
Awesome Automata:
Algorithms and Applications

Habilitation Thesis

Ondřej Lengál

Brno, Summer 2024

i

Abstract
In this habilitation thesis, the author focuses onmethods for handling various
finite-state automata models and their use in applications. Finite-state auto-
mata are a basic computational model. Their simplicity and nice theoretical
properties make them popular with computer scientists. Although studied
for over 80 years, some of their basic questions—e.g., how to complement
them or test language inclusion efficiently—remain open. Successful uses of
these automata in practical applications usually need significant changes of
standard (textbook) algorithms to scale and be efficient. This thesis gives an
overview of the author’s results in the area of development of efficient algo-
rithms for handling finite-state automata over (in-)finite words and trees and
the use of these automata in applications like patternmatching in network in-
trusion detection systems, deciding logics (the monadic second order theory
over words/trees, the first order theory of the addition over integers, and the
theory of strings), as well as analysis and simulation of quantum circuits.

Keywords
Finite automata, finite tree automata, Büchi automata, ω-automata, comple-
mentation, termination checking, network intrusion detection system, theory
of strings, regular model checking, monadic second-order logic, WS1S,WSkS,
Presburger arithmetic, linear integer algebra, pattern matching, regular ex-
pressions, quantum circuits, quantum simulation, binary decision diagrams.

ii

Acknowledgment
I thank my Ph.D. advisor Tomáš Vojnar for bringing me in the magical land of for-
mal methods 15 years ago, and Lukáš Holík for helping to create a vibrant (as well
as fun) research environment in the VeriFIT group at FIT BUT. Further, I thank Vo-
jta Havlena for being an amazing collaborator and apologize to his family for all the
damage I have done to him. I thank Yu-Fang Chen for being my postdoc mentor, for
inviting me numerous times to travel to the amazing beautiful country of Taiwan,
and, last but not least, for introducing me to his former sister, who has later become
my wife. I thank the members of the VeriFIT research group with whom I had the
pleasure to share the crammed offices A219/A220 at FIT BUT (in alphabetical or-
der): David Kozák, Filip Konečný, Filip Macák, Hanka Pluháčková/Šimková, Honza
Fiedor, Jirka Matyáš, Jirka Pavela, Jirka Šimáček, Juraj Síč, Kamil Dudka, Lenka Tur-
oňová/Holíková, Lukáš Charvát, Martin Hruška, Michal Rozsíval, Milan Češka jr.,
Ondra Valeš, Ondra Vašíček, Pavol Vargovčík, Petr Janků, Petr Muller, Roman An-
driushchenko, Štefan Martiček, Tomáš Dacík, Tomáš Fiedor, Vendy Hrubá/Dudka,
Veronika Šoková, Viktor Malík, and Zdeněk Letko. I also thank the other members of
the VeriFIT group: Adam Rogalewicz, Aleš Smrčka, Milan Češka sr., Petr Peringer,
and Slávek Křena. I cannot forget to thank my amazing students, who have, willingly,
agreed to spend their time with me and my projects: Bára Šmahlíková, Honza Vašák,
Jany Maťufka, Michal Hečko, Ondrej Alexaj, Sabína Gulčíková, Sára Jobranová, and
Veronika Molnárová. In addition, I also thank other students that I have met along
the way: Franta Nečas, Michal Kotoun, and Michal Šedý.

I thank my many collaborators (other than those that I have already mentioned
above): Andrea Turrini, AnthonyWidjaja Lin, Bengt Jonsson, Bow-YawWang, Chiao
Hsieh, Chih-DuoHong, CongQui Trinh, Constantin Enea, David Chocholatý, Denis
Matoušek, Fanda Blahoudek, Honza Kořenek, IvanHomoliak, Jakub Semrič, Jie-Hong
Roland Jiang, Jirka Matoušek, Juyn-Ao Lin, Kai-Min Chung, Lijun Zhang, Margus
Veanes, Matthias Heizmann, Mihaela Sighireanu, Ming-Hsien Tsai, Olli Saarikivi,
Parosh Aziz Abdulla, Peter Habermehl, Philipp Rümmer, Rupak Majumdar, Shin-
Cheng Mu, Tony Tan, Tsung-Ju Lii, Wei-Lun Tsai, Yong Li, and Zhilin Wu; and
friends from other institutions that have not been mentioned yet: Ahmed Bouajjani,
Ahmed Rezine, Florian Zuleger, Honza Kofroň, Honza Strejček, Mohamed Faouzi
Atig, Nicolas Mazzocchi, and Roland Meyer. I apologize for any omissions in the
lists above.

Last but not least, I thank my parents, my sister with her family, and, above all,
my wife and my daughter, for their support.

Over the time, I was supported by a number of grant projects, mainly by the Czech
Science Foundation, the Ministry of Education, Youth and Sports of the Czech Re-
public, and the European Union.

Contents

Contents iii

1 Introduction 1

2 Büchi Automata Complementation 5
2.1 Improving Rank-Based Büchi Complementation 7
2.2 Complementation of Special Classes of BAs 10
2.3 Complementation of BAs via SCC Decomposition 11

3 Finite Automata in NIDS 15

4 The Automata-Logic Connection 19
4.1 Deciding Monadic Second-Order Logics 19
4.2 Deciding Quantified Presburger Arithmetic 24

5 Theory of Strings 29
5.1 String Solving using Regular Model Checking 29
5.2 Stabilization-based String Solving 32

6 Analysis of Quantum Circuits 37

7 Conclusion 43

Bibliography 45

A Selected Papers 67
A.1 Sky Is Not the Limit: Tighter Rank Bounds for Elevator Auto-

mata in Büchi Automata Complementation 68
A.2 Modular Mix-and-Match Complementation of Büchi Automata 87
A.3 Advanced Automata-Based Algorithms for Program Termina-

tion Checking . 109
A.4 ApproximateReduction of FiniteAutomata forHigh-SpeedNet-

work Intrusion Detection . 125
A.5 Automata Terms in a Lazy WSkS Decision Procedure 142

iii

iv CONTENTS

A.6 A Symbolic Algorithm for the Case-Split Rule in SolvingWord
Constraints with Extensions . 171

A.7 AnAutomata-Based Framework forVerification andBugHunt-
ing in Quantum Circuits . 192

A.8 Accelerating Quantum Circuit Simulation with Symbolic Exe-
cution and Loop Summarization 218

Chapter 1

Introduction

This habilitation thesis concerns finite-state automata, a basic computational
model known to every computer science undergraduate from their course on
formal languages. Despite being such a simple model, finite-state automata
have found their way into many applications in computer science, such as
pattern matching, lexical analysis, controller design, software engineering,
artificial intelligence, formal analysis and verification, synthesis, and hard-
ware design to name only a few. Even now, the number of applications where
finite-state automata are being used is growing, some of the applications en-
abled by the recent developments of more efficient algorithms for their ma-
nipulation. This thesis addresses two main objectives: (i) better algorithms
for handling finite-state automata to improve the scalability of the automata
technology and (ii) efficient use of the automata in applications, such as net-
work monitoring, deciding logical theories, or analysing quantum programs.

Finite-state automata are a simple and elegant computational model with
nice properties. Indeed, due to their elegance, some researchers (including
yours truly) may joke about worshipping them with religious devotion. Al-
though they have been introduced more than 80 years ago [169], many of
their basic questions remain open. On the one hand, these are theoretical
questions with far-reaching consequences—e.g., “Can the PSPACE-complete
nondeterministic finite automaton (NFA) universality problem be decided in poly-
nomial time?” On the other hand, there are many (more approachable) open
problems regarding practical applications of the automata, such as how to ef-
ficiently complement them, test language inclusion, or even basic questions
like how to efficiently test membership (potentially at speeds of hundreds of
gigabits per second as in network intrusion detection systems, cf. Chapter 3).

Although finite-state automata are one of the most primitive computa-
tional models, having only constant space available for computation, many
of their problems are, from a theoretical point of view, deemed infeasible.
For instance, the universality and language inclusion problems are PSPACE-
complete forNFAs and finite-state automata over infinitewords (the so-called

1

2 CHAPTER 1. INTRODUCTION

Büchi automata, BAs) [94] and EXPTIME-complete for finite tree automata
(TAs) [82]. Moreover, the complementation of NFAs and TAs with n states
has a Ω(2n) worst-case lower bound and the complementation of BAs has
a Ω((0.76n)n) worst-case lower bound [144, 231]. The minimization prob-
lems of these automata (i.e., finding an automaton with the same language
and the smallest number of states) are also PSPACE-hard. In practical uses,
even theoretically optimal algorithms whose complexity matches these lower
bounds are unusable, unless significantly modified by the use of heuristics.
Examples of these heuristics are the so-called antichains [10, 41, 86, 135, 158,
214, 230] for optimizing NFA/TA universality and language inclusion check-
ing, or simulation and bisimulation relations [8, 9, 11, 12, 16, 55, 80, 108, 128, 134,
140, 186] for reducing the number of states of the automata (without guar-
antees of obtaining an automaton of the smallest size). These (and other)
heuristics have made possible the use of automata in certain applications,
such as regular model checking [1, 13, 42, 44], verification of programs with
complex dynamic data structures [43, 115, 130, 132], or reactive synthesis [195].

The habilitation thesis contains a summary of the author’s research in the
area of development of efficient algorithms for handling finite-state automata
over finite and infinite words and finite trees, and their use in applications.

First, the thesis focuses on improvements of complementation of finite-
state automata over infinite words, the so-called Büchi automata (BAs). BAs
(and related formal models, such as Rabin, Streett, Muller, or parity auto-
mata) are ubiquitous in reasoning over reactive systems—i.e., systems that
operate indefinitely and react to incoming events, such as operating systems,
controllers, arbiters, etc.—and in decision procedures of some logics (such as
the monadic second-order logic of one successor S1S). Complementation of
the automata is an operation that is essential in these applications. Although
there are known algorithms whose complexity (in the number of generated
states) matches the known lower bound of Ω((0.76n)n), they can be applied
in practice efficiently only if they are supplemented by heuristics. In Chap-
ter 2, we will describe a number of such heuristics that helped to push the
scalability of BA complementation to another level.

Next, we look at the problem of using classical finite automata (FAs) in
high-speed network intrusion detection systems (NIDSes) using FPGA-based
hardware accelerators in computer networks. One of the techniques used
in NIDSes to detect malicious traffic is the so-called deep packet inspection,
which checks whether the payload of a network packet matches a regular ex-
pression that describes an attack. The matching is usually performed using
FAs (as the standard computational counterpart of regular expressions). The
FAs for commonly used regular expressions are, however, too large to fit in the
FPGA on the hardware accelerator to allow monitoring at the link speeds of
up to 800Gbps, and exact FA reductions are reaching their limits. Therefore,
in Chapter 3, we will describe several approaches for approximate FA reduc-
tions that can be used to reduce the FAs so that we can fit enough of them

3

on the FPGA in order to allow monitoring the network at the link speed with
probabilistic guarantees on the introduced error (often negligible in practice).

The third topic this thesis focuses on is the automata-logic connection, a cel-
ebrated result (due to the founders of the field, such as Büchi [52, 53], Ra-
bin [193], or Vardi and Wolper [221]) that shows that automata can be used
in a natural way to reason in some logical theories. Examples of such the-
ories are monadic second-order logics over natural numbers and trees (S1S,
WS1S, SkS, WSkS), Presburger arithmetic, or flavours of linear temporal logic
(LTL, QPTL, . . .), which are all quite expressive and have numerous practi-
cal applications. The reasoning is performed by classical automata construc-
tions (union, intersection, complement, projection). Performing these opera-
tions naively, however, usually does not scale—indeed, the logics often have
a super-exponential (in some cases even NONELEMENTARY) worst-case
lower bound. In order to have decision procedures that can work on prac-
tical examples, it is necessary to devise suitable heuristics. In Chapter 4, we
present several of such heuristics for the logics WS1S, WSkS, S1S, and Pres-
burger arithmetic. The heuristics helped to significantly advance the scalabil-
ity of deciding the considered logics.

Another connection of automata with logic is addressed in Chapter 5,
where we discuss the work on deciding the theory of strings. The theory of
strings is an SMT theory that is used for reasoning about strings, usually
in practical contexts, such as in program verification, symbolic execution,
test generation, or even in analyses of resource access policies of cloud ser-
vices [24, 201]. Currently, there exists a number of string solvers, based on
different techniques, with different strengths and weaknesses, with none of
them being clearly the best. In Chapter 5, we present two of our approaches
to string solving, one based on regular model checking and one based on
the so-called stabilization of systems of word equations, with both of these
approaches using automata as their underlying formalism (in a completely
different way though). The stabilization-based approach even made it into
an industry-grade solver that won the strings category of the SMT-COMP’24
competition [211].

Finally, wewill focus on a field that has recently attracted a lot of attention:
quantum computing. Quantum computing promises solving many practical
problems in physics, chemistry, pharmacology, etc., as well as some compu-
tational problems (e.g., factorization, unstructured search) much faster than
classical computers. The current progress of the development of quantum
computers gives us hope that there will be usable quantum computational
hardware available in a not-so-distant future. Programming quantum com-
puters is, however, several orders of magnitude more complex than classical
programming, the discipline still being in its infancy with limited computer-
aided support. Analysis of quantum programs will probably play even big-
ger role than in the case of classical programs. Existing tools for analyzing
quantum programs are, however, usually quite limited in what they can do

4 CHAPTER 1. INTRODUCTION

(e.g. simulation), highly manual (e.g. verification using interactive theorem
provers), or do not scale. In Chapter 6, we first introduce a novel fully auto-
mated and efficient approach for deductive Floyd-Hoare-style verification of
quantum circuits using finite tree automata and then a symbolic-execution-
based approach for acceleration of loops in quantum programs, both of these
contributions significantly improving scalability and/or expressiveness of au-
tomated analysis in quantum computing.

At the end of each chapter is the list of the author’s publications contribut-
ing to the topic, with several representative papers attached in Appendix A.

Chapter 2

Büchi Automata
Complementation

Nondeterministic Büchi automata (BAs) [52] are an elegant and conceptually
simple framework to model infinite behaviors of systems and the properties
they are expected to satisfy. The expressive power of BAs coincides with the
class of the so-called ω-regular languages. BAs are widely used inmany impor-
tant verification tasks, such as termination analysis of programs [126], model
checking [221], or as the underlying formal model of decision procedures
for some logics (such as S1S [52] or a fragment of the first-order logic over
Sturmian words [129]). Many of these applications require to perform com-
plementation of BAs: For instance, in termination analysis of programs within
Ultimate Automizer [126], complementation is used to keep track of the set
of paths whose termination still needs to be proved. On the other hand, in
model checking1 and decision procedures of logics, complement is usually
used to implement negation and quantifier alternation. Complementation is
often the most difficult automata operation performed here; its worst-case
state complexity is O((0.76n)n) [15, 204] (which is tight [231]).

In contrast to the case of nondeterministic finite automata (NFAs), where
the complementation algorithm is quite simple (it determinizes the NFA and
swaps accepting and non-accepting states), the situation is more complex
for BAs. The main difference is that a BA complementation algorithm cannot
use standard determinization, since deterministic BAs have a strictly smaller
expressive power than nondeterministic BAs. For instance, the ω-regular lan-
guage given by the expression (a + b)aω—which contains words over the al-
phabet {a, b}with a finite number of occurrences of the symbol b—cannot be
expressed by a deterministic BA.

Since the pioneeringwork of Büchi in 1962 [52], there has appeared a num-
1Here, we consider model checking w.r.t. a specification given in some more expressive

logic, such as S1S [52], QPTL [208], or HyperLTL/HyperQPTL [79], rather than LTL [191],
where negation is simple.

5

6 CHAPTER 2. BÜCHI AUTOMATA COMPLEMENTATION

ber of approaches for complementing BAs. One of the often used approach is
based on determinization into an automaton model whose deterministic sub-
class can still express all ω-regular languages, such as Rabin automata (the
so-called Safra’s construction [202]) or parity automata (the Safra-Piterman’s
construction [167, 190, 194]), andwhere the acceptance condition can be com-
plemented (Rabin’s condition can be easily complemented into Streett’s con-
dition, since the conditions are dual, and parity condition can be easily com-
plemented by changing the parity condition—e.g., from Min-Odd to Min-
Even—or by incrementing all labels by 1). Determinization-based comple-
mentation is, however, suboptimal (in theory and also often in practice). For
instance, for the quite powerful subclass of elevator automata [124]—which are
defined as BAs whose all maximum strongly connected components (SCCs)
are either inherently weak (i.e., either all runs are accepting or all runs are re-
jecting) or deterministic—, determinization obtains in the worst case an au-
tomaton with Θ(n!) states [161], while their complementation can be done
in O(4n) [121], which is strictly better. The reason of this difference is that
determinization imposes a stronger property on the output BA than comple-
mentation, which has more opportunities for optimizations.

Other than determinization-based algorithms, there have appeared sev-
eral branches of Büchi complementation approaches: Ramsey-based comple-
mentation, was the very first complementation construction, where the lan-
guage of an input automaton is decomposed into a finite number of equiv-
alence classes. It was proposed by Büchi in [52] and was further enhanced
in [49]. Slice-based complementation tracks the acceptance condition using a re-
duced abstraction on a run tree [145, 220]. A learning-based approach was in-
troduced in [160, 162]. Allred and Ultes-Nitsche then presented a novel opti-
mal complementation algorithm in [15]. For some special types of BAs, e.g.,
deterministic [155], inherently-weak [171], semi-deterministic [39], or unam-
biguous [98], there exist specific complementation algorithms with a better
complexity. Semi-determinization-based complementation converts an input BA
into a semi-deterministic BA [83], which is then complemented [37].

Rank-based complementation, studied in [104, 112, 146, 154, 204], extends
the subset construction for determinization of finite automata by storing ad-
ditional information in eachmacrostate to track the acceptance condition of all
runs of the input automaton. Optimizations of an alternative (sub-optimal)
rank-based construction from [154] going through alternating Büchi automata
were presented in [112]. Furthermore, the work in [146] introduces an op-
timization of the algorithm from [204], in some cases producing smaller au-
tomata. In the rest of the chapter, we will describe our improvements of the
rank-based construction, follow by optimizations of algorithms for specific
subclasses of BAs, and conclude by an algorithm that combines several Büchi
complementation procedures together.

2.1. IMPROVING RANK-BASED BÜCHI COMPLEMENTATION 7

2.1 Improving Rank-Based Büchi Complementation

Let us now focus on improvements of the rank-based complementation [104,
154, 204]. The rank-based construction produces a BA where states have an
internal structure—we call themmacrostates. In amacrostate, it stores a partial
information about all runs of a BAA over some word w. In addition to track-
ing states that A can be in (which is sufficient, e.g., in the determinization of
NFAs), amacrostate also stores a guess of the rank of each of the tracked states
in the run DAG that captures all these runs. The guessed ranks impose restric-
tions on how the future of a state might look like (i.e., when A may accept).
Although the rank-based construction can achieve the optimal O((0.76n)n)
(modulo a quadratic factor) worst-case state complexity [204], the perfor-
mance of the basic algorithm is in many practical cases insufficient. In our
work, we have introduced several optimizations that exploit the structure of
the rank-based algorithm and generate, in practice, much smaller output BAs.

First, in [70], we improved the optimal rank-based procedure that started
in the works of Kupferman, Friedgut, and Vardi [104, 154] and achieved the
theoretically optimal complexity in the work of Schewe [204]. We improved
the procedure by exploiting simulation between states. Recall that a simula-
tion is a binary relation over states of a BA that underapproximates trace be-
haviour. For instance, if a direct simulation holds between states p and q, writ-
ten as p ⪯di q, it holds that for every trace τp leaving p, there exists a trace τq
leaving q over the same word such that at every step where there is an ac-
cepting state on τp, there will also be an accepting state on τq too. Likewise,
if a delayed simulation holds between p and q, i.e., p ⪯de q, then for every
trace τp leaving p, there exists a trace τq leaving q over the same word such
that if there is an accepting state on τp at step s, there will also be an accepting
state on τq at a step s′ ≥ s.

In the rank-based complementation algorithm of [204], macrostates of the
constructed complement BA have the following structure: (S, O, f , i) where
S, O ⊆ Q (with Q being the set of states of the original BA of the size n),
f is a ranking function of the type f : Q → {0, . . . , 2n − 1} with some restric-
tions2, and i ∈ {0, 2, . . . , 2n − 2}. The work in [70] introduces two classes of
optimizations of the algorithm based on the use of simulation. The first class
of optimizations prunes the constructed macrostates. In particular, we have
shown that if we reach a macrostate m = (S, O, f , i) such that there are states
p, q ∈ S with p ⪯di q and f (p) > f (q), we can safely remove m from the
output BA. Intuitively, f (p) > f (q) in some sense says that p can have “more
behaviours” than q, while p ⪯di q says that p can have “less behaviours” than q,
and these two properties are incompatible. Similarly, one can also remove m
if p ⪯de q and f (p) > ⌈⌈ f (q)⌉⌉ where ⌈⌈i⌉⌉ for i ∈ N denotes the smallest even

2In particular, the restrictions are the following: (i) f maps accepting states to even num-
bers, (ii) max{ f (q) | q ∈ Q} = r is odd, and (iii) { f (q) | q ∈ Q} ⊇ {1, 3, . . . , r}.

8 CHAPTER 2. BÜCHI AUTOMATA COMPLEMENTATION

number ≥ i. The second class of optimizations in [70] is based on satura-
tion of macrostates: we can saturate the S-component of every macrostate to
cl[S] = {q ∈ Q | ∃s ∈ S : q ⪯de q}. This can give us a smaller number of
total states, as some macrostates will be saturated to larger macrostates that
would be present anyway (but it can also increase the total number of states
since, generally speaking, macrostates with more states can generate more
successors, because for more states, there are also more ranking functions).

We further improved the rank-based complementation in [120] by several
optimizations that use the structure of the input BAA and the structure of the
subset automaton RA obtained from A by the classical subset construction
(as for the determinization of NFAs). Generally speaking, the optimizations
are trying to reduce the number of considered ranking functions f , which
is the dominating factor of the state complexity. We achieve this by exploit-
ing the properties of the so-called tight rankings (first introduced in [104]).
For instance, for a macrostate (S, O, f , i), the maximum rank of f is bounded
by 2|S| − 1. The construction, however, demands that in the resulting auto-
maton it holds that on any run, the maximum rank of every macrostate is the
same. Therefore, we can conclude that the maximum rank of f that we need
to consider is bounded by 2m − 1 where m is the maximum size of a macro-
state of RA that is in a non-trivial SCC of RA and is reachable in RA from S.
The previous can be elaborated on by doing a more refined analysis, taking
into consideration also final states, etc., to achieve an even better reduction
in the considered ranks for the states. The proposed optimizations, however,
do not work with the algorithm from [204] as is, so we needed to modify it;
details are rather technical.

In the follow-up paper [124], we came up with more radical approaches
for decreasing themaximum ranks considered in the rank-based complemen-
tation procedure. First, we further improved the techniques from [120] by in-
troducing a fixpoint-based algorithm for analysing maximum ranks induced
by macrostates in SCCs of RA. The algorithm keeps track of how the ranks
of states within a macrostate can flow, often obtaining a much finer estimate
of the maximum needed ranks quickly (the problem of computing the true
maximum needed ranks is PSPACE-complete [112]). The second approach
for decreasing the considered ranks we introduced is based on an idea that is
crucial for efficient algorithms (more on that later): looking at the structure
of the input BA A, in particular into the types of its SCCs. We found out that
for some types of SCCs—namely deterministic and inherently weak—there
is a limit on the increase of the maximum rank that needs to be considered
(between 0 and 2 based on the way how the SCCs are connected) that is inde-
pendent of the number of states in the SCC. Inspired by this observation, we
defined the class of elevator automata—BAs that contain only deterministic and
inherently weak SCCs—, which can be complemented using the rank-based
algorithm in O(16n) (this was later improved in [121] for a non-rank-based
algorithm). The class of elevator automata is quite expressive (it includes

2.1. IMPROVING RANK-BASED BÜCHI COMPLEMENTATION 9

10 100 1000 10000 100000
Ranker

10

100

1000

10000

100000

Sc
he

we

(a) Ranker vs. Schewe

1 10 100 1000
Ranker

1

10

100

1000

Sp
ot

(b) Ranker vs. Spot
Figure 2.1: (a) Comparison of the number of states generated by a vanilla
rank-based complementation algorithm with the optimal theoretical com-
plexity from [204] (denoted as Schewe) and using our optimizations (de-
noted as Ranker).
(b) Comparison of the number of states (after postprocessing) for comple-
ment automata constructed by Ranker and Spot.
Axes are logarithmic. Blue data points correspond to randomly generated
BAs, red data points correspond to BAs obtained by translation of LTL for-
mulae, and green data points correspond to BAs obtained from Ultimate Au-
tomizer (only in (b)).

semi-deterministic BAs [83] and, e.g., in a standard benchmark of BAs ob-
tained fromLTL formulae, around 90%of the BAs are elevator automata) and
can be exploited by algorithms other than complementation; e.g., in [161], the
authors gave a better upper bound on the complexity of determinization of
elevator automata compared to general BAs.

We implemented the described (and many more) heuristics in a mature
tool named Ranker [122]. In Figure 2.1a, we show a comparison of the gen-
erated state space compared to the vanilla rank-based complementation algo-
rithm with the optimal theoretical complexity from [204]. The savings in the
generated state space are indeed dramatic (we note that the state space gener-
ated by the algorithm in [204] is still much smaller than that of the previous
rank-based algorithms from [104, 154]). Not only did Ranker improve the
rank-based algorithms, it is also highly competitive when compared to other
state-of-the-art algorithms, including determinization-based algorithms [190,
194, 202] implemented in Spot [87], often considered the most sophisticated
tool for handling Büchi automata (and other types of ω-automata) as of the
date. Figure 2.1b shows thatRanker could often obtainmuch smaller comple-
ments than Spot, and the average size of the obtained automatonwas smaller.

10 CHAPTER 2. BÜCHI AUTOMATA COMPLEMENTATION

2.2 Complementation of Special Classes of BAs
As mentioned above, considering the types of BAs (or its SCCs) is crucial
for efficient BA complementation algorithms, since many BAs occurring in
practice have a structure that can be exploited. For instance, deterministic
BAs with n states can be complemented to BAs with at most 2n states [155],
inherently weak BAs can be complemented to BAs with no more than 2

3 3n

states [171] (the lower bound is 2n), and semi-deterministic BAs (i.e., BAs
that are deterministic after seeing an accepting state for the first time) can be
complemented to BAs with at most 4n states [39].

These constructions can, however, still be optimized be perform better in
practice. For instance, in [73], we proposed optimizations of the NCSB con-
struction from [39] thatmade the procedure generate less states inmany prac-
tical benchmarks (in particular, the work was done in the context of termina-
tion checking of C programs by Ultimate Automizer [126], which uses BA
complementation within its procedure). Among others, the paper defined
two new types of simulations, early simulation (⪯e) and early+1 (⪯e+1) sim-
ulation, as follows. If p ⪯e+1 q, then for every trace τp leaving p, there exists
a trace τq leaving q over the same word such that if there are two accepting
states on τp at steps i and j, with i < j, then there is an accepting state on τq
at step k such that i < k ≤ j. Intuitively, this means that between every two
accepting states on τp, where is an accepting state on τq. The definition for
p ⪯e q is similar with the addition that there needs to be an accepting state
on τq even before the first occurrence of an accepting state on τp. Likewise to
other simulations, early and early+1 simulations imply language inclusion.
While we are currently not aware of an algorithm for computing maximum
relations that are ⪯e and ⪯e+1 on a BA (studying the relation in detail is an
interesting futureworkwith a hope that itmight be easier to compute than de-
layed and fair simulations—where the best currently known algorithm [95]
we are aware of has the O(mn3) time complexity—and be similarly rich or
even richer), the simulation plays an important role in the complementation
and inclusion checking of certain classes of BAs.

The reason why we came up with the early and early+1 simulations is
that they can be easily computed3 on the structure of macrostates that oc-
cur in certain BA complementation procedures, without the need to have the
whole automaton constructed (which one needs for the standard—i.e., direct,
delayed, and fair—simulations). For the use in complementation, if we com-
bine a complementation algorithmwith an algorithm for testing emptiness of
the language of a macrostate (in order to directly prune out useless part of
the result), we can keep a set Empty of macrostates that are known to have
an empty language and when we encounter a macrostate M such that there

3More precisely, there exist non-trivial, often quite rich, relations that can be easily com-
puted that are early or early+1 simulations, in other words, that underapproximate the maxi-
mum early or early+1 simulations, as they are not necessarily maximum.

2.3. COMPLEMENTATION OF BAS VIA SCC DECOMPOSITION 11

exists M′ ∈ Empty with M ⪯e M′ or M ⪯e+1 M′, then we do not need to ex-
plore M and can directly conclude that L(M) = ∅ (this is an idea in a similar
family of techniques as the subsumption used in the Antichains algorithm for
NFA universality and inclusion checking [10, 230]).

In [73], the optimized complementation mentioned above is used in the
context of computing language difference (where complementation is a sub-
procedure) of semi-deterministic BAs using the NCSB algorithm [39]. We
define subsumption relations⊑ and⊑B on themacrostates constructed in the
NCSB algorithm. To give an idea (without going into technical details, which
can be found in [39, 73]), a macrostate of NCSB has the structure (N, C, S, B),
where N, C, S, B ⊆ Q are sets of states of the input BA A. The two subsump-
tion relations are defined as follows:

(N1, C1, S1, B1) ⊑ (N2, C2, S2, B2) ⇔ N1 ⊇ N2 ∧ C1 ⊇ C2 ∧ S1 ⊇ S2 and
(N1, C1, S1, B1) ⊑B (N2, C2, S2, B2) ⇔ N1 ⊇ N2 ∧ C1 ⊇ C2 ∧ S1 ⊇ S2 ∧ B1 ⊇ B2.

Notice that the relations can be computed just from the structure of themacro-
states, without any knowledge about the structure of the complement BA
(which is, however, determined by the macrostates). In [73], we prove that⊑
is an early+1 simulation and that ⊑B is an early simulation, so they can be
used for the optimizations. First steps for using the subsumption relations
also in the context of checking language inclusion has already been made
in [14], but a proper evaluation is a part of the future work.

Regarding other types of BAs, we have also improved algorithms for com-
plementation of inherently weak BAs and semi-deterministic BAs in [122].
For inherently weak BAs, we propose a way of saturating/pruning macro-
states using a simulation relation in the algorithm from [171] in a similar
fashion as in [70, 108] and for semi-deterministic BAs, we propose a modi-
fication of the NCSB algorithm from [39] using a technique to limit the num-
ber of outgoing edges of a macrostate in a similar way as in the algorithms
from [120, 204].

2.3 Complementation of BAs via SCC Decomposition
Ourmost recent work on BA complementation gets inspiration from the treat-
ment of SCCs in the input BA based on their type from [124] and the SCC
decomposition-based determinization algorithm from [161]. The approach,
published in [121], is based on the main idea that in the input BA A, every
infinite run eventually stays in some SCC. One can, therefore, consider runs
for every SCC independently4. Then, it is possible to exploit the particular

4One could, actually, transform the input BA A into a union of k copies of A, one for each
of the k SCCs, such that each copy keeps accepting states only in one SCC. This, however,
disallows sharing of common states.

12 CHAPTER 2. BÜCHI AUTOMATA COMPLEMENTATION

p

q

r

s

P0

P1

a, b a, b

a•
b

a

a
b•

b a•

(a) A BA Aex

p ∅, ∅, ∅ ∅, ∅

p + q q, ∅, q ∅, ∅

p + q ∅, q, ∅ ∅, ∅

p + q + r q, ∅, q r, r

p + q + r + s q, ∅, q r + s, r + s

p + q + r + s q, ∅, q r + s, r

p + q + r + s ∅, q, ∅ r + s, r + s

0
1 b

0
1 b

1b

0
1b

0 1
a

1 ab b

1
a

ab1a

0 b

0b

0b

0
b

(b) A complement of Aex

Figure 2.2: An example of complementing a BA (with transition-based ac-
ceptance) using the SCC decomposition-based algorithm from [121]. Note
thatAex has two accepting SCCs: P0 (deterministic) and P1 (inherentlyweak).
States in the complement are given as (H, (C0, S0, B0), (C1, B1)) where H
tracks all runs in A, (C0, S0, B0) is a partial macrostate for the [39]-inspired
complementation of deterministic SCCs, and (C1, B1) is a partial macrostate
for the [171]-inspired complementation of inherentlyweak SCCs; to avoid too
many braces, sets are given as sums. The acceptance condition of the comple-
ment is Inf(0) ∧ Inf(1).

classes of the SCCs, even when A as a whole does not fall into one particular
class. For each of the SCCs, we can use a different algorithm that is optimized
for the type of the given SCC. For instance, for SCCs with no accepting state,
we can just use an NFA-like determinization that needs at most 2n macro-
states (with n being the number of states in the SCC this time), for accepting
inherently weak SCCs, we can use a modification of the algorithm from [171]
bounded by 2

3 3n, for deterministic SCCs, we can use a customization of some
flavour of the NCSB algorithms [39, 73, 122] bounded by 4n, and for general
nondeterministic SCCs, we can use a modification of one of the many stan-
dard BA complementation algorithms (which can be restricted to the given
SCC, e.g., for rank-based algorithms, we can restrict the maximum rank only
by the number of states in the SCC and not in the whole A). One then needs
a top-level algorithm that orchestrates the run of the SCC-local algorithms.
Using this combination of several complementation procedures, we can use
a naturally occurring richer acceptance condition in the complement—in par-
ticular, since the algorithms of all SCCs need to accept, one gets a conjunction
of the conditions for the partial algorithms. The partial algorithms can then
use any acceptance condition; e.g., the so-called initial deterministic components
(deterministic components into which one can only arrive deterministically)
can be easily complemented using a co-Büchi (Fin) condition (in general, the
output of our SCC-based complementation algorithm is an Emerson-Lei auto-

2.3. COMPLEMENTATION OF BAS VIA SCC DECOMPOSITION 13

maton [23, 90], i.e., an ω-automaton where the acceptance condition is a Boo-
lean combination of Inf conditions). See Figure 2.2 for an example of the out-
put of our complementation algorithm.

