to be quite robust to parametrization inaccuracies and errors. We used the 
quantum efficiency curves supplied by the vendor and measured the spectrum, which is reaching the sample, 
and obtained practically feasible results. The method can be applied to any bright-field microscope set-up. The 
only condition is to access the camera primary signal immediately after the analog-to-digital conversion, before 
some kind of thresholding, white-balancing, gamma correction, or another visual improvement is employed.

The sample has to obey three assumptions: localized gradients, reasonable flatness, and linear response. 
If these assumptions hold, the obtained results will be in agreement with physical properties of the medium. 
Most of relatively flat biological samples (e.g., a single layer of cells) fulfil all these criteria. In order to show 
the capacity of the method, we used it for analysis of images of unstained live L929 mouse fibroblasts recorded 
using a video-enhanced bright-field wide-field light microscope in time lapse and with through-focusing. For 
determination of the best focal position in the z-stack, we used the graylevel local  variance23. The effective light 
spectrum as the result of multiplication of the light source spectrum by the camera filter transparency curves is 
shown in Fig. 4b. The original raw image is shown in Fig. 4a and looks greenish due to the prevalence of green 
colour in incoming light spectrum.

As clearly seen in Fig. 4d and e, the method has a non-trivial convergence behaviour of the variation coef-
ficient (with the local maximum at iteration 2 and the local minimum at iteration 4) and of the cost. The behav-
iour of the iteration computing process is not related to changes in the schedule of tolerances. This behaviour in 
iteration process is linearly decreasing until iteration 10, and then is kept constant and the iteration process is 

Figure 4.  The method of quasi-spectra extraction was applied to a raw image of a live cell from a bright-
field wide-field light microscope (a) combined with the effective light spectra (b). The cost (d) and variation 
coefficient (e) demonstrate a quite non-monotonous behaviour. This implies a self-organization of the model. 
After the reconstruction of the transparency spectra, the image can be viewed under arbitrary illumination such 
as the absolute black body with T = 5800 K (c). Comparison of the quality of U-Net supervised segmentation 
for original (raw), contrast-enhanced, and quasi-spectral images (f) shows advantages of the proposed quasi-
spectral approach.
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stopped if the value of change is 0.01. We have not investigated the reason for this course deeply, but it is definitely 
repeatable for all the tested measurements (e.g., Fig. S3b,c). A natural way of visual verification of an image of 
transparency spectra is artificial illumination. We used a spectrum of the black body at T = 5800 K according 
to the Planck Law (Figs. 4c, S3a). The transformed image is quite similar to the raw data, which supports the 
method validity. To obtain such an image, we multiplied each pixel’s transparency spectra by the illumination 
spectrum and the CIE standard matching curves. The integrals of the corresponding curves gave coordinates 
in the CIE 1931 colour space.

Evaluation of the asset of the proposed method of the quasi-spectral reconstrunction (Fig. 5a–e) for clusteriza-
tion against the raw data is quite tricky, because we have no ground truth. But, nevertheless, there are numerous 
methods of quality estimation for unsupervised  learning24. Such methods are usually used for determination of 

Figure 5.  A live cell L929 in time lapse (a–c) at k-means clusterization, k = 10 . The corresponding mean 
spectra of classes for images (a,c) are shown in (d,e). These spectra are pretty much similar, despite the 
different images. The gap criteria for the raw data and the relevant spectral counterparts are presented in (g). 
Dimensionality reduction techniques, e.g., PCA, can be used for better visualization and digital staining (f).
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the optimal number of clusters in datasets. Our aim is slightly different—to compare the accuracy of the clus-
terization for two datasets with different dimensionality. This naturally yields a choice of metric—cosine—since 
this metric is normalized and not affected by magnitude to such an extent as the Euclidean metric. Another 
fact that can be utilized from the data is that each single image provides 105–106 points. It enables us to use a 
distribution-based method for estimation of clustering accuracy. One of the most general method from this fam-
ily is gap  statistics25, which is reported to perform well and robust even on noisy data, if a sufficient number of 
samples is  present24. As the clusterization method itself, we used k-means with 10 clusters and the cosine metric. 
Figure 5g shows gap criteria for time-lapse raw images and relevant spectral counterparts. The proposed method 
leads to better and more stable clustering concurrently. We also investigated different dimensionality reduction 
techniques (namely  PCA19, Factor  Analysis26, and  NNM27), which can be applied before the clustering, but these 
techniques did not bring any improvement in cluster quality. Despite that, these techniques can be used, e.g., for 
digital staining and highlighting the details in objects, see Fig. 5f.

In order to verify the benefits of the clusterization of the obtained spectra using k-means against the direct 
image clusterization, simple phantom experiments on microphotographs of oil-air and egg protein–air interface, 
respectively, were conducted. These phantom experiments showed that the spectral clusterization resulted in 
both a higher cluster accuracy and a lower variation. Moreover, in order to prove the capacity of the method, we 
applied supervised segmentation, namely a classical semantic segmentation network, U-Net28. It is a symmetric 
encoder-decoder convolution network with skip connections, designed for pixel-wise segmentation of medical 
data. One of the strongest advantage of this network is a very low amount of data needed for successful learn-
ing (only a few images can be sufficient for this purpose). We employed 6 images for the network training and 
1 image for the method validation. To avoid the data overfitting in the training phase, aggressive dropout (0.5, 
after each convolution layer) and intensive image augmentation (in detail in Suppl. Material 1) was rendered. 
We compared the performance of the U-Net network for the original raw images, contrast-enhanced images, 
and spectral images (Fig. 4f). The results of segmentation for the spectral images showed a significantly ( > 10% ) 
increased accuracy, intersection over union (IoU) 0.9, and a faster convergence speed (8 epochs vs. 40 epochs 
for contrast-enhanced images). The results were stable to changes in the training and test sets (even when using 
a single validation image or a set of augmented images derived from validation as mentioned above).

Discussion
The primary aim of the method is, in the best possible way, to characterize individual cell parts physically (by 
a colour spectrum) and, consequently, identify them as different cell regions. Currently, the standard approach 
for the recognition of organelles is fluorescent (or other dye) staining. In unstained cells, identity of an organelle 
is guessed from its shape and position. Our approach gives the promise to be able to identify the organelles 
according to their spectra. However, in order to obtain the same spectra for cells of different samples, full repro-
ducibility of the whole experiment such as optical properties of a Petri dish, thickness and colour of cultivation 
medium has to be ensured.

An important issue that we have not investigated yet is the influence of sample thickness. The question 
remains what is the identity of the spectrum if the sample has a non-zero thickness. In Rychtáriková et al.1, we 
showed that the position of the effective focus differs even with the usage of a fully apochromatic lens. This is 
the biggest complication in interpreting the spectrum. In case of a relatively thick and homogeneous organelle it 
can be assumed that, in the centre of the focus, the contribution from geometrically different levels are similar. 
The full answer to this question would be given by a complete 3D analysis that has to be theoretically based on 
completely new algorithms and is currently out of the possibilities of our computing capacity. To this point, 
however, we allow to claim that the thickness of the sample affects mainly the integrals below the spectra, not the 
shapes of the spectra themselves. The usage of the cosine metric, which is, in effect, the angle between distance 
vectors and is insensitive to the magnitude, would help to mitigate this problem.

It is worth mentioning that, for some real-life biological samples, the measurement model can be violated. 
We implicitly assume that light intensity reaching the camera chip is always lower than at the time of its produc-
tion by a light source. The transparency coefficient is bounded by the range [0, 1]. Indeed, this is not always true 
because the sample can contain light-condensing objects (most of these objects are bubbles or vacuoles) which act 
as micro-lenses. It does not break the method generally but, due to inability to fulfil Eq. (2), the local optimiza-
tion gives an abnormally high cost. Such objects should be eliminated from a subsequent analysis because their 
quasi-spectra are unreliable. After excluding those dubious regions (which occupy only a very small part of the 
image, provided they are present at all), the rest of the image can be analysed in an ordinary way.

The obtained quasi-spectra should not be considered as object features but are rather imaging process fea-
tures. Due to the model-free nature of the method, the obtained classes reflect the observed data, not the internal 
structures of the objects. We think that the convenient bridge between the observed, phenomenological, spectra 
and the structure is machine learning, since it shows advantage of enormously good statistics ( 105–106 samples 
per image) and compensate influence of the complicated shape.

Conclusions
This novel method of extraction of quasi-spectra aims at a very challenging problem, which cannot be solved 
precisely even in theory: some information is irrecoverably lost. The method arises from very general assump-
tions on the measurement system. The method does not rely on any light-media interaction model or physi-
cal properties of the system, which makes this method quite universal. The obtained spectra are applicable in 
practice for visualization and automatic segmentation task. We intentionally did not consider questions of voxel 
spectrum, Z-stack spectral behaviour, and meaning of the compromised focus in order to keep the method and 
its application simple. We pose the described method as an ultimate information squeezing tool, which is a 
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nearly model-free way how to compress the colour and spatial information into representation of the physically 
relevant features. We believe that, in the future, the method will find its use in robust, mainly qualitative, (bio)
chemical analysis.

Microscopy data acquisition
Sample preparation. A L929 (mouse fibroblast, Sigma-Aldrich, cat. No. 85011425) cell line was grown at 
low optical density overnight at 37 °C, 5% CO2 , and 90% RH. The nutrient solution consisted of DMEM (87.7%) 
with high glucose ( >1 g L−1 ), fetal bovine serum (10%), antibiotics and antimycotics (1%), L-glutamine (1%), 
and gentamicin (0.3%; all purchased from Biowest, Nuaillé, France).

Cells fixation was conducted in a tissue dish. The nutrient medium was sucked out and the cells were rinsed 
by PBS. Then, the cells were treated by glutaraldehyde (3%) for 5 min in order to fix cells in a gentle mode (with-
out any substantial modifications in cell morphology) followed by washing in phosphate buffer ( 0.2mol L−1 , 
pH 7.2) two times, always for 5 min. The cell fixation was finished by dewatering the sample in a concentration 
gradient of ethanol (50%, 60%, and 70%) when each concentration was in contact with the sample for 5 min.

The time-lapse part of the experiment was conducted with living cells of the same type.

Bright‑field wide‑field videoenhanced microscopy. The cells were captured using a custom-made 
inverted high-resolved bright-field wide-field light microscope enabling observation of sub-microscopic objects 
(ICS FFPW, Nové Hrady, Czech Republic)1. The optical path starts by two Luminus CSM-360 light emitting 
diodes charged by the current up to 5000 mA (in the described experiments, the current was 4500 mA; accord-
ing to the LED producer, the forward voltage was 13.25 V which gave the power of 59.625 W) which illuminate 
the sample by series of light flashes (with the mode of light 0.2261 s–dark 0.0969 s) in a gentle mode and enable 
the  videoenhancement29. The microscope optical system was further facilitated by infrared 775 nm short-pass 
and ultraviolet 450 nm long-pass filters (Edmund Optics). After passing through a sample, light reached an 
objective Nikon (in case of the live cells, CFI Plan Achromat 40× , N.A. 0.65, W.D. 0.56 mm; in case of the fixed 
cells, LWD 40× , Ph1 ADL, ∞/1.2 , N.A. 0.55, W.D. 2.1 mm). A Mitutoyo tubus lens ( 5× ) and a projective lens 
( 2× ) magnify and project the image on a JAI camera with a 12-bpc colour Kodak KAI-16000 digital camera chip 
of 4872× 3248 resolution (camera gain 0, offset 300, and exposure 293.6 ms). At this total magnification, the size 
of the object projected on the camera pixel is 36 nm. The process of capturing the primary signal was controlled 
by a custom-made control software. The z-scan was performed automatically by a programmable mechanics 
with the step size of 100 nm.