A tantalizing feature of this approach is that one has a general framework
into which they can connect new algorithms specialized for certain types of
SCCs in a plug-and-play fashion. For instance, we are currently investigat-
ing specialized algorithms for deterministic components with more general
acceptance conditions, e.g., generalized, Streett, Emerson-Lei, etc. These al-
gorithms can then be applied only for the particular SCC and they are almost
always more efficient than the currently often used algorithms that first sim-
plify the acceptance condition (which usually increases the size of the BA
considerably) and then run a standard algorithm.

Contributed Papers5

[70] Yu-Fang Chen, Vojtěch Havlena, and Ondřej Lengál. “Simulations in Rank-
Based Büchi Automata Complementation”. In:Proc. of APLAS’19. Vol. 11893.
LNCS. Springer, 2019, pp. 447–467.

[73] Yu-Fang Chen, Matthias Heizmann, Ondřej Lengál, Yong Li, Ming-Hsien
Tsai, Andrea Turrini, and Lijun Zhang. “Advanced automata-based algo-
rithms for program termination checking”. In: Proc. of PLDI’18. ACM,
2018, pp. 135–150.

[120] Vojtěch Havlena and Ondřej Lengál. “Reducing (To) the Ranks: Efficient
Rank-Based Büchi Automata Complementation”. In: Proc. of CONCUR’21.
Vol. 203. LIPIcs. Dagstuhl, 2021, 2:1–2:19.

[121] Vojtěch Havlena, Ondřej Lengál, Yong Li, Barbora Šmahlíková, and An-
drea Turrini. “Modular Mix-and-Match Complementation of Büchi Auto-
mata”. In: Proc. of TACAS’23. Vol. 13993. LNCS. Springer, 2023, pp. 249–
270.

[122] Vojtěch Havlena, Ondřej Lengál, and Barbora Šmahlíková. “Complement-
ing Büchi Automata with Ranker”. In: Proc. of CAV’22. Vol. 13372. LNCS.
Springer, 2022, pp. 188–201.

[124] Vojtěch Havlena, Ondřej Lengál, and Barbora Šmahlíková. “Sky Is Not
the Limit - Tighter RankBounds for ElevatorAutomata inBüchiAutomata
Complementation”. In: Proc. of TACAS’22. Vol. 13244. LNCS. Springer,
2022, pp. 118–136.

5The works [73, 121, 124] (in bold) are attached to this thesis.

Chapter 3

Finite Automata in Network
Intrusion Detection

Pattern matching of text using regular expressions is ubiquitous in many ar-
eas of information technology. The speed of the pattern matching can be
crucial in some applications. An instance of such an application is the so-
called deep packet inspection within network intrusion detection systems, which
tries to find potentially malicious patterns in the payload of packets entering
the network. As the speed of current computer networks grows quickly (with
backbones and entry points running on speeds up to 100/200/400/800Gbps),
single-machine software-only solutions cannot follow (they can scale up to
only units of Gbps). Therefore, one either needs to parallelize the task (e.g.,
by having a cluster of dozens to hundreds of computers doing pattern match-
ing of one network link) or use a hardware accelerator, which we focus on
here. Since the patterns one needs to match often change in time (e.g., when
a new vulnerability in some software is detected and its exploits start appear-
ing in live traffic), the hardware accelerator needs to support reconfiguring
the pattern bank. One approach, taken, e.g., in [168], is to use reconfigurable
hardware in the form of field-programmable gate arrays (FPGAs), where the
patterns are represented using NFAs, with each state of the NFA being as-
signed a one-bit register (a flip-flop) on the chip. The use of NFAs allows
a usually much more compact encoding when compared to deterministic finite
automata (DFAs), which can be up to exponentially larger (and in practice
are indeed often significantly bigger). Apart from software pattern matching
with NFAs—which usually needs to perform backtracking in order to try all
possible runs of theNFAover the inputword—, in hardware, since every state
is represented by a register, no backtracking is necessary, because all possibly
reachable states can have their registers active at the same time.

Despite the compact encoding achieved by usingNFAs, keeping theNFAs
as small as possible is essential, as hardware resources are expensive (and
often limited by the chip used on a multi-purpose FPGA-based network ac-

15

16 CHAPTER 3. FINITE AUTOMATA IN NIDS

celerator). For real-world sets of patterns used in intrusion detection (e.g.,
those provided within Snort rules [213]), even after reducing the size of the
NFA using standard language-preserving reduction techniques (e.g., using
the (bi-)simulation-based reduction [55, 140, 186]), the size of the resulting
NFA is too large to fit on the chip. A solution is to use the hardware as an
approximate pre-filter that discards the majority of packets that do not match
the attack patterns (the amount of traffic with attacks of such a kind is usu-
ally negligible) and sends the rest (usually a tiny fraction) to software to be
matched exactly. A challenging part of this problem is how to perform the
approximation in a good way. Sampling the input does not work since we
could then drop a malicious packet (usually, only false positives—i.e., over-
approximation of the set of matched packets—are allowed).

To address this issue, in [59, 60], we propose an approximate NFA reduc-
tion, i.e., a reduction that does not preserve the language of the NFA. Our
reduction changes the NFA A’s language, but in a controlled manner, with
probabilistic guarantees w.r.t. a probability distribution over the set of in-
put words (i.e., network packets). The probability distribution is represented
by a probabilistic automaton (PA), an NFA whose transitions are labelled with
probabilities and states are given probabilities of accepting. The PA gives ev-
ery word w ∈ Σ∗ its probability Pr(w) ∈ ⟨0, 1⟩ such that ∑w∈Σ∗ Pr(w) = 1.
We constructed such a PA for our use case by creating a DFA representing the
general structure of the HTTP protocol (we focused on attacks carried out
over HTTP) and then passing a large amount of packets from real-world net-
work traffic (obtained from collection points of a backbone network) through
it, learning probabilities of transitions (see [60] for a discussion about why
using some general probabilistic automaton learning approach, such as the
Alergia algorithm [57], did not work).

We proposed the following two kinds of reductions:

1. size-driven reduction, which asks about the NFA Bwith n states such that
L(B) ⊇ L(A) and ∑w∈L(B)\L(A) Pr(w) is the smallest (i.e., the proba-
bility of misclassifying an incoming packet is as small as possible), and

2. error-driven reduction, where we are given the maximum allowed error e
and need to construct an NFA with the least number of states that over-
approximates the language of A and whose probability of misclassify-
ing a packet is bounded by e.

We show that optimal solutions to both problems are as hard as NFA mini-
mization [143] (i.e., PSPACE-complete) and devise greedy algorithms that
identify states with the lowest probability to be reached and remove them
from the automaton. While these algorithms give sub-optimal results, they
can be run in a reasonable time on the input (quite large) NFAs and, in prac-
tice, they produce results that are good enough. For instance, for the given
FPGA-based accelerator that we used, without the approximate reduction,

17

we could monitor the patterns from the http-backdoor set of Snort rules
only at the speed of 38.4Gbps. With the approximate reduction, we could fit
more matching units into the FPGA andmonitor the rules at the link speed of
100Gbps with the negligible error of 3.4× 10−8 w.r.t. the probability distribu-
tion. On the other hand, for the patterns from the http-malicious rule set,
without approximate reduction, the matching could be done at the speed of
249.6Gbps, and with our approximate reduction, we could achieve the link
speed of 400Gbps with the error of 8.7 × 10−8.

In [58], we further extended the work in two ways:

1. We built on the idea of a pre-filter and introduced a hardware architec-
ture that uses several stageswhere thematching happens, each stage be-
ing more precise than the previous stage while having a lower through-
put. The idea is that in the given hardware architecture, e.g., for the in-
put bandwidth of 100Gbps, one needs to use 64 parallel matching units,
each with the throughput of 1.6Gbps. The size of one unit is, however,
too large for 64 of them to fit on the chip. Instead of that, we can use 64
much smaller approximate units that decrease the bandwidth to, say,
3Gbps, and follow the first stage by another stage that can contain two
exact matching units, or, if this would still be too large, another approx-
imate, but more precise, matching units, etc.

2. The use of a probabilistic automaton gives a compact representation of
the network traffic but comes with the disadvantage that computation
of probabilities of states is quite computationally intensive. Instead of
using such a probabilistic automaton, in [58] we use directly the net-
work traffic sample to check which states in the NFA are less likely than
other states to be visited during matching of a packet.

With this technique, we achieved exact matching on the http-backdoor
Snort rule set at the speed of 400Gbps and on the much more challenging
http-spyware Snort rule set, we achieved exact matching at the speed of
200Gbps and approximate matching at the speed of 400Gbps with the er-
ror of 4% (compared to the speed of 17Gbps of exact matching when using
the standard approach).

Contributed Papers1

[58] Milan Češka, Vojtěch Havlena, Lukáš Holík, Jan Kořenek, Ondřej Lengál,
Denis Matoušek, Jiří Matoušek, Jakub Semrič, and Tomáš Vojnar. “Deep
Packet Inspection in FPGAs via Approximate Nondeterministic Automata”.
In: Proc. of FCCM’19. IEEE, 2019, pp. 109–117.

1The work [60] (in bold) is attached to this thesis.

18 CHAPTER 3. FINITE AUTOMATA IN NIDS

[59] Milan Češka, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Tomáš Vo-
jnar. “Approximate Reduction of Finite Automata for High-Speed Network
Intrusion Detection”. In: Proc. of TACAS’18. Ed. by Dirk Beyer and Marieke
Huisman. Vol. 10806. LNCS. Springer, 2018, pp. 155–175.

[60] Milan Češka, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Tomáš
Vojnar. “Approximate reduction of finite automata for high-speed net-
work intrusion detection”. In: Int. J. Softw. Tools Technol. Transf. 22.5
(2020), pp. 523–539.

Chapter 4

The Automata-Logic Connection

One of the possible uses of the automata technology developed in Chapter 2
is as a backend of decision procedures for certain logics. Let us give examples
of well-known logics that have automata-based decision procedures based on
the type of automata used:

• NFAs: the weak monadic second-order logic of 1 successor (WS1S) [53,
88, 109], the monadic second-order logic over finite strings [127], the
Presburger arithmetic [45, 229], and the Büchi arithmetic [50, 53];

• BAs: the (full)monadic second-order logic of 1 successor (S1S) [52], the
first-order theory of Sturmian words over Presburger arithmetic [129],
and linear-time temporal logics, like LTL [221], QPTL [208], or Hyper-
LTL/HyperQPTL [79];

• tree automata [82]: the (full/weak) monadic second-order logic of k
successors (SkS/WSkS) [88, 193, 212].

In addition, some other logics have decision procedures that translate to the
mentioned logics, e.g., some fragments of separation logic [141].

In this chapter, we will first describe our contributions to improving the
scalability of deciding WS1S/WSkS/S1S formulae and then give an overview
of techniques thatmake an automata-baseddecisionprocedure for Presburger
arithmetic competitive (and often faster) to other approaches that are cur-
rently prevalently used within state-of-the-art SMT solvers.

4.1 Deciding Monadic Second-Order Logics
First, wewill focus on themonadic second order logics, in particular theweak
monadic second-order logic of 1/k successor(s): WS1S/WSkS. These are clas-
sical monadic second-order logics, i.e., quantified variables range over sets of
elements of the universe, but they are weak, which means that the considered

19

20 CHAPTER 4. THE AUTOMATA-LOGIC CONNECTION

sets are finite. Therefore, e.g., the formula ψ : ∃R∀S : S ⊆ R does not hold in
these logics (as opposed to their non-weak siblings S1S/SkS, where quanti-
fiers range over all sets; the formula ψ holds in those).

Let us start with defining a minimal syntax of a formula φ in WS1S:

φatom ::= X ⊆ Y | X = Y + 1
φ ::= φatom | φ ∧ φ | ¬φ | ∃X : φ

(4.1)

where X, Y are second-order variables. The semantics of X ⊆ Y is standard,
the formula X = Y + 1 holds iff X = {y + 1 | y ∈ Y}, and ∃X quantifies
existentially over finite subsets of the universe. In the case of WS1S, the con-
sidered universe is the set of natural numbers N. The syntax can be easily
extended to WSkS, for a fixed natural number k > 1 by substituting the suc-
cessor function formula X = Y + 1 by k formulae X = S1(Y), . . . , X = Sk(Y),
where Si’s denote different successor functions (for WS1S, there was just one
denoted as +1). WSkS is then interpreted over the set of positions in an infi-
nite k-ary tree (see Figure 4.2 later).

Although the logics have a simple syntax and are decidable, their decision
problem complexity is NONELEMENTARY [170] (more precisely, the prob-
lem is complete for the TOWER complexity class [205], which is at the lower
border of NONELEMENTARY).

The standard decision procedures for these logics are based on automata.
The core of the decision procedures is simple:

(i) for each atomic formula, we construct an automaton representing ex-
actly all its models using a suitable encoding of models into words or
trees;

(ii) for formulae representing logical operations, we perform standard au-
tomata manipulation: for conjunction, we perform automata intersec-
tion (potentially preceded by cylindrification in the case the alphabets
do notmatch), for negation, we perform automata complement, and for
existential quantification, we perform projection on the alphabet of the
automation followed by saturation of final states; and

(iii) in the end, we test language emptiness of the obtained automaton: if
the language is non-empty, the formula is satisfiable.

The automata considered depend on the logic: the procedures use NFAs for
WS1S and tree automata for WSkS.

Despite the forbidding theoreticalworst-case complexity of the logics, their
properties (great expressivity while being decidable) prompted the develop-
ment of solvers thatwould be able to solve real-world formulae (e.g., formulae
coming fromHWverification [30], controller synthesis [46], reasoning about
distributed reactive systems [152, 153], computational linguistics [175], or

4.1. DECIDING MONADIC SECOND-ORDER LOGICS 21

program verification [89, 142, 173]) in a practical time. This started with
the implementation of [109] and later achieved practicality with the tools
Mona [127] andMosel [147]. The success of the tools is based on various op-
timizations, both high-level (such as developing a new formal model, the so-
called guided tree automata [35], DAG-based representation of the formula [151],
or the three-valued acceptance for automata [150]) and low-level (such as the
use of multi-terminal binary decision diagrams (MTBDDs) [25, 51, 105] for rep-
resenting the automata’s transition functions and the use of cache-conscious
data structures [151]). Although these implementations often work well,
there are practical cases of formulae when the complexity strikes back and
the tools fail.

One reason for these failures is that the tools are usually (in particular both
Mona and Mosel) based on deterministic finite automata (DFAs), which are
often exponentially larger than their nondeterministic counterparts (NFAs).
In our previous work [102, 103], we have already shown how one could lift
the concept of antichain-based universality testing of NFAs [10, 230] to satis-
fiability testing of WS1S formulae and avoid explicit determinization.

Here, we will present several works that significantly pushed the borders
of practically decidable formulae of WS1S/WSkS. In [101], we introduced the
so-called lazy automata techniques in the context of decidingWS1S. These tech-
niques are based on looking at the structure of the states of the NFA for the
input formula φ. One can see

1. states of NFAs for atomic formulae as atoms,
2. states of NFAs for formulae φ1 ∧ φ2 as pairs (q1, q2) where q1 is a state

of the NFA for φ1 and q2 is a state of the NFA for φ2,
3. states of NFAs for formulae ¬φ as sets of states {q1, . . . , qn} where q1,

. . . , qn are states of the NFA for φ, and
4. states of NFAs for formulae ∃X : φ as states q of the NFA for φ.

For instance, for the formula

¬∃X : φq ∧ ¬φs (4.2)

where φq and φs are atomic formulae, an example of a state of the correspond-
ing NFA might look like the following:

{(q1, {s1, s2}), (q2, {s1, s3}), (q1, {s1, s3, s4})} (4.3)

where qi states are from the NFA for φq and si states are from the NFA for φs.
See Figure 4.1 for an illustration of how the structure of a state corresponds
to the abstract syntax tree (AST) of the formula.

We can then solve some questions about the NFA for the input formula φ
without constructing NFAs for all sub-formulae of φ, lazily. This means that

22 CHAPTER 4. THE AUTOMATA-LOGIC CONNECTION

¬

∃X

∧
φq ¬

φs

(a) The AST of the example formula

{ · }

·

(· , ·)
qi { · }

si

(b) The structure of a state of the NFA
Figure 4.1: The AST of the example formula and the structure of the state of
the corresponding NFA.

states of the NFA will be constructed only on-demand during, e.g., perform-
ing a traversal through the NFA when searching for an accepting state in the
context of testing non-emptiness of the NFA (i.e., testing satisfiability of φ).
This can sometimes significantly speed up the decision procedure, e.g., when
testing satisfiability of a formula φU ∧ φB where φU is a small unsatisfiable for-
mula and φB is a big formula, since, in such a case, we can completely avoid
constructing the NFA for φB.

We formally describe the lazy procedure as an evaluation of a term con-
structed from the structure of the input formula and the atomic NFAs. For
the example formula above (assuming that it contains no free variables), the
corresponding term would be the following:

t = πX(Iq − {[X : 0], [X : 1]}∗ ∧ Is − {[X : 0], [X : 1]}∗) (4.4)

where − U for a set of words U denotes the language derivative w.r.t. U,
Iq and Is are the sets of initial states of the NFAs for φq and φs respectively,
πX denotes projection of a language by variable X, and [X : c] denotes a sym-
bol that maps the variable X to the Boolean value c ∈ {0, 1}. Testing satis-
fiability of the input formula can be done by checking whether ϵ ∈ t (recall
that we assume that the formula contains no free variables) by evaluating the
term step by step using rewriting rules that unfold the derivatives.

In addition to the lazy approach, we also introduced subsumptions that
can be used to simplify some of the obtained terms based on a similar idea as
the antichains algorithm for testing NFA universality and inclusion [10, 230].
The subsumption is defined inductively on the structure of the states (i.e., it
is not a simple set inclusion any more).

The lazy automata techniquewere further extended in [118, 119] toWSkS,
i.e., extended from NFAs to tree automata. Recall that WSkS is interpreted
over positions in the infinite k-ary tree, as depicted in Figure 4.2. Therefore,
one cannot use simple language derivatives as in the case ofWS1S, sincewhen

4.1. DECIDING MONADIC SECOND-ORDER LOGICS 23

ϵ

L

LR

R

RL

RLR

RR

(a) Positions assigned to the variable X

0 1ϵ

0 1L

0 1LL

⊥ ⊥
1 0LR

⊥ ⊥

1 1R

0 0RL

⊥
1 0RLR

⊥ ⊥

1 1RR

⊥ ⊥

(b) Encoding of ν into a tree τν.
Figure 4.2: An example of an assignment ν to a pair of variables {X, Y} such
that ν(X) = {LR, R, RLR, RR} and ν(Y) = {ϵ, L, LL, R, RR} and its encoding into
a tree τν. A node at a position p has the value x y where x = 1 if and only if
τν(p) maps X to 1 and y = 1 if and only if τν(p) maps Y to 1.

treating trees, one needs to, in some cases, remember the context. For instance,
given a set of states, when reasoning about trees rooted in the states from the
set, and talking about their left and right subtrees, one needs to keep track
of the fact which left subtree corresponds to which right subtree. We then
extended the notions of term evaluation and subsumption for terms in WS1S
from [101] to the terms in the WSkS procedure, which talk about tree deriva-
tives.

During the work on optimizations of the core WS1S/WSkS decision pro-
cedures (papers [101–103, 118, 119]), we noticed that the particular form of
the input formula can play a big role in the efficiency of the underlying deci-
sion procedure. In [117], we explored this idea further by introducing several
rewriting rules for WSkS formulae that could significantly decrease the size
of its state space. The rules are mainly based on the notion of antiprenexing,
i.e., pushing quantifiers inside of a formulae (as opposed to prenexing, where
quantifiers are moved to the outmost scope). This usually helps because the
lower a quantifier is, the smaller is the size of the alphabet one needs to work
with. There are rules that are almost always advantageous to use, e.g., apply-
ing distribution of the existential quantifier over disjunction

∃X : φ ∨ ψ ; (∃X : φ) ∨ (∃X : ψ), (4.5)

some rules, however, help only sometimes. For instance, it is not always clear
whether one should use the following distributive law:

∃X : (φ ∨ ψ) ∧ χ ; ∃X : (φ ∧ χ) ∨ (ψ ∧ χ). (4.6)

On the one hand, the rule allows to apply distribution of quantifiers over
disjunction in the subsequent step (Equation (4.5)), pushing the quantifier

24 CHAPTER 4. THE AUTOMATA-LOGIC CONNECTION

deeper into the structure of the formula. On the other hand, we are perform-
ing more operations (three logical connectives instead of two). Therefore,
we apply the rule only if the estimated cost of the operation (the size of the
NFA) is smaller than a threshold. For estimating the cost of the operation, we
used an approach based on machine learning with linear regression to learn
how big an automaton for a given formula will be. With the use of the in-
formed pre-processing, we managed to significantly improve the run-time of
the underlying decision procedure, and even successfully solved a formula
(obtained from an experimental translation of separation logic to WSkS) that
had, to the best of our knowledge, not been solved by anyone before.

In addition to the logics WS1S/WSkS on finite words/trees, in [123], we
also explored the logic S1S, which has the same syntax as WS1S (cf. Equa-
tion (4.1)), but a different semantics—existential quantifiers now range over
all subsets of N and not only finite. The underlying formal model for decid-
ing S1S are, therefore, Büchi (or, in general, ω-) automata. Although the com-
plexities of problems forNFAs and BAs are the same (e.g., PSPACE-complete
language inclusion) and so are the complexities for deciding WS1S and S1S
(TOWER-complete), algorithms for workingwith BAs in practice scalemuch
worse (e.g., for language complement, in the case of NFAs, a naive comple-
mentation algorithm usually suffices, but in the case of BAs, one needs to
come up with quite elaborate algorithms to even start thinking about trying
them in practice, cf. Chapter 2). It seems that as a consequence, with the ex-
ception of [29], there has been no attempt of implementing an S1S decision
procedure in practice, despite the ubiquity of S1S (other than the logic itself,
it can be used to encode other number-theoretical or temporal logics, e.g.,
QPTL [208]). In [123], we leveraged the recent advance in the algorithms for
manipulating BAs and implemented a decision procedure for S1S, obtaining,
in some cases, a much more compact representation than in [29].

4.2 Deciding Quantified Presburger Arithmetic

Another logic with an elegant automata-based decision procedure is the so-
called Presburger arithmetic [192], i.e., the theory of natural numbers N with
addition. In practice, the logic is often extended to reasoning over integers Z,
called linear integer arithmetic (LIA), using the following grammar:

φatom ::= a⃗ · x⃗ = c | a⃗ · x⃗ ≤ c | a⃗ · x⃗ ≡m c | ⊥
φ ::= φatom | ¬φ | φ ∧ φ | φ ∨ φ | ∃y(φ)

where a⃗ is a (row) vector of n integer coefficients (a1, . . . , an) ∈ Zn, x⃗ is a (col-
umn) vector of n variables, c ∈ Z is a constant, m ∈ Z+ is a modulus, and y
is a variable. The semantics of formulae is standard (in particular, a⃗ · x⃗ ≡m c
holds iff there exists z ∈ Z s.t. a⃗ · x⃗ + z · m = c).

4.2. DECIDING QUANTIFIED PRESBURGER ARITHMETIC 25

Current state-of-the-art SMT solvers, such as Z3 [177] or cvc5 [26], can
routinely solve large quantifier-free (i.e., existential) LIA formulae, however,
even a tiny formula with two quantifier alternations can be a show stopper
for them. For instance, consider the formula

(∀x, y : p ̸= 7x + 11y) ∧ (∀r(¬∃u, v : r = 7u + 11v) ⇒ r ≤ p)
where p is the only free variable. The formula interpreted over natural num-
bers can be solved neither byZ3nor by cvc5 in 1minute (themodel is p = 59).
The formula encodes the so-called Frobenius coin problem [113], which asks
“What is the largest number p not expressible as a combination of numbers 7 and
11?” Except being of theoretical interest, such formulae are obtained, e.g.,
during the analysis of Petri nets [77] or in some techniques for deciding the
SMT theory of strings. Current SMT solvers also fail on many formulae com-
ing directly from practice; cf. the 20190429-UltimateAutomizerSvcomp2019
benchmark in the LIA category of SMT-COMP (the international competi-
tion of SMT solvers) [211]. One reason for these inefficiencies is that SMT
solvers deal with quantifiers by a syntactical approach called quantifier instan-
tiation [106, 107, 176, 181, 196, 197, 199], without exploiting the structure of
the underlying interpretation.

In our work, we focused on the automata-based decision procedure for
LIA. The classical automata-based decision procedure for LIA is similar to
the decision procedure for WS1S (cf. [40, 45, 229]). One can actually easily
encode LIA into WS1S, in practice it is, however, more efficient, to use a spe-
cialized procedure, where the main difference is the treatment of atomic for-
mulae (one also needs to handle treatment of negative numbers, but that is
rather technical and will not be covered here). For instance, the DFA for the
atomic formula a⃗ · x⃗ = c looks such that the set of states Q is a finite subset
of Z. For each integer d ∈ Q, it then holds that the language of the state
labelled with d are all words that encode solutions of the formula a⃗ · x⃗ = d.
Therefore, c ∈ Z is the initial state of the DFA. The transition function given
by the function Post for a symbol σ (representing the current bit value in the
two’s complement encoding of assignment to variables in x⃗) looks as follows:

Post(⃗a · x⃗ = c, σ) =

{⃗
a · x⃗ = 1

2 κ if 2|κ for κ = c − a⃗ · σ,
⊥ otherwise. (4.7)

Here, instead of the state being just one integer, we use the whole formula.
When one takes the classical approach—which computes the DFA for the

input formula inductively, starting from atomic formulae, and performing op-
erations on DFAs corresponding to Boolean connectives—, it often blows up
already when constructing the DFAs for atomic formulae. E.g., for some val-
ues of m the smallest DFA for a congruence a⃗ · x⃗ ≡m c can have m states. In
practice, we encountered such DFAs for atomic formulae having over 300,000
states (in formulae obtained from Ultimate Automizer [125] during verifica-
tion of computer programs).

26 CHAPTER 4. THE AUTOMATA-LOGIC CONNECTION

x ≤ 1000
∧−x ≤ 0 ∧
x ≡257 255

x ≤ 500
∧−x ≤ 0 ∧
x ≡257 256

x ≤ 499
∧−x ≤ 0 ∧
x ≡257 127

x ≤ 249
∧−x ≤ 0 ∧
x ≡257 192

x ≤ 249
∧−x ≤ 0 ∧

x ≡257 63

x = 256 x = 192

x = 63

[0]

[1]

[0]

[1]

⇔ ⇔

⇔

Figure 4.3: Example of rewriting formulae/states in the NFA for the formula
x ≤ 1000 ∧−x ≤ 0 ∧ x ≡257 255.

Although the automata for atomic formulae can be large and the size can
grow even larger when they are connected by Boolean connectives, we have
observed that inmany cases, theminimumDFAs for sub-formulae on a higher
level in the AST of the input formula are, actually, quite small. Therefore,
the performance of the decision procedure could get a significant boost if we
could directly construct minimum (or at least small) automata for such for-
mulae, which is what we try to do in [114].

In order to do this, we lift the idea of the lazy construction from [101,
118, 119] to LIA. In particular, we extend the definition of Post (cf. Equa-
tion (4.7)) from atomic formulae to arbitrary formulae. Now, the states of the
constructed NFA are labelled by general LIA formulae: the language of the
state equals encodings of all models of the LIA formula. This is the main dif-
ference from the procedures for WS1S/WSkS, where there was no direct cor-
respondence of states and standard formulae (in [101, 118, 119] we needed to
introduce the “automata terms”, which contained derivatives). Having states
corresponding to LIA formulae is powerful, since it allows us to perform al-
gebraic simplifications of the formulae in states, in effect decreasing the size
of the constructed NFA. For instance, consider the formula x ≤ 1000 ∧−x ≤
0 ∧ x ≡257 255. A part of the corresponding NFA can be seen in Figure 4.3.
Some of the states (i.e., formulae) can, however, be significantly simplified,
e.g., the formula in the state x ≤ 500 ∧ −x ≤ 0 ∧ x ≡257 256 can be sim-
plified to x = 256. The new formula generates a much smaller state space
(logarithmic compared to linear for the original formula).

Simplifying LIA formulae is hard in general (as hard as deciding their
validity). We introduced several sub-optimal ways to simplify LIA formu-
lae that work well in practice (the simplification is a trade-off between the
complexity of simplifying a formula and the savings from the pruned state
space). The first class of simplification rules is based on pruning disjunctions
generated by unfolding existential quantifiers: given a state φ1 ∨ φ2, if it holds
that φ1 ⇒ φ2, then φ1 ∨ φ2 can be replaced by just φ1. Testing the entailment
precisely is hard (in general as hard as deciding the original formula), so we
use a stronger but cheaper relation of subsumption, which is defined induc-
tively on the structure of formulae.

4.2. DECIDING QUANTIFIED PRESBURGER ARITHMETIC 27

The second class of simplification rules is based on statically analyzing
the formulae and inferring bounds on variables in order to perform quanti-
fier instantiation, i.e., given a formula ∃x(φ), obtaining an equivalent formula
φ[x/c] for the computed value of c (this can be, of course, done only some-
times). For instance, for the formula ψ = ∃y(x − y ≤ 1 ∧ y ≤ −1 ∧ y ≡5 0),
we can see that we want to substitute for y a number that is as big as possible
(this follows from x − y ≤ 1; the larger y is, the less it restricts x), but less
than or equal to −1 (from y ≤ −1), and, moreover, congruent to 0 modulo 5
(from y ≡5 0). This gives us the value c = −5, which allows us to, finally,
rewrite ψ into the formula x ≤ −4.

When compared to the formula simplifications carried out in classical SMT
solvers, in our case, the simplifications are used on thousands of automata
states, which dramatically amplifies their effect. We implemented the tech-
niques in the solver Amaya and obtained a significant advantage over other
state-of-the-art solvers on hard LIA formulae with quantifiers (cf. [114] for
details). Also, we participated with Amaya in SMT-COMP’24 [211] and won
the NIA (nonlinear integer arithmetic) logic sub-category of the Arith divi-
sion in the 24 s Performance scoring scheme1 and were second under three
other scoring schemes.

In the future, we would like to extend the work to richer logics. For in-
stance, extending LIA with predicates like “x is a power of 2” or “y = x · 2k”
for a fixed k is trivial on the automata level but hard in other approaches. We
would need to find new heuristics for the new predicates to work well with
the rest of the framework. Moreover, it is an open question how to effectively
and efficiently integrate automata-based theory solvers into state-of-the-art
SMT solvers based on the Nelson-Oppen framework [178]. We would also
like to explore the idea of extending the supported logic with uninterpreted
functions, for which one could perhaps use some form of automata learning.

Contributed Papers2

[101] Tomáš Fiedor, Lukáš Holík, Petr Janků, Ondřej Lengál, and Tomáš Vojnar.
“Lazy Automata Techniques for WS1S”. In: Proc. of TACAS’17. Vol. 10205.
LNCS. 2017, pp. 407–425.

[114] Peter Habermehl, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej
Lengál. “Algebraic Reasoning Meets Automata in Solving Linear Integer
Arithmetic”. In: Proc. of CAV’24. Vol. 14681. LNCS. Springer, 2024.

1How come our linear solver performedwell in a categorywith nonlinear arithmetic? This
is because in the SMT-LIB format, modulo congruence is considered as a non-linear operation,
even though it can be rewritten using quantifiers into a linear equation.

2The work [119] (in bold) is attached to this thesis.

28 CHAPTER 4. THE AUTOMATA-LOGIC CONNECTION

[117] Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, Ondřej Valeš, and Tomáš Vo-
jnar. “Antiprenexing for WSkS: A Little Goes a Long Way”. In: Proc. of
LPAR’20. Vol. 73. EPiC Series in Computing. EasyChair, 2020, pp. 298–
316.

[118] VojtěchHavlena, LukášHolík, Ondřej Lengál, and TomášVojnar. “Automata
Terms in a LazyWSkS Decision Procedure”. In: Proc. of CADE-27. Vol. 11716.
LNCS. Springer, 2019, pp. 300–318.

[119] Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Tomáš Vojnar. “Auto-
mata Terms in a Lazy WSkS Decision Procedure”. In: J. Autom. Reason.
65.7 (2021), pp. 971–999.

[123] Vojtěch Havlena, Ondřej Lengál, and Barbora Šmahlíková. “Deciding S1S:
Down the Rabbit Hole and Through the Looking Glass”. In: Proc. of NE-
TYS’21. Vol. 12754. LNCS. Springer, 2021, pp. 215–222.

Chapter 5

Theory of Strings

In computer science, manipulating strings of characters is ubiquitous. Most
modern programming languages even have a special data type for storing
strings. In formal reasoning over programs where string manipulation plays
a role, one needs to have a support for string operations (string solving), in or-
der to be able to detect security vulnerabilities such as SQL injection or cross-
site scripting (XSS) in web applications [183–185]. String solving has also
found its applications in, e.g., analysis of access user policies in AmazonWeb
Services [24, 163, 201] or smart contracts [17]. This led to the development of
the SMT theory of strings [27] and decision procedures for this theory.