Microscopy image data correction and visualization. The acquired image data were corrected by 
simultaneous calibration of the microscope optical path and camera chip as described in Suppl. Material 1. In 
this way, we obtained the most informative images on spectral properties of the observed cells.

For visualization, very bright pixels which correspond to light-focusing structures in the sample (mostly bub-
bles that act as micro-lenses) and violate the assumptions of the model of the proposed quasi-spectral method 
were detected (as 99% percentile of intensities) and treated as saturated. After their elimination, the rest of 
intensities was rescaled to the original range.

Data availability
The software for quasi-spectral characterization of images, the relevant Matlab codes, the software for image 
calibration, the U-Net segmentation package, and testing images are available in the supplementary materials 
at the Dryad Data  Depository30.
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a b s t r a c t 

Current biological and medical research is aimed at obtaining a detailed spatiotemporal map of a live 

cell’s interior to describe and predict cell’s physiological state. We present here an algorithm for com- 

plete 3-D modelling of cellular structures from a z-stack of images obtained using label-free wide-field 

bright-field light-transmitted microscopy. The method visualizes 3-D objects with a volume equivalent to 

the area of a camera pixel multiplied by the z-height. The computation is based on finding pixels of un- 

changed intensities between two consecutive images of an object spread function. These pixels represent 

strongly light-diffracting, light-absorbing, or light-emitting objects. To accomplish this, variables derived 

from Rényi entropy are used to suppress camera noise. Using this algorithm, the detection limit of ob- 

jects is only limited by the technical specifications of the microscope setup–we achieve the detection of 

objects of the size of one camera pixel. This method allows us to obtain 3-D reconstructions of cells from 

bright-field microscopy images that are comparable in quality to those from electron microscopy images. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Bright-field microscopy is a classical method, favored for its 

convenience and ability to observe the physiology and morphol- 

ogy of unlabelled living cells and tissues. It avoids potentially com- 

plicated sample preparation procedures and visual artifacts due to 

complex optical paths and, in addition, is non-destructive. How- 

ever, the main issue that hinders the segmentation and analysis of 

bright-field microscopy images [1–8] is the low contrast of struc- 

tures in the focal plane caused by distortions from an object spread 

function (OSF), which is unknown for most objects. These distor- 

tions are particularly relevant in a biological context, as biologi- 

cal specimens are significantly thicker than the depth-of-field of 

typical bright-field microscope lenses [9] and also have particu- 

lar physicochemical properties that lead to optical inhomogeneities 

and further complicate the OSF. Its analysis is in addition com- 

plicated by the dynamic nature of living cells, which causes spa- 

tiotemporal changes in the image. Finally, the discretization per- 

formed during image capture may also produce inaccuracies. The 

resulting standard bright-field microscopy image represents multi- 

ple processes and exhibits a multifractal character. 

∗ Corresponding author. 

E-mail address: rrychtarikova@frov.jcu.cz (R. Rychtáriková). 

These issues impose several constraints on the type of algo- 

rithm and microscope appropriate for this task: 

1. It is necessary to obtain the most real and natural images 

possible in order to discover the spectral properties of a 

cell’s spread function. This can be carried out using a high- 

resolution camera equipped with an image sensor overlaid 

with a Bayer filter, capturing RAW files in a higher-bit colour 

depth and processing them using an non-interpolating algo- 

rithm [10,11] . Precise microscope mechanics should ensure 

the smallest possible movement along the z-axis. 

2. The analytical method must be able to recognize sponta- 

neous and random processes that underlie self-organization 

and multifractality [12] . Extracting the information from an 

image using Rényi entropy [13] parametrized by α ( α ≥ 0 

and α � = 1) serves as an appropriate basis for this task. 

3. The method must be sensitive to diffraction, which is the 

main interactive process between light and cellular struc- 

tures. Properties of the light wavefront that arises from 

diffraction and is projected at the objective lenses are de- 

scribed in full by Mie scattering theory [14] . Under the con- 

dition that the size of a particle is much larger than the 

wavelength of light, ray tracing techniques (geometry op- 

tics) provide a sufficient model for the characterization of 

the shape of the particle. Then, the behaviour of light at the 

http://dx.doi.org/10.1016/j.ultramic.2017.03.018 

0304-3991/© 2017 Elsevier B.V. All rights reserved. 
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Table 1 

Microscope setup. 

Cell Series Camera Piezo a 

Number of img. b Step (nm) Time (min:s) Offset Gain Exposure (ms) 

MG63- a 93 (155) 119 03:35.4 0 268 3327 Yes 

MG63- b 128 (201) 150 10:22.7 266 347 2466 No 

L929 173 (358) 158 11:09.0 221 336 2632 No 

a If yes, the image series underwent image alignment (registration). 
b The original number of image in the series before z-step selection is parenthesized. 

interface of the strong diffracting object can be described 

by the phenomenon of total external light reflection and 

diffraction ( Supplementary Fig. 1b ). 

4. The method must recognize the focus of the cell in its 

spread function. According to the Extended Nijboer-Zernike 

(ENZ) theory [15–17] , the focus of a fluorescent and light- 

diffracting object is located at the position of the highest 

and lowest energy density, respectively ( Supplementary Fig. 

1a ). 

Here, we demonstrate a novel mathematical approach to reach 

superresolution in bright-field microscopy. This method, validated 

using atomic force microscopy, was applied to 3-D reconstructions 

and spectral and dynamic analysis of organelles and OSFs from z- 

stacks of bright-field microscopy images of live mammalian cells. 

2. Results 

The method is demonstrated on two cells of MG-63 human os- 

teosarcoma (labelled a and b ) from different cultivation batches 

and a cell of L929 mouse adipose tissue; the z-stacks of 12-bit 

bright-field microscopic RAW files were collected with an average 

z-step of 119, 150, and 158 nm, respectively. The detailed scanning 

conditions are described in Table 1 . The z-stacks underwent im- 

age pre-processing such as vertical image registration (the MG63- a 

cell) and the removal of defective (dead and hot) camera pixels 

(the MG63- b and L929 cells) to avoid image defects, which, in ad- 

dition, demonstrates the robustness of the method. 

The overall preview of the image processing of the z-stack 

of the input data—12-bit RAW files with a cell of interest and 

background—with respect to the items mentioned above is shown 

in Fig. 1 a and discussed in detail in the following sections. 

2.1. Segmentation of a cell’s focal region 

In the first step, a cell of interest was segmented from its back- 

ground by identifying green pixels whose intensities remain un- 

changed for each two consecutive RAW files ( Algorithm 1 , Fig. 1 b). 

The intensities of the green pixels in each Bayer mask quadruplet 

were averaged to give quarter-resolved grayscale images [10,11] , 

which were then subtracted. The unchanged intensities (i.e. zero 

values in the differential image) concurrently higher than 0 and 

lower than a 0.95-fold intensity mode of the cell-free second im- 

age contributed to the cumulative binary mask. In the focal region, 

these unchanged dark green pixels are the primary contributors to 

the cumulative binary mask ( Supplementary video 1 ). 

This binary mask was further processed by standard mor- 

phological operations—dilating the image (a 3 pixels disk-shaped 

structuring element), filling image holes (corresponding, in the 

original image, to the fluorescent objects and positive light inter- 

ferences in the Airy diffraction pattern [18] ), and filtering the cell 

of interest according to its specific features (in our case, as an ob- 

ject of the maximal size)—resulting in a final binary mask. The fi- 

nal binary mask of the cell was rescaled by a factor of two and 

applied to the whole z-stack of the original RAW files in order to 

distinguish a sum of point spread functions of the cell. 

Computation of the binary mask from RAW files’ red and blue 

pixels did not give the desired results. Due to the high frequency 

of consecutive pixels with constant intensities, the image of the 

cell merged with its background. The reason for this may be found 

either in light absorption in the infra-red and ultra-violet regions 

[19] or in lower photon quantum efficiency of the respective cam- 

era filters [20] . Therefore, in all segmentations, the green intensity 

wide range histogram was used. 

The next step consists of selecting the focal sub-stack of the cell 

and assessing cell topography. The focal region of the z-stack was 

determined via clustering point information gain entropy density 

( �α) spectra [21] obtained for all RAW files of the separated cell. 

The variable �α [bit] was derived from the Rényi entropy as 

�α,l = 

1 

1 − α

k ∑ 

j=1 

log 2 

∑ k 
j=1 p 

α
j,i,l 

∑ k 
j=1 p 

α
j,l 

, (1) 

where p j and p j, i are the probabilities of occurrence of intensity 

j in an intensity histogram of the l th image in the z-stack with 

and without an element of the intensity i , respectively. The addi- 

tive term 

1 
1 −α log 2 

∑ k 
j=1 p 

α
j,i,l 

∑ k 
j=1 p 

α
j,l 

is called a point information gain ( �α,j , 

bit) and can determine an information contribution of intensity j 

to the intensity histogram obtained from either the whole image 

(a global measure �α,Wh ) or its part (local measures). For image 

processing of the presented cells, we used local values evaluated 

from pixels either on the vertical-horizontal cross ( �α,Cr ) or on a 

9 pixels circle around the examined pixel ( �α,Circle ). The kind of lo- 

cal information was chosen according to the distribution of inten- 

sities in the image. Whereas the z-stacks of the MG63- a and L929 

cells suffered from cross camera noise, the images of the MG63- 

b cell did not ( Supplementary videos 2 and 3 ). In the latter case, 

the 9 pixels circular type of surroundings approximately traced the 

borders of intracellular structures. 

For the overall multifractal characterization of the images, �α- 

spectra were calculated for a set of α = { 0.1, 0.3, 0.5, 0.7, 0.99, 1.3, 

1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0}, for each colour channel separately. 

While the values �α,j , and consequently �α,j , for the red and blue 

channels (indexed R and B , respectively) were computed by elim- 

inating one element of intensity j from the respective intensity 

histogram, these values for the green pixels (indexed G ) were ob- 

tained via eliminating two elements that were relevant to the in- 

tensities of the Bayer mask quadruplet. 

Matrices composed of vectors that specify each image l in the 

z-stack via α-dependent subvectors of the respective information 

context in the respective colour channel, i.e. 

�(l) = [�α,W h,R , �α,W h,G , �α,W h,B , �α,Cr,R , �α,Cr,G , �α,Cr,B ] (2) 

for series of the MG63- a and L929 cells and 

�(l) = [�α,W h,R , �α,W h,G , �α,W h,B , �α,Cr,R , �α,Cr,G , �α,Cr,B , 

�α,Circle,R , �α,Circle,G , �α,Circle,B ] (3) 

for the series of the MG63- b cell, were standardized with z-scores 

and underwent k-means clustering (squared Euclidean distance 

metric, 50 iterations) into two groups ( Algorithm 2 ). Due to the 
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Fig. 1. Scheme of the algorithm for 3-D reconstruction of organelles inside a live cell from bright-field photon microscopy (illustrated on stable homogenous diffracting 

organelles inside the MG63- a cell). ( a ) Total overview of the algorithm. A1 – 2-D cell segmentation from the original input z-stack images (in 12-bit RAW files, Algorithm 1 ); 

B – calculating �α,c (PIED) spectra, where c is a colour channel, for each z-stack image; C1 – selection of the focal region of the z-stack according to �α-spectra ( Algorithm 2 ); 

C2 – calculation of the cell topography ( Algorithm 3 ); C4 – comparison of the z-stack region with the AFM profile of the cell ( Supplementary Fig. 4 ); D – calculating ω α,l, x, y, c 

(PDG) values from two consecutive z-stack images; A2 – characterization of the background of each image as a mode of its R-, G-, and B-intensity histograms, respectively; C3 

– selection of background values in the focal plane (complementary to the image of the cell in the focal region); E1, E2, E3 – 3-D organelle segmentation and reconstruction 

(the output of Algorithm 4 ) from the focal region of the cell, including its ω α,l, x, y, c -images and background values. ( b ) Detailed scheme of the cell segmentation ( A1 process 

in panel a , Algorithm 1 ). ( c ) Detailed scheme of organelle segmentation ( Algorithm 4 ). A – non-interpolating demosaicing of the RAW files of the segmented cell (input 

1); C2 – removing undesirable objects via comparison of the cell intensity histogram with the mode of the background histogram (input 3); C3 – application of the binary 

topological envelope (input 4) to each z-stack; B – creation of a binary mask via overlapping of ω α,l,x,y,G = 0 values from two consecutive images; C1 – 2-D segmentation of 

organelles and OSFs; D – 3-D reconstruction of organelles; E – 3-D stacking of 2-D organelle segments. Image processing was performed in 12-bpc intensity depth and is 

visualized in 8 bpc. 

spectral properties of the OSF, this clustering properly selected a 

focal region of the cell from the rest of the z-stack. 

In Algorithm 2 , the sub-stack of the focal region was chosen as 

a cluster with a RAW file whose average intensity of green pixels 

is the inflection point of the dependence of the average intensity 

of green pixels on the position of the RAW file in the z-stack. To 

smooth the dependence, a fourth-order polynomial was used. This 

part of the algorithm assumes that in the focal region the inten- 

sities over the z-stack change significantly, whereas the intensities 

of blurred images remain relatively constant. 

The topological envelope of the cell (explained as a binary im- 

age at each z-level, Algorithm 3 ) was evaluated from the focal 

sub-stack of RAW files as the absolute value of the subtraction of 

the unblurred and blurred green pixels at the same z-level after 

non-interpolating de-mosaicing of green pixels of RAW files. The 

blurring of each particular image was performed with a filter cre- 

ated from a 10 pixels disk-shaped structural element. After that, 

the pixels of interest at each z-level were chosen as those brighter 

than twelve times the maximal intensity of the subtracted image. 

These pixels underwent a morphological closing (a 3 pixels disk- 

shaped structuring element), removing the undesirable pixels via 

morphological erosion and dilation, and computation of the binary 

convex hull around the rest of the binary objects. A subsequent di- 

lation of the binary convex hull (a 20 pixels disk-shaped structur- 

ing element) ensured extension and rounding of the cell bound- 

aries. 

From each series, a multiplication of the number of images in 

the focal region by the respective average scanning step ( Table 3 ) 

gave us a height of the part of the OSF that is occupied by the cell, 

i.e. 5.6, 3.6, and 5.4 μm for the MG63- a , MG63- b , and L929 cells, 

respectively. The shapes and the heights of the cells ( Fig. 3 b and 

Supplementary Figs. 2 and 3b ) obtained from the bright-field mi- 

croscopy images using the presented algorithm are in agreement 

with live cell imaging using atomic force microscopy [22] ( Supple- 

mentary Fig. 4 and Supplementary information 1 ). In the MG- 

63 cell line, hill-shaped cells with a protuberant nuclei, of the 

size of 5.2 ± 1.1 and 4.0 ± 1.0 μm on different substrates, pre- 

vail. L929 cells are approximately 0.4 μm lower and flatter. Similar 

results have been depicted in scanning microscopy images and de- 

scribed in literature [23–26] . For the microscopy experiments, the 

dish bottoms were not treated. 

2.2. Classification, segmentation, and investigation of 

properties of organelles 

This section describes how to extract information about the 3-D 

shapes and dynamics of organelles from a focal region of a z-stack 

of bright-field optical transmission micrographs of a detached cell. 

The sub-stacks of the MG63- a , MG63- b , and L929 cells were ob- 

tained with average z-step sizes of 116, 156, and 147 nm and with 

a scanning frequency of 0.440, 0.213, and 0.298 img. s −1 , respec- 

tively ( Table 3 ). 
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Algorithm 1 

creating a binary mask to segment a cell of interest from a bright-field optical transmission z-stack. 

In order to maximize and analyze the change in the OSF’s vol- 

ume, we have previously derived a information-entropic variable 

point divergence gain [10] (PDG: ω α,l,x,y,c , bit), which evaluates 

the information divergence for all pixels between two consecutive 

RAW files in the focal section of the z-stack: 

ω α,l,x,y,c = 

1 

1 − α
log 2 

∑ k 
j=1 p 

α
i,l,c 

∑ k 
j=1 p 

α
i, (l+1) ,x,y,c 

, (4) 

where l is the order of an image in the focal region of the z-scan, 

and x and y are coordinates of the particular pixel in the image l . 

Probabilities p i, l, c and p i, (l+1) ,x,y,c describe the frequencies of oc- 

currence of colour intensities in the image ( l ) and in the same im- 

age after exchanging the pixel at coordinates ( x, y, l ) for the pixel at 

(x, y, (l + 1)) . The ω α,l, x, y, c -values for pixels of each colour in the 

RAW file’s quadruplet were calculated in the same way as the �α- 

values in Eq. (4) : red and blue channels of the resulting quarter- 

resolved ω α,l, x, y, R / B -matrices were computed after exchanging one 

pixel of the respective colour, whereas the green channel was ob- 

tained after exchanging two green pixels of the respective pixel 

quadruplet. 

Compared to the simple subtraction of two consecutive images, 

calculating ω α,l, x, y, c -values classifies the image pixels with respect 

to their probability of occurring in volume and also introduces dy- 

namics into the examined system. Zero values of ω α,l, x, y, c cor- 

respond to pixels with relatively high occurrences in the image, 

and thus ones that do not change in a z-step. These represent sta- 

ble, large, non-moving objects at a high image resolution and the 

smallest possible z-step, mainly organelles down to the size of one 

voxel. The more extremely negative or positive values of ω α,l, x, y, c 

show pixels with the highest change from image to image, which 

correspond mainly to moving objects. Other ω α,l, x, y, c -values detect 

either sums of point spread functions of organelles or organelles 

themselves, which are composed of lower-occurrence intensities at 

the given z-level and, concurrently, whose OSFs are divergent over 

distances smaller than the size of the z-step. 

Here, coefficient α represents multifractality and defines dis- 

tribution. Low values of α merge frequently-occurring ω α,l, x, y, c - 

values and separate rare pixels—the most dynamic organelles in 

this case. High α values give wider distributions of ω α,l, x, y, c - 

values. A suitable value of this parameter must be always derived 

or estimated with regards to the multifractal character of the given 
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intensity distribution. We decided to use α equal to 5 (MG63- a ) 

and 6 (MG63- b , L929), at which value the images of the organelles’ 

OSFs, mainly in the green channel, are adequately condensed af- 

ter camera noise and another defects in the image are suppressed 

( Figs. 2 a, 3 c, and Supplementary Figs. 2 and 3a ). At zero ω α,l, x, y, c 

of a higher-order α, we already observe a strong combination of 

intensities of light-interferences in the image. As the size of the z- 

step increases, larger α-values must be used to merge the correct 

image intensities. 

Analysis of ω α,l, x, y, c -values in each colour channel showed that 

there is mainly autofluorescence projected in the blue channel. The 

green channel further displays diffraction. The red channel shows 

also the contribution of near infra-red absorption. The application 

of each colour channel can be viewed when zero ω α,l, x, y, c -values 

are compared with original images ( Fig. 2 b) and provide a potential 

for classification and recognition of organelles with the respect to 

their composition, without the usage of any labelling technique (cf. 

[27] ). 

Because computing ω α,l, x, y, c -values for three consecutive 

z-stack images gives information about the shape and dynamics 

of organelles in the middle image, a binary mask for segmenting 

objects in a z-level was created by thresholding and uniting 

Algorithm 2 selecting the focal region using �α values. 

( continued on next page ) 
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Algorithm 2 ( continued ) 

identical ω α,l, x, y, c -values from two consecutive ω α,l, x, y, c -matrices 

(input 2 in Fig. 1 c). This mask was applied to the respective 

quarter-resolved image of the cell (input 1 in Fig. 1 c), which was 

obtained by adapting the Bayer quadruplet’s pixels of red, blue and 

average green to the respective colour channel. The subsequent 

matching of the respective binary topological mask (input 4 in 

Fig. 1 c) with the image of the detached objects selected objects 

relevant for the given z-level ( Algorithm 4 ). 

The last part of the algorithm (input 3 in Fig. 1 c) filtered 

irrelevant intensities from the images, which completely de- 

scribe the spectral properties of the cell’s image. For each colour 

channel, strongly light-diffracting or absorbing organelles were 

detached as those darker than the cell-free background. In con- 

trast, light-emitting organelles were reconstructed from intensities 

brighter than the background ( Fig. 1 -B1– B3, Algorithm 4 ). 

In this paper, we demonstrate a novel method for 3-D re- 

construction and examination of large homogeneous non-moving 

cellular objects, which are projected at the most frequent value of 

ω α,l, x, y, c = 0 ( Fig. 3 c and Supplementary Figs. 2 and 3c ). Apart 

from the large homogeneous non-moving objects (e.g. nucleoli 

in diffraction), the method detected objects of the size of a few 

voxels [28] , which might be shown to be real objects by video- 

enhanced microscopy or correspond to other frequent intensities 

remaining constant through a z-step. 

The OSFs of light-diffracting objects are substantially smaller 

than those of light-emitting objects, which implies that transmis- 

sion microscopy has an advantage over fluorescent microscopy 

in biological experiments ( Supplementary Fig. 1a ). The consis- 

tently smaller number of detected objects in the green channel 

is probably caused either by the mathematical averaging of two 

green pixels of the Bayer mask quadruplet during the calculation 

of ω α,l, x, y, c -values or by the broader green spectrum (caused by 

technical reasons, as noted above) decreasing the probability of 

occurrence of the same intensity between two consecutive pixels. 

Table 2 

Image processing of the presented cells. 

Cell Coordinates of background Selection of focus 3-D imaging 

x 1 , x 2 , y 1 , y 2 Local �α α for ω α,l, x, y, c R, G, B threshold 

MG63- a 4, 268, 652, 894 Cross 5 

MG63- b 26, 322, 1296, 1618 Cross, 9 pixels circle 6 1250, 2300, 1500 

L929 144, 792, 803, 1268 Cross 6 10 0 0, 170 0, 1170 
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3. Discussion 

Knowing the distribution and mutual interactions of 

biomolecules can help determine the morphological and physio- 

logical state of a cell. Since the 17th century [29] , observations of 

intracellular processes have been provided by microscopic tech- 

niques based on different physical principles. Imaging based on 

fluorescent microscopy has been a leading technique for defining 

the subcellular location of proteins for decades. However, fluo- 

rescent protein tagging technology suffers from some limitations, 

including the need for a physiological level of light-emitting pro- 

tein production, mislocalization artifacts, relatively low resolution, 

and the necessity to intervene in the cell’s physiological state 

after insertion of a dye [30] . The breakage of the Abbe diffraction 

Algorithm 3 obtaining the topography. 