Over the years, many decision procedures and solvers for strings were
developed. Many of them use automata, e.g., Stranger [235–237], Norn [5,
6], Ostrich [61–64, 166], Trau [2–4, 7], Sloth [131], Slog [226], Slent [225],
Z3str3RE [33], Abc [22],or Bek [138]. Another class of solvers are those cen-
tered around word equations, for instance, cvc5 [26, 28, 164, 165, 182, 198,
200], Z3 [36, 177], S3 [215], Kepler22 [156], StrSolve [139], Woorpje [84].
A different approach is using bit vectors, e.g., in Z3Str/2/3/4 [32, 174, 239,
240] or Hampi [148]. Some other techniques are based on using arrays (e.g.,
Pass [159]) or SAT solving (G-strings [19] and Gecode+S [206]). The ap-
proaches have different strengths and weaknesses with none of them being
clearly the best in all cases.

In this chapter, we will give an overview of two of our approaches for
string solving: first one based on regular model checking and then one based
on the concept of the so-called stabilization.

5.1 String Solving using Regular Model Checking

Anoperation shared by themajority of approaches for dealingwithword equa-
tions (i.e., constraints of the form s = t where s and t are sequences of string
variables and symbols) is the so-called case-split rule (implemented in differ-
ent ways for different approaches). This rule represents the need to consider

29

30 CHAPTER 5. THEORY OF STRINGS

different possibilities of how a model looks like (e.g., alignment of variables
on two sides of aword equation orwhether the value of a variable is the empty
word), with many of these possibilities yielding the same final outcome.

Consider, for instance, the so-called Nielsen transformation for solving
word equations [179] and the equation xz = yw with x, y, z, w being string
variables. The transformation proceeds by first performing a case split based
on the possible alignments of the variables x and y, the first symbols of the left
and right-hand sides of the equation, respectively. More precisely, it reduces
the satisfiability problem for xz = yw into satisfiability of (at least) one of
the following four cases (1) y is a prefix of x, (2) x is a prefix of y, (3) x is
an empty string, and (4) y is an empty string. Note that these cases are not
disjoint: for instance, the empty string is a prefix of every variable. For these
four cases, the Nielsen transformation generates the following equations.

For the case (1), i.e., y is a prefix of x, all occurrences of x in xz = yw are
replaced with yx′, where x′ is a fresh word variable (we denote this case as
x ↪→ yx′), i.e., we obtain the equation yx′z = yw, which can be simplified to
x′z = w. In fact, since the transformation x ↪→ yx′ removes all occurrences of
the variable x, we can just reuse the variable x and perform the transformation
x ↪→ yx instead (and take this into account when constructing a model later).

Case (2) of the Nielsen transformation is just a symmetric counterpart of
case (1) discussed above. For cases (3) and (4), x and y, respectively, are re-
placed by empty strings. Taking into account all four possible transformations
of the equation xz = yw, we obtain the following four equations:

(1) xz = w, (2) z = yw, (3) z = yw, and (4) xz = w.

(Note that the results for (1) and (4) coincide, as well as the results for (2)
and (3).) If xz = yw has a solution, then at least one of the above equations
has a solution, too. The Nielsen transformation keeps applying the transfor-
mation rules on the obtained equations, building a proof tree and searching
for a tautology of the form ϵ = ϵ.

In [71, 72], we came up with a compact encoding of the proof tree gen-
erated by Nielsen transformation (the technique should be also applicable to
other approaches). Wemake use of the facts that (i) some of the obtained case
splits are identical and (ii) many of the obtained case splits share a common
sub-structure. For an example of (ii), consider the conjunction of word equa-
tions xz = ab ∧ wabyx = awbzy (where a and b are symbols and x, y, z, w are
string variables). After several rounds of applications of the rules above, one
would obtain the following disjunction (representing the case split) of word
equations: wabyab = awby ∨ wabya = awbby ∨ waby = awbaby (see [71]
for details). The equations could be represented by words over a two-track
alphabet, where each track represents one side of the equation, as follows:

(w
a)(

a
w)(

b
b)(

y
y)(

a
2
)(b

2
), (w

a)(
a
w)(

b
b)(

y
b)(

a
y), (w

a)(
a
w)(

b
b)(

y
a)(

2

b)(
2

y) (5.1)

5.1. STRING SOLVING USING REGULAR MODEL CHECKING 31

(2 is a padding symbol). The three words can be expressed using a single
compact regular expression:

(w
a)(

a
w)(

b
b)
[
(y

y)(
a
2
)(b

2
) + (y

b)(
a
y) + (y

a)(
2

b)(
2

y)
]

. (5.2)

In the work, we use NFAs to represent (i) the frontier of the proof tree
and (ii) the set of all so-far generated nodes of the proof tree. Starting from
an NFA A representing the input string constraint (the current frontier), we
compute the post-image of A w.r.t. the transducer τ representing the Nielsen
transformation rules (one can regard this as performing the breadth-first search
through the proof tree). The result is also an NFA, which is used as the next
frontier. The (finite length-preserving) transducer τ is constructed by transla-
tion fromMSO(Strings) (monadic second-order logic over strings) formulae
that describe the transformation rules. All of the obtained NFAs are united
in an NFA B to keep track of all the traversed nodes of the proof tree. The
previous is repeated until either we reach a frontier NFAwhose language has
a non-empty intersection with the language {ϵ} (plus padding, so in reality,
we check for intersection with the language (2

2
)∗) or the language of the fron-

tier NFA is a subset ofB (whichmeans that we generated thewhole proof tree
without finding a terminal node). This approach can be formulated within
the regular model checking (RMC) framework [1, 44].

Our approach is sound and is also complete for the so-called quadratic frag-
ment of word equations, which are conjunctions of word equations where
each variable has at most two occurrences (in the whole system). The com-
pleteness comes from finiteness of the proof tree (in a quadratic system, no
transformation rule increases the number of variables in the system). Wehave
also extended the approach past the quadratic fragment in several ways:

1. We extended the approach to the cubic fragment, i.e., conjunctions of
word equations with at most three occurrences of every variable. Note
that any conjunction of word equations can be transformed to the cubic
form; one can do this by identifying a variable x with more than three
occurrences, substituting two of its occurrences by a fresh variable y,
and adding a word equation x = y. In the new system, y has exactly
three occurrences and x has one less occurrence than it had previously.
We can continue in the same manner until the system is cubic. While
this extensionpreserves soundness, it does not preserve completeness—
there is now no guarantee of termination.

2. Moreover, we also show how the technique can be applied on any Boo-
lean combination of constraints. This is done by (i) rewriting negations
to conjunctions and disjunctions using standard techniques from string
solving [6], (ii) transforming the resulting formula into the conjunc-
tive normal form (CNF) using distributive laws (one cannot use the
Tseitin transformation [217] because it would re-introduce negations),

32 CHAPTER 5. THEORY OF STRINGS

and (iii) encoding every clause as a set of words, which will become
a part of the initial state.

3. One can also encode regular constraints into the framework. Regular
constraints express that the assignment to a variable needs to fall into
a given regular language (e.g., x ∈ (ab)∗c). The encoding is done by, in-
tuitively, taking the NFA for the regular language and simulating a run
through the NFA in case certain rules of the Nielsen transformation are
taken. One can encode this inMSO(Strings) and extend the transducers
in the standard way.

4. Finally, we also show how one can extend the approach to length con-
straints, for example |x| < |y|+ 2. We extend the encoding with a part
that talks about the lengths of the strings assigned to the variables, in
a similar way as in automata-based decision procedures for Presburger
arithmetic (cf. Section 4.2), and the transducers are, in turn, extended
with manipulation of these lengths.

Prototype implementation of the resultingdecisionprocedure showed that
the approach is quite beneficial when used in a portfolio solver with other es-
tablished solvers, such as Z3 [177] or cvc5 [26].

5.2 Stabilization-based String Solving

Many approaches for solving string constraints, including the one from the
previous section, have issues when dealing with regular constraints (e.g., x ∈
(a + b)∗c). Often, regular constraints are handled only after, e.g., word equa-
tions are solved, and their handling is inefficient (e.g. the regular-constraint
extension of the method in the previous section). This can cause exploring
parts of the state space that the regular constraints exclude and also a consid-
erable slow-down of the decision procedure.

In [38], we take an inverse approach—we work with regular constraints
already from the beginning. The paper focuses on a fragment of string con-
straints that contains conjunctions of word equations and regular constraints
(considering only conjunctions is usually sufficient, as this is the type of con-
straints that is passed to a theory solver within a Nelson-Oppen-based SMT
solver [178]). For simplicity, consider a set of string variables X and a con-
straint of the form x1 . . . xm = xm+1 . . . xn ∧ ∧

x∈X Lx where x1, . . . , xn ∈ X

and Lx is a regular language for every x ∈ X. Our approach is based on the
following theorem:

Theorem 1 The following are equivalent:

1. The constraint x1 . . . xm = xm+1 . . . xn ∧
∧

x∈X Lx has a solution.

5.2. STABILIZATION-BASED STRING SOLVING 33

2. There exists an assignment ν : X → 2Σ∗ mapping every variable to a regular
language such that (i) for every variable x ∈ X, it holds that ∅ ⊂ ν(x) ⊆
Lx and (ii) ν(x1) · · · ν(xm) = ν(xm+1) · · · ν(xn), i.e., the regular languages
obtained by concatenating the assignments of languages to the variables on both
sides of the equation coincide.

Theorem 1 says that one can approach solving of the constraint by looking
at the equation Lx1 · · · Lxm = Lxm+1 · · · Lxn—i.e., an equation obtained from the
original word equation by substituting the variables with their languages—,
and if the languages on the two sides of the equation do not equal, one can
refine assignments of languages to the variables by removing strings from
the languages that are forbidden by one of the sides of the equation. This can
repeat until the equation holds, i.e., until stabilization.

For illustration, consider the string constraint xy = yx ∧ x ∈ a(a + b)∗ ∧
y ∈ (a + b)+ (we abuse notation and use regular expressions for describing
regular languages). After substituting languages for the variables in theword
equation xy = yx, we obtain the following:

x︷ ︸︸ ︷
a(a + b)∗

y︷ ︸︸ ︷
(a + b)+ ̸=

y︷ ︸︸ ︷
(a + b)+

x︷ ︸︸ ︷
a(a + b)∗. (5.3)

Since the equality of the regular languages does not hold, we refine the lan-
guage assignment by constructing the intersection of the NFAs representing
the two sides (while remembering which variables the corresponding parts
belong to), inferring the following three possibilities to satisfy the equality:

N1 :

x︷ ︸︸ ︷
a(a + b)∗a(a + b)∗

y︷ ︸︸ ︷
(a + b)+ =

y︷ ︸︸ ︷
a(a + b)∗

x︷ ︸︸ ︷
a(a + b)∗(a + b)+

N2 :

x︷ ︸︸ ︷
a(a + b)∗

y︷ ︸︸ ︷
a(a + b)∗ =

y︷ ︸︸ ︷
a(a + b)∗

x︷ ︸︸ ︷
a(a + b)∗

N3 :

x︷ ︸︸ ︷
a(a + b)∗

y︷ ︸︸ ︷
(a + b)+a(a + b)∗ =

y︷ ︸︸ ︷
a(a + b)∗(a + b)+

x︷ ︸︸ ︷
a(a + b)∗

We call these three possibilities (N1, N2, and N3) noodles. They denote a case
split of possible ways how the variables on the two sides of an equation can
match each other and are obtain from the NFA for the intersection of the two
sides by taking the largest sub-NFAs with the same alignment of parts for the
variables. For each of the noodles, we also need to synchronize all occurrences
of the same variable. For instance, for N1, on the left-hand side, x is assigned
the language a(a+ b)∗a(a+ b)∗ and on the right-hand side, it is assigned a(a+
b)∗(a + b)+ (which can be simplified to a(a + b)+). Their intersection is the
language a(a+ b)∗a(a+ b)∗, which is assigned as the new language of x. For y,
onewould obtain the intersection of (a+ b)+ and a(a+ b)∗, which is a(a+ b)∗.
We could then continue in N1, again testing the equality of the new languages

34 CHAPTER 5. THEORY OF STRINGS

on the left-hand side and the right-hand side of the equation xy = yx. Instead,
we could, however, take the noodle N2, which assigns the language a(a + b)∗

to both x and y, and immediately makes the equation LxLy = LyLx true. The
proof of Theorem 1 shows how one can construct a stringmodel if the regular
language equality holds.

The technique is extended to systems of word equations, where the refine-
ment of the variables’ languages is done using all equations in some order. We
have shown that for the chain-free fragment of word equations [7]1, the tech-
nique is complete, since the sequence of refinements terminates.

The technique was extended in [66] with the support of length constraints.
The main idea of the extension is that when one obtains a stable assignment
of languages to variables, instead of just terminating, one looks at the NFAs
assigned to variables and obtains a quantifier-free LIA formula describing the
lengths of the words from their languages (e.g., using a technique based on
Parikh images [93, 187]), which can then be solved by an off-the-shelf LIA
solver (which is an essential component of any practical SMT solver).

In order for this approach to be sound, the basic procedure, however,
needs to be changed. The reason for this is that, in general, if we come to
a stable variable assignment ν : X → 2Σ∗ , while we know that there exists
a model of the word equations compatible with ν, it does not need to hold
that any assignment of strings from ν to the string variables is a model. Con-
sider, e.g., theword equation xy = yx and the language assignment ν = {x 7→
{a, b}, y 7→ {a, b}}; while it holds that ν(x)ν(y) = ν(y)ν(x), e.g., the string
assignment {x 7→ a, y 7→ b} is not a model (a model needs both variables to
be assigned the same value).

The basic procedure is changed by adding theAlign&Split rule (inspired
by a similar technique originally presented in [6]), which, intuitively, per-
forms an explicit alignment of variables on the two sides of an equation to
each other (in which case they can be unified by replacing their occurrences
by a single new variable) or splits one of them into two. This is used only
for variables that have occurrences in some length constraint (the so-called
length variables)—other variables can be treated as previously. The output
assignment of languages to variables is thenmonadic (in the sense that any se-
lection of strings from the language assignments represents a model) on the
length variables.

In the same work [66], we also extended the framework with a support
for string disequations—i.e., constraints of the form t1 ̸= t2 with t1 and t2 be-
ing sequences of string variables—using a translation to word equations, as
well as some other string predicates from the SMT-LIB format [27], such as
at, replace, indexof, contains, prefixof, and suffixof. The procedure
was implemented by replacing the string solver in Z3 [177] with our solver,

1whose definition is quite technical, but, intuitively, it prohibits cycles in a graph of depen-
dencies between the sides of the equations

5.2. STABILIZATION-BASED STRING SOLVING 35

yielding a new SMT solver Z3-Noodler.
In [116], the solver was further extended with a support for string-integer

conversions (SMT-LIB functions from_code, from_int, to_code, and to_int),
which is performed by encoding the constraints into LIA formulae. This can-
not be always performed (in general, wewould need LIA extendedwith a 10x

function, whichwould yield anundecidable theory), but it is possible inmany
practical settings because usually, either (i) the language of strings to be con-
verted into integers is finite or (ii) one can safely (while being sound for the
SAT case) underapproximate the language to a finite language.

The solver Z3-Noodler with the techniques described in [38, 66, 67, 116]
took part in the QF_Strings division of SMT-COMP’24 [211] (single query
track) and won it under all scoring schemes, as well as the categories for the
logics QF_S and QF_SLIA.

We are currently working on extending the framework with a better sup-
port for disequations and¬contains/¬prefixof/¬suffixofpredicates that,
instead of translating the predicates (where it is possible) to word equations
(which may potentially break the chain-freeness of the system), reduces the
problem to configuration reachability in a version of counter automaton (or,
in some cases, just a Z-VASS). In addition, an extension that would allow to
encode string transductions is also underway.

Contributed Papers2

[38] František Blahoudek, Yu-Fang Chen, David Chocholatý, Vojtěch Havlena,
Lukáš Holík, Ondřej Lengál, and Juraj Síč. “Word Equations in Synergywith
Regular Constraints”. In: Proc. of FM’23. Vol. 14000. LNCS. Springer, 2023,
pp. 403–423.

[66] Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej
Lengál, and Juraj Síč. “Solving String Constraints with Lengths by Stabi-
lization”. In: Proc. ACM Program. Lang. 7.OOPSLA2 (2023), pp. 2112–2141.

[67] Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej
Lengál, and Juraj Síč. “Z3-Noodler: An Automata-based String Solver”. In:
Proc. of TACAS’24. Vol. 14570. LNCS. Springer, 2024, pp. 24–33.

[71] Yu-FangChen,VojtěchHavlena,Ondřej Lengál, andAndreaTurrini. “A sym-
bolic algorithm for the case-split rule in solving word constraints with ex-
tensions”. In: J. Syst. Softw. 201 (2023), p. 111673.

[72] Yu-FangChen,VojtěchHavlena,Ondřej Lengál, andAndrea Turrini. “ASym-
bolic Algorithm for the Case-Split Rule in String Constraint Solving”. In:
APLAS’20. Vol. 12470. LNCS. Springer, 2020, pp. 343–363.

[116] VojtěchHavlena, LukášHolík, Ondřej Lengál, and Juraj Síč. “Cooking String-
Integer Conversions with Noodles”. In: Proc. of SAT’24. Vol. 305. LIPIcs.
Dagstuhl, 2024, 14:1–14:19.

2The work [71] (in bold) is attached to this thesis.

Chapter 6

Analysis of Quantum Circuits

The concept of quantum computing appeared around 1980 with the promise
to solve many problems challenging for classical computers. Quantum al-
gorithms for such problems started appearing later, such as Shor’s factoring
algorithm [207], a solution to the hidden subgroup problem by Ettinger et
al. [96], Bernstein-Vazirani’s algorithm [31], or Grover’s search [111]. For
a long time, no practical implementation of these algorithms has been avail-
able due to the missing hardware. Recent years have, however, seen the ad-
vent of quantum chips claiming to achieve quantum supremacy [21, 85], i.e., the
ability to solve a problem that a state-of-the-art supercomputer would take
thousands of years to solve. As it seems that quantum computers will occupy
a prominent role in the future, systems and languages for their programming
are in active development (e.g., [18, 110, 228]), and efficient quantum algo-
rithms for solutions of real-world problems, such as machine learning [34,
78], optimization [172], or quantum chemistry [56], have started appearing.

The exponential size of the underlying computational space and the prob-
abilistic naturemakes it, however, extremely challenging to reason about quan-
tum programs—both for human users and automated analysis tools. The ex-
isting automated analysis approaches are mostly unable to handle large-scale
circuits [99, 100, 232–234], inflexible in checking user-specified properties [20,
54, 81, 97, 110, 180, 188, 203, 216, 222, 227, 241, 242], or imprecise and unable
to catch bugs [189, 238]. In our work, we addressed these shortcomings and
tried to develop scalable and flexible automated analysis tools for quantum
circuits by exploiting ideas from automata theory and program analysis.

In [69], we introduced a novel framework for verification and bug hunt-
ing in quantum circuits. The framework is based on efficient representation
of sets of quantum states by the use of finite tree automata [82]. The key idea
is that a state of a quantum circuit with n qubits, which is a vector of 2n com-
plex numbers, can be seen as a perfect binary tree of the height n (i.e., a tree
whose all branches have the same length n). Existing approaches represent
one such a tree (i.e., a quantum state) compactly using variants of decision

37

38 CHAPTER 6. ANALYSIS OF QUANTUM CIRCUITS

q

q1
0 q1

1

q2
0 q2

1

q0 q1

x1 x1

x2 x2 x2

x3 x3 x3

0 1

(a) Tree automaton A

x1

x2 x2

x3 x3 x3 x3

1 0 0 0 0 0 0 0
(b) A tree t

q

q1
1 q1

0

q2
1 q2

0 q2
0 q2

0

q1 q0 q0 q0 q0 q0 q0 q0

(c) An accepting run of A over t

Figure 6.1: An example of (a) a tree automatonA encoding all computational
basis states over 3 qubits (denoted as x1, x2, and x3), (b) a tree t representing
a quantum state, and (c) a run of A over t. Dashed parts of hyperedges go
to the 0-child of the transitions, solid parts go to the 1-child of the transitions.
Note that the TA generates the set of all perfect trees of the height 3 with
one 1-leaf and all other leaves labelled by 0.

diagrams (DDs) [136, 137, 180, 209, 210, 216, 223, 224, 242]. For representing
sets of trees (i.e., a predicate over quantum states) naively, one would need to
have sets of the vectors or DDs. In common scenarios (e.g., when one consid-
ers all computational bases, i.e., 2n quantum states, each representing a vector
with 2n complex values), this causes a blow-up in the size of the representa-
tion, not even mentioning the time complexity needed to execute operations
over such a representation. In our framework, we encode sets of quantum states
using tree automata (TAs). The use of TAs allows to compactly representmany
sets of quantum states occurring in practice, e.g., the set of all computational
basis states (a computational basis is a complex vector with exactly one occur-
rence of one and all other elements having the value zero); a TA representing
all computational basis states and its run on an example tree-representation
of a quantum state are depicted in Figure 6.1 (note that the size of the TA is
linear to the number of qubits).

Our verification framework follows the Floyd-Hoare style of deductive ver-
ification based on the so-called Hoare triples {P}C {R} with P and R being
sets of quantum states and C being a quantum circuit. The Hoare triple de-

39

x1

x2 x2

y z z z

(a) A tree representing an input
symbolic quantum state s

x1

x2 x2

y+3z
2

y−z
2

y−z
2

y−z
2

(b) An example of an output s′ of
a circuit with input s

x1

x2 x2

|□| > |y| |□| < |z| |□| < |z| |□| < |z|

(c) An example of a tree p representing a symbolic predicate over quantum states.
When checking whether s′ is represented by p, we substitute the 2 in the leaves
with the term from the corresponding leaf of s′ (e.g., for the leaf corresponding to
|00⟩, i.e., the left-most branch, we would obtain

∣∣∣ y+3z
2

∣∣∣ > |y|). We would then check
whether φ ⇒

∣∣∣ y+3z
2

∣∣∣ > |y| and similarly for other branches.

Figure 6.2: An example of working with symbolic quantum states.

notes that if s is a quantum state from the set P and it is input to the circuit C,
then the quantum state obtained from the output of the circuit belongs to the
set R. In order to verify that a Hoare triple holds, we take a TAAP represent-
ing P, run the circuit C on all trees from AP, obtaining a TA A′, and check
whether L(A′) ⊆ L(AR), whereAR is a TA representing R, using a standard
TA language inclusion test. A crucial part of the procedure is defining ab-
stract transformers that can execute quantum gates on all states represented by
a TA efficiently. We have defined such transformers for a subset of quantum
gates that is expressive enough to allow (approximate) universal quantum
computation (the only standard gates not included are parameterized rota-
tion gates, which can, however, be arbitrarily precisely approximated using
the supported gates). The transformers for most of the gates (e.g., X, Z, or
CNOT) perform a simple modification of the TA, which consists of redirect-
ing some transitions, making copies of states, and potentially modifying the
values of leaf transitions. For some gates (e.g., theHadamard (H) gate), more
complicated operations that require some synchronization in the trees, imple-
mented by tagging, need to be performed. Our framework was able to prove
correctness of a wide range of quantum circuits and we evenmanaged to find
a bug in the Qcec tool for quantum circuit equivalence checking [54].

We further extended the framework in a follow-upwork [68] in twoways:

40 CHAPTER 6. ANALYSIS OF QUANTUM CIRCUITS

(i) Instead of only concrete quantum states, we also consider symbolic quantum
states, whose representation uses symbolic variables and an accompanying
global constraint formula φ. One such symbolic quantum state can represent
many, potentially an infinite number of, concrete quantum states, based on
the values of the symbolic variables (which need to satisfy φ). (ii) We in-
troduced a high-level specification language that can be used for compactly de-
scribing correctness properties of quantum circuits, e.g., specifying that two
consecutive H gates add up to identity, that the outputs of certain algorithms
are quantum states with zero imaginary components of their amplitudes, or
that Grover’s search [111] outputs the correct result with a given probabil-
ity and that one iteration of Grover’s search performs amplification of the
correct amplitude. Integrating the support for symbolic quantum states re-
quired redesigning the TA language inclusion test, since now the TAs contain
symbolic variables and symbolic terms (obtained when performing gate op-
erations with symbolic quantum states), cf. Figure 6.2.

The idea ofworkingwith symbolic variableswas further developed in [65],
now in the context of simulation of quantum circuits. The work developed
the following two contributions to speeding up quantum simulation: (i) It
introduces a precise representation of quantum states usingmulti-terminal bi-
nary decision diagrams (MTBDDs) [25, 105] and implementation of gate oper-
ations that is performed by special manipulation over the MTBDDs instead
of performing generic Apply functions as done, e.g., in [216] in the context
of BDD-based encoding. (ii) Mainly, it proposes an acceleration technique
for quantum circuits that use loops with a fixed number of repetitions, such
as various amplitude amplification algorithms [47] (including Grover’s algo-
rithm [111]), quantum counting [48], or period finding [149]. The accelera-
tion works such that when a loop of the given structure is encountered dur-
ing simulation, the simulation abstracts the quantum state entering the loop
by introducing a symbolic variable for every concrete value in the quantum
state. Then it executes the loop body, computing with algebraic terms instead
of concrete values in the amplitudes. After the output is obtained, the algo-
rithm checks whether the terms for all basis states with the same symbolic
variable in the input are equivalent: if yes, we have computed a big-step se-
mantics of the loop and canuse it to iterate the given number of times to obtain
the output quantum state; if not, we perform a refinement of the original ab-
straction and repeat the process. This technique was able to outperform other
state-of-the-art simulators by several orders of magnitude.

As a future direction, we are currently exploring new formalmodels (mod-
ifications of TAs) thatwould allow some limited synchronization between left
and right subtrees of tree nodes (this is required to compactly represent the
effect of H (and some other) gates, which create a superposition). In addi-
tion, we are also working on extending the loop acceleration technique from
simulation to symbolic verification and on an efficient support for simulating
loops with measurements.

41

Contributed Papers1

[65] Tian-Fu Chen, Yu-Fang Chen, Jie-Hong Roland Jiang, Ondřej Lengál, and
Sára Jobranová. “Accelerating Quantum Circuit Simulation with Sym-
bolic Execution and Loop Summarization”. In: Proc. of ICCAD’24. ACM,
2024.

[68] Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, and Wei-Lun
Tsai. “AutoQ: An Automata-Based Quantum Circuit Verifier”. In: Proc. of
CAV’23. Vol. 13966. LNCS. Springer, 2023, pp. 139–153.

[69] Yu-FangChen,Kai-MinChung,Ondřej Lengál, Jyun-AoLin,Wei-LunTsai,
andDi-De Yen. “AnAutomata-Based Framework for Verification and Bug
Hunting in Quantum Circuits”. In: Proc. ACM Program. Lang. 7.PLDI
(2023), pp. 1218–1243.

1The works [65, 69] (in bold) are attached to this thesis.

Chapter 7

Conclusion

We have given an overview of the author’s research in several areas related
to finite-state automata, ranging from theoretical work (better upper bounds
for complementation of classes of Büchi automata) to practical settings (e.g.,
approximative reduction of automata for the use in network intrusion detec-
tion or practical heuristics for deciding formulae of Presburger arithmetic).
In order to be concise and keep the discussion on-target, we did not cover the
results in other areas, such as efficient pattern matching using the so-called
counting (set) automata (an extension of finite automata) [133, 218, 219], the
research on register automata [76], computation of simulation over symbolic au-
tomata [134], verification of parameterized concurrent systems [157], learning of
finite-state automata-based models of programs [75], verification of complex
programs with dynamic memory [130], deciding separation logic using tree au-
tomata [91, 92], or specification of concurrent programs [74].

Appendix A contains one or more representative papers for each of the
topics discussed in this thesis. Possible future research directions were given
at the end of discussions of each of the topics, but they could be summarized
as continuing in the endeavour to understand the structure of the addressed
problems or their real-world instances and develop algorithms that exploit
the structure and avoid the worst-case upper bounds, to, ultimately, obtain
solutions that can be used in practice.

43

Bibliography

[1] P. A. Abdulla. “Regular model checking”. In: STTT 14.2 (2012), pp. 109–118.
[2] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holík, D. Hu, W. Tsai, Z.

Wu, and D. Yen. “Solving Not-Substring Constraint with Flat Abstraction”.
In: Programming Languages and Systems - 19th Asian Symposium, APLAS 2021,
Chicago, IL, USA, October 17-18, 2021, Proceedings. Ed. by H. Oh. Vol. 13008.
Lecture Notes in Computer Science. Springer, 2021, pp. 305–320.

[3] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holík, A. Rezine, and P. Rüm-
mer. “Flatten and conquer: a framework for efficient analysis of string con-
straints”. In: Proceedings of the 38th ACMSIGPLANConference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23,
2017. Ed. by A. Cohen and M. T. Vechev. ACM, 2017, pp. 602–617.

[4] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holík, A. Rezine, and P.
Rümmer. “Trau: SMT solver for string constraints”. In: 2018 Formal Meth-
ods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 -
November 2, 2018. Ed. by N. S. Bjørner and A. Gurfinkel. IEEE, 2018, pp. 1–5.

[5] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J.
Stenman. “Norn: An SMT Solver for String Constraints”. In: Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part I. Ed. by D. Kroening and C. S. Pasareanu.
Vol. 9206. Lecture Notes in Computer Science. Springer, 2015, pp. 462–469.

[6] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J.
Stenman. “StringConstraints for Verification”. In:Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Ed. by A. Biere
and R. Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014,
pp. 150–166.

[7] P. A. Abdulla, M. F. Atig, B. P. Diep, L. Holík, and P. Janku. “Chain-Free
String Constraints”. In: Automated Technology for Verification and Analysis -
17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-31, 2019,
Proceedings. Ed. by Y. Chen, C. Cheng, and J. Esparza. Vol. 11781. Lecture
Notes in Computer Science. Springer, 2019, pp. 277–293.

[8] P. A. Abdulla, A. Bouajjani, L. Holík, L. Kaati, and T. Vojnar. “Composed
Bisimulation for Tree Automata”. In: Implementation and Applications of Auto-
mata, 13th International Conference, CIAA 2008, San Francisco, California, USA,
July 21-24, 2008. Proceedings. Ed. by O. H. Ibarra and B. Ravikumar. Vol. 5148.
Lecture Notes in Computer Science. Springer, 2008, pp. 212–222.

45

46 BIBLIOGRAPHY

[9] P. A. Abdulla, A. Bouajjani, L. Holík, L. Kaati, and T. Vojnar. “Computing
Simulations over Tree Automata”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. Ed. by C. R. Ra-
makrishnan and J. Rehof. Vol. 4963. Lecture Notes in Computer Science.
Springer, 2008, pp. 93–108.

[10] P. A. Abdulla, Y. Chen, L. Holík, R. Mayr, and T. Vojnar. “When Simulation
Meets Antichains”. In: Tools and Algorithms for the Construction and Analysis
of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings. Ed. by J. Esparza and R. Majumdar.
Vol. 6015. Lecture Notes in Computer Science. Springer, 2010, pp. 158–174.

[11] P. A. Abdulla, Y. Chen, L. Holík, and T. Vojnar. “Mediating for reduction (on
minimizing alternating Büchi automata)”. In: Theor. Comput. Sci. 552 (2014),
pp. 26–43.

[12] P. A. Abdulla, L. Holík, L. Kaati, and T. Vojnar. “A Uniform (Bi-)Simulation-
Based Framework for Reducing TreeAutomata”. In:Proceedings of the Interna-
tional Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, MEMICS 2008, Znojmo, Czech Republic, November 14-16, 2008. Ed. by
M. Ceska, Z. Kotásek, M. Kretínský, L. Matyska, and T. Vojnar. Vol. 251.
Electronic Notes in Theoretical Computer Science. Elsevier, 2008, pp. 27–48.

[13] P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. “Regular Tree Model
Checking”. In: Computer Aided Verification, 14th International Conference, CAV
2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings. Ed. by E. Brinksma
and K. G. Larsen. Vol. 2404. Lecture Notes in Computer Science. Springer,
2002, pp. 555–568.

[14] O. Alexaj. “HyperLTL Model Checking”. Bachelor’s Thesis. Faculty of In-
formation Technology, Brno University of Technology, 2024.

[15] J. D. Allred and U. Ultes-Nitsche. “A Simple and Optimal Complementation
Algorithm for BüchiAutomata”. In:Proceedings of the 33rdAnnual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018. ACM, 2018, pp. 46–55.

[16] R. Almeida, L. Holík, and R. Mayr. “Reduction of Nondeterministic Tree
Automata”. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems - 22nd International Conference, TACAS 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings. Ed. byM. Chechik and J. Raskin.
Vol. 9636. Lecture Notes in Computer Science. Springer, 2016, pp. 717–735.

[17] L. Alt, M. Blicha, A. E. J. Hyvärinen, and N. Sharygina. “SolCMC: Solidity
Compiler’s Model Checker”. In: Computer Aided Verification - 34th Interna-
tional Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
I. Ed. by S. Shoham and Y. Vizel. Vol. 13371. Lecture Notes in Computer
Science. Springer, 2022, pp. 325–338.

BIBLIOGRAPHY 47

[18] T. Altenkirch and J. Grattage. “A Functional Quantum Programming Lan-
guage”. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
26-29 June 2005, Chicago, IL, USA, Proceedings. IEEE Computer Society, 2005,
pp. 249–258.