( continued on next page ) 
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Algorithm 3 ( continued ) 

limit [31] in fluorescent microscopy was achieved by the invention 

of super-resolved fluorescent imaging, which was awarded the 

2014 Nobel prize in chemistry [32] . On the other hand, contrast 

techniques in optical microscopy such as phase contrast [33] , 

differential interf erence contrast [34] , digital microscopic hologra- 

phy [38] , interferometric microscopy [35] , and optical coherence 

tomography [36] require the insertion of an optical element into 

the optical path of the microscope, which distorts the image of 

the observed biological specimen and makes image interpretation 

much more difficult. Electron microscopy (in both transmission 

and scanning modes) is an ancillary method in cell biology [37] , 

since it may only be used to observe dried samples after a prepa- 
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Table 3 

Characterization of the focal regions. 

Cell Coordinates of position Number of img. Average step z-Height Time Img. frequency 

x 1 , x 2 , y 1 , y 2 (nm) (nm) (min:s) (s −1 ) 

MG63- a 55, 1928, 1, 2278 49 116 5568 1:51.3 0.440 

MG63- b 1, 2436, 139, 3248 24 156 3588 1:52.2 0.213 

L929 767, 1798, 341, 1432 38 147 5436 2:07.7 0.298 

Fig. 2. Details of ω α,l, x, y, c -images of a focal plane of a z-stack of live cell from bright-field transmission optical microscopy computed using two consecutive images (illus- 

trated on the interior of a MG63- a cell). ( a ) Zero values of ω α,l, x, y, G -transformed images with points that show unchanged information at α equal to 0.5, 2.0, 4.0, and 5.0, 

respectively. The original section of the cell is identical to that of b . ( b ) An original RGB section of the cell (visualized in 8 bpc) and its values ω α, 18, x, y, c = 0 for the red, 

green, and blue channels. Autofluorescent organelle 1 shows spectral characteristics in all colour channels. Organelle 2 (nucleolus) diffracts in the green and red channels and 

has weak autofluorescence due to its content of nucleolic acids. Organelle 3 bound to the nucleolar envelope is detectable only in the blue and green channels. ( c ) Move- 

ment of an organelle demonstrated on 8-bit images transformed from the original ω 5.0, 21, x, y, RGB -values in double precision floating point format (some ω 5.0, l, x, y, RGB -values 

are merged into one intensity of the ω 5.0, 21, x, y, RGB -image). White and black pixels in the ω 5.0, 21, x, y, RGB, neg -image (e.g., the highest and the lowest negative ω α,l, x, y, c -values, 

respectively) correspond to the position of the organelle in the previous and following original RGB images of the cell, respectively (and vice versa for the ω 5.0, 21, x, y, RGB, neg - 

image). The sizes of the sections in a –b is 23.732 × 19.176 μm 

2 and 4.352 × 5.372 μm 

2 in c (68 nm 

2 px −1 ). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

ration time of several days. However, the resolution obtained 

by electron microscopy may go down to a few nanometers. The 

newest imaging method—atomic force microscopy, e.g. [39] —is 

a kind of non-optical topographical technique that reaches high 

resolution but does not provide the possibility of fully imaging 

intracellular composition and interactions. Connecting the benefits 

of these different imaging methods can be achieved by combining 

them; for instance, correlative light electron microscopy (CLEM, 

e.g. [40] ) is the most well-known and commercially available 

example of combined imaging. 

This article reports a method to comprehensively analyze the 

information provided by label-free bright-field photon transmis- 

sion microscopy (calibrated and validated by AFM [22] ), which de- 

tects minute objects of Nobelish resolution [30,32] in a living cell. 

We do not develop a quantum physical theoretical foundation of 

the origin of information in the image. We instead follow the Ex- 

tended Nijboer–Zernike Theory [15–17] , which claims that the fo- 

cus is at the position of the lowest/highest density of electromag- 

netic radiation. Provided that two points of the same energy de- 

tected by a digital camera chip lie above each other, they are con- 

sidered to be a light-diffracting or light-emitting object. The extent 

of the detection as well as of the reliability of the interpretation is 

heavily limited by the microscope’s optical and mechanical proper- 

ties. The resolution limit is not influenced by the camera sensitivity 

but by the number of photons. A high number of photons enables 

objects to be localized (known as discriminability) [28,41] . It is an 

analogy to super-resolved fluorescence microscopy, where the limit 

is based on a few photons. 

We demonstrate some of the extraordinary properties of an 

image of elementary light-diffracting, light-emitting, or light- 
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Fig. 3. 3-D reconstruction of a MG63- a cell. ( a ) An original 2-D image of the segmented MG63- a cell from the center of the focal region (obtained using Algorithms 1–2 

and visualized in 8 bpc). ( b ) Isocontours of the topological space of the occurrence of the MG63- a cell in its OSF (calculated using Algorithms 1–3 in Methods). ( c ) 3-D 

reconstruction of the large non-moving objects in the MG63- a interior (found using Algorithms 1–4 in Methods). The dark objects (upper row) represent strongly light- 

diffracting and light-absorbing objects or pixels of destructive light interference (visualization of ranges of intensities 465–884, 1152–2169, and 593–1082 in the R, G, and B 

channels, respectively). The bright objects (lower row) represent autofluorescent objects or pixels of positive light interference (visualization of ranges of intensities 865–2519, 

2137–3445, and 1063–3310 in the R, G, and B channels, respectively). 

absorbing objects. Objects of the size of one camera pixel are de- 

tected. To re-phrase this observation in the terminology of the 

depth-of-focus in digital microscopy: the depth of focus is a step 

along the z-axis within which the information contained in one 

camera pixel remains within this pixel and is not transferred into 

the neighbouring pixel. Our results demonstrate that such a def- 

inition is very sharp. It means that each point in the image of 

ω α,l, x, y, c will be equal to 0. The fact that we have observed only 

a few points at ω α, l, x, y, c = 0 indicates that objects’ spread func- 

tions, which give rise to the image in these camera points, have 

homogeneous intensity over more than one z-level. The latter con- 

clusion indicates that objects detected with ω α,l, x, y, c = 0 at all α
values are located within the volume of the voxel. For these ob- 

jects, the information obtained by our approach is equivalent to a 

3-D reconstruction constructed from electron microscopy images. 

The detection limit of other objects, which gives rise to a certain 

distortion in the optical paths, is solely technical. It is due to me- 

chanical precision in the z-step and x-y reproducibility, the size 

of the camera pixel, the objective magnification, a simple optical 

path, homogeneous illumination, the scanning frequency, the dis- 

tribution of camera noise, the bit depth of the camera, and image 

storage and computational capacity. 

4. Methods 

Cell cultivation 

MG-63 (human osteosarcoma, Serva, cat. No. 86051601) and 

L929 (mouse fibroblast, Serva, cat. No. 85011425) cell lines were 

grown at low optical density overnight at 37 °C in a synthetic 

dropout media with 30% raffinose as the sole carbon source. The 

nutrient solution for the MG-63 cells consisted of: 86% EMEM, 

10% newborn-calf serum, 1% antibiotics and antimycotics, 1% L- 

glutamine, 1% non-essential amino acids, 1% NaHCO 3 (all compo- 



R. Rychtáriková et al. / Ultramicroscopy 179 (2017) 1–14 11 

nents were purchased from PAA Laboratories). During microscopy 

experiments, cells were cultivated in a Bioptech FCS2 Closed 

Chamber System. 

Microscopy 

Microscopy of a living MG-63 cell culture was performed us- 

ing a versatile sub-microscope: a nanoscope developed for the 

Institute of Complex Systems FFPW by the company Optax Ltd. 

(Czechia). The optical path consisted of two Luminus 360 light 

emitting diodes, a condenser system, a firm sample holder, and an 

40 × objective system made of two complementary lenses that al- 

low a change of distance between the objective lens and the sam- 

ple. The UV and IR light was blocked by a 450 nm long-pass filter 

and a 775 nm short-pass filter (Edmund Optics), respectively. Next, 

a projective lens magnified the image onto a Kodak KAI-160 0 0 

camera chip with 4872 × 3248 resolution and 12-bit colour depth. 

The size of the original camera pixel using primary magnification 

was 34 × 34 nm 

2 . The z-scan was performed automatically by a 

programmable piezomechanic (servo) motor. The scanning condi- 

tions are presented in Table 1 and Supplementary data 1 . 

Image processing algorithm 

The relevant stacks of micrographs (ca. 2/3 of the original z- 

stack) were selected from the original z-stacks using the “ILCZ”

(MG63- b , L929) tag from the Exif metadata of each image using 

the file pngparser.exe (in imagesInfo.txt in Supplementary mate- 

rial available via ftp connection [42] ). For the MG63- a cell, the 

same process was performed using Matlab ® scripts: RelImgSelec- 

Algorithm 4 2-D segmentation of objects. 

( continued on next page ) 
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Algorithm 4 ( continued ) 

tion.m and Shift.m (for image alignment). The average steps and 

total scanning times are described in Table 1 . 

The bulk of the image processing and analysis of the bright- 

field optical micrographs were carried out with Matlab ® R2014b 

software fortified by Image Processing and Statistics Toolboxes 

(Mathworks, USA) using an OrganelleExtraction script package (ICS 

FFPW, USB, Czechia). The variables Point Information Gain Entropy 

Density ( �α , PIED) and Point Divergence Gain ( ω α,l, x, y, c , PDG) 

( Eqs. 1 and 3 ) were computed using Image Info Extractor Profes- 

sional v.b11 software (ICS FFPW, USB, Czechia; a GBRG Bayer grid) 

and stored in double precision floating point format in Matlab ®

structure arrays. The differences in image processing of the cells 

are shown in Table 2 . The basic algorithms for segmentation of 

cells and intracellular objects are written below. The optimized m- 

files, software, and original and processed data are available via ftp 

connection [42] . 
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Supplementary information 

Supplementary information 1. 3-D shapes and heights of 

MG63 and L929 cells obtained using an atomic force microscope 

Axio Observer.A1, Zeiss in contact mode. 

Supplementary Fig. 1 ( a ) left – The Extended Nijboer Zernike 

simulation of fluorescence (parameters NA = 0.5, d = 0.2 μm, λ = 

0.2 μm, m = 0, n = 0). right – A real (measured) object spread 

function of a 0.22 μm bead in diffraction with sections of RGB 

images. The central sections of object spread functions show the 

positions of focus. ( b ) A model of phenomena of geometric op- 

tics that occur during the interaction of light with an object. The 

main process is diffraction. In the case of total diffraction of light 

at the sample interface, it can be considered that the intensities of 

the sample interior are black and constant, whereas the intensities 

of light interferences around the sample are brighter and change 

more in space. 

Supplementary Fig. 2 . 3-D reconstruction of a MG63- b cell. ( a ) 

An original 2-D image of the segmented MG63- b cell from the cen- 
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ter of the focal region (obtained using Algorithms 1–2 and visu- 

alized in 8 bpc). ( b ) Isocontours of the topological space of the 

occurrence of the MG63- b cell in its OSF (calculated using Algo- 

rithms 1–3 in Methods). ( c ) 3-D reconstruction of the large non- 

moving objects in the MG63- b interior (found using Algorithms 

1–4 in Methods). The dark objects (upper row) represent strongly 

light-diffracting and light-absorbing objects or pixels of destructive 

light interference (visualization of ranges of intensities 647–921, 

1216–1741, and 747–1030 in the R, G, and B channels, respectively). 

The bright objects (lower row) represent autofluorescent objects or 

pixels of positive light interference (visualization of ranges of in- 

tensities 910–1475, 1723–2584, and 1026–1495 in the R, G, and B 

channels, respectively). 