[19] R. Amadini, G. Gange, P. J. Stuckey, and G. Tack. “A Novel Approach to
String Constraint Solving”. In: Principles and Practice of Constraint Program-
ming - 23rd International Conference, CP 2017,Melbourne, VIC, Australia, August
28 - September 1, 2017, Proceedings. Ed. by J. C. Beck. Vol. 10416. LectureNotes
in Computer Science. Springer, 2017, pp. 3–20.

[20] M. Amy. “Towards Large-scale Functional Verification of Universal Quan-
tumCircuits”. In:Proceedings 15th International Conference onQuantumPhysics
and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018. Vol. 287. EPTCS. 2018,
pp. 1–21.

[21] F. Arute et al. “Quantum supremacy using a programmable superconduct-
ing processor”. en. In:Nature 574.7779 (Oct. 2019). Number: 7779 Publisher:
Nature Publishing Group, pp. 505–510.

[22] A. Aydin, L. Bang, and T. Bultan. “Automata-Based Model Counting for
String Constraints”. In: Computer Aided Verification - 27th International Con-
ference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I. Ed. by D. Kroening and C. S. Pasareanu. Vol. 9206. Lecture Notes in
Computer Science. Springer, 2015, pp. 255–272.

[23] T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Kretínský, D. Müller, D.
Parker, and J. Strejcek. “The Hanoi Omega-Automata Format”. In: Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I. Ed. byD. Kroening andC. S. Pasare-
anu. Vol. 9206. Lecture Notes in Computer Science. Springer, 2015, pp. 479–
486.

[24] J. Backes, P. Bolignano, B. Cook, C.Dodge,A.Gacek, K. S. Luckow,N.Rungta,
O. Tkachuk, and C. Varming. “Semantic-based Automated Reasoning for
AWS Access Policies using SMT”. In: 2018 Formal Methods in Computer Aided
Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018. Ed. by
N. S. Bjørner and A. Gurfinkel. IEEE, 2018, pp. 1–9.

[25] R. I. Bahar, E. A. Frohm, C. M. Gaona, et al. “Algebraic Decision Diagrams
and Their Applications”. In: FMSD 10.2/3 (1997), pp. 171–206.

[26] H. Barbosa et al. “cvc5: A Versatile and Industrial-Strength SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 28th Interna-
tional Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part I. Ed. by D. Fisman and G. Rosu. Vol. 13243. Lecture Notes
in Computer Science. Springer, 2022, pp. 415–442.

[27] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB): Strings. https://smtlib.cs.uiowa.edu/theories-UnicodeSt
rings.shtml. 2024.

https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

48 BIBLIOGRAPHY

[28] C.W. Barrett, C. Tinelli, M. Deters, T. Liang, A. Reynolds, andN. Tsiskaridze.
“Efficient solving of string constraints for security analysis”. In: Proceedings
of the Symposium and Bootcamp on the Science of Security, Pittsburgh, PA, USA,
April 19-21, 2016. Ed. byW. L. Scherlis and D. Brumley. ACM, 2016, pp. 4–6.

[29] S. Barth. “Deciding Monadic Second Order Logic over ω-Words by Spe-
cialized Finite Automata”. In: Integrated Formal Methods - 12th International
Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings. Ed. by E.
Ábrahám and M. Huisman. Vol. 9681. Lecture Notes in Computer Science.
Springer, 2016, pp. 245–259.

[30] D.A. Basin andN. Klarlund. “HardwareVerification usingMonadic Second-
Order Logic”. In: Computer Aided Verification, 7th International Conference,
Liège, Belgium, July, 3-5, 1995, Proceedings. Ed. by P. Wolper. Vol. 939. Lecture
Notes in Computer Science. Springer, 1995, pp. 31–41.

[31] E. Bernstein and U. V. Vazirani. “Quantum complexity theory”. In: Proceed-
ings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA. ACM, 1993, pp. 11–20.

[32] M. Berzish, V. Ganesh, and Y. Zheng. “Z3str3: A string solver with theory-
aware heuristics”. In: 2017 Formal Methods in Computer Aided Design, FM-
CAD 2017, Vienna, Austria, October 2-6, 2017. Ed. by D. Stewart and G. Weis-
senbacher. IEEE, 2017, pp. 55–59.

[33] M. Berzish, M. Kulczynski, F. Mora, F. Manea, J. D. Day, D. Nowotka, and
V. Ganesh. “An SMT Solver for Regular Expressions and Linear Arithmetic
over String Length”. In: Computer Aided Verification - 33rd International Con-
ference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II. Ed. by
A. Silva and K. R. M. Leino. Vol. 12760. Lecture Notes in Computer Science.
Springer, 2021, pp. 289–312.

[34] J. D. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd.
“Quantum machine learning”. In: Nature 549.7671 (2017), pp. 195–202.

[35] M. Biehl, N. Klarlund, and T. Rauhe. “Algorithms for Guided Tree Auto-
mata”. In:Automata Implementation, First International Workshop on Implement-
ing Automata, WIA ’96, London, Ontario, Canada, August 29-31, 1996, Revised
Papers. Ed. by D. R. Raymond, D. Wood, and S. Yu. Vol. 1260. Lecture Notes
in Computer Science. Springer, 1996, pp. 6–25.

[36] N. S. Bjørner, N. Tillmann, and A. Voronkov. “Path Feasibility Analysis for
String-Manipulating Programs”. In: Tools and Algorithms for the Construction
and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings. Ed. by S. Kowalewski and A. Philip-
pou. Vol. 5505. Lecture Notes in Computer Science. Springer, 2009, pp. 307–
321.

[37] F. Blahoudek, A. Duret-Lutz, and J. Strejcek. “Seminator 2 Can Complement
Generalized Büchi Automata via Improved Semi-determinization”. In: Com-
puter Aided Verification - 32nd International Conference, CAV 2020, Los Angeles,
CA,USA, July 21-24, 2020, Proceedings, Part II. Ed. by S. K. Lahiri andC.Wang.
Vol. 12225. Lecture Notes in Computer Science. Springer, 2020, pp. 15–27.

BIBLIOGRAPHY 49

[38] F. Blahoudek, Y. Chen, D. Chocholatý, V. Havlena, L. Holík, O. Lengál, and
J. Síč. “Word Equations in Synergy with Regular Constraints”. In: Proc. of
FM’23. Vol. 14000. LNCS. Springer, 2023, pp. 403–423.

[39] F. Blahoudek, M. Heizmann, S. Schewe, J. Strejček, and M. Tsai. “Comple-
menting Semi-deterministic Büchi Automata”. In: Tools and Algorithms for
the Construction and Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Ed.
by M. Chechik and J. Raskin. Vol. 9636. Lecture Notes in Computer Science.
Springer, 2016, pp. 770–787.

[40] B. Boigelot, S. Jodogne, and P. Wolper. “An effective decision procedure for
linear arithmetic over the integers and reals”. In: ACM Trans. Comput. Log.
6.3 (2005), pp. 614–633.

[41] A. Bouajjani, P. Habermehl, L. Holík, T. Touili, and T. Vojnar. “Antichain-
Based Universality and Inclusion Testing over Nondeterministic Finite Tree
Automata”. In: Implementation and Applications of Automata, 13th International
Conference, CIAA 2008, San Francisco, California, USA, July 21-24, 2008. Pro-
ceedings. Ed. by O. H. Ibarra and B. Ravikumar. Vol. 5148. Lecture Notes in
Computer Science. Springer, 2008, pp. 57–67.

[42] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. “Abstract regular
(tree) model checking”. In: Int. J. Softw. Tools Technol. Transf. 14.2 (2012),
pp. 167–191.

[43] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. “Abstract Regular
TreeModel Checking of Complex Dynamic Data Structures”. In: Static Anal-
ysis, 13th International Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006,
Proceedings. Ed. by K. Yi. Vol. 4134. Lecture Notes in Computer Science.
Springer, 2006, pp. 52–70.

[44] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. “Regular Model Check-
ing”. In: Computer Aided Verification. Ed. by E. A. Emerson and A. P. Sistla.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 403–418.

[45] A. Boudet and H. Comon. “Diophantine Equations, Presburger Arithmetic
and Finite Automata”. In: Trees in Algebra and Programming - CAAP’96, 21st
International Colloquium, Linköping, Sweden, April, 22-24, 1996, Proceedings. Ed.
by H. Kirchner. Vol. 1059. Lecture Notes in Computer Science. Springer,
1996, pp. 30–43.

[46] C. Brabrand, A. Møller, A. Sandholm, and M. I. Schwartzbach. “A Runtime
System for Interactive Web Services”. In: Comput. Networks 31.11-16 (1999),
pp. 1391–1401.

[47] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. “Quantum amplitude ampli-
fication and estimation”. In: Quantum computation and information (Washing-
ton, DC, 2000). Vol. 305. Contemp. Math. Amer. Math. Soc., Providence, RI,
2002, pp. 53–74.

[48] G. Brassard, P. Høyer, and A. Tapp. “Quantum Counting”. In: Automata,
Languages and Programming, 25th International Colloquium, ICALP’98, Aalborg,
Denmark, July 13-17, 1998, Proceedings. Vol. 1443. LNCS. Springer, 1998,
pp. 820–831.

50 BIBLIOGRAPHY

[49] S. Breuers, C. Löding, and J. Olschewski. “Improved Ramsey-Based Büchi
Complementation”. In: Foundations of Software Science andComputational Struc-
tures - 15th International Conference, FOSSACS 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Esto-
nia,March 24 - April 1, 2012. Proceedings. Ed. by L. Birkedal. Vol. 7213. Lecture
Notes in Computer Science. Springer, 2012, pp. 150–164.

[50] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. “Logic and p-recog-
nizable sets of integers”. In: Bulletin of the BelgianMathematical Society - Simon
Stevin 1.2 (1994), pp. 191–238.

[51] R. E. Bryant. “Graph-BasedAlgorithms for Boolean FunctionManipulation”.
In: IEEE Trans. Computers 35.8 (1986), pp. 677–691.

[52] J. R. Büchi. “On a Decision Method in Restricted Second Order Arithmetic”.
In: Proc. of International Congress on Logic, Method, and Philosophy of Science
1962. Stanford Univ. Press, Stanford, 1962.

[53] J. R. Büchi. “Weak Second-Order Arithmetic and Finite Automata”. In:Math-
ematical Logic Quarterly 6.1-6 (1960), pp. 66–92. eprint: https://onlinelib
rary.wiley.com/doi/pdf/10.1002/malq.19600060105.

[54] L. Burgholzer and R. Wille. “Advanced equivalence checking for quantum
circuits”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 40.9 (2020), pp. 1810–1824.

[55] D. Bustan and O. Grumberg. “Simulation-based minimization”. In: ACM
Trans. Comput. Log. 4.2 (2003), pp. 181–206.

[56] Y. Cao et al. “Quantum Chemistry in the Age of Quantum Computing”. In:
Chemical Reviews 119.19 (2019). PMID: 31469277, pp. 10856–10915. eprint:
https://doi.org/10.1021/acs.chemrev.8b00803.

[57] R. C. Carrasco and J. Oncina. “Learning Stochastic Regular Grammars by
Means of a State Merging Method”. In: Grammatical Inference and Applica-
tions, Second International Colloquium, ICGI-94, Alicante, Spain, September 21-
23, 1994, Proceedings. Vol. 862. Lecture Notes in Computer Science. Springer,
1994, pp. 139–152.

[58] M. Češka, V. Havlena, L. Holík, J. Kořenek, O. Lengál, D. Matoušek, J. Ma-
toušek, J. Semrič, and T. Vojnar. “Deep Packet Inspection in FPGAs via Ap-
proximate Nondeterministic Automata”. In: Proc. of FCCM’19. IEEE, 2019,
pp. 109–117.

[59] M. Češka, V. Havlena, L. Holík, O. Lengál, and T. Vojnar. “Approximate
Reduction of FiniteAutomata forHigh-SpeedNetwork IntrusionDetection”.
In: Proc. of TACAS’18. Ed. by D. Beyer and M. Huisman. Vol. 10806. LNCS.
Springer, 2018, pp. 155–175.

[60] M. Češka, V. Havlena, L. Holík, O. Lengál, and T. Vojnar. “Approximate
reduction of finite automata for high-speed network intrusion detection”.
In: Int. J. Softw. Tools Technol. Transf. 22.5 (2020), pp. 523–539.

[61] T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu. “What is decidable about
string constraints with the ReplaceAll function”. In: Proc. ACM Program.
Lang. 2.POPL (2018), 3:1–3:29.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105
https://doi.org/10.1021/acs.chemrev.8b00803

BIBLIOGRAPHY 51

[62] T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P.
Rümmer, and Z. Wu. “Solving string constraints with Regex-dependent
functions through transducers with priorities and variables”. In: Proc. ACM
Program. Lang. 6.POPL (2022), pp. 1–31.

[63] T. Chen, M. Hague, J. He, D. Hu, A. W. Lin, P. Rümmer, and Z. Wu. “A De-
cision Procedure for Path Feasibility of String Manipulating Programs with
Integer Data Type”. In:Automated Technology for Verification andAnalysis - 18th
International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Pro-
ceedings. Ed. by D. V. Hung and O. Sokolsky. Vol. 12302. Lecture Notes in
Computer Science. Springer, 2020, pp. 325–342.

[64] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu. “Decision procedures
for path feasibility of string-manipulating programs with complex opera-
tions”. In: Proc. ACM Program. Lang. 3.POPL (2019), 49:1–49:30.

[65] T. Chen, Y. Chen, J. R. Jiang,O. Lengál, and S. Jobranová. “AcceleratingQuan-
tumCircuit Simulationwith Symbolic Execution and Loop Summarization”.
In: Proc. of ICCAD’24. ACM, 2024.

[66] Y. Chen, D. Chocholatý, V. Havlena, L. Holík, O. Lengál, and J. Síč. “Solving
String Constraints with Lengths by Stabilization”. In: Proc. ACM Program.
Lang. 7.OOPSLA2 (2023), pp. 2112–2141.

[67] Y. Chen, D. Chocholatý, V. Havlena, L. Holík, O. Lengál, and J. Síč. “Z3-
Noodler:AnAutomata-based String Solver”. In:Proc. of TACAS’24. Vol. 14570.
LNCS. Springer, 2024, pp. 24–33.

[68] Y. Chen, K. Chung, O. Lengál, J. Lin, and W. Tsai. “AutoQ: An Automata-
Based Quantum Circuit Verifier”. In: Proc. of CAV’23. Vol. 13966. LNCS.
Springer, 2023, pp. 139–153.

[69] Y. Chen, K. Chung, O. Lengál, J. Lin, W. Tsai, and D. Yen. “An Automata-
Based Framework for Verification and Bug Hunting in Quantum Circuits”.
In: Proc. ACM Program. Lang. 7.PLDI (2023), pp. 1218–1243.

[70] Y. Chen, V. Havlena, andO. Lengál. “Simulations in Rank-Based Büchi Auto-
mata Complementation”. In: Proc. of APLAS’19. Vol. 11893. LNCS. Springer,
2019, pp. 447–467.

[71] Y. Chen, V. Havlena, O. Lengál, and A. Turrini. “A symbolic algorithm for
the case-split rule in solving word constraints with extensions”. In: J. Syst.
Softw. 201 (2023), p. 111673.

[72] Y. Chen, V. Havlena, O. Lengál, and A. Turrini. “A Symbolic Algorithm for
the Case-Split Rule in String Constraint Solving”. In: APLAS’20. Vol. 12470.
LNCS. Springer, 2020, pp. 343–363.

[73] Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang.
“Advanced automata-based algorithms for program termination checking”.
In: Proc. of PLDI’18. ACM, 2018, pp. 135–150.

[74] Y. Chen, C. Hong, O. Lengál, S. Mu, N. Sinha, and B. Wang. “An Executable
Sequential Specification for Spark Aggregation”. In: Networked Systems - 5th
International Conference, NETYS 2017, Marrakech, Morocco, May 17-19, 2017,
Proceedings. Ed. by A. E. Abbadi and B. Garbinato. Vol. 10299. Lecture Notes
in Computer Science. 2017, pp. 421–438.

52 BIBLIOGRAPHY

[75] Y. Chen, C. Hsieh, O. Lengál, T. Lii, M. Tsai, B. Wang, and F. Wang. “PAC
learning-based verification and model synthesis”. In: Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016. Ed. by L. K. Dillon, W. Visser, and L. A. Williams. ACM,
2016, pp. 714–724.

[76] Y. Chen, O. Lengál, T. Tan, and Z. Wu. “Register automata with linear arith-
metic”. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 2017,
pp. 1–12.

[77] P. Chrzastowski-Wachtel and M. Raczunas. “Liveness of Weighted Circuits
and the Diophantine Problem of Frobenius”. In: Fundamentals of Computation
Theory, 9th International Symposium, FCT ’93, Szeged, Hungary, August 23-27,
1993, Proceedings. Ed. by Z. Ésik. Vol. 710. Lecture Notes in Computer Sci-
ence. Springer, 1993, pp. 171–180.

[78] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini,
and L. Wossnig. “Quantum Machine Learning: A Classical Perspective”.
In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 474.2209 (Jan. 2018).

[79] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and
C. Sánchez. “Temporal Logics for Hyperproperties”. In: Principles of Security
and Trust - Third International Conference, POST 2014, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014, Proceedings. Vol. 8414. LNCS. Springer, 2014, pp. 265–
284.

[80] L. Clemente and R. Mayr. “Efficient reduction of nondeterministic automata
with application to language inclusion testing”. In: Log. Methods Comput. Sci.
15.1 (2019).

[81] B. Coecke and R. Duncan. “Interacting quantum observables: categorical
algebra and diagrammatics”. In: New Journal of Physics 13.4 (Apr. 2011),
p. 043016.

[82] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S.
Tison, and M. Tommasi. Tree automata techniques and applications. 2008.

[83] C.Courcoubetis andM.Yannakakis. “VerifyingTemporal Properties of Finite-
State Probabilistic Programs”. In: 29th Annual Symposium on Foundations of
Computer Science, White Plains, New York, USA, 24-26 October 1988. IEEE Com-
puter Society, 1988, pp. 338–345.

[84] J. D. Day, T. Ehlers, M. Kulczynski, F. Manea, D. Nowotka, andD. B. Poulsen.
“On Solving Word Equations Using SAT”. In: Reachability Problems - 13th In-
ternational Conference, RP 2019, Brussels, Belgium, September 11-13, 2019, Pro-
ceedings. Ed. by E. Filiot, R. M. Jungers, and I. Potapov. Vol. 11674. Lecture
Notes in Computer Science. Springer, 2019, pp. 93–106.

[85] M. DeCross et al. The computational power of random quantum circuits in arbi-
trary geometries. 2024. arXiv: 2406.02501 [quant-ph].

https://arxiv.org/abs/2406.02501

BIBLIOGRAPHY 53

[86] L. Doyen and J. Raskin. “Antichain Algorithms for Finite Automata”. In:
Tools and Algorithms for the Construction and Analysis of Systems, 16th Interna-
tional Conference, TACAS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings. Ed. by J. Esparza and R. Majumdar. Vol. 6015. Lecture
Notes in Computer Science. Springer, 2010, pp. 2–22.

[87] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L.
Xu. “Spot 2.0 -A Framework for LTL andω-AutomataManipulation”. In:Au-
tomated Technology for Verification and Analysis - 14th International Symposium,
ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings. Ed. by C. Artho,
A. Legay, and D. Peled. Vol. 9938. Lecture Notes in Computer Science. 2016,
pp. 122–129.

[88] J. Elgaard, N. Klarlund, and A. Møller. “MONA 1.x: New Techniques for
WS1S and WS2S”. In: Computer Aided Verification, 10th International Confer-
ence, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings. Ed.
by A. J. Hu and M. Y. Vardi. Vol. 1427. Lecture Notes in Computer Science.
Springer, 1998, pp. 516–520.

[89] J. Elgaard, A. Møller, and M. I. Schwartzbach. “Compile-Time Debugging
of C Programs Working on Trees”. In: Programming Languages and Systems,
9th European Symposium on Programming, ESOP 2000, Held as Part of the Euro-
pean Joint Conferences on the Theory and Practice of Software, ETAPS 2000, Berlin,
Germany, March 25 - April 2, 2000, Proceedings. Ed. by G. Smolka. Vol. 1782.
Lecture Notes in Computer Science. Springer, 2000, pp. 119–134.

[90] E. A. Emerson and C. Lei. “Modalities for Model Checking: Branching Time
Logic Strikes Back”. In: Sci. Comput. Program. 8.3 (1987), pp. 275–306.

[91] C. Enea, O. Lengál,M. Sighireanu, and T. Vojnar. “Compositional entailment
checking for a fragment of separation logic”. In: FormalMethods Syst. Des. 51.3
(2017), pp. 575–607.

[92] C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. “SPEN: A Solver for Sepa-
ration Logic”. In: NASA Formal Methods - 9th International Symposium, NFM
2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings. Ed. by C. W. Bar-
rett, M. D. Davies, and T. Kahsai. Vol. 10227. Lecture Notes in Computer
Science. 2017, pp. 302–309.

[93] J. Esparza. “Petri Nets, Commutative Context-Free Grammars, and Basic
Parallel Processes”. In: Fundam. Informaticae 31.1 (1997), pp. 13–25.

[94] J. Esparza and M. Blondin. Automata Theory: An Algorithmic Approach. The
MIT Press, 2023.

[95] K. Etessami, T. Wilke, and R. A. Schuller. “Fair Simulation Relations, Parity
Games, and State Space Reduction for Büchi Automata”. In: SIAM J. Comput.
34.5 (2005), pp. 1159–1175.

[96] M. Ettinger, P. Høyer, and E. Knill. “The quantum query complexity of the
hidden subgroup problem is polynomial”. In: Inf. Process. Lett. 91.1 (2004),
pp. 43–48.

[97] A. Fagan and R. Duncan. “Optimising Clifford Circuits with Quantomatic”.
In:Electronic Proceedings in Theoretical Computer Science 287 (Jan. 2019), pp. 85–
105.

54 BIBLIOGRAPHY

[98] W. Feng, Y. Li, A. Turrini, M. Y. Vardi, and L. Zhang. “On the power of finite
ambiguity in Büchi complementation”. In: Inf. Comput. 292 (2023), p. 105032.

[99] Y. Feng, E.M.Hahn, A. Turrini, and S. Ying. “Model checking omega-regular
properties for quantum Markov chains”. In: Proc. of CONCUR’17. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017.

[100] Y. Feng, E. M. Hahn, A. Turrini, and L. Zhang. “QPMC: A Model Checker
for QuantumPrograms and Protocols”. In: International Symposium on Formal
Methods. Springer International Publishing, 2015, pp. 265–272.

[101] T. Fiedor, L. Holík, P. Janků, O. Lengál, and T. Vojnar. “Lazy Automata Tech-
niques for WS1S”. In: Proc. of TACAS’17. Vol. 10205. LNCS. 2017, pp. 407–
425.

[102] T. Fiedor, L. Holík, O. Lengál, and T. Vojnar. “Nested Antichains for WS1S”.
In: Tools and Algorithms for the Construction and Analysis of Systems - 21st Inter-
national Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. Vol. 9035. LNCS. Springer, 2015, pp. 658–674.

[103] T. Fiedor, L. Holík, O. Lengál, and T. Vojnar. “Nested antichains for WS1S”.
In: Acta Informatica 56.3 (2019), pp. 205–228.

[104] E. Friedgut, O. Kupferman, andM. Y. Vardi. “Büchi ComplementationMade
Tighter”. In: Int. J. Found. Comput. Sci. 17.4 (2006), pp. 851–868.

[105] M. Fujita, P. C. McGeer, and J. C. Yang. “Multi-Terminal Binary Decision
Diagrams: An Efficient Data Structure forMatrix Representation”. In: Formal
Methods Syst. Des. 10.2/3 (1997), pp. 149–169.

[106] Y. Ge, C. W. Barrett, and C. Tinelli. “Solving Quantified Verification Condi-
tions Using Satisfiability Modulo Theories”. In: CADE-21. Vol. 4603. LNCS.
Springer, 2007, pp. 167–182.

[107] Y. Ge and L. M. de Moura. “Complete Instantiation for Quantified Formulas
in Satisfiability Modulo Theories”. In: CAV’09. Vol. 5643. LNCS. Springer,
2009, pp. 306–320.

[108] R. J. van Glabbeek and B. Ploeger. “Five Determinisation Algorithms”. In:
Implementation andApplications of Automata, 13th International Conference, CIAA
2008, San Francisco, California, USA, July 21-24, 2008. Proceedings. Ed. by O. H.
Ibarra and B. Ravikumar. Vol. 5148. Lecture Notes in Computer Science.
Springer, 2008, pp. 161–170.

[109] J. Glenn and W. I. Gasarch. “Implementing WS1S via Finite Automata”. In:
Automata Implementation, First International Workshop on Implementing Auto-
mata, WIA ’96, London, Ontario, Canada, August 29-31, 1996, Revised Papers.
Ed. by D. R. Raymond, D. Wood, and S. Yu. Vol. 1260. Lecture Notes in
Computer Science. Springer, 1996, pp. 50–63.

[110] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. “Quipper:
a scalable quantum programming language”. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013. ACM, 2013, pp. 333–342.

BIBLIOGRAPHY 55

[111] L. K. Grover. “A Fast QuantumMechanical Algorithm for Database Search”.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. ACM, 1996,
pp. 212–219.

[112] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. “On Comple-
mentingNondeterministic Büchi Automata”. In:Correct Hardware Design and
Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference,
CHARME 2003, L’Aquila, Italy, October 21-24, 2003, Proceedings. Ed. byD. Geist
and E. Tronci. Vol. 2860. Lecture Notes in Computer Science. Springer, 2003,
pp. 96–110.

[113] C. Haase. “A survival guide to Presburger arithmetic”. In: ACM SIGLOG
News 5.3 (2018), pp. 67–82.

[114] P. Habermehl, V. Havlena, M. Hečko, L. Holík, and O. Lengál. “Algebraic
Reasoning Meets Automata in Solving Linear Integer Arithmetic”. In: Proc.
of CAV’24. Vol. 14681. LNCS. Springer, 2024.

[115] P. Habermehl, L. Holík, A. Rogalewicz, J. Simácek, and T. Vojnar. “Forest
Automata for Verification of Heap Manipulation”. In: Computer Aided Verifi-
cation - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings. Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lec-
ture Notes in Computer Science. Springer, 2011, pp. 424–440.

[116] V. Havlena, L. Holík, O. Lengál, and J. Síč. “Cooking String-Integer Conver-
sions with Noodles”. In: Proc. of SAT’24. Vol. 305. LIPIcs. Dagstuhl, 2024,
14:1–14:19.

[117] V. Havlena, L. Holík, O. Lengál, O. Valeš, and T. Vojnar. “Antiprenexing for
WSkS: A Little Goes a Long Way”. In: Proc. of LPAR’20. Vol. 73. EPiC Series
in Computing. EasyChair, 2020, pp. 298–316.

[118] V. Havlena, L. Holík, O. Lengál, and T. Vojnar. “Automata Terms in a Lazy
WSkSDecision Procedure”. In:Proc. of CADE-27. Vol. 11716. LNCS. Springer,
2019, pp. 300–318.

[119] V. Havlena, L. Holík, O. Lengál, and T. Vojnar. “Automata Terms in a Lazy
WSkS Decision Procedure”. In: J. Autom. Reason. 65.7 (2021), pp. 971–999.

[120] V. Havlena and O. Lengál. “Reducing (To) the Ranks: Efficient Rank-Based
Büchi Automata Complementation”. In: Proc. of CONCUR’21. Vol. 203.
LIPIcs. Dagstuhl, 2021, 2:1–2:19.

[121] V. Havlena, O. Lengál, Y. Li, B. Šmahlíková, and A. Turrini. “Modular Mix-
and-Match Complementation of Büchi Automata”. In: Proc. of TACAS’23.
Vol. 13993. LNCS. Springer, 2023, pp. 249–270.

[122] V.Havlena,O. Lengál, andB. Šmahlíková. “ComplementingBüchiAutomata
with Ranker”. In: Proc. of CAV’22. Vol. 13372. LNCS. Springer, 2022, pp. 188–
201.

[123] V. Havlena, O. Lengál, and B. Šmahlíková. “Deciding S1S: Down the Rabbit
Hole and Through the Looking Glass”. In: Proc. of NETYS’21. Vol. 12754.
LNCS. Springer, 2021, pp. 215–222.

56 BIBLIOGRAPHY

[124] V. Havlena, O. Lengál, and B. Šmahlíková. “Sky Is Not the Limit - Tighter
Rank Bounds for Elevator Automata in Büchi Automata Complementation”.
In: Proc. of TACAS’22. Vol. 13244. LNCS. Springer, 2022, pp. 118–136.

[125] M. Heizmann, J. Hoenicke, and A. Podelski. “Software Model Checking for
People Who Love Automata”. In: Computer Aided Verification - 25th Interna-
tional Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceed-
ings. Ed. byN. Sharygina andH. Veith. Vol. 8044. LectureNotes in Computer
Science. Springer, 2013, pp. 36–52.

[126] M.Heizmann, J.Hoenicke, andA. Podelski. “TerminationAnalysis byLearn-
ing Terminating Programs”. In:Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vi-
enna, Austria, July 18-22, 2014. Proceedings. Vol. 8559. LNCS. Springer, 2014,
pp. 797–813.

[127] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. “Mona: Monadic Second-Order Logic in Practice”. In:
Tools and Algorithms for Construction and Analysis of Systems, First International
Workshop, TACAS ’95, Aarhus,Denmark,May 19-20, 1995, Proceedings. Ed. byE.
Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen. Vol. 1019.
Lecture Notes in Computer Science. Springer, 1995, pp. 89–110.

[128] M. R.Henzinger, T. A. Henzinger, and P.W. Kopke. “Computing Simulations
on Finite and Infinite Graphs”. In: 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995. IEEE Com-
puter Society, 1995, pp. 453–462.

[129] P. Hieronymi, D. Ma, R. Oei, L. Schaeffer, C. Schulz, and J. O. Shallit. “Decid-
ability for Sturmian Words”. In: 30th EACSL Annual Conference on Computer
Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Con-
ference). Vol. 216. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022, 24:1–24:23.

[130] L. Holík, M. Hruska, O. Lengál, A. Rogalewicz, and T. Vojnar. “Counterex-
ample Validation and Interpolation-Based Refinement for Forest Automata”.
In: Verification, Model Checking, and Abstract Interpretation - 18th International
Conference, VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings. Ed.
by A. Bouajjani and D. Monniaux. Vol. 10145. Lecture Notes in Computer
Science. Springer, 2017, pp. 288–309.

[131] L. Holík, P. Janku, A. W. Lin, P. Rümmer, and T. Vojnar. “String constraints
with concatenation and transducers solved efficiently”. In: Proc. ACM Pro-
gram. Lang. 2.POPL (2018), 4:1–4:32.

[132] L. Holík, O. Lengál, A. Rogalewicz, J. Simácek, and T. Vojnar. “Fully Auto-
mated Shape Analysis Based on Forest Automata”. In: Computer Aided Veri-
fication - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings. Ed. byN. Sharygina andH. Veith. Vol. 8044. Lecture
Notes in Computer Science. Springer, 2013, pp. 740–755.

[133] L. Holík, O. Lengál, O. Saarikivi, L. Turonová, M. Veanes, and T. Vojnar.
“Succinct Determinisation of Counting Automata via Sphere Construction”.
In: Programming Languages and Systems - 17th Asian Symposium, APLAS 2019,
Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings. Ed. by A. W. Lin.
Vol. 11893. Lecture Notes in Computer Science. Springer, 2019, pp. 468–489.

BIBLIOGRAPHY 57

[134] L. Holík, O. Lengál, J. Síc, M. Veanes, and T. Vojnar. “Simulation Algorithms
for Symbolic Automata”. In:Automated Technology for Verification and Analysis
- 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-
10, 2018, Proceedings. Ed. by S. K. Lahiri and C. Wang. Vol. 11138. Lecture
Notes in Computer Science. Springer, 2018, pp. 109–125.

[135] L. Holík, O. Lengál, J. Simácek, and T. Vojnar. “Efficient Inclusion Check-
ing on Explicit and Semi-symbolic Tree Automata”. In:Automated Technology
for Verification and Analysis, 9th International Symposium, ATVA 2011, Taipei,
Taiwan, October 11-14, 2011. Proceedings. Ed. by T. Bultan and P. Hsiung.
Vol. 6996. Lecture Notes in Computer Science. Springer, 2011, pp. 243–
258.

[136] X. Hong, W. Huang, W. Chien, Y. Feng, M. Hsieh, S. Li, C. Yeh, and M. Ying.
“DecisionDiagrams for Symbolic Verification ofQuantumCircuits”. In: 2023
IEEE International Conference on Quantum Computing and Engineering (QCE).
Los Alamitos, CA, USA: IEEE Computer Society, Sept. 2023, pp. 970–977.

[137] X. Hong, X. Zhou, S. Li, Y. Feng, and M. Ying. “A Tensor Network based
Decision Diagram for Representation of Quantum Circuits”. In: ACM Trans.
Des. Autom. Electron. Syst. 27.6 (June 2022).

[138] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. “Fast and
Precise Sanitizer Analysis with BEK”. In: 20th USENIX Security Symposium,
San Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX Association,
2011.

[139] P. Hooimeijer and W. Weimer. “StrSolve: solving string constraints lazily”.
In: Autom. Softw. Eng. 19.4 (2012), pp. 531–559.