Supplementary Fig. 3 . 3-D reconstruction of a L929 cell. ( a ) 

An original 2-D image of the segmented L929 cell from the cen- 

ter of the focal region (obtained using Algorithms 1–2 and visu- 

alized in 8 bpc). ( b ) Isocontours of the topological space of the 

occurrence of the MG63- b cell in its OSF (calculated using Algo- 

rithms 1–3 in Methods). ( c ) 3-D reconstruction of the large non- 

moving objects in the L929 interior (found using Algorithms 1–4 

in Methods). The dark objects (upper row) represent strongly light- 

diffracting and light-absorbing objects or pixels of destructive light 

interference (visualization of ranges of intensities 445–763, 676–

1257, and 533–920 in the R, G, and B channels, respectively). The 

bright objects (lower row) represent autofluorescent objects or pix- 

els of positive light interference (visualization of ranges of intensi- 

ties 757–1102, 1247–1630, and 908–1212 in the R, G, and B chan- 

nels, respectively). 

Supplementary Fig. 4. Live cell imaging using an atomic force 

microscope Axio Observer.A1, Zeiss in contact mode. ( a ) 3-D im- 

ages and heights of a MG63 (similar to presented cells MG63- b 

and L929). ( b ) Average size of MG63 and L929 cells spreading on 

a mat coated with either fibrinogen or fibronectin. The standard 

deviations were calculated from 8 cells for the MG63 cell line on 

both substrates, 6 cells for the L929 cell line on fibrinogen, and 3 

cells for the L929 cell line on fibronectin. 

Supplementary data 1. Image pre-processing of bright-field 

transmission z-stacks, including information about the positions of 

images in the z-stacks. The gray sections correspond to the focal 

regions. Average values of z-positions and scanning times are re- 

ported in Tables 2 and 3 . 

Supplementary video 1. The creation of a binary mask for seg- 

mentation of cells over the whole z-stack of 12-bit RAW files from 

bright-field optical transmission (described in Algorithm 1 , demon- 

strated on the MG63- a cell). The white points correspond to the 

zeros in a differential image calculated from the dark green pixels 

of two consecutive images. With an increasing number of z-levels, 

white points gradually accumulate in the binary image. The high- 

est amount of these points is achieved in the focal region (z-levels 

36–84). After passing the algorithm through the whole z-stack, the 

binary image underwent the morphological operations of dilation, 

filling holes, and filtering cells. 

Supplementary video 2 The points of unchanged intensity be- 

tween two consecutive images in the focal region of the z-stack 

of 12-bit RAW files from bright-field optical transmission of the 

MG63- a cell. The white points were found by overlapping two dif- 

ferential images calculated from the green channels of three con- 

secutive images (instead of ω α,l, x, y, c = 0 in Algorithm 4 ). Without 

merging levels of similar intensities in histograms of original im- 

ages due to the Rényi entropy, no organelles were detected. The 

algorithm only highlighted the cross camera noise (of dark green 

intensities, cf. Supplementary video 2 ). The course of the video 

for the MG63- b cell was similar. 

Supplementary video 3 The points of unchanged intensity be- 

tween two consecutive images in the focal region of the z-stack of 

12-bit RAW files from bright-field optical transmission of the L929 

cell. The points were found by overlapping two differential images 

calculated from the dark green pixels of three consecutive images 

(instead of ω α,l, x, y, c = 0 in Algorithm 4 ). Since the z-stack of im- 

ages is noise-free, some organelles were already detected via sim- 

ple subtraction of consecutive images (cf. Supplementary video 3 ). 

The image data, Matlab ® codes, and other software are available 

via ftp connection [42] . 
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A B S T R A C T

Living cell segmentation from bright-field light microscopy images is challenging due to the image complexity
and temporal changes in the living cells. Recently developed deep learning (DL)-based methods became popular
in medical and microscopy image segmentation tasks due to their success and promising outcomes. The main
objective of this paper is to develop a deep learning, U-Net-based method to segment the living cells of the
HeLa line in bright-field transmitted light microscopy. To find the most suitable architecture for our datasets,
a residual attention U-Net was proposed and compared with an attention and a simple U-Net architecture.

The attention mechanism highlights the remarkable features and suppresses activations in the irrelevant
image regions. The residual mechanism overcomes with vanishing gradient problem. The Mean-IoU score
for our datasets reaches 0.9505, 0.9524, and 0.9530 for the simple, attention, and residual attention U-Net,
respectively. The most accurate semantic segmentation results was achieved in the Mean-IoU and Dice metrics
by applying the residual and attention mechanisms together. The watershed method applied to this best –
Residual Attention – semantic segmentation result gave the segmentation with the specific information for
each cell.

1. Introduction

Image object detection and segmentation can be defined as a proce-
dure to localize a region of interest (ROI) in an image and separate an
image foreground from its background using image processing and/or
machine learning approaches. Cell detection and segmentation are
the primary and critical steps in microscopy image analysis. These
processes play an important role in estimating the number of the cells,
initializing cell segmentation, tracking, and extracting features neces-
sary for further analysis. In the text below, the segmentation methods
were categorized as (1) traditional, feature- and machine learning
(ML)-based methods and (2) deep learning (DL)-based methods.

1.1. Traditional cell segmentation methods

Traditional segmentation methods have achieved impressive re-
sults in cell boundary detection and segmentation, with an efficient
processing time [1,2]. These methods include low-level pixel process-
ing approaches. The region-based methods are more robust than the

∗ Corresponding author.
E-mail addresses: ghaznavi@frov.jcu.cz (A. Ghaznavi), rrychtarikova@frov.jcu.cz (R. Rychtáriková), saberioon@gfz-potsdam.de (M. Saberioon),

stys@frov.jcu.cz (D. Štys).

threshold-based segmentation methods [2]. However, in low-contrast
images, cells placed close together or flat cell regions can be segmented
as blobs. Rojas-Moraleda et al. [1] proposed a region-based method
on the principles of persistent homology with an overall accuracy of
94.5%. The iterative morphological and Ultimate Erosion [3,4] suffer
from poor segment performance when facing small and low-contrast
objects. Guan et al. [5] detected rough circular cell boundaries using
the Hough transform and the exact cell boundaries using fuzzy curve
tracing. Compared with the watershed-based method [6], this method
was more robust to the noise and the uneven brightness in the cells.
Winter et al. [7] combined the image Euclidean distance transforma-
tion with the Gaussian mixture model to detect elliptical cells. This
method requires solid objects for computing the distance transform.
The target objects’ large holes or extreme internal irregularities make
the distance transform unreliable and reduce the method performance.
Buggenthin et al. [8] identified nearly all cell bodies and segmented
multiple cells instantly in bright-field time-lapse microscopy images by
a fast, automatic method combining the Maximally Stable Extremal

https://doi.org/10.1016/j.compbiomed.2022.105805
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Regions (MSER) with the watershed method. The main challenges for
this method remain the oversegmentation and poor performance for
out-of-focus images.

The machine learning methods have expanded due to the mi-
croscopy images’ complexity and the previous methods’ low perfor-
mance to detect and segment cells. The ML methods can be classified
into two groups: supervised vs unsupervised. The supervised methods
produce a mathematical function or model from the training data to
map a new data sample [9]. Mualla et al. [10] utilized the Scale
Invariant Feature Transform (SIFT) as a feature extractor and the
Balanced Random Forest as a classifier to calculate the descriptive
cell keypoints. The SIFT descriptors were invariant to illumination
conditions, cell size, and orientation. Tikkanen et al. [11] developed
a method based on the Histogram of Oriented Gradients (HOG) and
the Support Vector Machine (SVM) to extract feature descriptors and
classify them as a cell or a non-cell in bright-field microscopy data.
The proposed method is susceptible to the number of iterations in the
training process as a crucial step to eliminating false positive detections.

The unsupervised ML algorithms require no pre-assigned labels or
scores for the training data [12]. The best known unsupervised methods
are clustering methods. Mualla et al. [13] segmented unstained cells
in bright-field micrographs using a combination of a SIFT to extract
key points, a self-labelling, and two clustering methods. This method
is fast and accurate but sensitive to the feature selection step to avoid
overfitting.

1.2. Deep learning cell segmentation methods

In the last decade, Deep Learning has emerged as a new area of
machine learning. The DL methods contain a class of ML techniques
that exploit many layers of non-linear information processing for super-
vised or unsupervised feature extraction and transformation for pattern
analysis and classification. The Deep Convolutional Networks exhibited
impressive performance in many visual recognition tasks [14]. Song
et al. [15] used a multiscale convolutional network (MSCN) to extract
scale-invariant features and graph-partitioning method for accurate
segmentation of cervical cytoplasm and nuclei. This method signifi-
cantly improved the Dice metric and standard deviation compared with
similar methods. Shibuya et al. [16] proposed the Feedback U-Net using
the convolutional Long Short-Term Memory (LSTM) network for cell
image segmentation, working on four classes of Drosophila cell image
dataset. However, the proposed method suffered from a low accuracy
rate depending on the segmented class. Thi et al. [17] proposed a
convolutional blur attention (CBA) network. The network consists of
down- and upsampling procedures for nuclei segmentation in standard
challenge datasets [18,19]. The authors achieved a good value of the
aggregated Jaccard index. The reduced number of trainable parameters
led to a reasonable decrease in the computational cost. Xing et al. [20]
also proposed an automated nucleus segmentation method based on a
deep convolutional neural network (DCNN) to generate a probability
map. However, the proposed mitosis counting remains laborious and
subjective to the observer.

One of the most popular models for semantic segmentation is Fully
Convolutional Network (FCN) architectures. The FCN combines deep
semantic information with a shallow appearance to achieve satisfactory
segmentation results. The convolutional networks can take the arbitrary
size of input images to train end-to-end, pixel-to-pixel, and produce an
output of the corresponding size with efficient inference and learning
to achieve semantic segmentation in complex images, including mi-
croscopy and medical images [21,22]. Ronneberger et al. [23] proposed
a training strategy that relies on the strong use of data augmentation
by applying U-Net Neural Network, contracting the path to capture
context, and expanding the path symmetrically to achieve a precise
localization. This method was optimized with a low amount of training
labelled samples and efficiently performed electron microscopy image
segmentation. Long et al. [24] proposed an enhanced U-Net-based

architecture called light-weighted U-Net (U-Net+) with a modified en-
coded branch for potential low-resources computing of nuclei segmen-
tation in bright-field, dark-field, and fluorescence microscopy images.
However, the proposed method did not achieve higher accuracy in the
Mean-IoU metric. Bagyaraj et al. [25] proposed two automatic deep
learning networks called U-Net-based deep convolution network and
U-Net with a dense convolutional network (DenseNet) for segmentation
and detection of brain tumour cells. The authors achieved remarkable
results by applying the DenseNet architecture.

As described above, traditional ML methods are not much efficient
to segment cells in a microscopy image with a complex background,
particularly bright-field microscopy tiny cells [8,11,13]. These methods
cannot build sufficient models for big datasets. On the other hand,
some Convolution Neural Networks (CNNs) require a vast number of
manually labelled training datasets and higher computational costs
compared with the ML methods [21,26].

Deep learning-based methods have delivered better outcomes in
segmentation tasks than other methods. Therefore, the main objective
of this research is to propose a highly accurate and reasonably computa-
tionally cost deep learning-based method to segment human HeLa cells
in unique telecentric bright-field transmitted light microscopy images.
The U-Net was chosen since it is one of the most promising methods
used in semantic segmentation [23]. Different U-Net architectures such
as Attention and Residual Attention U-Net were examined to find the
most suitable architecture for our datasets.