[140] L. Ilie, G. Navarro, and S. Yu. “On NFA Reductions”. In: Theory Is Forever,
Essays Dedicated to Arto Salomaa on the Occasion of His 70th Birthday. Ed. by
J. Karhumäki, H. A. Maurer, G. Paun, and G. Rozenberg. Vol. 3113. Lecture
Notes in Computer Science. Springer, 2004, pp. 112–124.

[141] R. Iosif, A. Rogalewicz, and J. Simácek. “The TreeWidth of Separation Logic
with Recursive Definitions”. In: Automated Deduction - CADE-24 - 24th Inter-
national Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14,
2013. Proceedings. Ed. by M. P. Bonacina. Vol. 7898. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 21–38.

[142] J. L. Jensen, M. E. Jørgensen, N. Klarlund, and M. I. Schwartzbach. “Auto-
matic Verification of Pointer Programs usingMonadic Second-Order Logic”.
In: Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language
Design and Implementation (PLDI), Las Vegas, Nevada, USA, June 15-18, 1997.
Ed. byM. C. Chen, R. K. Cytron, andA.M. Berman. ACM, 1997, pp. 226–236.

[143] T. Jiang and B. Ravikumar. “Minimal NFA Problems are Hard”. In: SIAM J.
Comput. 22.6 (1993), pp. 1117–1141.

[144] G. Jirásková. “State complexity of some operations on binary regular lan-
guages”. In: Theor. Comput. Sci. 330.2 (2005), pp. 287–298.

58 BIBLIOGRAPHY

[145] D. Kähler and T. Wilke. “Complementation, Disambiguation, and Deter-
minization of Büchi Automata Unified”. In: Automata, Languages and Pro-
gramming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July
7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and
Games. Ed. by L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz. Vol. 5125. Lecture Notes in Computer
Science. Springer, 2008, pp. 724–735.

[146] H. Karmarkar and S. Chakraborty. “On Minimal Odd Rankings for Büchi
Complementation”. In: Automated Technology for Verification and Analysis, 7th
International Symposium, ATVA 2009, Macao, China, October 14-16, 2009. Pro-
ceedings. Ed. by Z. Liu and A. P. Ravn. Vol. 5799. Lecture Notes in Computer
Science. Springer, 2009, pp. 228–243.

[147] P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. “MOSEL: A FLexi-
ble Toolset for Monadic Second-Order Logic”. In: Tools and Algorithms for
Construction and Analysis of Systems, Third International Workshop, TACAS ’97,
Enschede, The Netherlands, April 2-4, 1997, Proceedings. Ed. by E. Brinksma.
Vol. 1217. Lecture Notes in Computer Science. Springer, 1997, pp. 183–202.

[148] A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D. Ernst.
“HAMPI: A solver for word equations over strings, regular expressions, and
context-free grammars”. In: ACM Trans. Softw. Eng. Methodol. 21.4 (2012),
25:1–25:28.

[149] A. Y. Kitaev. “Quantummeasurements and the Abelian Stabilizer Problem”.
In: Electron. Colloquium Comput. Complex. TR96-003 (1996). ECCC: TR96-003.

[150] N. Klarlund. “A Theory of Restrictions for Logics and Automata”. In: Com-
puter Aided Verification, 11th International Conference, CAV ’99, Trento, Italy, July
6-10, 1999, Proceedings. Ed. by N. Halbwachs and D. A. Peled. Vol. 1633. Lec-
ture Notes in Computer Science. Springer, 1999, pp. 406–417.

[151] N. Klarlund, A. Møller, and M. I. Schwartzbach. “MONA Implementation
Secrets”. In: Int. J. Found. Comput. Sci. 13.4 (2002), pp. 571–586.

[152] N. Klarlund, M. Nielsen, and K. Sunesen. “A Case Study in Verification
Based onTraceAbstractions”. In: Formal Systems Specification, The RPC-Memory
Specification Case Study (the book grow out of a Dagstuhl Seminar, September
1994). Ed. by M. Broy, S. Merz, and K. Spies. Vol. 1169. Lecture Notes
in Computer Science. Springer, 1994, pp. 341–373.

[153] N. Klarlund, M. Nielsen, and K. Sunesen. “Automated Logical Verification
Based on Trace Abstractions”. In: Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, Philadelphia, Pennsylvania,
USA, May 23-26, 1996. Ed. by J. E. Burns and Y. Moses. ACM, 1996, pp. 101–
110.

[154] O. Kupferman and M. Y. Vardi. “Weak alternating automata are not that
weak”. In: ACM Trans. Comput. Log. 2.3 (2001), pp. 408–429.

[155] R. P. Kurshan. “Complementing Deterministic Büchi Automata in Polyno-
mial Time”. In: J. Comput. Syst. Sci. 35.1 (1987), pp. 59–71.

TR96-003

BIBLIOGRAPHY 59

[156] Q. L. Le and M. He. “A Decision Procedure for String Logic with Quadratic
Equations, Regular Expressions and Length Constraints”. In: Programming
Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New
Zealand, December 2-6, 2018, Proceedings. Ed. by S. Ryu. Vol. 11275. Lecture
Notes in Computer Science. Springer, 2018, pp. 350–372.

[157] O. Lengál, A. W. Lin, R. Majumdar, and P. Rümmer. “Fair Termination for
Parameterized Probabilistic Concurrent Systems”. In: Tools and Algorithms for
the Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I.
Ed. by A. Legay and T. Margaria. Vol. 10205. Lecture Notes in Computer
Science. 2017, pp. 499–517.

[158] O. Lengál, J. Simácek, and T. Vojnar. “VATA: A Library for Efficient Ma-
nipulation of Non-deterministic Tree Automata”. In: Tools and Algorithms for
the Construction and Analysis of Systems - 18th International Conference, TACAS
2012, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. Ed.
by C. Flanagan and B. König. Vol. 7214. Lecture Notes in Computer Science.
Springer, 2012, pp. 79–94.

[159] G. Li and I. Ghosh. “PASS: String Solving with Parameterized Array and
Interval Automaton”. In: Hardware and Software: Verification and Testing - 9th
International Haifa Verification Conference, HVC 2013, Haifa, Israel, November 5-
7, 2013, Proceedings. Ed. by V. Bertacco and A. Legay. Vol. 8244. Lecture
Notes in Computer Science. Springer, 2013, pp. 15–31.

[160] Y. Li, X. Sun, A. Turrini, Y. Chen, and J. Xu. “ROLL 1.0: ω-Regular Language
Learning Library”. In: Tools and Algorithms for the Construction and Analysis of
Systems - 25th International Conference, TACAS 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Part I. Ed. by T. Vojnar and L. Zhang.
Vol. 11427. Lecture Notes in Computer Science. Springer, 2019, pp. 365–371.

[161] Y. Li, A. Turrini, W. Feng, M. Y. Vardi, and L. Zhang. “Divide-and-Conquer
Determinization of Büchi Automata Based on SCCDecomposition”. In: Proc.
of CAV’22. Vol. 13372. LNCS. Springer, 2022, pp. 152–173.

[162] Y. Li, A. Turrini, L. Zhang, and S. Schewe. “Learning to Complement Büchi
Automata”. In: Verification, Model Checking, and Abstract Interpretation - 19th
International Conference, VMCAI 2018, Los Angeles, CA, USA, January 7-9, 2018,
Proceedings. Ed. by I. Dillig and J. Palsberg. Vol. 10747. Lecture Notes in
Computer Science. Springer, 2018, pp. 313–335.

[163] Liana Hadarean. String Solving at Amazon. https://mosca19.github.io/
program/index.html. Presented at MOSCA’19. 2019.

[164] T. Liang, A. Reynolds, C. Tinelli, C. W. Barrett, and M. Deters. “A DPLL(T)
Theory Solver for a Theory of Strings and Regular Expressions”. In: Com-
puter Aided Verification - 26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Pro-
ceedings. Ed. by A. Biere and R. Bloem. Vol. 8559. Lecture Notes in Computer
Science. Springer, 2014, pp. 646–662.

https://mosca19.github.io/program/index.html
https://mosca19.github.io/program/index.html

60 BIBLIOGRAPHY

[165] T. Liang, N. Tsiskaridze, A. Reynolds, C. Tinelli, and C. W. Barrett. “A De-
cision Procedure for Regular Membership and Length Constraints over Un-
bounded Strings”. In: Frontiers of Combining Systems - 10th International Sym-
posium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings. Ed.
by C. Lutz and S. Ranise. Vol. 9322. Lecture Notes in Computer Science.
Springer, 2015, pp. 135–150.

[166] A. W. Lin and P. Barceló. “String solving with word equations and transduc-
ers: towards a logic for analysing mutation XSS”. In: Proceedings of the 43rd
Annual ACMSIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. Ed. by R.
Bodík and R. Majumdar. ACM, 2016, pp. 123–136.

[167] C. Löding and A. Pirogov. “New Optimizations and Heuristics for Deter-
minization of Büchi Automata”. In: Automated Technology for Verification and
Analysis - 17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-
31, 2019, Proceedings. Ed. by Y. Chen, C. Cheng, and J. Esparza. Vol. 11781.
Lecture Notes in Computer Science. Springer, 2019, pp. 317–333.

[168] D.Matousek, J. Korenek, andV. Pus. “High-speed regular expressionmatch-
ing with pipelined automata”. In: 2016 International Conference on Field-Pro-
grammable Technology, FPT 2016, Xi’an, China, December 7-9, 2016. Ed. by Y.
Song, S. Wang, B. Nelson, J. Li, and Y. Peng. IEEE, 2016, pp. 93–100.

[169] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 115–
133.

[170] A. R. Meyer. “Weak Monadic Second Order Theory of Successor Is Not
Elementary-recursive”. In: Logic Colloquium—Symposium on Logic Held at
Boston, 1972–73. Vol. 453. Lecture Notes in Mathematics. Springer, 1972,
pp. 132–154.

[171] S. Miyano and T. Hayashi. “Alternating Finite Automata on omega-Words”.
In: Theor. Comput. Sci. 32 (1984), pp. 321–330.

[172] N. Moll et al. “Quantum optimization using variational algorithms on near-
term quantum devices”. In: Quantum Science and Technology 3.3 (June 2018),
p. 030503.

[173] A.Møller andM. I. Schwartzbach. “The Pointer Assertion Logic Engine”. In:
Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Snowbird, Utah, USA, June 20-22, 2001. Ed.
by M. Burke and M. L. Soffa. ACM, 2001, pp. 221–231.

[174] F. Mora, M. Berzish, M. Kulczynski, D. Nowotka, and V. Ganesh. “Z3str4:
A Multi-armed String Solver”. In: Formal Methods - 24th International Sym-
posium, FM 2021, Virtual Event, November 20-26, 2021, Proceedings. Ed. by M.
Huisman, C. S. Pasareanu, and N. Zhan. Vol. 13047. Lecture Notes in Com-
puter Science. Springer, 2021, pp. 389–406.

[175] F. Morawietz and T. Cornell. “The MSO Logic-Automaton Connection in
Linguistics”. In: Logical Aspects of Computational Linguistics, Second Interna-
tional Conference, LACL ’97, Nancy, France, September 22-24, 1997, Selected Pa-
pers. Ed. by A. Lecomte, F. Lamarche, and G. Perrier. Vol. 1582. Lecture
Notes in Computer Science. Springer, 1997, pp. 112–131.

BIBLIOGRAPHY 61

[176] L. M. de Moura and N. Bjørner. “Efficient E-Matching for SMT Solvers”. In:
CADE-21. Vol. 4603. LNCS. Springer, 2007, pp. 183–198.

[177] L. M. de Moura and N. S. Bjørner. “Z3: An Efficient SMT Solver”. In: Tools
and Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings. Ed. by C. R. Ramakrishnan and J. Rehof. Vol. 4963. Lecture
Notes in Computer Science. Springer, 2008, pp. 337–340.

[178] G. Nelson and D. C. Oppen. “Simplification by Cooperating Decision Pro-
cedures”. In: ACM Trans. Program. Lang. Syst. 1.2 (1979), pp. 245–257.

[179] J. Nielsen. “Die Isomorphismen der allgemeinen, unendlichen Gruppe mit
zwei Erzeugenden”. In:Mathematische Annalen 78.1 (1917), pp. 385–397.

[180] P.Niemann, R.Wille, D.M.Miller,M.A. Thornton, andR.Drechsler. “QMDDs:
Efficient Quantum Function Representation and Manipulation”. In: IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 35.1 (2016), pp. 86–99.

[181] A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and C. Tinelli. “Syntax-
GuidedQuantifier Instantiation”. In: TACAS’21. Vol. 12652. LNCS. Springer,
2021, pp. 145–163.

[182] A. Nötzli, A. Reynolds, H. Barbosa, C.W. Barrett, and C. Tinelli. “Even Faster
Conflicts and Lazier Reductions for String Solvers”. In:Computer Aided Verifi-
cation - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022,
Proceedings, Part II. Ed. by S. Shoham and Y. Vizel. Vol. 13372. Lecture Notes
in Computer Science. Springer, 2022, pp. 205–226.

[183] OWASP. Top 10. https://www.owasp.org/images/f/f8/OWASP_Top_10_-
_2013.pdf. 2013.

[184] OWASP. Top 10. https://owasp.org/www-project-top-ten/2017/. 2017.
[185] OWASP. Top 10. https://owasp.org/Top10/. 2021.
[186] R. Paige and R. E. Tarjan. “Three Partition Refinement Algorithms”. In:

SIAM J. Comput. 16.6 (1987), pp. 973–989.
[187] R. J. Parikh. “On Context-Free Languages”. In: J. ACM 13.4 (Oct. 1966),

pp. 570–581.
[188] E. Pednault, J. A.Gunnels, G.Nannicini, L.Horesh, T.Magerlein, E. Solomonik,

E.W. Draeger, E. T. Holland, and R.Wisnieff. “Pareto-Efficient QuantumCir-
cuit SimulationUsingTensorContractionDeferral”. In:CoRR abs/1710.05867
(2017).

[189] S. Perdrix. “Quantum entanglement analysis based on abstract interpreta-
tion”. In: International Static Analysis Symposium. Springer. 2008, pp. 270–
282.

[190] N. Piterman. “From Nondeterministic Büchi and Streett Automata to Deter-
ministic Parity Automata”. In: Log. Methods Comput. Sci. 3.3 (2007).

[191] A. Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. IEEE Computer Society, 1977, pp. 46–57.

https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/Top10/

62 BIBLIOGRAPHY

[192] M. Presburger. “Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervor-
tritt”. In: Comptes Rendus du I congrès de Mathématiciens des Pays Slaves. 1929,
pp. 92–101.

[193] M. O. Rabin. “Decidability of second-order theories and automata on infi-
nite trees.” In: Transactions of the American Mathematical Society 141.0 (1969),
pp. 1–35.

[194] R. R. Redziejowski. “An Improved Construction of Deterministic Omega-
automatonUsingDerivatives”. In: Fundam. Informaticae 119.3-4 (2012), pp. 393–
406.

[195] F. Renkin, P. Schlehuber-Caissier, A. Duret-Lutz, and A. Pommellet. “Ef-
fective Reductions of Mealy Machines”. In: Formal Techniques for Distributed
Objects, Components, and Systems - 42nd IFIP WG 6.1 International Conference,
FORTE 2022, Held as Part of the 17th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022,
Proceedings. Ed. by M. R. Mousavi and A. Philippou. Vol. 13273. Lecture
Notes in Computer Science. Springer, 2022, pp. 114–130.

[196] A. Reynolds, H. Barbosa, and P. Fontaine. “Revisiting Enumerative Instanti-
ation”. In: TACAS’18. Vol. 10806. LNCS. Springer, 2018, pp. 112–131.

[197] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett. “Counter-
example-Guided Quantifier Instantiation for Synthesis in SMT”. In: CAV’15.
Vol. 9207. LNCS. Springer, 2015, pp. 198–216.

[198] A. Reynolds, A. Nötzli, C. W. Barrett, and C. Tinelli. “Reductions for Strings
and Regular Expressions Revisited”. In: 2020 Formal Methods in Computer
Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020. IEEE, 2020,
pp. 225–235.

[199] A. Reynolds, C. Tinelli, and L. M. de Moura. “Finding conflicting instances
of quantified formulas in SMT”. In: FMCAD’14. IEEE, 2014, pp. 195–202.

[200] A. Reynolds, M. Woo, C. W. Barrett, D. Brumley, T. Liang, and C. Tinelli.
“Scaling Up DPLL(T) String Solvers Using Context-Dependent Simplifica-
tion”. In: Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II. Ed. by R. Majumdar
and V. Kuncak. Vol. 10427. Lecture Notes in Computer Science. Springer,
2017, pp. 453–474.

[201] N. Rungta. “A Billion SMT Queries a Day (Invited Paper)”. In: Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August
7-10, 2022, Proceedings, Part I. Ed. by S. Shoham and Y. Vizel. Vol. 13371.
Lecture Notes in Computer Science. Springer, 2022, pp. 3–18.

[202] S. Safra. “On the Complexity of omega-Automata”. In: 29th Annual Sympo-
sium on Foundations of Computer Science, White Plains, New York, USA, 24-26
October 1988. IEEE Computer Society, 1988, pp. 319–327.

[203] V. Samoladas. “Improved BDD Algorithms for the Simulation of Quantum
Circuits”. In: Algorithms - ESA 2008, 16th Annual European Symposium, Karl-
sruhe, Germany, September 15-17, 2008. Proceedings. Vol. 5193. LNCS. Springer,
2008, pp. 720–731.

BIBLIOGRAPHY 63

[204] S. Schewe. “Büchi Complementation Made Tight”. In: 26th International
Symposium on Theoretical Aspects of Computer Science, STACS 2009, February
26-28, 2009, Freiburg, Germany, Proceedings. Vol. 3. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Germany, 2009, pp. 661–672.

[205] S. Schmitz. “Complexity Hierarchies beyond Elementary”. In: ACM Trans.
Comput. Theory 8.1 (2016), 3:1–3:36.

[206] J. D. Scott, P. Flener, J. Pearson, and C. Schulte. “Design and Implementation
of Bounded-Length Sequence Variables”. In: Integration of AI and OR Tech-
niques in Constraint Programming - 14th International Conference, CPAIOR 2017,
Padua, Italy, June 5-8, 2017, Proceedings. Ed. byD. Salvagnin andM. Lombardi.
Vol. 10335. Lecture Notes in Computer Science. Springer, 2017, pp. 51–67.

[207] P. W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring”. In: 35thAnnual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, USA, 20-22 November 1994. IEEE Computer Society,
1994, pp. 124–134.

[208] A. P. Sistla, M. Y. Vardi, and P. Wolper. “The Complementation Problem for
Büchi Automata with Applications to Temporal Logic”. In: Theor. Comput.
Sci. 49 (1987), pp. 217–237.

[209] M. Sistla, S. Chaudhuri, and T. W. Reps. “Symbolic Quantum Simulation
with Quasimodo”. In: Computer Aided Verification - 35th International Confer-
ence, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part III. Vol. 13966.
LNCS. Springer, 2023, pp. 213–225.

[210] M. A. Sistla, S. Chaudhuri, and T. Reps. “CFLOBDDs: Context-free-language
ordered binary decision diagrams”. In: ACM Transactions on Programming
Languages and Systems (2023).

[211] SMT-COMP’24. https://smt-comp.github.io/2024/. 2024.
[212] J. W. Thatcher and J. B. Wright. “Generalized Finite Automata Theory with

anApplication to aDecision Problem of Second-Order Logic”. In:Math. Syst.
Theory 2.1 (1968), pp. 57–81.

[213] The Snort Team. Snort. (http://www.snort.org).
[214] A. Tozawa and M. Hagiya. “XML Schema Containment Checking Based on

Semi-implicit Techniques”. In: Implementation and Application of Automata, 8th
International Conference, CIAA 2003, Santa Barbara, California, USA, July 16-18,
2003, Proceedings. Ed. by O. H. Ibarra and Z. Dang. Vol. 2759. Lecture Notes
in Computer Science. Springer, 2003, pp. 213–225.

[215] M. Trinh, D. Chu, and J. Jaffar. “S3: A Symbolic String Solver for Vulnerability
Detection inWebApplications”. In: Proceedings of the 2014 ACMSIGSACCon-
ference on Computer and Communications Security, Scottsdale, AZ, USA, Novem-
ber 3-7, 2014. Ed. by G. Ahn, M. Yung, and N. Li. ACM, 2014, pp. 1232–
1243.

[216] Y. Tsai, J. R. Jiang, and C. Jhang. “Bit-Slicing the Hilbert Space: Scaling Up
Accurate Quantum Circuit Simulation”. In: 58th ACM/IEEE Design Automa-
tion Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021. IEEE,
2021, pp. 439–444.

https://smt-comp.github.io/2024/
http://www.snort.org

64 BIBLIOGRAPHY

[217] G. S. Tseitin. “On the complexity of derivation in propositional calculus”.
In: Automation of reasoning. Springer, 1983, pp. 466–483.

[218] L. Turonová, L. Holík, I. Homoliak, O. Lengál, M. Veanes, and T. Vojnar.
“Counting in Regexes Considered Harmful: Exposing ReDoS Vulnerability
ofNonbacktrackingMatchers”. In: 31stUSENIXSecurity Symposium,USENIX
Security 2022, Boston, MA, USA, August 10-12, 2022. Ed. by K. R. B. Butler and
K. Thomas. USENIX Association, 2022, pp. 4165–4182.

[219] L. Turonová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar.
“Regexmatchingwith counting-set automata”. In: Proc. ACMProgram. Lang.
4.OOPSLA (2020), 218:1–218:30.

[220] M. Y. Vardi and T. Wilke. “Automata: from logics to algorithms”. In: Logic
and Automata: History and Perspectives [in Honor of Wolfgang Thomas]. Ed. by J.
Flum, E. Grädel, and T.Wilke. Vol. 2. Texts in Logic and Games. Amsterdam
University Press, 2008, pp. 629–736.

[221] M. Y. Vardi and P. Wolper. “An Automata-Theoretic Approach to Automatic
ProgramVerification (Preliminary Report)”. In: Proceedings of the Symposium
on Logic in Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June
16-18, 1986. IEEE Computer Society, 1986, pp. 332–344.

[222] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Quantum Circuit Simulation.
Springer, 2009.

[223] L.Vinkhuijzen, T. Coopmans,D. Elkouss, V.Dunjko, andA. Laarman. “LIMDD:
A Decision Diagram for Simulation of Quantum Computing Including Sta-
bilizer States”. In: Quantum 7 (2023), p. 1108.

[224] L. Vinkhuijzen, T. Grurl, S. Hillmich, S. Brand, R. Wille, and A. Laarman.
“Efficient Implementation of LIMDDs for Quantum Circuit Simulation”. In:
Model Checking Software - 29th International Symposium, SPIN 2023, Paris, France,
April 26-27, 2023, Proceedings. Vol. 13872. LNCS. Springer, 2023, pp. 3–21.

[225] H. Wang, S. Chen, F. Yu, and J. R. Jiang. “A symbolic model checking ap-
proach to the analysis of string and length constraints”. In: Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineer-
ing, ASE 2018, Montpellier, France, September 3-7, 2018. Ed. by M. Huchard,
C. Kästner, and G. Fraser. ACM, 2018, pp. 623–633.

[226] H. Wang, T. Tsai, C. Lin, F. Yu, and J. R. Jiang. “String Analysis via Auto-
mata Manipulation with Logic Circuit Representation”. In: Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I. Ed. by S. Chaudhuri and A. Farzan. Vol. 9779.
Lecture Notes in Computer Science. Springer, 2016, pp. 241–260.

[227] D. Wecker and K. M. Svore. “LIQUi|>: A Software Design Architecture and
Domain-Specific Language forQuantumComputing”. In:CoRR abs/1402.4467
(2014). arXiv: 1402.4467.

[228] R. Wille, R. V. Meter, and Y. Naveh. “IBM’s Qiskit Tool Chain: Working with
and Developing for Real Quantum Computers”. In: Design, Automation &
Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29,
2019. IEEE, 2019, pp. 1234–1240.

https://arxiv.org/abs/1402.4467

BIBLIOGRAPHY 65

[229] P. Wolper and B. Boigelot. “An Automata-Theoretic Approach to Presburger
Arithmetic Constraints (ExtendedAbstract)”. In: Static Analysis, Second Inter-
national Symposium, SAS’95, Glasgow, UK, September 25-27, 1995, Proceedings.
Ed. by A. Mycroft. Vol. 983. Lecture Notes in Computer Science. Springer,
1995, pp. 21–32.

[230] M. D. Wulf, L. Doyen, T. A. Henzinger, and J. Raskin. “Antichains: A New
Algorithm forCheckingUniversality of FiniteAutomata”. In:Computer Aided
Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August
17-20, 2006, Proceedings. Ed. by T. Ball and R. B. Jones. Vol. 4144. Lecture
Notes in Computer Science. Springer, 2006, pp. 17–30.

[231] Q. Yan. “Lower Bounds for Complementation of ω-Automata Via the Full
Automata Technique”. In: Log. Methods Comput. Sci. 4.1 (2008).

[232] M. Ying. “Model Checking for Verification of Quantum Circuits”. In: Inter-
national Symposium on Formal Methods. Springer. 2021, pp. 23–39.

[233] M. Ying and Y. Feng. Model Checking Quantum Systems: Principles and Algo-
rithms. Cambridge University Press, 2021.

[234] M. Ying, Y. Li, N. Yu, and Y. Feng. “Model-checking linear-time properties
of quantum systems”. In: ACM Transactions on Computational Logic (TOCL)
15.3 (2014), pp. 1–31.

[235] F. Yu, M. Alkhalaf, and T. Bultan. “Stranger: An Automata-Based String
Analysis Tool for PHP”. In:Tools andAlgorithms for the Construction andAnaly-
sis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings. Ed. by J. Esparza and R. Majumdar.
Vol. 6015. Lecture Notes in Computer Science. Springer, 2010, pp. 154–157.

[236] F. Yu, M. Alkhalaf, T. Bultan, and O. H. Ibarra. “Automata-based symbolic
string analysis for vulnerability detection”. In: Formal Methods Syst. Des. 44.1
(2014), pp. 44–70.

[237] F. Yu, T. Bultan, andO.H. Ibarra. “Relational String VerificationUsingMulti-
Track Automata”. In: Int. J. Found. Comput. Sci. 22.8 (2011), pp. 1909–1924.

[238] N. Yu and J. Palsberg. “Quantum abstract interpretation”. In: Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 2021, pp. 542–558.

[239] Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, J. Dolby, and X. Zhang. “Ef-
fective Search-Space Pruning for Solvers of String Equations, Regular Ex-
pressions and Length Constraints”. In: Computer Aided Verification - 27th In-
ternational Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Pro-
ceedings, Part I. Ed. by D. Kroening and C. S. Pasareanu. Vol. 9206. Lecture
Notes in Computer Science. Springer, 2015, pp. 235–254.

[240] Y. Zheng, X. Zhang, and V. Ganesh. “Z3-str: a Z3-based string solver for web
application analysis”. In: Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013. Ed. by B. Meyer, L. Baresi, and M. Mezini. ACM, 2013, pp. 114–124.

66 BIBLIOGRAPHY

[241] A. Zulehner, S. Hillmich, and R. Wille. “How to Efficiently Handle Complex
Values? Implementing Decision Diagrams for Quantum Computing”. In:
Proceedings of the International Conference on Computer-Aided Design, ICCAD
2019, Westminster, CO, USA, November 4-7, 2019. ACM, 2019, pp. 1–7.

[242] A. Zulehner and R. Wille. “Advanced Simulation of Quantum Computa-
tions”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38.5 (2019),
pp. 848–859.

Appendix A

Selected Papers

For each of the particular research directions discussed in this thesis, one to
three representative papers are attached to the thesis. The following papers
were selected:

[60] M. Češka, V. Havlena, L. Holík, O. Lengál, and T. Vojnar. “Approximate
reduction of finite automata for high-speed network intrusion detection”.
In: Int. J. Softw. Tools Technol. Transf. 22.5 (2020), pp. 523–539.

[65] T. Chen, Y. Chen, J. R. Jiang,O. Lengál, and S. Jobranová. “AcceleratingQuan-
tumCircuit Simulationwith Symbolic Execution and Loop Summarization”.
In: Proc. of ICCAD’24. ACM, 2024.

[69] Y. Chen, K. Chung, O. Lengál, J. Lin, W. Tsai, and D. Yen. “An Automata-
Based Framework for Verification and Bug Hunting in Quantum Circuits”.
In: Proc. ACM Program. Lang. 7.PLDI (2023), pp. 1218–1243.

[71] Y. Chen, V. Havlena, O. Lengál, and A. Turrini. “A symbolic algorithm for
the case-split rule in solving word constraints with extensions”. In: J. Syst.
Softw. 201 (2023), p. 111673.

[73] Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang.
“Advanced automata-based algorithms for program termination checking”.
In: Proc. of PLDI’18. ACM, 2018, pp. 135–150.

[119] V. Havlena, L. Holík, O. Lengál, and T. Vojnar. “Automata Terms in a Lazy
WSkS Decision Procedure”. In: J. Autom. Reason. 65.7 (2021), pp. 971–999.

[121] V. Havlena, O. Lengál, Y. Li, B. Šmahlíková, and A. Turrini. “Modular Mix-
and-Match Complementation of Büchi Automata”. In: Proc. of TACAS’23.
Vol. 13993. LNCS. Springer, 2023, pp. 249–270.

[124] V. Havlena, O. Lengál, and B. Šmahlíková. “Sky Is Not the Limit - Tighter
Rank Bounds for Elevator Automata in Büchi Automata Complementation”.
In: Proc. of TACAS’22. Vol. 13244. LNCS. Springer, 2022, pp. 118–136.

67

Sky Is Not the Limit
Tighter Rank Bounds for Elevator Automata in

Büchi Automata Complementation

Vojtěch Havlena , Ondřej Lengál �, and Barbora Šmahlíková
ihavlena@fit.vut.cz, lengal@vut.cz, xsmahl00@vut.cz

Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Abstract. We propose several heuristics for mitigating one of the main causes
of combinatorial explosion in rank-based complementation of Büchi automata
(BAs): unnecessarily high bounds on the ranks of states. First, we identify elevator
automata, which is a large class of BAs (generalizing semi-deterministic BAs),
occurring often in practice, where ranks of states are bounded according to the
structure of strongly connected components. The bounds for elevator automata
also carry over to general BAs that contain elevator automata as a sub-structure.
Second, we introduce two techniques for refining bounds on the ranks of BA states
using data-flow analysis of the automaton. We implement out techniques as an
extension of the tool Ranker for BA complementation and show that they indeed
greatly prune the generated state space, obtaining significantly better results and
outperforming other state-of-the-art tools on a large set of benchmarks.

1 Introduction

Büchi automata (BA) complementation has been a fundamental problem underlying
many applications since it was introduced in 1962 by Büchi [8,17] as an essential part of
a decision procedure for a fragment of the second-order arithmetic. BA complementation
has been used as a crucial part of, e.g., termination analysis of programs [13,20,10] or
decision procedures for various logics, such as S1S [8], the first-order logic of Sturmian
words [33], or the temporal logics ETL and QPTL [38]. Moreover, BA complementation
also underlies BA inclusion and equivalence testing, which are essential instruments in
the BA toolbox. Optimal algorithms, whose output asymptotically matches the lower
bound of (0.76𝑛)𝑛 [43] (potentially modulo a polynomial factor), have been devel-
oped [37,1]. For a successful real-world use, asymptotic optimality is, however, not
enough and these algorithms need to be equipped with a range of optimizations to make
them behave better than the worst case on BAs occurring in practice.

In this paper, we focus on the so-called rank-based approach to complementation,
introduced by Kupferman and Vardi [24], further improved with the help of Friedgut [14],
and finally made optimal by Schewe [37]. The construction stores in a macrostate partial
information about all runs of a BA A over some word 𝛼. In addition to tracking states
thatA can be in (which is sufficient, e.g., in the determinization of NFAs), a macrostate
also stores a guess of the rank of each of the tracked states in the run DAG that captures
all these runs. The guessed ranks impose restrictions on how the future of a state might
look like (i.e., when A may accept). The number of macrostates in the complement

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 118–136, 2022.
https://doi.org/10.1007/978-3-030-99527-0_7 68

depends combinatorially on the maximum rank that occurs in the macrostates. The
constructions in [24,14,37] provides only coarse bounds on the maximum ranks.

A way of decreasing the maximum rank has been suggested in [15] using a PSpace
(and, therefore, not really practically applicable) algorithm (the problem of finding the
optimal rank is PSpace-complete). In our previous paper [19], we have identified several
basic optimizations of the construction that can be used to refine the tight-rank upper
bound (TRUB) on the maximum ranks of states. In this paper, we push the applicability
of rank-based techniques much further by introducing two novel lightweight techniques
for refining the TRUB, thus significantly reducing the generated state space.

Firstly, we introduce a new class of the so-called elevator automata, which occur
quite often in practice (e.g., as outputs of natural algorithms for translating LTL to
BAs). Intuitively, an elevator automaton is a BA whose strongly connected components
(SCCs) are all either inherently weak1 or deterministic. Clearly, the class substantially
generalizes the popular inherently weak [6] and semi-deterministic BAs [11,3,4]). The
structure of elevator automata allows us to provide tighter estimates of the TRUBs,
not only for elevator automata per se, but also for BAs where elevator automata occur
as a sub-structure (which is even more common). Secondly, we propose a lightweight
technique, inspired by data flow analysis, allowing to propagate rank restriction along
the skeleton of the complemented automaton, obtaining even tighter TRUBs. We also
extended the optimal rank-based algorithm to transition-based BAs (TBAs).

We implemented our optimizations within the Ranker tool [18] and evaluated our
approach on thousands of hard automata from the literature (15 % of them were elevator
automata that were not semi-deterministic, and many more contained an elevator sub-
structure). Our techniques drastically reduce the generated state space; in many cases we
even achieved exponential improvement compared to the optimal procedure of Schewe
and our previous heuristics. The new version of Ranker gives a smaller complement in
the majority of cases of hard automata than other state-of-the-art tools.

2 Preliminaries
Words, functions. We fix a finite nonempty alphabet Σ and the first infinite ordinal
𝜔 = {0, 1, . . .}. For 𝑛 ∈ 𝜔, by [𝑛] we denote the set {0, . . . , 𝑛}. For 𝑖 ∈ 𝜔 we use
bb𝑖cc to denote the largest even number smaller of equal to 𝑖, e.g., bb42cc = bb43cc = 42.
An (infinite) word 𝛼 is represented as a function 𝛼 : 𝜔 → Σ where the 𝑖-th symbol is
denoted as 𝛼𝑖 . We abuse notation and sometimes also represent 𝛼 as an infinite sequence
𝛼 = 𝛼0𝛼1 . . . We use Σ𝜔 to denote the set of all infinite words over Σ. For a (partial)
function 𝑓 : 𝑋 → 𝑌 and a set 𝑆 ⊆ 𝑋 , we define 𝑓 (𝑆) = { 𝑓 (𝑥) | 𝑥 ∈ 𝑆}. Moreover, for
𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , we use 𝑓 ⊳{𝑥 ↦→ 𝑦} to denote the function (𝑓 \{𝑥 ↦→ 𝑓 (𝑥)})∪{𝑥 ↦→ 𝑦}.

Büchi automata. A (nondeterministic transition/state-based) Büchi automaton (BA)
overΣ is a quadrupleA = (𝑄, 𝛿, 𝐼, 𝑄𝐹∪𝛿𝐹) where𝑄 is a finite set of states, 𝛿 : 𝑄×Σ→
2𝑄 is a transition function, 𝐼 ⊆ 𝑄 is the sets of initial states, and𝑄𝐹 ⊆ 𝑄 and 𝛿𝐹 ⊆ 𝛿 are
the sets of accepting states and accepting transitions respectively. We sometimes treat 𝛿
as a set of transitions 𝑝 𝑎→ 𝑞, for instance, we use 𝑝

𝑎→ 𝑞 ∈ 𝛿 to denote that 𝑞 ∈ 𝛿(𝑝, 𝑎).
1 An SCC is inherently weak if it either contains no accepting states or, on the other hand, all

cycles of the SCC contain an accepting state.

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 119

69

Moreover, we extend 𝛿 to sets of states 𝑃 ⊆ 𝑄 as 𝛿(𝑃, 𝑎) = ⋃
𝑝∈𝑃 𝛿(𝑝, 𝑎), and to sets

of symbols Γ ⊆ Σ as 𝛿(𝑃, Γ) = ⋃
𝑎∈Γ 𝛿(𝑃, 𝑎). We define the inverse transition function

as 𝛿−1 = {𝑝 𝑎→ 𝑞 | 𝑞 𝑎→ 𝑝 ∈ 𝛿}. The notation 𝛿 |𝑆 for 𝑆 ⊆ 𝑄 is used to denote the
restriction of the transition function 𝛿 ∩ (𝑆 ×Σ× 𝑆). Moreover, for 𝑞 ∈ 𝑄, we useA[𝑞]
to denote the BA (𝑄, 𝛿, {𝑞}, 𝑄𝐹 ∪ 𝛿𝐹).

A run of A from 𝑞 ∈ 𝑄 on an input word 𝛼 is an infinite sequence 𝜌 : 𝜔 → 𝑄 that
starts in 𝑞 and respects 𝛿, i.e., 𝜌0 = 𝑞 and ∀𝑖 ≥ 0: 𝜌𝑖

𝛼𝑖→ 𝜌𝑖+1 ∈ 𝛿. Let inf𝑄 (𝜌) denote
the states occurring in 𝜌 infinitely often and inf 𝛿 (𝜌) denote the transitions occurring in 𝜌
infinitely often. The run 𝜌 is called accepting iff inf𝑄 (𝜌) ∩𝑄𝐹 ≠ ∅ or inf 𝛿 (𝜌) ∩𝛿𝐹 ≠ ∅.

A word 𝛼 is accepted by A from a state 𝑞 ∈ 𝑄 if there is an accepting run 𝜌 of A
from 𝑞, i.e., 𝜌0 = 𝑞. The set LA (𝑞) = {𝛼 ∈ Σ𝜔 | A accepts 𝛼 from 𝑞} is called the
language of 𝑞 (in A). Given a set of states 𝑅 ⊆ 𝑄, we define the language of 𝑅 as
LA (𝑅) =

⋃
𝑞∈𝑅 LA (𝑞) and the language of A as L(A) = LA (𝐼). We say that a state

𝑞 ∈ 𝑄 is useless iff LA (𝑞) = ∅. If 𝛿𝐹 = ∅, we call A state-based and if 𝑄𝐹 = ∅, we
call A transition-based. In this paper, we fix a BA A = (𝑄, 𝛿, 𝐼, 𝑄𝐹 ∪ 𝛿𝐹).

3 Complementing Büchi automata
In this section, we describe a generalization of the rank-based complementation of state-
based BAs presented by Schewe in [37] to our notion of transition/state-based BAs.
Proofs can be found in [16].

3.1 Run DAGs
First, we recall the terminology from [37] (which is a minor modification of the one
in [24]), which we use in the paper. Let the run DAG of A over a word 𝛼 be a DAG
(directed acyclic graph) G𝛼 = (𝑉, 𝐸) containing vertices 𝑉 and edges 𝐸 such that

– 𝑉 ⊆ 𝑄 × 𝜔 s.t. (𝑞, 𝑖) ∈ 𝑉 iff there is a run 𝜌 of A from 𝐼 over 𝛼 with 𝜌𝑖 = 𝑞,
– 𝐸 ⊆ 𝑉 ×𝑉 s.t. ((𝑞, 𝑖), (𝑞′, 𝑖′)) ∈ 𝐸 iff 𝑖′ = 𝑖 + 1 and 𝑞′ ∈ 𝛿(𝑞, 𝛼𝑖).

Given G𝛼 as above, we will write (𝑝, 𝑖) ∈ G𝛼 to denote that (𝑝, 𝑖) ∈ 𝑉 . A vertex
(𝑝, 𝑖) ∈ 𝑉 is called accepting if 𝑝 is an accepting state and an edge ((𝑞, 𝑖), (𝑞′, 𝑖′)) ∈ 𝐸
is called accepting if 𝑞

𝛼𝑖→ 𝑞′ is an accepting transition. A vertex 𝑣 ∈ G𝛼 is finite if the
set of vertices reachable from 𝑣 is finite, infinite if it is not finite, and endangered if it
cannot reach an accepting vertex or an accepting edge.

We assign ranks to vertices of run DAGs as follows: Let G0
𝛼 = G𝛼 and 𝑗 = 0. Repeat

the following steps until the fixpoint or for at most 2𝑛 + 1 steps, where 𝑛 = |𝑄 |.
– Set rank 𝛼 (𝑣) ← 𝑗 for all finite vertices 𝑣 of G 𝑗

𝛼 and let G 𝑗+1
𝛼 be G 𝑗

𝛼 minus the
vertices with the rank 𝑗 .

– Set rank 𝛼 (𝑣) ← 𝑗 + 1 for all endangered vertices 𝑣 of G 𝑗+1
𝛼 and let G 𝑗+2

𝛼 be G 𝑗+1
𝛼

minus the vertices with the rank 𝑗 + 1.
– Set 𝑗 ← 𝑗 + 2.

For all vertices 𝑣 that have not been assigned a rank yet, we assign rank 𝛼 (𝑣) ← 𝜔.
We define the rank of 𝛼, denoted as rank (𝛼), as max{rank 𝛼 (𝑣) | 𝑣 ∈ G𝛼} and the

rank of A, denoted as rank (A), as max{rank (𝑤) | 𝑤 ∈ Σ𝜔 \ L(A)}.
Lemma 1. If 𝛼 ∉ L(A), then rank (𝛼) ≤ 2|𝑄 |.

120 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

70

3.2 Rank-Based Complementation
In this section, we describe a construction for complementing BAs developed in the work
of Kupferman and Vardi [24]—later improved by Friedgut, Kupferman, and Vardi [14],
and by Schewe [37]—extended to our definition of BAs with accepting states and tran-
sitions (see [19] for a step-by-step introduction). The construction is based on the notion
of tight level rankings storing information about levels in run DAGs. For a BA A and
𝑛 = |𝑄 |, a (level) ranking is a function 𝑓 : 𝑄 → [2𝑛] such that 𝑓 (𝑄𝐹) ⊆ {0, 2, . . . , 2𝑛},
i.e., 𝑓 assigns even ranks to accepting states ofA. For two rankings 𝑓 and 𝑓 ′ we define
𝑓 𝑎

𝑆 𝑓
′ iff for each 𝑞 ∈ 𝑆 and 𝑞′ ∈ 𝛿(𝑞, 𝑎) we have 𝑓 ′(𝑞′) ≤ 𝑓 (𝑞) and for each

𝑞′′ ∈ 𝛿𝐹 (𝑞, 𝑎) it holds 𝑓 ′(𝑞′′) ≤ bb 𝑓 (𝑞)cc. The set of all rankings is denoted by R. For
a ranking 𝑓 , the rank of 𝑓 is defined as rank (𝑓) = max{ 𝑓 (𝑞) | 𝑞 ∈ 𝑄}. We use 𝑓 ≤ 𝑓 ′

iff for every state 𝑞 ∈ 𝑄 we have 𝑓 (𝑞) ≤ 𝑓 ′(𝑞) and we use 𝑓 < 𝑓 ′ iff 𝑓 ≤ 𝑓 ′ and there
is a state 𝑞 ∈ 𝑄 with 𝑓 (𝑞) < 𝑓 ′(𝑞). For a set of states 𝑆 ⊆ 𝑄, we call 𝑓 to be 𝑆-tight if
(i) it has an odd rank 𝑟 , (ii) 𝑓 (𝑆) ⊇ {1, 3, . . . , 𝑟}, and (iii) 𝑓 (𝑄 \ 𝑆) = {0}. A ranking is
tight if it is 𝑄-tight; we use T to denote the set of all tight rankings.

The original rank-based construction [24] uses macrostates of the form (𝑆, 𝑂, 𝑓) to
track all runs of A over 𝛼. The 𝑓 -component contains guesses of the ranks of states
in 𝑆 (which is obtained by the classical subset construction) in the run DAG and the
𝑂-set is used to check whether all runs contain only a finite number of accepting states.
Friedgut, Kupferman, and Vardi [14] improved the construction by having 𝑓 consider
only tight rankings. Schewe’s construction [37] extends the macrostates to (𝑆, 𝑂, 𝑓 , 𝑖)
with 𝑖 ∈ 𝜔 representing a particular even rank such that 𝑂 tracks states with rank 𝑖.
At the cut-point (a macrostate with 𝑂 = ∅) the value of 𝑖 is changed to 𝑖 + 2 modulo the
rank of 𝑓 . Macrostates in an accepting run hence iterate over all possible values of 𝑖.
Formally, the complement of A = (𝑄, 𝛿, 𝐼, 𝑄𝐹 ∪ 𝛿𝐹) is given as the (state-based) BA
Schewe(A) = (𝑄 ′, 𝛿′, 𝐼 ′, 𝑄 ′𝐹 ∪ ∅), whose components are defined as follows:

– 𝑄 ′ = 𝑄1 ∪𝑄2 where
• 𝑄1 = 2𝑄 and
• 𝑄2 = {(𝑆, 𝑂, 𝑓 , 𝑖) ∈ 2𝑄 × 2𝑄 × T × {0, 2, . . . , 2𝑛 − 2} | 𝑓 is 𝑆-tight,

𝑂 ⊆ 𝑆 ∩ 𝑓 −1 (𝑖)},
– 𝐼 ′ = {𝐼},
– 𝛿′ = 𝛿1 ∪ 𝛿2 ∪ 𝛿3 where
• 𝛿1 : 𝑄1 × Σ→ 2𝑄1 such that 𝛿1 (𝑆, 𝑎) = {𝛿(𝑆, 𝑎)},
• 𝛿2 : 𝑄1 × Σ → 2𝑄2 such that 𝛿2 (𝑆, 𝑎) = {(𝑆′, ∅, 𝑓 , 0) | 𝑆′ = 𝛿(𝑆, 𝑎),

𝑓 is 𝑆′-tight}, and
• 𝛿3 : 𝑄2 × Σ→ 2𝑄2 such that (𝑆′, 𝑂 ′, 𝑓 ′, 𝑖′) ∈ 𝛿3 ((𝑆, 𝑂, 𝑓 , 𝑖), 𝑎) iff

∗ 𝑆′ = 𝛿(𝑆, 𝑎),
∗ 𝑓 𝑎

𝑆 𝑓
′,

∗ rank (𝑓) = rank (𝑓 ′),
∗ and
◦ if 𝑂 = ∅ then 𝑖′ = (𝑖 + 2) mod (rank (𝑓 ′) + 1) and 𝑂 ′ = 𝑓 ′−1 (𝑖′), and
◦ if 𝑂 ≠ ∅ then 𝑖′ = 𝑖 and 𝑂 ′ = 𝛿(𝑂, 𝑎) ∩ 𝑓 ′−1 (𝑖); and

– 𝑄 ′𝐹 = {∅} ∪ ((2𝑄 × {∅} × T × 𝜔) ∩𝑄2).
We call the part of the automaton with states from 𝑄1 the waiting part (denoted as
Waiting), and the part corresponding to 𝑄2 the tight part (denoted as Tight).

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 121

71

Theorem 2. Let A be a BA. Then L(Schewe(A)) = Σ𝜔 \ L(A).

The space complexity of Schewe’s construction for BAs matches the theoretical
lower bound O((0.76𝑛)𝑛) given by Yan [43] modulo a quadratic factor O(𝑛2). Note that
our extension to BAs with accepting transitions does not increase the space complexity
of the construction.

𝑟 𝑠 𝑡

𝑏

𝑏

𝑏

𝑎
𝑎

𝑎

(a) BA A over {𝑎, 𝑏}

{𝑟} {𝑟, 𝑠, 𝑡} {𝑠, 𝑡}

∅

({𝑟:3, 𝑠:0, 𝑡:1}, ∅)
({𝑟:3, 𝑠:2, 𝑡:1}, ∅)
({𝑟:1, 𝑠:2, 𝑡:3}, ∅)

({𝑟:1, 𝑠:0, 𝑡:0}, ∅) ({𝑟:1, 𝑠:0, 𝑡:1}, ∅)

({𝑟:1}, ∅)

({𝑟:1, 𝑠:0, 𝑡:0}, {𝑠, 𝑡})

({𝑠:0, 𝑡:1}, ∅)
𝑏

𝑏

𝑏

𝑏
𝑏

𝑏

𝑎

𝑎

𝑏
𝑎

𝑎

𝑎

𝑏

𝑎, 𝑏

𝑏
𝑏

𝑏𝑏

(b) A part of Schewe(A)
Fig. 1: Schewe’s complementation

Example 3. Consider the BA A over
{𝑎, 𝑏} given in Fig. 1a. A part of
Schewe(A) is shown in Fig. 1b (we use
({𝑠:0, 𝑡:1}, ∅) to denote the macrostate
({𝑠, 𝑡}, ∅, {𝑠 ↦→ 0, 𝑡 ↦→ 1}, 0)). We
omit the 𝑖-part of each macrostate since
the corresponding values are 0 for all
macrostates in the figure. Useless states
are covered by grey stripes. The full au-
tomaton contains even more transitions
from {𝑟} to useless macrostates of the
form ({𝑟:·, 𝑠:·, 𝑡:·}, ∅). ut

From the construction of Schewe(A),
we can see that the number of states is
affected mainly by sizes of macrostates
and by the maximum rank ofA. In par-
ticular, the upper bound on the number
of states of the complement with the maximum rank 𝑟 is given in the following lemma.

Lemma 4. For a BA A with sufficiently many states 𝑛 such that rank (A) = 𝑟 the
number of states of the complemented automaton is bounded by 2𝑛 + (𝑟+𝑚)𝑛(𝑟+𝑚)! where
𝑚 = max{0, 3 − d 𝑟2 e}.

From Lemma 1 we have that the rank of A is bounded by 2|𝑄 |. Such a bound
is often too coarse and hence Schewe(A) may contain many redundant states. De-
creasing the bound on the ranks is essential for a practical algorithm, but an optimal
solution is PSpace-complete [15]. The rest of this paper therefore proposes a framework
of lightweight techniques for decreasing the maximum rank bound and, in this way,
significantly reducing the size of the complemented BA.

3.3 Tight Rank Upper Bounds

Let 𝛼 ∉ L(A). For ℓ ∈ 𝜔, we define the ℓ-th level of G𝛼 as level 𝛼 (ℓ) = {𝑞 | (𝑞, ℓ) ∈
G𝛼}. Furthermore, we use 𝑓 𝛼ℓ to denote the ranking of level ℓ of G𝛼. Formally,

𝑓 𝛼ℓ (𝑞) =
{
rank 𝛼 ((𝑞, ℓ)) if 𝑞 ∈ level 𝛼 (ℓ),
0 otherwise.

(1)

We say that the ℓ-th level of G𝛼 is tight if for all 𝑘 ≥ ℓ it holds that (i) 𝑓 𝛼𝑘 is tight, and
(ii) rank (𝑓 𝛼𝑘) = rank (𝑓 𝛼ℓ). Let 𝜌 = 𝑆0𝑆1 . . . 𝑆ℓ−1 (𝑆ℓ , 𝑂ℓ , 𝑓ℓ , 𝑖ℓ) . . . be a run on a word

122 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

72

𝛼 in Schewe(A). We say that 𝜌 is a super-tight run [19] if 𝑓𝑘 = 𝑓 𝛼𝑘 for each 𝑘 ≥ ℓ.
Finally, we say that a mapping 𝜇 : 2𝑄 → R is a tight rank upper bound (TRUB) wrt 𝛼 iff

∃ℓ ∈ 𝜔 : level 𝛼 (ℓ) is tight ∧ (∀𝑘 ≥ ℓ : 𝜇(level 𝛼 (𝑘)) ≥ 𝑓 𝛼𝑘). (2)

Informally, a TRUB is a ranking that gives a conservative (i.e., larger) estimate on
the necessary ranks of states in a super-tight run. We say that 𝜇 is a TRUB iff 𝜇
is a TRUB wrt all 𝛼 ∉ L(A). We abuse notation and use the term TRUB also for
a mapping 𝜇′ : 2𝑄 → 𝜔 if the mapping inner (𝜇′) is a TRUB where inner (𝜇′) (𝑆) =
{𝑞 ↦→ 𝑚 | 𝑚 = 𝜇′(𝑆) .− 1 if 𝑞 ∈ 𝑄𝐹 else 𝑚 = 𝜇′(𝑆)} for all 𝑆 ∈ 2𝑄. (.− is the monus
operator, i.e., minus with negative results saturated to zero.) Note that the mappings
𝜇𝑡 = {𝑆 ↦→ (2|𝑆 \𝑄𝐹 | .− 1)}𝑆∈2𝑄 and inner (𝜇𝑡) are trivial TRUBs.

The following lemma shows that we can remove from Schewe(A) macrostates
whose ranking is not covered by a TRUB (in particular, we show that the reduced
automaton preserves super-tight runs).

Lemma 5. Let 𝜇 be a TRUB and B be a BA obtained from Schewe(A) by replacing
all occurrences of 𝑄2 by 𝑄 ′2 = {(𝑆, 𝑂, 𝑓 , 𝑖) | 𝑓 ≤ 𝜇(𝑆)}. Then, L(B) = Σ𝜔 \ L(A).

4 Elevator Automata

In this section, we introduce elevator automata, which are BAs having a particular
structure that can be exploited for complementation and semi-determinization; elevator
automata can be complemented in O(16𝑛) (cf. Lemma 10) space instead of 2O(𝑛 log 𝑛) ,
which is the lower bound for unrestricted BAs, and semi-determinized in O(2𝑛) instead
of O(4𝑛) (cf. [16]). The class of elevator automata is quite general: it can be seen
as a substantial generalization of semi-deterministic BAs (SDBAs) [11,5]. Intuitively,
an elevator automaton is a BA whose strongly connected components are all either
deterministic or inherently weak.

LetA = (𝑄, 𝛿, 𝐼, 𝑄𝐹 ∪ 𝛿𝐹). 𝐶 ⊆ 𝑄 is a strongly connected component (SCC) ofA
if for any pair of states 𝑞, 𝑞′ ∈ 𝐶 it holds that 𝑞 is reachable from 𝑞′ and 𝑞′ is reachable
from 𝑞.𝐶 is maximal (MSCC) if it is not a proper subset of another SCC. An MSCC𝐶 is
trivial iff |𝐶 | = 1 and 𝛿 |𝐶 = ∅. The condensation of A is the DAG cond (A) = (M, E)
where M is the set of A’s MSCCs and E = {(𝐶1, 𝐶2) | ∃𝑞1 ∈ 𝐶1, ∃𝑞2 ∈ 𝐶2, ∃𝑎 ∈
Σ : 𝑞1

𝑎→ 𝑞2 ∈ 𝛿}. An MSCC is non-accepting if it contains no accepting state and no
accepting transition, i.e., 𝐶 ∩𝑄𝐹 = ∅ and 𝛿 |𝐶 ∩ 𝛿𝐹 = ∅. The depth of (M, E) is defined
as the number of MSCCs on the longest path in (M, E).

We say that an SCC 𝐶 is inherently weak accepting (IWA) iff every cycle in the
transition diagram of A restricted to 𝐶 contains an accepting state or an accepting
transition. 𝐶 is inherently weak if it is either non-accepting or IWA, andA is inherently
weak if all of its MSCCs are inherently weak. A is deterministic iff |𝐼 | ≤ 1 and
|𝛿(𝑞, 𝑎) | ≤ 1 for all 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. An SCC 𝐶 ⊆ 𝑄 is deterministic iff (𝐶, 𝛿 |𝐶 , ∅, ∅)
is deterministic.A is a semi-deterministic BA (SDBA) ifA[𝑞] is deterministic for every
𝑞 ∈ 𝑄𝐹 ∪ {𝑝 ∈ 𝑄 | 𝑠 𝑎→ 𝑝 ∈ 𝛿𝐹 , 𝑠 ∈ 𝑄, 𝑎 ∈ Σ}, i.e., whenever a run in A reaches an
accepting state or an accepting transition, it can only continue deterministically.

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 123

73

0 1

2 3

4 5

¬𝑎
𝑎 ¬𝑎

𝑎

¬𝑏

𝑏 ¬𝑏𝑏

¬𝑐

𝑐 ¬𝑐

𝑐

¬𝑎 ∧ 𝑏 ¬𝑎 ∧ 𝑏

¬𝑏 ∧ 𝑐 ¬𝑏 ∧ 𝑐

¬𝑎
∧
¬𝑏
∧
𝑐

¬𝑎
∧
¬𝑏
∧
𝑐

det

det

det

Fig. 2: The BA for LTL formula
GF(𝑎 ∨ GF(𝑏 ∨ GF𝑐)) is elevator

A is an elevator (Büchi) automaton iff for
every MSCC 𝐶 of A it holds that 𝐶 is (i) deter-
ministic, (ii) IWA, or (iii) non-accepting. In other
words, a BA is an elevator automaton iff every
nondeterministic SCC of A that contains an ac-
cepting state or transition is inherently weak. An
example of an elevator automaton obtained from
the LTL formula GF(𝑎 ∨GF(𝑏 ∨GF𝑐)) is shown
in Fig. 2. The BA consists of three connected de-
terministic components. Note that the automaton
is neither semi-deterministic nor unambiguous.

The rank of an elevator automaton A does
not depend on the number of states (as in general
BAs), but only on the number of MSCCs and the
depth of cond (A). In the worst case,A consists of a chain of deterministic components,
yielding the upper bound on the rank of elevator automata given in the following lemma.

Lemma 6. LetA be an elevator automaton such that its condensation has the depth 𝑑.
Then rank (A) ≤ 2𝑑.

4.1 Refined Ranks for Elevator Automata
Notice that the upper bound on ranks provided by Lemma 6 can still be too coarse. For
instance, for an SDBA with three linearly ordered MSCCs such that the first two MSCCs
are non-accepting and the last one is deterministic accepting, the lemma gives us an
upper bound on the rank 6, while it is known that every SDBA has the rank at most 3
(cf. [5]). Another examples might be two deterministic non-trivial MSCCs connected
by a path of trivial MSCCs, which can be assigned the same rank.

Instead of refining the definition of elevator automata into some quite complex list of
constraints, we rather provide an algorithm that performs a traversal through cond (A)
and assigns each MSCC a label of the form type:rank that contains (i) a type and
(ii) a bound on the maximum rank of states in the component. The types of MSCCs that
we consider are the following:
T: trivial components,
IWA: inherently weak accepting components,
D: deterministic (potentially accepting) components, and
N: non-accepting components.

Note that the type in an MSCC is not given a priori but is determined by the
algorithm (this is because for deterministic non-accepting components, it is sometimes
better to treated them as D and sometimes as N, depending on their neighbourhood).
In the following, we assume that A is an elevator automaton without useless states
and, moreover, all accepting conditions on states and transitions not inside non-trivial
MSCCs are removed (any BA can be easily transformed into this form).

We start with terminal MSCCs 𝐶, i.e., MSCCs that cannot reach any other MSCC:

T1: If 𝐶 is IWA, then we label it with IWA:0 .
T2: Else if 𝐶 is deterministic accepting, we label it with D:2 .

124 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

74

IWA:ℓ

ℓ = max{ℓ𝐷 , ℓ𝑁 + 1, ℓ𝑊 }
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊

(a) 𝐶 is IWA

D:ℓ

ℓ = max{ℓ𝐷 + 2 , ℓ𝑁 + 1, ℓ𝑊 + 2 , 2}
𝐶 :

D:ℓ𝐷

2

N:ℓ𝑁 IWA:ℓ𝑊

2

(b) 𝐶 is D

N:ℓ

ℓ = max{ℓ𝐷 + 1, ℓ𝑁 , ℓ𝑊 + 1}
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊

(c) 𝐶 is N

Fig. 3: Rules for assigning types and rank bounds to MSCCs. The symbols 2 and 2

are interpeted as 0 if all the corresponding edges from the components having rank ℓ𝐷
and ℓ𝑊 , respectively, are deterministic; otherwise they are interpreted as 2. Transi-
tions between two components 𝐶1 and 𝐶2 are deterministic if the BA (𝐶, 𝛿 |𝐶 , ∅, ∅) is
deterministic for 𝐶 = 𝛿(𝐶1,Σ) ∩ (𝐶1 ∪ 𝐶2).

𝑡:ℓ𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊

Fig. 4: Structure of elevator
ranking rules

(Note that the previous two options are complete due
to our requirements on the structure of A.) When
all terminal MSCCs are labelled, we proceed through
cond (A), inductively on its structure, and label non-
terminal components𝐶 based on the rules defined below.
The rules are of the form that uses the structure depicted in Fig. 4, where children nodes
denote already processed MSCCs. In particular, a child node of the form 𝑘:ℓ𝑘 denotes
an aggregate node of all siblings of the type 𝑘 with ℓ𝑘 being the maximum rank of these
siblings. Moreover, we use typemax{𝑒𝐷 , 𝑒𝑁 , 𝑒𝑊 } to denote the type 𝑗 ∈ {D,N, IWA}
for which 𝑒 𝑗 = max{𝑒𝐷 , 𝑒𝑁 , 𝑒𝑊 } where 𝑒𝑖 is an expression containing ℓ𝑖 (if there are
more such types, 𝑗 is chosen arbitrarily). The rules for assigning a type 𝑡 and a rank ℓ
to 𝐶 are the following:

I1: If 𝐶 is trivial, we set 𝑡 = typemax{ℓ𝐷 , ℓ𝑁 , ℓ𝑊 } and ℓ = max{ℓ𝐷 , ℓ𝑁 , ℓ𝑊 }.
I2: Else if 𝐶 is IWA, we use the rule in Fig. 3a.
I3: Else if 𝐶 is deterministic accepting, we use the rule in Fig. 3b.
I4: Else if 𝐶 is deterministic and non-accepting, we try both rules from Figs. 3b and 3c

and pick the rule that gives us a smaller rank.
I5: Else if 𝐶 is nondeterministic and non-accepting, we use the rule in Fig. 3c.

{𝑟} {𝑟, 𝑠, 𝑡} {𝑠, 𝑡}

∅

({𝑟:3, 𝑠:0, 𝑡:1}, ∅)
({𝑟:3, 𝑠:2, 𝑡:1}, ∅)
({𝑟:1, 𝑠:2, 𝑡:3}, ∅)

({𝑟:1, 𝑠:0, 𝑡:0}, ∅) ({𝑟:1, 𝑠:0, 𝑡:1}, ∅)

({𝑟:1}, ∅)

({𝑟:1, 𝑠:0, 𝑡:0}, {𝑠, 𝑡})

({𝑠:0, 𝑡:1}, ∅)
𝑏

𝑏

𝑏

𝑏
𝑏

𝑏

𝑎

𝑎

𝑏
𝑎

𝑎

𝑎

𝑏

𝑎, 𝑏

𝑏
𝑏

𝑏𝑏

Fig. 5: A part of Schewe(A). The TRUB
computed by elevator rules is used to prune
states outside the yellow area.

Then, for every MSCC𝐶 ofA, we assign
each of its states the rank of 𝐶. We use
𝜒 : 𝑄 → 𝜔 to denote the rank bounds
computed by the procedure above.

Lemma 7. 𝜒 is a TRUB.

Using Lemma 5, we can now use 𝜒
to prune states during the construction
of Schewe(A), as shown in the follow-
ing example.

Example 8. As an example, consider
the BA A in Fig. 1a. The set of
MSCCs with their types is given as

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 125

75

{{𝑟}:N, {𝑠, 𝑡}:IWA} showing that BA A is an elevator. Using the rules T1 and I4
we get the TRUB 𝜒 = {𝑟:1, 𝑠:0, 𝑡:0}. The TRUB can be used to prune the generated
states as shown in Fig. 5. ut

4.2 Efficient Complementation of Elevator Automata

In Section 4.1 we proposed an algorithm for assigning ranks to MSCCs of an elevator
automatonA. The drawback of the algorithm is that the maximum obtained rank is not
bounded by a constant but by the depth of the condensation of A. We will, however,
show that it is actually possible to change A by at most doubling the number of states
and obtain an elevator BA with the rank at most 3.

Intuitively, the construction copies every non-trivial MSCC 𝐶 with an accepting
state or transition into a component 𝐶•, copies all transitions going into states in 𝐶 to
also go into the corresponding states in𝐶•, and, finally, removes all accepting conditions
from 𝐶. Formally, letA = (𝑄, 𝛿, 𝐼, 𝑄𝐹 ∪ 𝛿𝐹) be a BA. For 𝐶 ⊆ 𝑄, we use 𝐶• to denote
a unique copy of 𝐶, i.e., 𝐶• = {𝑞• | 𝑞 ∈ 𝐶} s.t. 𝐶• ∩𝑄 = ∅. LetM be the set of MSCCs
ofA. Then, the deelevated BA DeElev(A) = (𝑄 ′, 𝛿′, 𝐼 ′, 𝑄 ′𝐹 ∪ 𝛿′𝐹) is given as follows:

– 𝑄 ′ = 𝑄 ∪𝑄•,
– 𝛿′ : 𝑄 ′ × Σ→ 2𝑄

′ where for 𝑞 ∈ 𝑄
• 𝛿′(𝑞, 𝑎) = 𝛿(𝑞, 𝑎) ∪ (𝛿(𝑞, 𝑎))• and
• 𝛿′(𝑞•, 𝑎) = (𝛿(𝑞, 𝑎) ∩ 𝐶)• for 𝑞 ∈ 𝐶 ∈ M;

– 𝐼 ′ = 𝐼, and
– 𝑄 ′𝐹 = 𝑄•𝐹 and 𝛿′𝐹 = {𝑞• 𝑎→ 𝑟• | 𝑞 𝑎→ 𝑟 ∈ 𝛿𝐹 } ∩ 𝛿′.

It is easy to see that the number of states of the deelevated automaton is bounded by 2|𝑄 |.
Moreover, if A is elevator, so is DeElev(A). The construction preserves the language
of A, as shown by the following lemma.

Lemma 9. Let A be a BA. Then, L(A) = L(DeElev(A)).

Moreover, for an elevator automaton A, the structure of DeElev(A) consists of (after
trimming useless states) several non-accepting MSCCs with copied terminal deter-
ministic or IWA MSCCs. Therefore, if we apply the algorithm from Section 4.1 on
DeElev(A), we get that its rank is bounded by 3, which gives the following upper
bound for complementation of elevator automata.

Lemma 10. Let A be an elevator automaton with suffficiently many states 𝑛. Then the
language Σ𝜔 \ L(A) can be represented by a BA with at most O(16𝑛) states.

The complementation through DeElev(A) gives a better upper bound than the rank
refinement from Section 4.1 applied directly on A, however, based on our experience,
complementation through DeElev(A) behaves worse in many real-world instances.
This poor behaviour is caused by the fact that the complement of DeElev(A) can have
a larger Waiting and macrostates in Tight can have larger 𝑆-components, which can
yield more generated states (despite the rank bound 3). It seems that the most promising
approach would to be a combination of the approaches, which we leave for future work.