Human Negroid cervical epithelioid carcinoma line HeLa [27] was
chosen as a testing cell line for described microscopy image segmen-
tation. The reason for choosing is that HeLa is the oldest, immortal,
and most used model cell line ever. HeLa is cultivated in almost all
tissue and cell laboratories worldwide and utilized in many fields of
medical research, such as research on carcinoma or testing the material
biocompatibility.

The processed microscopy data are specific to high-pixel resolution
in rgb mode and requires preprocessing to suppress optical vignetting
and camera noise. The data shows unlabelled living cells in their phys-
iological state. The cells are shown in-focused and out-of-focus. Thus,
the obtained segmentation method is applicable in a 3D visualization
of the cell.

2. Materials and methods

2.1. Cell preparation and microscope specification

Human HeLa cell line (European Collection of Cell Cultures, Cat. No.
93021013) was cultivated to low optical density overnight at 37 ◦C,
5% CO2, and 90% relative humidity. The nutrient solution consisted
of Dulbecco’s modified Eagle medium (87.7%) with high glucose (>1
g L−1), fetal bovine serum (10%), antibiotics and antimycotics (1%),
L-glutamine (1%), and gentamicin (0.3%; all purchased from Biowest,
Nuaille, France). The HeLa cells were maintained in a Petri dish with
a cover glass bottom and lid at room temperature of 37 ◦C.

Time-lapse image series of living human HeLa cells on the glass Petri
dish were captured using a high-resolved bright-field light microscope
for observation of microscopic objects and cells. This microscope was
designed by the Institute of Complex System (ICS, Nové Hrady, Czech
Republic) and built by Optax (Prague, Czech Republic) and Image-
Code (Brloh, Czech Republic) in 2021. The microscope has a simple
construction of the optical path. The light from two light-emitting
diods CL-41 (Optika Microscopes, Ponteranica, Italy) passes through
a sample to reach a telecentric measurement objective TO4.5/43.4-
48-F-WN (Vision & Control GmbH, Shul, Germany) and an Arducam
AR1820HS 1/2.3-inch 10-bit RGB camera with a chip of 4912 × 3684
pixel resolution. The images were captured as a primary (raw) signal
with theoretical pixel size (size of the object projected onto the camera
pixel) of 113 nm. The software (developed by the ICS) controls the
capture of the primary signal with the camera exposure of 2.75 ms.
All these experiments were performed in time-lapse to observe cells’
behaviour over time.



Computers in Biology and Medicine 147 (2022) 105805

3

A. Ghaznavi et al.

2.2. Data acquisition

Different time-lapse experiments on the HeLa cells were completed
under the bright-field microscope (Section 2.1). The algorithm pro-
posed in [28] was fully automated and implemented in the microscope
control software to calibrate the microscope optical path and correct all
image series to avoid image background inhomogeneities and noise.

After the image calibration, we converted the raw image represen-
tations to 8-bit colour (rgb) images of resolution (number of pixels)
quarter of the original raw images. We employed quadruplets of Bayer
mask pixels [29]: Red and blue camera filter pixels were adopted
into the relevant image channel and each pair of green camera filter
pixels’ intensities were averaged to create the green image channel.
Then, images were rescaled to 8-bits after creating the image series
intensity histogram and omitting unoccupied intensity levels. This bit
reduction ensured the maximal information preservation and mutual
comparability of the images through the time-lapse series.

The means denoising method [30] minimized the background noise
in the constructed RGB images at preserving the texture details. After-
wards, the image series were cropped to the 1024 × 1024 pixel size.
The steps described above gave us 500 images from different time-lapse
experiments. The image dataset is accessible at the Dryad [31].

The cells in the images were labelled manually by MATLAB (Math-
Works Inc., Natick, Massachusetts, USA) as Ground-Truth (GT) single
class masks with the dimension of 1024 × 1024 (Fig. 1). The labelled
images (512 × 512 pixels) were used as training (80%), testing (20%),
and evaluation (20% of the training set) sets in the proposed U-Net
networks.

2.3. U-Net model architectures

The U-Net [23] is a semantic segmentation method proposed on
the FCN architecture. The FCN consists of a typical encoder–decoder
convolutional network. This architecture includes several feature chan-
nels to combine shallow and deep features. The deep features are used
for positioning, whereas the shallow features are utilized for precise
segmentation. The architecture of the simple U-Net was chosen (Fig. 2)
for training the model with the specific size of input images.

The first layer of the encoder part consists of the input layer,
which accepts RGB images with the size 512 × 512. Each level in the
five-‘‘level’’ U-Net structure includes two 3 × 3 convolutions. Batch
normalization follows each convolution, and ‘‘LeakyReLu’’ activation
functions follow a rectified linear unit. In the down-sampling (encoder)
part (Fig. 2, left part), each ‘‘level’’ in the encoder consists of a 2 × 2
max pooling operation with the stride of two. The max-pooling process
extracts the maximal value in the 2 × 2 area. By completing down-
sampling in each level of the encoder part, convolutions will double
the number of feature channels.

In the up-sampling (decoder) section (Fig. 2, right part), the height
and width of the existing feature maps are doubled in each level from
bottom to top. Then, the high-resolution deep semantic and shallow
features were combined and concatenated with the feature maps from
the encoder section. After concatenation, the output feature maps have
channels twice the size of the input feature maps. The output decoder
layer at the top with a 1 × 1 convolution size predicts the probabilities
of pixels. Padding in the convolution process allowed to achieve the
same input and output layers size. The computational result, combined
with the Binary Focal Loss function, becomes the energy function of the
U-Net.

Between each Encoder–Decoder layer in the simple U-Net (Fig. 2),
there is a connection combining the down-sampling path with the up-
sampling path to achieve the spatial information. Nevertheless, at the
same time, this process brings also many irrelevant feature represen-
tations from the initial layers. The self-attention U-Net architecture
(Fig. 3-𝐴) with an impressive performance in medical imaging [32] was
applied to prevent this problem and improve semantic segmentation

result achieved by standard U-Net. As an extension to the standard
U-Net model architecture, the attention gate at the skip connections
between encoder and decoder layers highlights the remarkable features
and suppresses activations in the irrelevant regions. The advanced func-
tion of an attention mechanism is to map a set of key–value pairs and a
query to an output. The key, query, values, and outputs are vectors. The
compatibility function of the query, together with the corresponding
key, is computed to be assigned by weights. Then, weighted sums of the
values are computed and generate the output. The weights represent
the relative importance of the inputs (the keys) for a particular output
(the query) [33]. In this way, the attention gate improves the model
sensitivity and performance without requiring complicated heuristics.

The attention gate (Fig. 3-𝐵) has two inputs: 𝑥𝑙 and 𝑔. Input 𝑥𝑙
comes from the skip connection from the encoder layers. Since coming
from the early layers, input 𝑥𝑙 contains better spatial information.
Providing 𝑥𝑙 is an output from layer 𝑙, a feature activation can be
formulated as

𝑥𝑙𝑖 = 𝜎1(
∑
𝑐′∈𝐹1

𝑥𝑙−1𝑐′ ⊛ 𝑘𝑐′ ,𝑐 ), (1)

by applying a rectified linear unit 𝜎1(𝑥𝑙𝑖,𝑐 ) = max(0, 𝑥𝑙𝑖,𝑐 ) repeatedly,
where 𝑖 and 𝑐 correspond to spacial and channel dimensions, respec-
tively, and 𝐹1 denotes the number of feature maps in layer 𝑙 and ⊛
indicates the convolution operation.

Input 𝑔 – a gating signal – comes from a deeper network layer
and contains a better feature representation and contextual information
to determining the focus region. Attention coefficients 𝛼 ∈ [0, 1]
determine, extract, and preserve the valuable features corresponding
to the important part of the image regions. The attention part weights
different images’ parts. This process will add the weights to the pixels
based on their relevance in the training steps. The image’s relevant
parts will get higher weights than the less relevant parts. The output
of the attention gate is the multiplication of the input feature maps 𝑥𝑙𝑖,𝑐
and the achieved attention coefficient 𝛼:

p𝐼𝑎𝑡𝑡 = 𝜓𝑇 (𝜎1(𝑊 𝑇
𝑥 𝑥

𝐼
𝑖 +𝑊

𝑇
𝑔 𝑔𝑖 + 𝑏𝑔)) + 𝑏𝜓 , (2)

𝛼𝐼𝑖 = 𝜎2(𝑝𝐼𝑎𝑡𝑡(𝑥
𝐼
𝑖 , 𝑔𝑖;𝛩𝑎𝑡𝑡)), (3)

where parameter 𝜎2 represents the sigmoid activation function and
𝛩𝑎𝑡𝑡 contains parameters including linear transformations 𝑊𝑥 and 𝑊𝑔 ,
function 𝜓 and bias terms 𝑏𝜓 and 𝑏𝑔 [32]. The achieved weights are
also trained in the training process and make the trained model more
attentive to the relevant regions.

Another architecture used in this study and developed based on the
U-Net models (originally for nuclei segmentation [34]) is the Residual
U-Net. The simple U-Net architecture was built based on repetitive
Convolutional blocks in each level (Fig. 4-𝐵). Each of these Convo-
lutional blocks consists of the input, two steps of the convolution
operation followed by the activation function and the output. On the
other hand, we face the vanishing gradient problem when dealing
with very deep convolutional networks. The residual step was applied
to update the weights in each convolutional block incrementally and
continuously (Fig. 4-𝐶) to enhance the U-Net architecture performance
by overcoming the vanishing gradient problems.

In the traditional neural networks, each convolutional blocks feed
the next blocks. The other problem in a DCNN-based network, such
as stacking convolutional layers, is that a deeper structure of these
kind of networks will affect generalization ability. To overtake this
problem, the skip connections – the residual blocks – improve the
network performance, with each layer feeding the next layer and layers
about two or three steps apart (Fig. 4–𝐶). The Residual and Atten-
tion U-Net architecture were connected to build more effective and
high-performance models from our datasets and improve segmentation
results.

The watershed algorithm based on morphological reconstruction
[35] was applied after completion of the semantic segmentation by
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Fig. 1. Examples of the train sets and their ground truths. The image size is 512 × 512.

U-Net methods described above. The U-Net semantic segmentation
results were first transformed into a binary image using the Otsu
method [36]. After that, the background was determined using ten
iterations of binary dilation. The simple Euclidean distance transform
defined the foreground of eroded cell regions. The unknown region

was achieved by subtraction of the particular foreground region from
the background. The watershed method applied to the unknown re-
gions separated the cell borders. The watershed segmentation further
helped to solve the over- and under-segmented regions and specify each
separated cell by, e.g., cell diameters, solidity, or mean intensity. The
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Fig. 2. Architecture of the proposed simple U-Net model.

Table 1
Number of the trainable parameters and the run time for each U-Net model.

Network Run time Training parameter

U-Net 3:42’:18’’ 31,402,501
Attention U-Net 4:04’:23’’ 34,334,665
Residual Att U-Net 4:11’:24’’ 39,090,377

segmentation results were optimized using the marked images. Wrongly
detected residual connections between different cell regions were cut
off, which improved the method accuracy. Fig. 5 presents a general
diagram of the proposed U-Net based methods. The U-Net models are
hosted on the GitHub [37].

2.4. Training models

The computation was implemented in Python 3.7. The framework
for deep learning was Keras, and the backend was Tensorflow [38].
The whole method, including the Deep Learning framework, was trans-
ferred and executed on the Google Colab Pro account with P100 and
T4 GPU, 24 Gb of RAM, and 2 vCPU [39]. After data preprocessing
(Section 2.2), The primary dataset was divided into training (80%)
and test (20%). A part (20%) of the training set was used for model
validation in the training process to avoid over-fitting and achieve
higher performance. Among a 500-image dataset of the mixture of
under-, over-, and focused images, 320 images were randomly selected
to train the model, and 80 images were chosen randomly to validate the

process. The rest of the 100 dataset images were considered for testing
and evaluating the model after training.