126 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

76

IWA:ℓ

ℓ = max{ℓ𝐷 , ℓ𝑁 + 1, ℓ𝑊 , ℓ𝐺}
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊 G:ℓ𝐺

(a) 𝐶 is IWA

D:ℓ

ℓ = max{ℓ𝐷 + 2 , ℓ𝑁 + 1, ℓ𝑊 + 2 , ℓ𝐺 + 2, 2}
𝐶 :

D:ℓ𝐷

2

N:ℓ𝑁 IWA:ℓ𝑊

2

G:ℓ𝐺

(b) 𝐶 is D

N:ℓ

ℓ = max{ℓ𝐷 + 1, ℓ𝑁 , ℓ𝑊 + 1, ℓ𝐺 + 1}
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊 G:ℓ𝐺

(c) 𝐶 is N

Fig. 6: Rules assigning types and rank bounds for non-elevator automata.

4.3 Refined Ranks for Non-Elevator Automata

The algorithm from Section 4.1 computing a TRUB for elevator automata can be
extended to compute TRUBs even for general non-elevator automata (i.e., BAs with
nondeterministic accepting components that are not inherently weak). To achieve this
generalization, we extend the rules for assigning types and ranks to MSCCs of elevator
automata from Section 4.1 to take into account general non-deterministic components.
For this, we add into our collection of MSCC types general components (denoted as G).
Further, we need to extend the rules for terminal components with the following rule:

T3: Otherwise, we label 𝐶 with G:2|𝐶 \𝑄𝐹 | .
G:ℓ

ℓ = max{ℓ𝐷 , ℓ𝑁 + 1, ℓ𝑊 , ℓ𝐺} + 2|𝐶 \𝑄𝐹 |
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊 G:ℓ𝐺

Fig. 7: 𝐶 is G

Moreover, we adjust the rules for assigning
a type 𝑡 and a rank ℓ to 𝐶 to the following (the
rule I1 is the same as for the case of elevator
automata):

I2–I5: (We replace the corresponding rules for their counterparts including general
components from Fig. 6).

I6: Otherwise, we use the rule in Fig. 7.

Then, for every MSCC𝐶 of a BAA, we assign each of its states the rank of𝐶. Again, we
use 𝜒 : 𝑄 → 𝜔 to denote the rank bounds computed by the adjusted procedure above.

Lemma 11. 𝜒 is a TRUB.

5 Rank Propagation

𝜇′(𝑆)

𝜇(𝑅1)
𝑎1

𝜇(𝑅2)
𝑎2

· · · 𝜇(𝑅𝑚)
𝑎𝑚

Fig. 8: Rank propagation flow

In the previous section, we proposed a way, how to
obtain a TRUB for elevator automata (with gener-
alization to general automata). In this section, we
propose a way of using the structure of A to re-
fine a TRUB using a propagation of values and thus
reduce the size of Tight. Our approach uses data
flow analysis [32] to reason on how ranks and rankings of macrostates of Schewe(A)
can be decreased based on the ranks and rankings of the local neighbourhood of the
macrostates. We, in particular, use a special case of forward analysis working on
the skeleton of Schewe(A), which is defined as the BA KA = (2𝑄, 𝛿′, ∅, ∅) where
𝛿′ = {𝑅 𝑎→ 𝑆 | 𝑆 = 𝛿(𝑅, 𝑎)} (note that we are only interested in the structure ofKA and

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 127

77

not its language; also notice the similarity of KA with Waiting). Our analysis refines
a rank/ranking estimate 𝜇(𝑆) for a macrostate 𝑆 of KA based on the estimates for its
predecessors 𝑅1, . . . , 𝑅𝑚 (see Fig. 8). The new estimate is denoted as 𝜇′(𝑆).

More precisely, 𝜇 : 2𝑄 → V is a function giving each macrostate ofKA a value from
the domainV. We will use the following two value domains: (i)V = 𝜔, which is used for
estimating ranks of macrostates (in the outer macrostate analysis) and (ii)V = R, which
is used for estimating rankings within macrostates (in the inner macrostate analysis). For
each of the analyses, we will give the update function up : (2𝑄 → V) × (2𝑄)𝑚+1 → V,
which defines how the value of 𝜇(𝑆) is updated based on the values of 𝜇(𝑅1), . . . , 𝜇(𝑅𝑚).
We then construct a system with the following equation for every 𝑆 ∈ 2𝑄:

𝜇(𝑆) = up (𝜇, 𝑆, 𝑅1, . . . , 𝑅𝑚) where {𝑅1, . . . , 𝑅𝑚} = 𝛿′−1 (𝑆,Σ). (3)

We then solve the system of equations using standard algorithms for data flow analysis
(see, e.g., [32, Chapter 2]) to obtain the fixpoint 𝜇∗. Our analyses have the important
property that if they start with 𝜇0 being a TRUB, then 𝜇∗ will also be a TRUB.

As the initial TRUB, we can use a trivial TRUB or any other TRUB (e.g., the output
of elevator state analysis from Section 4).

5.1 Outer Macrostate Analysis

We start with the simpler analysis, which is the outer macrostate analysis, which
only looks at sizes of macrostates. Recall that the rank 𝑟 of every super-tight run in
Schewe(A) does not change, i.e., a super tight run stays in Waiting as long as needed
so that when it jumps to Tight, it takes the rank 𝑟 and never needs to decrease it. We can
use this fact to decrease the maximum rank of a macrostate 𝑆 in KA . In particular,
let us consider all cycles going through 𝑆. For each of the cycles 𝑐, we can bound the
maximum rank of a super-tight run going through 𝑐 by 2𝑚 − 1 where 𝑚 is the smallest
number of non-accepting states occurring in any macrostate on 𝑐 (from the definition,
the rank of a tight ranking does not depend on accepting states). Then we can infer that
the maximum rank of any super-tight run going through 𝑆 is bounded by the maximum
rank of any of the cycles going through 𝑆 (since 𝑆 can never assume a higher rank in
any super-tight run). Moreover, the rank of each cycle can also be estimated in a more
precise way, e.g. using our elevator analysis.

Since the number of cycles inKA can be large2, instead of their enumeration, we em-
ploy data flow analysis with the value domain V = 𝜔 (i.e, for every macrostate 𝑆 ofKA ,
we remember a bound on the maximum rank of 𝑆) and the following update function:

upout (𝜇, 𝑆, 𝑅1, . . . , 𝑅𝑚) = min{𝜇(𝑆),max{𝜇(𝑅1), . . . , 𝜇(𝑅𝑚)}}. (4)

Intuitively, the new bound on the maximum rank of 𝑆 is taken as the smaller of the
previous bound 𝜇(𝑆) and the largest of the bounds of all predecessors of 𝑆, and the new
value is propagated forward by the data flow analysis.

2 KA can be exponentially larger thanA and the number of cycles inKA can be exponential to
the size of KA , so the total number of cycles can be double-exponential.

128 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

78

𝑝 𝑞 𝑟

𝑠

𝑎

𝑎 𝑎
•

𝑎

𝑎

𝑎
•

(a) Aex

{𝑝} :1

{𝑝, 𝑞} :3

{𝑝, 𝑞, 𝑟, 𝑠} :7

𝑎

𝑎

𝑎

(b) 𝜇0

{𝑝} :1

{𝑝, 𝑞} :1

{𝑝, 𝑞, 𝑟, 𝑠} :7

𝑎

𝑎

𝑎

(c) 𝜇∗out
Fig. 9: Example of outer macrostate anal-
ysis. (a) Aex (• denotes accepting transi-
tions). The initial TRUB 𝜇0 in (b) is refined
to 𝜇∗out in (c).

Example 12. Consider the BA Aex in
Fig. 9a. When started from the initial
TRUB 𝜇0 = {{𝑝} ↦→ 1, {𝑝, 𝑞} ↦→
3, {𝑝, 𝑞, 𝑟, 𝑠} ↦→ 7} (Fig. 9b), outer
macrostate analysis decreases the max-
imum rank estimate for {𝑝, 𝑞} to 1,
since min{𝜇0 ({𝑝, 𝑞},max{𝜇0 ({𝑝})}} =
min{3, 1} = 1. The estimate for
{𝑝, 𝑞, 𝑟, 𝑠} is not affected, because
min{7,max{1, 7}} = 7 (Fig. 9c). ut

Lemma 13. If 𝜇 is a TRUB, then 𝜇 C {𝑆 ↦→ upout (𝜇, 𝑆, 𝑅1, . . . , 𝑅𝑚)} is a TRUB.

Corollary 14. When started with a TRUB 𝜇0, the outer macrostate analysis terminates
and returns a TRUB 𝜇∗out .

5.2 Inner Macrostate Analysis

Our second analysis, called inner macrostate analysis, looks deeper into super-tight
runs in Schewe(A). In particular, compared with the outer macrostate analysis from
the previous section—which only looks at the ranks, i.e., the bounds on the numbers
in the rankings—, inner macrostate analysis looks at how the rankings assign concrete
values to the states of A inside the macrostates.

Inner macrostate analysis is based on the following. Let 𝜌 be a super-tight run of
Schewe(A) on 𝛼 ∉ L(A) and (𝑆, 𝑂, 𝑓 , 𝑖) be a macrostate from Tight. Because 𝜌 is
super-tight, we know that the rank 𝑓 (𝑞) of a state 𝑞 ∈ 𝑆 is bounded by the ranks of the
predecessors of 𝑞. This holds because in super-tight runs, the ranks are only as high as
necessary; if the rank of 𝑞 were higher than the ranks of its predecessors, this would
mean that we may wait in Waiting longer and only jump to 𝑞 with a lower rank later.

Let us introduce some necessary notation. Let 𝑓 , 𝑓 ′ ∈ R be rankings (i.e., 𝑓 , 𝑓 ′ : 𝑄 →
𝜔). We use 𝑓 t 𝑓 ′ to denote the ranking {𝑞 ↦→ max{ 𝑓 (𝑞), 𝑓 ′(𝑞)} | 𝑞 ∈ 𝑄}, and
𝑓 u 𝑓 ′ to denote the ranking {𝑞 ↦→ min{ 𝑓 (𝑞), 𝑓 ′(𝑞)} | 𝑞 ∈ 𝑄}. Moreover, we define
max-succ-rank𝑎𝑆 (𝑓) = max≤{ 𝑓 ′ ∈ R | 𝑓 𝑎

𝑆 𝑓
′} and a function dec : R → R such that

dec (𝜃) is the ranking 𝜃 ′ for which

𝜃 ′(𝑞) =

𝜃 (𝑞) .− 1 if 𝜃 (𝑞) = rank (𝜃) and 𝑞 ∉ 𝑄𝐹 ,

bb𝜃 (𝑞) .− 1cc if 𝜃 (𝑞) = rank (𝜃) and 𝑞 ∈ 𝑄𝐹 ,

𝜃 (𝑞) otherwise.
(5)

Intuitively, max-succ-rank𝑎𝑆 (𝑓) is the (pointwise) maximum ranking that can be reached
from macrostate 𝑆 with ranking 𝑓 over 𝑎 (it is easy to see that there is a unique such
maximum ranking) and dec (𝜃) decreases the maximum ranks in a ranking 𝜃 by one
(or by two for even maximum ranks and accepting states).

The analysis uses the value domain V = R (i.e., each macrostate of KA is assigned
a ranking giving an upper bound on the rank of each state in the macrostate) and
the update function upin given in the right-hand side of the page. Intuitively, upin

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 129

79

1 upin (𝜇, 𝑆, 𝑅1, . . . , 𝑅𝑚):
2 foreach 1 ≤ 𝑖 ≤ 𝑚 and 𝑎 ∈ Σ do
3 if 𝛿(𝑅𝑖 , 𝑎) = 𝑆 then
4 𝑔𝑎𝑖 ← max-succ-rank𝑎𝑅𝑖

(𝜇(𝑅𝑖))
5 𝜃 ← 𝜇(𝑆) u ⊔{𝑔𝑎𝑖 | 𝑔𝑎𝑖 is defined};
6 if rank (𝜃) is even then 𝜃 ← dec (𝜃);
7 return 𝜃;

updates 𝜇(𝑞) for every 𝑞 ∈ 𝑆
to hold the maximum rank com-
patible with the ranks of its pre-
decessors. We note line Line 6,
which makes use of the fact that
we can only consider tight rank-
ings (whose rank is odd), so we
can decrease the estimate using
the function dec defined above.

{𝑝:1, 𝑞:1} {𝑝:7, 𝑞:7, 𝑟:7, 𝑠:7}

{𝑝:6, 𝑞:7, 𝑟:7, 𝑠:7}

{𝑝:6, 𝑞:6, 𝑟:7, 𝑠:7}

{𝑝:6, 𝑞:6, 𝑟:6, 𝑠:6}

{𝑝:5, 𝑞:5, 𝑟:5, 𝑠:5}
dec

Example 15. Let us continue in Section 5.1 and per-
form inner macrostate analysis starting with the TRUB
{{𝑝:1}, {𝑝:1, 𝑞:1}, {𝑝:7, 𝑞:7, 𝑟:7, 𝑠:7}} obtained from 𝜇∗out .
We show three iterations of the algorithm for {𝑝, 𝑞, 𝑟, 𝑠} in
the right-hand side (we do not show {𝑝, 𝑞} except the first
iteration since it does not affect intermediate steps). We can
notice that in the three iterations, we could decrease the maxi-
mum rank estimate to {𝑝:6, 𝑞:6, 𝑟:6, 𝑠:6} due to the accepting
transitions from 𝑟 and 𝑠. In the last of the three iterations, when
all states have the even rank 6, the condition on Line 6 would
become true and the rank of all states would be decremented
to 5 using dec. Then, again, the accepting transitions from 𝑟 and 𝑠 would decrease the
rank of 𝑝 to 4, which would be propagated to 𝑞 and so on. Eventually, we would arrive to
the TRUB {𝑝:1, 𝑞:1, 𝑟:1, 𝑠:1}, which could not be decreased any more, since {𝑝:1, 𝑞:1}
forces the ranks of 𝑟 and 𝑠 to stay at 1. ut

Lemma 16. If 𝜇 is a TRUB, then 𝜇 C {𝑆 ↦→ upin (𝜇, 𝑆, 𝑅1, . . . , 𝑅𝑚)} is a TRUB.

Corollary 17. When started with a TRUB 𝜇0, the inner macrostate analysis terminates
and returns a TRUB 𝜇∗in .

6 Experimental Evaluation
Used tools and evaluation environment. We implemented the techniques described in
the previous sections as an extension of the tool Ranker [18] (written in C++). Speaking
in the terms of [19], the heuristics were implemented on top of the RankerMaxR config-
uration (we refer to this previous version as RankerOld). We tested the correctness of
our implementation using Spot’s autcross on all BAs in our benchmark. We compared
modified Ranker with other state-of-the-art tools, namely, Goal [41] (implementing
Piterman [34], Schewe [37], Safra [36], and Fribourg [1]), Spot 2.9.3 [12] (im-
plementing Redziejowski’s algorithm [35]), Seminator 2 [4], LTL2dstar 0.5.4 [23],
and Roll [26]. All tools were set to the mode where they output an automaton with
the standard state-based Büchi acceptance condition. The experimental evaluation was
performed on a 64-bit GNU/Linux Debian workstation with an Intel(R) Xeon(R) CPU
E5-2620 running at 2.40 GHz with 32 GiB of RAM and using a timeout of 5 minutes.

Datasets. As the source of our benchmark, we use the two following datasets: (i) random
containing 11,000 BAs over a two letter alphabet used in [40], which were randomly

130 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

80

10 100 1000 10000 100000
Ranker

10

100

1000

10000

100000

Sc
he

we

(a) Ranker vs Schewe

10 100 1000 10000 100000
Ranker

10

100

1000

10000

100000

Ra
nk

er
Ol

d

(b) Ranker vs RankerOld

Fig. 10: Comparison of the state space generated by our optimizations and other rank-
based procedures (horizontal and vertical dashed lines represent timeouts). Blue data
points are from random and red data points are from LTL. Axes are logarithmic.

generated via the Tabakov-Vardi approach [39], starting from 15 states and with var-
ious different parameters; (ii) LTL with 1,721 BAs over larger alphabets (up to 128
symbols) used in [4], which were obtained from LTL formulae from literature (221) or
randomly generated (1,500). We preprocessed the automata using Rabit [30] and Spot’s
autfilt (using the --high simplification level), transformed them to state-based ac-
ceptance BAs (if they were not already), and converted to the HOA format [2]. From
this set, we removed automata that were (i) semi-deterministic, (ii) inherently weak,
(iii) unambiguous, or (iv) have an empty language, since for these automata types there
exist more efficient complementation procedures than for unrestricted BAs [5,4,6,28].
In the end, we were left with 2,592 (random) and 414 (LTL) hard automata. We use all
to denote their union (3,006 BAs). Of these hard automata, 458 were elevator automata.

6.1 Generated State Space

In our first experiment, we evaluated the effectiveness of our heuristics for pruning the
generated state space by comparing the sizes of complemented BAs without postprocess-
ing. This use case is directed towards applications where postprocessing is irrelevant,
such as inclusion or equivalence checking of BAs.

We focused on a comparison with two less optimized versions of the rank-based com-
plementation procedure: Schewe (the version “Reduced Average Outdegree” from [37]
implemented in Goal under -m rank -tr -ro) and its optimization RankerOld. The
scatter plots in Fig. 10 compare the numbers of states of automata generated by Ranker
and the other algorithms and the upper part of Table 1 gives summary statistics. Observe
that our optimizations from this paper drastically reduced the generated search space
compared with both Schewe and RankerOld (the mean for Schewe is lower than for
RankerOld due to its much higher number of timeouts); from Fig. 10b we can see that
the improvement was in many cases exponential even when compared with our previous
optimizations in RankerOld. The median (which is a more meaningful indicator with
the presence of timeouts) decreased by 44 % w.r.t. RankerOld, and we also reduced the

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 131

81

Table 1: Statistics for our experiments. The upper part compares various optimizations of
the rank-based procedure (no postprocessing). The lower part compares Ranker to other
approaches (with postprocessing). The left-hand side compares sizes of complement BAs
and the right-hand side runtimes of the tools. The wins and losses columns give the
number of times when Ranker was strictly better and worse. The values are given for
the three datasets as “all (random : LTL)”. Approaches in Goal are labelled with G.

method mean median wins losses mean runtime [s] median runtime [s] timeouts
Ranker 3812 (4452 : 207) 79 (93 : 26) 7.83 (8.99 : 1.30) 0.51 (0.84 : 0.04) 279 (276 : 3)
RankerOld 7398 (8688 : 358) 141 (197 : 29) 2190 (2011 : 179) 111 (107 : 4) 9.37 (10.73 : 1.99) 0.61 (1.04 : 0.04) 365 (360 : 5)
Schewe G 4550 (5495 : 665) 439 (774 : 35) 2640 (2315 : 325) 55 (1 : 54) 21.05 (24.28 : 7.80) 6.57 (7.39 : 5.21) 937 (928 : 9)

Ranker 47 (52 : 18) 22 (27 : 10) 7.83 (8.99 : 1.30) 0.51 (0.84 : 0.04) 279 (276 : 3)
Piterman G 73 (82 : 22) 28 (34 : 14) 1435 (1124 : 311) 416 (360 : 56) 7.29 (7.39 : 6.65) 5.99 (6.04 : 5.62) 14 (12 : 2)
Safra G 83 (91 : 30) 29 (35 : 17) 1562 (1211 : 351) 387 (350 : 37) 14.11 (15.05 : 8.37) 6.71 (6.92 : 5.79) 172 (158 : 14)
Spot 75 (85 : 15) 24 (32 : 10) 1087 (936 : 151) 683 (501 : 182) 0.86 (0.99 : 0.06) 0.02 (0.02 : 0.02) 13 (13 : 0)
Fribourg G 91 (104 : 13) 23 (31 : 9) 1120 (1055 : 65) 601 (376 : 225) 17.79 (19.53 : 7.22) 9.25 (10.15 : 5.48) 81 (80 : 1)
LTL2dstar 73 (82 : 21) 28 (34 : 13) 1465 (1195 : 270) 465 (383 : 82) 3.31 (3.84 : 0.11) 0.04 (0.05 : 0.02) 136 (130 : 6)
Seminator 2 79 (91 : 15) 21 (29 : 10) 1266 (1131 : 135) 571 (367 : 204) 9.51 (11.25 : 0.08) 0.22 (0.39 : 0.02) 363 (362 : 1)
Roll 18 (19 : 14) 10 (9 : 11) 2116 (1858 : 258) 569 (443 : 126) 31.23 (37.85 : 7.28) 8.19 (12.23 : 2.74) 1109 (1106 : 3)

number of timeouts by 23 %. Notice that the numbers for the LTL dataset do not differ
as much as for random, witnessing the easier structure of the BAs in LTL.

6.2 Comparison with Other Complementation Techniques
In our second experiment, we compared the improved Ranker with other state-of-the-
art tools. We were comparing sizes of output BAs, therefore, we postprocessed each
output automaton with autfilt (simplification level --high). Scatter plots are given
in Fig. 11, where we compare Ranker with Spot (which had the best results on average
from the other tools except Roll) and Roll, and summary statistics are in the lower
part of Table 1. Observe that Ranker has by far the lowest mean (except Roll) and the
third lowest median (after Seminator 2 and Roll, but with less timeouts). Moreover,
comparing the numbers in columns wins and losses we can see that Ranker gives strictly
better results than other tools (wins) more often than the other way round (losses).

In Fig. 11a see that indeed in the majority of cases Ranker gives a smaller BA than
Spot, especially for harder BAs (Spot, however, behaves slightly better on the simpler
BAs from LTL). The results in Fig. 11b do not seem so clear. Roll uses a learning-based
approach—more heavyweight and completely orthogonal to any of the other tools—and
can in some cases output a tiny automaton, but does not scale, as observed by the number
of timeouts much higher than any other tool. It is, therefore, positively surprising that
Ranker could in most of the cases still obtain a much smaller automaton than Roll.

Regarding runtimes, the prototype implementation in Ranker is comparable to Sem-
inator 2, but slower than Spot and LTL2dstar (Spot is the fastest tool). Implementa-
tions of other approaches clearly do not target speed. We note that the number of timeouts
of Ranker is still higher than of some other tools (in particular Piterman, Spot, Fri-
bourg); further state space reduction targeting this particular issue is our future work.

7 Related Work
BA complementation remains in the interest of researchers since their first introduction
by Büchi in [8]. Together with a hunt for efficient complementation techniques, the effort
has been put into establishing the lower bound. First, Michel showed that the lower bound
is 𝑛! (approx. (0.36𝑛)𝑛) [31] and later Yan refined the result to (0.76𝑛)𝑛 [43].

132 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

82

1 10 100 1000
Ranker

1

10

100

1000
Sp

ot

(a) Ranker vs Spot

1 10 100 1000
Ranker

1

10

100

1000

RO
LL

(b) Ranker vs Roll

Fig. 11: Comparison of the complement size obtained by Ranker and other state-of-the-
art tools (horizontal and vertical dashed lines represent timeouts). Axes are logarithmic.

The complementation approaches can be roughly divided into several branches.
Ramsey-based complementation, the very first complementation construction, where
the language of an input automaton is decomposed into a finite number of equivalence
classes, was proposed by Büchi and was further enhanced in [7]. Determinization-
based complementation was presented by Safra in [36] and later improved by Piterman
in [34] and Redziejowski in [35]. Various optimizations for determinization of BAs were
further proposed in [29]. The main idea of this approach is to convert an input BA into an
equivalent deterministic automaton with different acceptance condition that can be easily
complemented (e.g. Rabin automaton). The complemented automaton is then converted
back into a BA (often for the price of some blow-up). Slice-based complementation tracks
the acceptance condition using a reduced abstraction on a run tree [42,21]. A learning-
based approach was introduced in [27,26]. Allred and Ultes-Nitsche then presented
a novel optimal complementation algorithm in [1]. For some special types of BAs, e.g.,
deterministic [25], semi-deterministic [5], or unambiguous [28], there exist specific
complementation algorithms. Semi-determinization based complementation converts
an input BA into a semi-deterministic BA [11], which is then complemented [4].

Rank-based complementation, studied in [24,15,14,37,22], extends the subset con-
struction for determinization of finite automata by storing additional information in
each macrostate to track the acceptance condition of all runs of the input automaton.
Optimizations of an alternative (sub-optimal) rank-based construction from [24] go-
ing through alternating Büchi automata were presented in [15]. Furthermore, the work
in [22] introduces an optimization of Schewe, in some cases producing smaller au-
tomata (this construction is not compatible with our optimizations). As shown in [9],
the rank-based construction can be optimized using simulation relations. We identified
several heuristics that help reducing the size of the complement in [19], which are
compatible with the heuristics in this paper.
Acknowledgements. We thank anonymous reviewers for their useful remarks that helped
us improve the quality of the paper. This work was supported by the Czech Science
Foundation project 20-07487S and the FIT BUT internal project FIT-S-20-6427.

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 133

83

References

1. Allred, J.D., Ultes-Nitsche, U.: A simple and optimal complementation algorithm for Büchi
automata. In: Proceedings of the Thirty third Annual IEEE Symposium on Logic in Computer
Science (LICS 2018). pp. 46–55. IEEE Computer Society Press (July 2018)

2. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křetínský, J., Müller, D., Parker, D.,
Strejček, J.: The Hanoi omega-automata format. In: Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 9206, pp. 479–486. Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_31

3. Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.H.: Complementing semi-
deterministic büchi automata. In: Tools and Algorithms for the Construction and Analysis of
Systems. pp. 770–787. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

4. Blahoudek, F., Duret-Lutz, A., Strejček, J.: Seminator 2 can complement generalized Büchi
automata via improved semi-determinization. In: Proceedings of the 32nd International Con-
ference on Computer-Aided Verification (CAV’20). Lecture Notes in Computer Science, vol.
12225, pp. 15–27. Springer (Jul 2020)

5. Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.: Complementing semi-
deterministic Büchi automata. In: Tools and Algorithms for the Construction and Analysis of
Systems - 22nd International Conference, TACAS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9636, pp. 770–787.
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_49

6. Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear
arithmetic with integer and real variables. In: Automated Reasoning, First International Joint
Conference, IJCAR 2001, Siena, Italy, June 18-23, 2001, Proceedings. Lecture Notes in
Computer Science, vol. 2083, pp. 611–625. Springer (2001). https://doi.org/10.1007/3-540-
45744-5_50

7. Breuers, S., Löding, C., Olschewski, J.: Improved Ramsey-based Büchi complementation.
In: Proc. of FOSSACS’12. pp. 150–164. Springer (2012)

8. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. of Inter-
national Congress on Logic, Method, and Philosophy of Science 1960. Stanford Univ. Press,
Stanford (1962)

9. Chen, Y., Havlena, V., Lengál, O.: Simulations in rank-based Büchi automata complementa-
tion. In: Programming Languages and Systems - 17th Asian Symposium, APLAS 2019, Nusa
Dua, Bali, Indonesia, December 1-4, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11893, pp. 447–467. Springer (2019). https://doi.org/10.1007/978-3-030-34175-6_23

10. Chen, Y., Heizmann, M., Lengál, O., Li, Y., Tsai, M., Turrini, A., Zhang, L.: Ad-
vanced automata-based algorithms for program termination checking. In: Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. pp. 135–150. ACM (2018).
https://doi.org/10.1145/3192366.3192405

11. Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state probabilis-
tic programs. In: 29th Annual Symposium on Foundations of Computer Science, White
Plains, New York, USA, 24-26 October 1988. pp. 338–345. IEEE Computer Society (1988).
https://doi.org/10.1109/SFCS.1988.21950

12. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0 — a
framework for LTL and𝜔-automata manipulation. In: Automated Technology for Verification
and Analysis. pp. 122–129. Springer International Publishing, Cham (2016)

134 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

84

13. Fogarty, S., Vardi, M.Y.: Büchi complementation and size-change termination. In: Proc. of
TACAS’09. pp. 16–30. Springer (2009)

14. Friedgut, E., Kupferman, O., Vardi, M.: Büchi complementation made tighter. International
Journal of Foundations of Computer Science 17, 851–868 (2006)

15. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing non-
deterministic Büchi automata. In: Correct Hardware Design and Verification Methods,
12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L’Aquila,
Italy, October 21-24, 2003, Proceedings. LNCS, vol. 2860, pp. 96–110. Springer (2003).
https://doi.org/10.1007/978-3-540-39724-3_10

16. Havlena, V., Lengál, O., Smahlíková, B.: Sky is not the limit: Tighter rank bounds for elevator
automata in Büchi automata complementation (technical report). CoRR abs/2110.10187
(2021), https://arxiv.org/abs/2110.10187

17. Havlena, V., Lengál, O., Šmahlíková, B.: Deciding S1S: Down the rabbit hole and through
the looking glass. In: Proceedings of NETYS’21. pp. 215–222. No. 12754 in LNCS, Springer
Verlag (2021). https://doi.org/10.1007/978-3-030-91014-3_15

18. Havlena, V., Lengál, O., Šmahlíková, B.: Ranker (2021), https://github.com/vhavlena/ranker
19. Havlena, V., Lengál, O.: Reducing (To) the Ranks: Efficient Rank-Based Büchi Automata

Complementation. In: Proc. of CONCUR’21. LIPIcs, vol. 203, pp. 2:1–2:19. Schloss
Dagstuhl, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.2,
iSSN: 1868-8969

20. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning terminating
programs. In: Proc. of CAV’14. pp. 797–813. Springer (2014)

21. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi au-
tomata unified. In: Proc. of ICALP’08. pp. 724–735. Springer (2008)

22. Karmarkar, H., Chakraborty, S.: On minimal odd rankings for Büchi complemen-
tation. In: Proc. of ATVA’09. LNCS, vol. 5799, pp. 228–243. Springer (2009).
https://doi.org/10.1007/978-3-642-04761-9_18

23. Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic omega
-automata. In: Proc. of CIAA’07. LNCS, vol. 4783, pp. 51–61. Springer (2007).
https://doi.org/10.1007/978-3-540-76336-9_7

24. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans.
Comput. Log. 2(3), 408–429 (2001). https://doi.org/10.1145/377978.377993

25. Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time. J. Comput.
Syst. Sci. 35(1), 59–71 (1987). https://doi.org/10.1016/0022-0000(87)90036-5

26. Li, Y., Sun, X., Turrini, A., Chen, Y., Xu, J.: ROLL 1.0: 𝜔-regular language learn-
ing library. In: Proc. of TACAS’19. LNCS, vol. 11427, pp. 365–371. Springer (2019).
https://doi.org/10.1007/978-3-030-17462-0_23

27. Li, Y., Turrini, A., Zhang, L., Schewe, S.: Learning to complement Büchi automata. In: Proc.
of VMCAI’18. pp. 313–335. Springer (2018)

28. Li, Y., Vardi, M.Y., Zhang, L.: On the power of unambiguity in Büchi complementation. In:
Proc. of GandALF’20. EPTCS, vol. 326, pp. 182–198. Open Publishing Association (2020).
https://doi.org/10.4204/EPTCS.326.12

29. Löding, C., Pirogov, A.: New optimizations and heuristics for determinization of büchi
automata. In: Automated Technology for Verification and Analysis. pp. 317–333. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_18

30. Mayr, R., Clemente, L.: Advanced automata minimization. In: Proc. of POPL’13. pp. 63–74
(2013)

31. Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris
15 (1988)

32. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer (1999).
https://doi.org/10.1007/978-3-662-03811-6

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 135

85

33. Oei, R., Ma, D., Schulz, C., Hieronymi, P.: Pecan: An automated theorem prover for automatic
sequences using büchi automata. CoRR abs/2102.01727 (2021), https://arxiv.org/abs/2102.
01727

34. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity
automata. In: Proc. of LICS’06. pp. 255–264. IEEE (2006)

35. Redziejowski, R.R.: An improved construction of deterministic omega-automaton using
derivatives. Fundam. Informaticae 119(3-4), 393–406 (2012). https://doi.org/10.3233/FI-
2012-744

36. Safra, S.: On the complexity of 𝜔-automata. In: Proc. of FOCS’88. pp. 319–327. IEEE (1988)
37. Schewe, S.: Büchi complementation made tight. In: Proc. of STACS’09. LIPIcs, vol. 3, pp.

661–672. Schloss Dagstuhl (2009). https://doi.org/10.4230/LIPIcs.STACS.2009.1854
38. Sistla, A.P., Vardi, M.Y., Wolper, P.: The Complementation Problem for Büchi Automata with

Applications to Temporal Logic. Theoretical Computer Science 49(2-3), 217–237 (1987)
39. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions. In:

Proc. of LPAR’05. pp. 396–411. Springer (2005)
40. Tsai, M.H., Fogarty, S., Vardi, M.Y., Tsay, Y.K.: State of Büchi complementation. In: Imple-

mentation and Application of Automata. pp. 261–271. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

41. Tsai, M.H., Tsay, Y.K., Hwang, Y.S.: GOAL for games, omega-automata, and logics. In:
Computer Aided Verification. pp. 883–889. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

42. Vardi, M.Y., Wilke, T.: Automata: From logics to algorithms. Logic and Automata 2, 629–736
(2008)

43. Yan, Q.: Lower bounds for complementation of 𝜔-automata via the full automata technique.
In: Automata, Languages and Programming. pp. 589–600. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to ob-
tain permission directly from the copyright holder.