Before the training, the images were normalized: the pixel values
were rescaled in the range from 0 to 1. Since all designed network
architectures work with a specific input image size, all datasets were
resized to 512 × 512 pixel size. Data augmentation parameters were
also applied in training all three U-Net architectures. The optimized
values of the hyperparameters used in the training process are written
in Table 2. The ‘‘rotation range’’ represents an angle of the random
rotation, ‘‘width shift range’’ represents an amplitude of the random
horizontal offset, ‘‘height shift range’’ corresponds to an amplitude of
the random vertical offset, ‘‘shear range’’ is a degree of the random
shear transformation, ‘‘zoom range’’ represents a magnitude of the
random scaling of the image. Early stopping hyperparameters were
applied to avoid over-fitting during the model training. The patient
value was considered as 15. The activation function was set to the
LeakyRelu, and the Batch size was set to 8. To optimize the network,
we chose the Adam optimizer and set the learning rate to 10−3.

Semantic image segmentation can be considered as a pixel classifi-
cation as either the cell or background class. The Dice loss was used
to compare the segmented cell image with the GT and minimize the
difference between them as much as possible in the training process.
One of the famous loss functions used for semantic segmentation is the
Binary Focal Loss (Eq. (4)) [40]:

Focal Loss = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡), (4)

where 𝑝𝑡 ∈ [0, 1] is the model’s estimated probability for the GT class
with label 𝑦 = 1; a weighting factor 𝛼𝑡 ∈ [0, 1] for class 1 and 1 − 𝛼𝑡 for
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Fig. 3. (𝐴) Architecture of the proposed Attention U-Net model, (𝐵) the attentive module mechanism. The size of each feature map is shown in 𝐻 ×𝑊 ×𝐷, where 𝐻 , 𝑊 , and 𝐷
indicate height, width, and number of channels, respectively.

class −1; 𝛾 ≥ 0 is a tunable focusing parameter. The focal loss can be
enhanced by the contribution of hardly segmented regions (e.g., cells
with vanished borders) and distinguish parts between the background
and the cells with unclear borders. The second benefit of the focal loss
is that it controls and limits the contribution of the easily segmented
pixel regions (e.g., sharp and apparent cells) in the image at the loss
of the model. In the final step, updating the gradient direction is under
the control of the model algorithm, dependent on the loss of the model.

2.5. Evaluation metrics

The proposed semantic segmentation models were evaluated by
different metrics (Eqs. (5)–(9)), where TP, FP, FN, and TN are true
positive, false positive, false negative, and true negative metrics, respec-
tively [41]. The metrics were computed for all test sets and explained
as mean values ( Table 3).
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Fig. 4. (𝐴) Architecture of the Residual Attention U-Net model. (𝐵) Each U-Net layer structure. (𝐶) The sample of residual block progress. 𝐵𝑁 refers to Batch Normalization.

Table 2
Hyperparameters setting for all three U-Net models.

Parameter name Value

Activation function LeakyRelu
Learning rate 10−3

Batch size 8
Epochs number 100
Early stop 15
Step per epoch 100
Rotation range 90
Width shift range 0.3
Height shift range 0.3
Shear range 0.5
Zoom range 0.3

Overall pixel accuracy (Acc) represents a per cent of image pixels
belonging to the correctly segmented cells. Precision (Pre) is a propor-
tion of the cell pixels in the segmentation results that match the GT. The
Recall (Recl) represents the proportion of cell pixels in the GT correctly

identified through the segmentation process. The F1-score or Dice sim-
ilarity coefficient states how the predicted segmented region matches
the GT in location and level of details and considers each class’s false
alarm and missed value. This metric determines the accuracy of the
segmentation boundaries [42] and have a higher priority than the Acc.
Another essential evaluation metric for semantic image segmentation
is the Jaccard similarity index known as Intersection over Union (IoU).
This metric is a correlation among the prediction and GT [21,43], and
represents the overlap and union area ratio for the predicted and GT
segmentation.

Acc =
Correctly Predicted Pixels

Total Number of Image Pixels = TP + TN
TP + FP + FN + TN (5)

Pre =
Correctly Predicted Cell Pixels

Total Number of Predicted Cell Pixels = TP
TP + FP (6)

Recl =
Correctly Predicted Cell Pixels

Total Number of Actual Cell Pixels = TP
TP + FN (7)

Dice = 2 × Pre × Recl
Pre + Recl = 2 × TP

2 × TP + FP + FN (8)
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Fig. 5. Flowchart of methodology applied in this study.

IoU =
∣ 𝑦𝑡 ∩ 𝑦𝑝 ∣

∣ 𝑦𝑡 ∣ + ∣ 𝑦𝑝 ∣ − ∣ 𝑦𝑡 ∩ 𝑦𝑝 ∣
= TP

TP + FP + FN (9)

3. Results

All three models were well trained and converged after running
100 epochs based on training/validation loss and Jaccard plots per
epochs (Fig. 6). The hyperparameter values listed in Table 2 were
selected to tune for the best training performance and stability. Then,
the test datasets were used to evaluating the achieved models. All
trained models were assessed (Table 3) using the metrics in Eqs. (5)
and (9).

Training the model with the simple U-Net method took the shortest
run time with the lowest trainable number of parameters (Table 1).
Compared with the Attention U-Net and Residual Attention U-Net,
the run time difference is not huge in terms of increasing trainable
parameters. The computational cost also did not increase dramatically
compared with the acceptable improvement in the model performance.
Fig. 7 presents the segmentation results achieved by three different U-
Net models. The simple U-Net segmentation result did not distinguish
some vanished cell borders (Fig. 7–𝐴, black circle). The Attention U-Net
(Fig. 7–𝐵) detected cells with the vanish borders more efficiently than
the simple U-Net. However, the Attention U-Net segmentation suffers
from under-segmentation in some regions (visualized by the yellow
circle). The outcome of the Residual Attention U-Net method (Fig. 7–
𝐶, red circle) achieved more accurate segmentation of the vanished
cell borders. The watershed binary segmentation after the Residual
Attention U-Net networks separated and identified the cells with the
highest performance (Fig. 7).

As seen in Mean-IoU, Mean-Dice, and Accuracy metrics (Table 3),
the Attention U-Net model showed better segmentation performance
than the simple U-Net model in the same situation. The segmentation
results were further slightly improved after applying the residual step
into the Attention U-Net.

4. Discussion

The analysis of bright-field microscopy image sequences is chal-
lenging due to living cells’ complexity and temporal behaviour. We
have to face (1) irregular shapes of the cells, (2) very different sizes
of the cells, (3) noise blobs and artefacts, and (4) vast sizes of the
time-lapse datasets. Traditional machine learning methods, including
random forests and support vector machines, cannot deal with some of
these difficulties in terms of higher computational cost and longer run
time for huge time-lapse datasets. The traditional methods suffer from
low performance in vanishing and tight cell detection and segmentation
and are sensitive to training steps [11,44]. The DL methods have been
rapidly developed to overcome these problems. The U-Net is one of
the most effective semantic segmentation methods for microscopy and
biomedical images [23]. This method is based on the FCN architecture
and consists of encoder and decoder parts with many convolution
layers.

The image data used to train the Residual Attention model are
specific in the way of acquisition. Firstly, the optical path was cali-
brated to obtain the number of photons that reaches each camera pixel
with increasing illumination light intensity. This gave a calibration
curve (image pixel intensity vs the number of photons reaching the
relevant camera pixel) to correct the digital image pixel intensity.
This step ensured homogeneity in digital image intensities to improve
the quality of cell segmentation by the neural networks. We work
with the low-compressed telecentric transmitted light bright-field high-
pixel microscopy images. The bright-field light microscope allows us
to observe living cells in their most natural state. Due to the object-
sided telecentric objective, the final digital raw image of the observed
cells is high-resolved and low-distorted, with no light interference halos
around objects.

The procedure compressed the raw colour images to ensure the
least information loss at the quarter-pixel-resolution decrease of the
image. The final pixel resolution of the images inputting into the neural
network is higher (512 × 512) than in the case of any other neural
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Fig. 6. Training/validation plots for Simple U-Net (left column), Attention U-Net (middle column), and Residual Attention U-Net (right column).

Fig. 7. Segmentation results for (𝐴) the simple U-Net (the black circle highlights the non-segmented, vanished cell borders), (𝐵) Attention U-Net (the yellow circle highlights the
undersegmentation problem), and (𝐶) the Residual Attention U-Net (red circle shows the successful segmentation of the cell borders). The image size is 512 × 512.
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Table 3
Results for metrics evaluating the U-Net Models. Green values represent the highest segmentation accuracy for the
related metric.
Network Accuracy Precision Recall m-IoU m-Dice

U-Net 0.957418 0.988269 0.961264 0.950501 0.974481
Attention U-Net 0.959448 0.985663 0.965736 0.952471 0.975511
Residual Att U-Net 0.960010 0.986510 0.965574 0.953085 0.975840

Table 4
Performances of the proposed networks and other networks proposed for microscopy
and medical applications. Green highlighted value represent the highest segmentation
accuracy in term of mentioned metric.
Models IoU Dice Acc

proposed U-Net 0.9505 0.9744 0.9574
proposed Att U-Net 0.9524 0.9755 0.9594
proposed ResAtt U-Net 0.9530 0.9758 0.9600
U-Net [23] 0.9203 0.9019 0.9554
U-Net [45] 0.7608 - 0.9235
U-Net+ [24] 0.567 - -
DenseNet [25] - 0.911 -
SegNet [45] 0.7540 - 0.9225
Attention U-Net [32] - 0.840 0.9734
Residual Attention U-Net
[46]

- 0.9081 0.9557

Residual U-Net [47] - 0.8366 -
Residual Attention U-Net
[48]

- 0.9655 0.9887

network datasets. By preserving high image resolution as much as
possible, the demands on the neural network’s computational memory
and performance parameters were increased.

As our microscope and acquired microscopy data are unique, and
were not used before in similar research, it is hard to compare the
results with other works. Despite this, the performances of the pro-
posed U-Net-based models were compared with similar microscopy and
medical works (Table 4). Our first model was based on a simple U-
Net structure and achieved the Mean-IoU score of 0.9505. We assume
that better value of the Mean-IoU will be achieved after the hyper-
parameter optimization (Table 2). Ronneberger et al. [23] achieved
0.920 and 0.775 Mean-IoU scores for U373 cell line in phase-contrast
microscopy and HeLa cell line in Nomarski contrast, respectively. Pan
et al. [45] segmented nuclei from medical, pathological MOD datasets
with 0.7608 segmentation IoU accuracy score using the U-Net.

We further implemented an attention gate into the U-Net structure
(so-called Attention U-Net) to further improve the U-Net model per-
formance by weighing the relevant part of the image pixels containing
the target object. In this way, the Mean-IoU metric was improved to
0.9524. The achieved IoU score represents a noticeable improvement
in the trained model performance compared with the simple U-Net
model. To the best of our knowledge, not many researchers have
applied the Attention U-Net to microscopy datasets, but recent papers
are prevalently about its application to medical datasets. Microscopy
and medical datasets have their complexity and structure, complicating
the comparison of the method performances. Applying the Attention
U-Net, pancreas [32] and liver tumour [46] medical datasets showed
0.840 and 0.948 Dice metric segmentation accuracy, respectively.

The proposed model performance were improved by one step and
obtained the Residual Attention U-Net to overcome the vanishing gra-
dient problem and generalization ability. As a result, the segmentation
accuracy was slightly improved by reaching the Mean-IoU of 0.953.
The Residual Attention U-Net showed the Dice coefficient of 0.9655 in
the testing phase of medical image segmentation [48]. The Recurrent
Residual U-Net (R2U-Net) achieved the Dice coefficient of 0.9215 in
the testing phase of nuclei segmentation [34]. Patel et al. [47] applied
the Residual U-Net to bright-field absorbance image and achieved the
Mean-Dice coefficient score of 0.8366. Long et al. [24] applied the
enhanced U-Net (U-Net+) to bright-field, dark-field, and fluorescence

microscopy images and achieved the Mean-IoU score of 0.567. The
U-Net with a dense convolutional network (DenseNet) was applied to
detect and segment brain tumour cells [25] with the Dice score of 0.911
and the Jaccard index of 0.839.

5. Conclusion

Microscopy image analysis via deep learning methods can be a
convenient solution due to the complexity and variability of this kind
of data. This research aimed to detect and segment living human HeLa
cells in images acquired using an original custom-made bright-field
transmitted light microscope. Three types of deep learning U-Net ar-
chitectures were involved in this research: the simple U-Net, Attention
U-Net, and Residual Attention U-Net. The simple U-Net (Table 1) has
the fastest training time. On the other hand, the Residual Attention U-
Net architecture achieved the best segmentation performance (Table 3)
with a run time slightly higher than the other two U-Net models.

The Attention U-Net is a method to highlight only the relevant ac-
tivations during the training process. This method can reduce the com-
putational resource waste on irrelevant activations to generate more
efficient models. The best segmentation performance was achieved
due to the integration of the residual learning structure (to overcome
the gradient vanishing) together with the attention gate mechanism
(to integrate a low and high-level feature representation) into the U-
Net architecture. After extracting semantic segmentation binary results
(Table 3), the watershed segmentation method was applied to separate
the cells from each other, avoid over-segmentation, label the cells
individually, and extract vital information about the cells (e.g., the total
number of the segmented cells, cell equivalent diameter, mean intensity
and solidity). Nevertheless, future works are still essential to expand
the knowledge on multi-class semantic segmentation with different and
efficient CNN’s architecture and combine the constructed CNN models
in the prediction process to achieve the most accurate segmentation
result.
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................................................
10 Anotace tří témat pro veřejnou pedagogickou
přednášku

Téma 1: Analýza struktury živé buňky s využitím informační
entropie

Nejobecnější možný předpoklad o obrázku, a to bez ohledu na jeho původ, je,
že je multifraktální. Za účelem popisu mikroskopického digitálního obrazu jsme
vyvinuli principiálně novou informační analýzu, jak zkoumat informaci nesenou
obrazovým bodem (pixelem) v multifraktálním datovém souboru. Výpočet
používá pro danou pravděpodobnostní distribuci P jednoparametrovou, α-
závislou, Rényiho entropii. Ta je zobecněnou Shannonovou entropií, která
je analogií fyzikální Gibbsovy-Boltzmannovy entropie. Takto jsme odvodili
veličiny informační příspěvek bodu (PIGα) [1, 2], divergentní příspěvek bodu
(PDGα) [3] a z nich odvozené kumulativní veličiny entropií a hustot entropií.

Obrazová analýza digitálních mikroskopických snímků metodou PI/DG
nám umožnila pochopit jejich strukturu, nově definovat pojmy „3D elektromag-
netický centroid“ a redefinovat pojmy „ohnisková rovina“ a „hloubka ostrosti“.
To nám usnadnilo interpretaci jevů pozorovaných světelným mikroskopem. K
detekci vysoce strukturované ohniskové roviny v mikroskopických snímcích lze
využít klastrování kumulativních veličin. Pro měření v dynamických systémech
lze k vyjádření časoprostorové změny využít veličinu divergentní příspěvek
bodu (PDGα) a jeho kumulativní veličinu entropii a hustotu této entropie.

Využití výpočtu informačně-entropických metod pro kolokalizaci ohnis-
kových rovin, trojrozměrnou rekonstrukci a vyhodnocování dynamiky bude
představeno na různých datových sériích jednotlivých buněk a tkání pocházejí-
cích z fluorescenční, transmisní i reflexní světelné mikroskopie.

Literatura:..1. R. Rychtáriková, J. Korbel, P. Macháček, P. Císař, J. Urban a D. Štys.
Point Information Gain and multidimensional data analysis. Entropy 18(2),
372, 2016...2. R. Rychtáriková. Clustering of multi-image sets using Rényi information
entropy. In: Ortuño a Rojas (Ed.) International Conference on Bioinforma-
tics and Biomedical Engineering (IWBBIO) 2016, Part I, Lecture Notes
in Computer Science 9656, Springer, Switzerland (2016), pp. 517–526...3. R. Rychtáriková, J. Korbel, P. Macháček a D. Štys. Point Divergence Gain
and multidimensional data analysis. Entropy 20(2), 106, 2018.
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Téma 2: Analýza struktury živé buňky s využitím kvazispektrální
analýzy

Studium buněčné struktury je stěží představitelné bez světelné mikroskopie ve
světlém poli. Modernizace této metody, především využití digitální kamery a
s tím související možnost videozesílení obrazu, činí tuto metodu ještě přínosnější
[1]. To vyvolává otázku, jakou maximální informaci lze z digitálních snímků ve
světlém poli získat. Za tímto účelem jsme vyvinuli bezmodelovou, fyzikálně
podloženou metodu rekonstrukce (kvazi)spekter pro každý pixel surových ob-
razových dat z digitální kamery jakéhokoliv (transmisního, reflektančního nebo
fluorescenčního) světelného mikroskopu [2]. Tato metoda zahrnuje výstupy
radiometrické kalibrace [3] a je založena na předpokladu plynulosti změny světel-
ného spektra v prostoru, dokud není detekována hrana jako náhlá změna barvy.
Shlukování spekter bez dalších vnesených předpokladů poskytuje objektivně
podloženou sémantiku segmentace nezbarvených živých buněk bez jakýchkoliv
apriorních znalostí o jejich strukturách. Jinými slovy, (kvazi)spektrální analýza
maximálně vytěžuje veškeré znalosti o experimentu, tedy znalost spektra dopa-
dajícího záření, transmisních spekter barevných filtrů, heterogenity zobrazení
optickou drahou stanovenou kalibrací, a nakonec samotnou primární datovou
sadu – počet fotonů zachycených senzorem v každém bodě jeho plochy.

Znalost kvazispekter lze využít k/ke (1) interpolaci obrazu v 32rozměrném
prostoru, přičemž interpolované hodnoty jsou v technickém smyslu správnější
než původní hodnoty počítané pro čtveřici pixelů kamerového senzoru; (2)
klastrování oblastí obrazu podle spekter, a nikoliv podle intenzit; (3) vizualizaci,
která je obráceným postupem výpočtu (kvazi)spekter a je možné ji provádět
pro různé světelné zdroje známých spekter a pro jednotlivé vlnové délky. Lze
také (4) vizualizovat jednotlivé spektrálních klastry, a tedy fyzikálně chemické
vlastností v daném místě objektu.

Využití metody rekonstrukce (kvazi)spekter bude představeno na digitál-
ních světelně mikroskopických snímcích různých typů buněk a tkání.

Literatura:..1. R. Rychtáriková, T. Náhlík, K. Shi, D. Malakhova, P. Macháček, R. Smaha,
J. Urban a D. Štys. Super-resolved 3-D imaging of live cells’ organelles
from bright-field photon transmission micrographs. Ultramicroscopy 179,
1–14, 2017...2. G. Platonova, D. Štys, P. Souček, K. Lonhus, J. Valenta a R. Rychtáriková.
Spectroscopic approach to correction and visualisation of bright-field light
transmission microscopy biological data. Photonics 8, 333, 2021...3. K. Lonhus, R. Rychtáriková, G. Platonova a D. Štys. Quasi-spectral
characterization of intracellular regions in bright-field light microscopy
images. Scientific Reports 10, 18346, 2020.
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Téma 3: Analýza buněčné dynamiky neznačené živé buňky

Kvantitativní analýza jedné buňky je výchozím krokem k pochopení kom-
plexních stochastických procesů buněčné signalizace a stavu a dalšího osudu
celé buněčné populace, která je ve své podstatě morfologicky i fyziologicky
heterogenní [1]. Měřením vnitrobuněčné dynamiky lze potenciálně studovat
například účinky toxických látek na buňky a získané poznatky použít k výběru
vhodné buněčné populace jako biosenzoru cytotoxických látek. Pro vyhodno-
cení vnitrobuněčné dynamiky buňky z primárních snímků světelné mikroskopie
v jasném poli jsme navrhli dva fyzikálně podložené způsoby: přímé měření
trajektorií organel [2] a měření celkového toku vnitrobuněčné hmoty [3].

Algoritmus [2] je založený na trasování těžiště zobrazení velkých silně
světlolomných organel. Organely byly v sérii snímků buňky detekovány jako
nulové hodnoty informačního příspěvky bodu (PIG) [4] v zeleném obrazovém
kanálu. Takto byla datová série převedena na binární obraz. Trasování organel
bylo usnadněno zpracováním vysokofrekvenčních dat, kdy binární zobrazení
každé jednotlivé organely v následujícím snímku překrývalo její zobrazení
v předchozím snímku série. Trajektorie pohybu každé organely byla přepočítána
na rychlost pohybu a její horizontální a vertikální složku. Tyto hodnoty vektorů
byly vyjádřeny jak v daném časovém okamžiku, tak jako hodnoty kumulativní,
a to pro jednotlivé organely i celou buňku.

Algoritmus [3] je ve srovnání s algoritmem [2] obecnější a komplexněji
popisuje vnitrobuněčnou dynamiku. Umožňuje odhadnout mikroreologické a
mikrofluidní parametry vnitrobuněčného toku hmoty. Výpočet toků hmoty je
zjednodušen přepočtem primárního signálu Bayerovy masky kamery světelného
mikroskopu na jednokanálový, šedotónový snímek. Prvním krokem je detekce
částic a jejich trasování v sekvenci snímků. Jako nejvhodnější metoda se pro
tento účel prokázala metoda SURF (Speeded-Up Robust Features). Pomocí
simulace náhodné procházky a výpočtu relativní chyby rychlosti jsou trajektorie
částic odděleny na ty vykazující přímý pohyb od těch mající pohyb Brownův
náhodný. Z přímého pohybu částic je rekonstruováno rychlostní pole toku hmoty
a vypočítána mapa vnitrobuněčné (kvazi)viskozity. Z náhodného pohybu je
vyjádřena mapa vnitrobuněčné (kvazi)difuze.

Literatura:..1. D. Bakstad, A. Adamson, D. G. Spiller a M. R. H. White. Quantitative
measurement of single cell dynamics. Current Opinion in Biotechnology
23(1), 103–109, 2012...2. R. Rychtáriková a D. Štys. Observation of dynamics inside an unlabeled
live cell using a bright-field photon microscopy: Evaluation of organelles’
trajectories. In: Ortuño a Rojas (Ed.) International Conference on Bioinfor-
matics and Biomedical Engineering (IWBBIO) 2017, Part II, Lecture Notes
in Computer Science 10209, Springer, Switzerland (2017), pp. 700–711.
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gical parameters for unstained living cells. The European Physical Journal
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Point Information Gain and multidimensional data analysis. Entropy 18(2),
372, 2016.
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