136 Vojtěch Havlena, Ondřej Lengál, Barbora Šmahĺıková

86

Modular Mix-and-Match
Complementation of Büchi Automata

Vojtěch Havlena1(B) , Ondřej Lengál1(B) , Yong Li2,3(B) ,
Barbora Šmahlı́ková1(B) , and Andrea Turrini3,4(B)

1 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
ihavlena@fit.vut.cz, lengal@vut.cz, xsmahl00@vut.cz

2 Department of Computer Science, University of Liverpool, Liverpool, UK
liyong@liverpool.ac.uk

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, People’s Republic of China

turrini@ios.ac.cn
4 Institute of Intelligent Software, Guangzhou, Guangzhou, People’s Republic of China

Abstract. Complementation of nondeterministic Büchi automata (BAs) is an
important problem in automata theory with numerous applications in formal veri-
fication, such as termination analysis of programs, model checking, or in decision
procedures of some logics. We build on ideas from a recent work on BA deter-
minization by Li et al. and propose a new modular algorithm for BA complemen-
tation. Our algorithm allows to combine several BA complementation procedures
together, with one procedure for a subset of the BA’s strongly connected compo-
nents (SCCs). In this way, one can exploit the structure of particular SCCs (such
as when they are inherently weak or deterministic) and use more efficient special-
ized algorithms, regardless of the structure of the whole BA. We give a general
framework into which partial complementation procedures can be plugged in, and
its instantiation with several algorithms. The framework can, in general, produce a
complement with an Emerson-Lei acceptance condition, which can often be more
compact. Using the algorithm, we were able to establish an exponentially better
new upper bound of O(4𝑛) for complementation of the recently introduced class
of elevator automata. We implemented the algorithm in a prototype and performed
a comprehensive set of experiments on a large set of benchmarks, showing that
our framework complements well the state of the art and that it can serve as a basis
for future efficient BA complementation and inclusion checking algorithms.

1 Introduction
Nondeterministic Büchi automata (BAs) [8] are an elegant and conceptually simple
framework to model infinite behaviors of systems and the properties they are expected
to satisfy. BAs are widely used in many important verification tasks, such as termination
analysis of programs [30], model checking [54], or as the underlying formal model of
decision procedures for some logics (such as S1S [8] or a fragment of the first-order
logic over Sturmian words [31]). Many of these applications require to perform comple-
mentation of BAs: For instance, in termination analysis of programs within Ultimate
Automizer [30], complementation is used to keep track of the set of paths whose ter-
mination still needs to be proved. On the other hand, in model checking5 and decision

5 Here, we consider model checking w.r.t. a specification given in some more expressive logic,
such as S1S [8], QPTL [50], or HyperLTL [12], rather than LTL [44], where negation is simple.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13993, pp. 249–270, 2023.
https://doi.org/10.1007/978-3-031-30823-9 13

87

250 V. Havlena et al.

procedures of logics, complement is usually used to implement negation and quantifier
alternation. Complementation is often the most difficult automata operation performed
here; its worst-case state complexity is O((0.76𝑛)𝑛) [48,2] (which is tight [55]).

In these applications, efficiency of the complementation often determines the overall
efficiency (or even feasibility) of the top-level application. For instance, the success of
Ultimate Automizer in the Termination category of the International Competition
on Software Verification (SV-COMP) [51] is to a large degree due to an efficient BA
complementation algorithm [6,11] tailored for BAs with a special structure that it often
encounters (as of the time of writing, it has won 6 gold medals in the years 2017–2022
and two silver medals in 2015 and 2016). The special structure in this case are the so-
called semi-deterministic BAs (SDBAs), BAs consisting of two parts: (i) an initial part
without accepting states/transitions and (ii) a deterministic part containing accepting
states/transitions that cannot transition into the first part.

Complementation of SDBAs using one from the family of the so-called NCSB algo-
rithms [6,5,11,28] has the worst-case complexity O(4𝑛) (and usually also works much
better in practice than general BA complementation procedures). Similarly, there are
efficient complementation procedures for other subclasses of BAs, e.g., (i) determinis-
tic BAs (DBAs) can be complemented into BAs with 2𝑛 states [35] (or into co-Büchi
automata with 𝑛+ 1 states) or (ii) inherently weak BAs (BAs where in each strongly con-
nected component (SCC), either all cycles are accepting or all cycles are rejecting) can be
complemented into DBAs with O(3𝑛) states using the Miyano-Hayashi algorithm [42].

For a long time, there has been no efficient algorithm for complementation of BAs
that are highly structured but do not fall into one of the categories above, e.g., BAs
containing inherently weak, deterministic, and some nondeterministic SCCs. For such
BAs, one needed to use a general complementation algorithm with the O((0.76𝑛)𝑛) (or
worse) complexity. To the best of our knowledge, only recently has there appeared works
that exploit the structure of BAs to obtain a more efficient complementation algorithm:
(i) The work of Havlena et al. [29], who introduce the class of elevator automata (BAs
with an arbitrary mixture of inherently weak and deterministic SCCs) and give a O(16𝑛)
algorithm for them. (ii) The work of Li et al. [37], who propose a BA determinization
procedure (into a deterministic Emerson-Lei automaton) that is based on decomposing
the input BA into SCCs and using a different determinization procedure for different
types of SCCs (inherently weak, deterministic, general) in a synchronous construction.

In this paper, we propose a new BA complementation algorithm inspired by [37],
where we exploit the fact that complementation is, in a sense, more relaxed than de-
terminization. In particular, we present a framework where one can plug-in different
partial complementation procedures fine-tuned for SCCs with a specific structure. The
procedures work only with the given SCCs, to some degree independently (thus reducing
the potential state space explosion) from the rest of the BA. Our top-level algorithm then
orchestrates runs of the different procedures in a synchronous manner (or completely
independently in the so-called postponed strategy), obtaining a resulting automaton with
potentially a more general acceptance condition (in general an Emerson-Lei condition),
which can help keeping the result small. If the procedures satisfy given correctness re-
quirements, our framework guarantees that its instantiation will also be correct. We also
propose its optimizations by, e.g., using round-robin to decrease the amount of nondeter-
minism, using a shared breakpoint to reduce the size and the number of colours for certain
class of partial algorithms, and generalize simulation-based pruning of macrostates.

88

Modular Mix-and-Match Complementation of Bˇchi Automata 251

We provide a detailed description of partial complementation procedures for inher-
ently weak, deterministic, and initial deterministic SCCs, which we use to obtain a new
exponentially better upper bound of O(4𝑛) for the class of elevator automata (i.e., the
same upper bound as for its strict subclass of SDBAs). Furthermore, we also provide
two partial procedures for general SCCs based on determinization (from [37]) and the
rank-based construction. Using a prototype implementation, we then show our algorithm
complements well existing approaches and significantly improves the state of the art.

2 Preliminaries
We fix a finite non-empty alphabet Σ and the first infinite ordinal 𝜔. An (infinite)
word 𝑤 is a function 𝑤 : 𝜔 → Σ where the 𝑖-th symbol is denoted as 𝑤𝑖 . Sometimes,
we represent 𝑤 as an infinite sequence 𝑤 = 𝑤0𝑤1 . . . We denote the set of all infinite
words over Σ as Σ𝜔; an 𝜔-language is a subset of Σ𝜔 .
Emerson-Lei Acceptance Conditions. Given a set Γ = {0, . . . , 𝑘 −1} of 𝑘 colours (often
depicted as 0 , 1 , etc.), we define the set of Emerson-Lei acceptance conditions EL(Γ)
as the set of formulae constructed according to the following grammar:

𝛼 ::= Inf (𝑐) | Fin(𝑐) | (𝛼 ∧ 𝛼) | (𝛼 ∨ 𝛼) (1)
for 𝑐 ∈ Γ. The satisfaction relation |= for a set of colours 𝑀 ⊆ Γ and condition 𝛼 is
defined inductively as follows (for 𝑐 ∈ Γ):

𝑀 |= Fin(𝑐) iff 𝑐 ∉ 𝑀, 𝑀 |= 𝛼1 ∨ 𝛼2 iff 𝑀 |= 𝛼1 or 𝑀 |= 𝛼2,

𝑀 |= Inf (𝑐) iff 𝑐 ∈ 𝑀, 𝑀 |= 𝛼1 ∧ 𝛼2 iff 𝑀 |= 𝛼1 and 𝑀 |= 𝛼2.

Emerson-Lei Automata. A (nondeterministic transition-based6) Emerson-Lei automa-
ton (TELA) over Σ is a tuple A = (𝑄, 𝛿, 𝐼, Γ, p,Acc), where 𝑄 is a finite set of states,
𝛿 ⊆ 𝑄 × Σ × 𝑄 is a set of transitions7, 𝐼 ⊆ 𝑄 is the set of initial states, Γ is the set of
colours, p : 𝛿 → 2Γ is a colouring function of transitions, and Acc ∈ EL(Γ). We use
𝑝

𝑎→ 𝑞 to denote that (𝑝, 𝑎, 𝑞) ∈ 𝛿 and sometimes also treat 𝛿 as a function 𝛿 : 𝑄 ×Σ →
2𝑄. Moreover, we extend 𝛿 to sets of states 𝑃 ⊆ 𝑄 as 𝛿(𝑃, 𝑎) =

⋃
𝑝∈𝑃 𝛿(𝑝, 𝑎). We

use A[𝑞] for 𝑞 ∈ 𝑄 to denote the automaton A[𝑞] = (𝑄, 𝛿, {𝑞}, Γ, p,Acc), i.e., the
TELA obtained from A by setting 𝑞 as the only initial state. A is called determin-
istic if |𝐼 | ≤ 1 and |𝛿(𝑞, 𝑎) | ≤ 1 for each 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. If Γ = { 0 } and
Acc = Inf (0), we call A a Büchi automaton (BA) and denote it as A = (𝑄, 𝛿, 𝐼, 𝐹)
where 𝐹 is the set of all transitions coloured by 0 , i.e., 𝐹 = p−1 ({ 0 }). For a BA, we
use 𝛿𝐹 (𝑝, 𝑎) = {𝑞 ∈ 𝛿(𝑝, 𝑎) | p(𝑝 𝑎→ 𝑞) = { 0 }} (and extend the notation to sets of
states as for 𝛿). A BA A = (𝑄, 𝛿, 𝐼, 𝐹) is called semi-deterministic (SDBA) if for every
accepting transition (𝑝 𝑎→ 𝑞) ∈ 𝐹, the reachable part of A[𝑞] is deterministic.

A run of A from 𝑞 ∈ 𝑄 on an input word 𝑤 is an infinite sequence 𝜌 : 𝜔 → 𝑄 that
starts in 𝑞 and respects 𝛿, i.e., 𝜌0 = 𝑞 and ∀𝑖 ≥ 0: 𝜌𝑖

𝑤𝑖→ 𝜌𝑖+1 ∈ 𝛿. Let inf 𝛿 (𝜌) ⊆ 𝛿
denote the set of transitions occurring in 𝜌 infinitely often and infΓ (𝜌) =

⋃{p(𝑥) | 𝑥 ∈
6 We only consider transition-based acceptance in order to avoid cluttering the paper by al-

ways dealing with accepting states and accepting transitions. Extending our approach to
state/transition-based (or just state-based) automata is straightforward.

7 Note that some authors use a more general definition of TELAs with 𝛿 ⊆ 𝑄 × Σ × 2Γ ×𝑄; we
only use them as the output of our algorithm, where the simpler definition suffices.

89

252 V. Havlena et al.

inf 𝛿 (𝜌)} be the set of infinitely often occurring colours. A run 𝜌 is accepting in A iff
infΓ (𝜌) |= Acc and the language of A, denoted as L(A), is defined as the set of words
𝑤 ∈ Σ𝜔 for which there exists an accepting run in A starting with some state in 𝐼.

Consider a BA A = (𝑄, 𝛿, 𝐼, 𝐹). For a set of states 𝑆 ⊆ 𝑄 we use A𝑆 to denote the
copy of A where accepting transitions only occur between states from 𝑆, i.e., the BA
A𝑆 = (𝑄, 𝛿, 𝐼, 𝐹 ∩ 𝛿 |𝑆) where 𝛿 |𝑆 = {𝑝 𝑎→ 𝑞 ∈ 𝛿 | 𝑝, 𝑞 ∈ 𝑆}. We say that a non-empty
set of states 𝐶 ⊆ 𝑄 is a strongly connected component (SCC) if every pair of states
of 𝐶 can reach each other and 𝐶 is a maximal such set. An SCC of A is trivial if
it consists of a single state that does not contain a self-loop and non-trivial otherwise.
An SCC𝐶 is accepting if it contains at least one accepting transition and inherently weak
iff either (i) every cycle in𝐶 contains a transition from 𝐹 or (ii) no cycle in𝐶 contains any
transitions from 𝐹. An SCC𝐶 is deterministic iff the BA (𝐶, 𝛿 |𝐶 , {𝑞}, ∅) for any 𝑞 ∈ 𝐶 is
deterministic. We denote inherently weak components as IWCs, accepting deterministic
components that are not inherently weak as DACs (deterministic accepting), and the
remaining accepting components as NACs (nondeterministic accepting). A BA A is
called an elevator automaton if it contains no NAC.

We assume that A contains no accepting transition outside its SCCs (no run can
cycle over such transitions). We use 𝛿SCC to denote the restriction of 𝛿 to transitions that
do not leave their SCCs, formally, 𝛿SCC = {𝑝 𝑎→ 𝑞 ∈ 𝛿 | 𝑝 and 𝑞 are in the same SCC}.
A partition block 𝑃 ⊆ 𝑄 of A is a nonempty union of its accepting SCCs, and a par-
titioning of A is a sequence 𝑃1, . . . , 𝑃𝑛 of pairwise disjoint partition blocks of A that
contains all accepting SCCs of A. Given a 𝑃𝑖 , let A𝑃𝑖 be the BA obtained from A by
removing colours from transitions outside 𝑃𝑖 . The following fact serves as the basis of
our decomposition-based complementation procedure.
Fact 1. L(A) = L(A𝑃1

) ∪ . . . ∪ L(A𝑃𝑛)
The complement (automaton) of a BA A is a TELA that accepts the complement

language Σ𝜔 \ L(A) of L(A). In the paper, we call a state and a run of a complement
automaton a macrostate and a macrorun, respectively.

3 A Modular Complementation Algorithm
In a nutshell, the main idea of our BA complementation algorithm is to first decompose
a BA A into several partition blocks according to their properties, and then perform
complementation for each of the partition blocks (potentially using a different algorithm)
independently, using either a synchronous construction, synchronizing the complemen-
tation algorithms for all partition blocks in each step, or a postponed construction, which
complements the partition blocks independently and combines the partial results using
automata product construction. The decomposition of A into partition blocks can ei-
ther be trivial—i.e., with one block for each accepting SCC—, or more elaborate, e.g.,
a partitioning where one partition block contains all accepting IWCs, another contains
all DACs, and each NAC is given its own partition block. In this way, one can avoid
running a general complementation algorithm for unrestricted BAs with the state com-
plexity upper bound O((0.76𝑛)𝑛) and, instead, apply the most suitable complementation
procedure for each of the partition blocks. This comes with three main advantages:
1. The complementation algorithm for each partition block can be selected differently

in order to exploit the properties of the block. For instance, for partition blocks

90

Modular Mix-and-Match Complementation of Bˇchi Automata 253

with IWCs, one can use complementation based on the breakpoint (the so-called
Miyano-Hayashi) construction [42] with O(3𝑛) macrostates (cf. Sec. 4.1), while for
partition blocks with only DACs, one can use an algorithm with the state complex-
ity O(4𝑛) based on an adaptation of the NCSB construction [6,5,11,28] for SDBAs
(cf. Sec. 4.2). For NACs, one can choose between, e.g., rank- [34,21,48,10,24,29]
or determinization-based [46,43,45] algorithms, depending on the properties of the
NACs (cf. Sec. 6).

2. The different complementation algorithms can focus only on the respective blocks
and do not need to consider other parts of the BA. This is advantageous, e.g., for
rank-based algorithms, which can use this restriction to obtain tighter bounds on the
considered ranks (even tighter than using the refinement in [29]).

3. The obtained automaton can be more compact due to the use of a more general accep-
tance condition than Büchi [47]—in general, it can be a conjunction of any EL con-
ditions (one condition for each partition block), depending on the output of the com-
plementation procedures; this can allow a more compact encoding of the produced
automaton allowed by using a mixture of conditions. E.g., a deterministic BA can be
complemented with constant extra generated states when using a co-Büchi condition
rather than a linear number of generated states for a Büchi condition (see Sec. 5.1).

Those partial complementation algorithms then need to be orchestrated by a top-level
algorithm to produce the complement of A.

One might regard our algorithm as an optimization of an approach that would for
each partition block 𝑃 obtain a BA A𝑃 , complement A𝑃 using the selected algorithm,
and perform the intersection of all obtained A𝑃’s (which would, however, not be able
to get the upper bound for elevator automata that we give in Sec. 4.3). Indeed, we also
implemented the mentioned procedure (called the postponed approach, described in
Sec. 5.2) and compared it to our main procedure (called the synchronous approach).

3.1 Basic Synchronous Algorithm
In this section, we describe the basic synchronous top-level algorithm. Then, in Sec. 4,
we provide its instantiation for elevator automata and give a new upper bound for their
complementation; in Sec. 5, we discuss several optimizations of the algorithm; and in
Sec. 6, we give a generalization for unrestricted BAs. Let us fix a BA A = (𝑄, 𝛿, 𝐼, 𝐹)
and, w.l.o.g., assume that A is complete, i.e., |𝐼 | > 0 and all states 𝑞 ∈ 𝑄 have an
outgoing transition over all symbols 𝑎 ∈ Σ.

The synchronous algorithm works with partial complementation algorithms for BA’s
partition blocks. Each such algorithm Alg is provided with a structural condition 𝜑Alg
characterizing partition blocks it can complement. For a BA B, we use the notation B |=
𝜑 to denote that B satisfies the condition 𝜑. We say that Alg is a partial complementation
algorithm for a partition block 𝑃 if A𝑃 |= 𝜑Alg. We distinguish between Alg, a general
algorithm able to complement a partition block of a given type, andAlg𝑃 , its instantiation
for the partition block 𝑃. Each instance Alg𝑃 is required to provide the following:

– TAlg𝑃 — the type of the macrostates produced by the algorithm;
– ColoursAlg𝑃 = {0, . . . , 𝑘Alg𝑃 − 1} — the set of used colours;
– InitAlg𝑃 ∈ 2T

Alg𝑃 — the set of initial macrostates;
– SuccAlg𝑃 : (2𝑄 × TAlg𝑃 × Σ) → 2T

Alg𝑃 ×ColoursAlg𝑃 — a function returning the suc-
cessors of a macrostate such that SuccAlg𝑃 (𝐻, 𝑀, 𝑎) = {(𝑀1, 𝛼1), . . . , (𝑀𝑘 , 𝛼𝑘)},
where 𝐻 is the set of all states of A reached over the same word, 𝑀 is the Alg𝑃’s

91

254 V. Havlena et al.

macrostate for the given partition block, 𝑎 is the input symbol, and each (𝑀𝑖 , 𝛼𝑖) is
a pair (macrostate, set of colours) such that 𝑀𝑖 is a successor of 𝑀 over 𝑎 w.r.t. 𝐻
and 𝛼𝑖 is a set of colours on the edge from 𝑀 to 𝑀𝑖 (𝐻 helps to keep track of new
runs coming into the partition block); and

– AccAlg𝑃 ∈ EL(ColoursAlg𝑃) — the acceptance condition.
Let 𝑃1, . . . , 𝑃𝑛 be a partitioning of A (w.l.o.g., we assume that 𝑛 > 0), and

Alg1, . . . , Alg𝑛 be a sequence of algorithms such that Alg𝑖 is a partial complemen-
tation algorithm for 𝑃𝑖 . Furthermore, let us define the following auxiliary renumbering
function 𝜆 as 𝜆(𝑐, 𝑗) = 𝑐 +∑ 𝑗−1

𝑖=1 |ColoursAlg𝑖𝑃𝑖 |, which is used to make the colours and
acceptance conditions from the partial complementation algorithms disjoint. We also
lift 𝜆 to sets of colours in the natural way, and also to EL conditions such that 𝜆(𝜑, 𝑗) has
the same structure as 𝜑 but each atom Inf (𝑐) is substituted with the atom Inf (𝜆(𝑐, 𝑗)) (and
likewise for Fin atoms). The synchronous complementation algorithm then produces
the TELA ModCompl(Alg1

𝑃1
, . . . , Alg𝑛𝑃𝑛

,A) = (𝑄C , 𝛿C , 𝐼C , ΓC , pC ,AccC) with com-
ponents defined as follows (we use [𝑆𝑖]𝑛𝑖=1 to abbreviate 𝑆1 × · · · × 𝑆𝑛):

– 𝑄C = 2𝑄 × [TAlg𝑖𝑃𝑖]𝑛𝑖=1,
– 𝐼C = {𝐼} × [InitAlg𝑖𝑃𝑖]𝑛𝑖=1,

– ΓC = {0, . . . , 𝜆(𝑘Alg𝑛𝑃𝑛 − 1, 𝑛)},
– AccC =

∧𝑛
𝑖=1 𝜆(AccAlg

𝑖
𝑃𝑖 , 𝑖),8and

– 𝛿C and pC are defined such that if
((𝑀 ′

1, 𝛼1), . . . , (𝑀 ′
𝑛, 𝛼𝑛)) ∈ [SuccAlg𝑖𝑃𝑖 (𝐻, 𝑀𝑖 , 𝑎)]𝑛𝑖=1,

then 𝛿C contains the transition 𝑡 : (𝐻, 𝑀1, . . . , 𝑀𝑛) 𝑎→ (𝛿(𝐻, 𝑎), 𝑀 ′
1, . . . , 𝑀

′
𝑛),

coloured by pC (𝑡) = ⋃{𝜆(𝛼𝑖 , 𝑖) | 1 ≤ 𝑖 ≤ 𝑛}, and 𝛿C is the smallest such a set.

In order for ModCompl to be correct, the partial complementation algorithms need to
satisfy certain properties, which we discuss below.

For a structural condition 𝜑 and a BA B = (𝑄, 𝛿, 𝐼, 𝐹), we define B |=𝑃 𝜑 iff B |= 𝜑,
𝑃 is a partition block of B, and B contains no accepting transitions outside 𝑃. We can
now provide the correctness condition on Alg.
Definition 1. We say that Alg is correct if for each BA B and partition block 𝑃 such
that B |=𝑃 𝜑Alg it holds that L(ModCompl(Alg𝑃 ,B)) = Σ𝜔 \ L(B).

The correctness of the synchronous algorithm (provided that each partial comple-
mentation algorithm is correct) is then established by Theorem 1.
Theorem 1. Let A be a BA, 𝑃1, . . . , 𝑃𝑛 be a partitioning of A, and Alg1, . . . , Alg𝑛

be a sequence of partial complementation algorithms such that Alg𝑖 is correct for 𝑃𝑖 .
Then, we have L(ModCompl(Alg1

𝑃1
, . . . , Alg𝑛𝑃𝑛

,A)) = Σ𝜔 \ L(A).

4 Modular Complementation of Elevator Automata
In this section, we first give partial algorithms to complement partition blocks with
only accepting IWCs (Sec. 4.1) and partition blocks with only DACs (Sec. 4.2). Then,
in Sec. 4.3, we show that using our algorithm, the upper bound on the size of the
complement of elevator BAs is in O(4𝑛), which is exponentially better than the known
upper bound O(16𝑛) established in [29].
8 If we drop the condition that A is complete, we also need to add an accepting sink state

(representing the case for 𝐻 = ∅) with self-loops over all symbols marked by a new colour 𝑠 ,
and enrich AccC with . . . ∨ Inf (𝑠).

92

Modular Mix-and-Match Complementation of Bˇchi Automata 255

4.1 Complementation of Inherently Weak Accepting Components
First, we introduce a partial algorithm MHwith the condition 𝜑MH specifying that all SCCs
in the partition block 𝑃 are accepting IWCs. Let 𝑃 be a partition block of A such that
A𝑃 |= 𝜑MH. Our proposed approach makes use of the Miyano-Hayashi construction [42].
Since in accepting IWCs, all runs are accepting, the idea of the construction is to accept
words such that all runs over the words eventually leave 𝑃.

Therefore, we use a pair (𝐶, 𝐵) of sets of states as a macrostate for complementing 𝑃.
Intuitively, we use 𝐶 to denote the set of all runs of A that are in 𝑃 (𝐶 for “check”). The
set 𝐵 ⊆ 𝐶 represents the runs being inspected whether they leave 𝑃 at some point (𝐵 for
“breakpoint”). Initially, we let 𝐶 = 𝐼 ∩ 𝑃 and also sample into breakpoint all runs in 𝑃,
i.e., set 𝐵 = 𝐶. Along reading an 𝜔-word 𝑤, if all runs that have entered 𝑃 eventually
leave 𝑃, i.e., 𝐵 becomes empty infinitely often, the complement language of 𝑃 should
contain 𝑤 (when 𝐵 becomes empty, we sample 𝐵 with all runs from the current 𝐶). We
formalize MH𝑃 as a partial procedure in the framework from Sec. 3.1 as follows:

– TMH𝑃 = 2𝑃 × 2𝑃 , ColoursMH𝑃 = { 0 }, InitMH𝑃 = {(𝐼 ∩ 𝑃, 𝐼 ∩ 𝑃)},
– AccMH𝑃 = Inf (0), and SuccMH𝑃 (𝐻, (𝐶, 𝐵), 𝑎) = {((𝐶′, 𝐵′), 𝛼)} where

• 𝐶′ = 𝛿(𝐻, 𝑎) ∩ 𝑃,

• 𝐵′ =

{
𝐶′ if 𝐵★ = ∅ for 𝐵★ = 𝛿(𝐵, 𝑎) ∩ 𝐶′,
𝐵★ otherwise, and

• 𝛼 =

{
{ 0 } if 𝐵★ = ∅ and
∅ otherwise.

We can see that checking whether 𝑤 is accepted by the complement of 𝑃 reduces to
check whether 𝐵 has been cleared infinitely often. Since every time when 𝐵 becomes
empty, we emit the colour 0 , we have that 𝑤 is not accepted by A within 𝑃 if and only
if 0 occurs infinitely often. Note that the transition function SuccMH𝑃 is deterministic,
i.e., there is exactly one successor.

Lemma 1. The partial algorithm MH is correct.

4.2 Complementation of Deterministic Accepting Components
In this section, we give a partial algorithm CSB with the condition 𝜑CSB specifying
that a partition block 𝑃 consists of DACs. Let 𝑃 be a partition block of A such that
A𝑃 |= 𝜑CSB. Our approach is based on the NCSB family of algorithms [6,11,5,28]
for complementing SDBAs, in particular the NCSB-MaxRank construction [28]. The
algorithm utilizes the fact that runs in DACs are deterministic, i.e., they do not branch
into new runs. Therefore, one can check that a run is non-accepting if there is a time
point from which the run does not see accepting transitions any more. We call such
a run that does not see accepting transitions any more safe. Then, an 𝜔-word 𝑤 is not
accepted in 𝑃 iff all runs over 𝑤 in 𝑃 either (i) leave 𝑃 or (ii) eventually become safe.

For checking point (i), we can use a similar technique as in algorithm MH, i.e., use
a pair (𝐶, 𝐵). Moreover, to be able to check point (ii), we also use the set 𝑆 that contains
runs that are supposed to be safe, resulting in macrostates of the form (𝐶, 𝑆, 𝐵)9. To
make sure that all runs are deterministic, we will use 𝛿SCC instead of 𝛿 when computing
the successors of 𝑆 and 𝐵 since there may be nondeterministic jumps between different
DACs in 𝑃; we will not miss any run in 𝑃 since if a run moves between DACs of 𝑃, it

9 In contrast to MH, here we use 𝐶 ∪ 𝑆 rather than 𝐶 to keep track of all runs in 𝑃.

93

256 V. Havlena et al.

𝑝

𝑞

𝑟

𝑠

Aex
𝑃0

𝑃1

𝑎, 𝑏 𝑎, 𝑏

𝑎•

𝑏

𝑎

𝑎
𝑏•

𝑏 𝑎•

𝑝 ∅, ∅, ∅ ∅, ∅

𝑝 + 𝑞 𝑞, ∅, 𝑞 ∅, ∅

𝑝 + 𝑞 ∅, 𝑞, ∅ ∅, ∅

𝑝 + 𝑞 + 𝑟 𝑞, ∅, 𝑞 𝑟, 𝑟

𝑝 + 𝑞 + 𝑟 + 𝑠 𝑞, ∅, 𝑞 𝑟 + 𝑠, 𝑟 + 𝑠

𝑝 + 𝑞 + 𝑟 + 𝑠 𝑞, ∅, 𝑞 𝑟 + 𝑠, 𝑟

𝑝 + 𝑞 + 𝑟 + 𝑠 ∅, 𝑞, ∅ 𝑟 + 𝑠, 𝑟 + 𝑠

0
1 𝑏

0
1 𝑏

1𝑏

0
1𝑏

0 1
𝑎

1 𝑎𝑏 𝑏

1
𝑎

𝑎𝑏1𝑎

0 𝑏

0𝑏

0𝑏

0
𝑏

Fig. 1: Left: BA Aex (dots represent accepting transitions). Right: the outcome
of ModCompl(CSB𝑃0

, MH𝑃1
,Aex) with Acc : Inf (0) ∧ Inf (1). States are given as

(𝐻, (𝐶0, 𝑆0, 𝐵0), (𝐶1, 𝐵1)); to avoid too many braces, sets are given as sums.

can be seen as the run leaving 𝑃 and a new run entering 𝑃. Since a run eventually stays
in one SCC, this guarantees that the run will not be missed.

We formalize CSB𝑃 in the top-level framework as follows:

– TCSB𝑃 = 2𝑃 × 2𝑃 × 2𝑃 , InitCSB𝑃 = {(𝐼 ∩ 𝑃, ∅, 𝐼 ∩ 𝑃)},
– ColoursCSB𝑃 = { 0 }, AccCSB𝑃 = Inf (0), and
– SuccCSB𝑃 (𝐻, (𝐶, 𝑆, 𝐵), 𝑎) = 𝑈 such that

• if 𝛿𝐹 (𝑆, 𝑎) ≠ ∅, then 𝑈 = ∅ (Runs in 𝑆 must be safe),
• otherwise 𝑈 contains ((𝐶′, 𝑆′, 𝐵′), 𝑐) where

∗ 𝑆′ = 𝛿SCC (𝑆, 𝑎) ∩ 𝑃 , 𝐶′ = (𝛿(𝐻, 𝑎) ∩ 𝑃) \ 𝑆′,
∗ 𝐵′ =

{
𝐶′ if 𝐵★ = ∅ for 𝐵★ = 𝛿SCC (𝐵, 𝑎),
𝐵★ otherwise, and

∗ 𝑐 =

{
{ 0 } if 𝐵★ = ∅,
∅ otherwise.

Moreover, in the case 𝛿𝐹 (𝐵, 𝑎) = ∅, then 𝑈 also contains ((𝐶′′, 𝑆′′, 𝐶′′), { 0 })
where 𝑆′′ = 𝑆′ ∪ 𝐵′ and 𝐶′′ = 𝐶′ \ 𝑆′′.

Intuitively, when 𝛿𝐹 (𝐵, 𝑎) ∩𝛿SCC (𝐵, 𝑎) = ∅, we make the following guess: (i) either the
runs in 𝐵 all become safe (we move them to 𝑆) or (ii) there might be some unsafe runs
(we keep them in 𝐵). Since the runs in 𝐵 are deterministic, the number of tracked runs
in 𝐵 will not increase. Moreover, if all runs in 𝐵 are eventually safe, we are guaranteed
to move all of them to 𝑆 at the right time point, e.g., the maximal time point where all
runs are safe since the number of runs is finite.

As mentioned above, 𝑤 is not accepted within 𝑃 iff all runs over 𝑤 either (i) leave 𝑃
or (ii) become safe. In the context of the presented algorithm, this corresponds to
(i) 𝐵 becoming empty infinitely often and (ii) 𝛿𝐹 (𝑆, 𝑎) never seeing an accepting
transition. Then we only need to check if there exists an infinite sequence of macrostates
𝜌 = (𝐶0, 𝑆0, 𝐵0) . . . that emits 0 infinitely often.

Lemma 2. The partial algorithm CSB is correct.

It is worth noting that when the given partition block 𝑃 contains all DACs of A, we
can still use the construction above, while the construction in [28] only works on SDBAs.
Example 1. In Fig. 1, we give an example of the run of our algorithm on the BAAex . The
BA contains three SCCs, one of them (the one containing 𝑝) non-accepting (therefore,

94

Modular Mix-and-Match Complementation of Bˇchi Automata 257

it does not need to occur in any partition block). The partition block 𝑃0 contains a single
DAC, so we can use algorithm CSB, and the partition block 𝑃1 contains a single accepting
IWC, so we can use MH. The resulting ModCompl(CSB𝑃0

, MH𝑃1
,Aex) uses two colours,

0 from CSB and 1 from MH. The acceptance condition is Inf (0) ∧ Inf (1). ⊓⊔

4.3 Upper-bound for Elevator Automata Complementation
We now give an upper bound on the size of the complement generated by our algo-
rithm for elevator automata, which significantly improves the best previously known
upper bound of O(16𝑛) [29] to O(4𝑛), the same as for SDBAs, which are a strict
subclass of elevator automata [6] (we note that this upper bound cannot be obtained by
a determinization-based algorithm, since determinization of SDBAs is inΩ(𝑛!) [17,40]).

Theorem 2. Let A be an elevator automaton with 𝑛 states. Then there exists a BA
with O(4𝑛) states accepting the complement of L(A).

Proof (Sketch). Let 𝑄𝑊 be all states in accepting IWCs, 𝑄𝐷 be all states in DACs, and
𝑄𝑁 be the remaining states, i.e., 𝑄 = 𝑄𝑊 ⊎ 𝑄𝐷 ⊎ 𝑄𝑁 . We make two partition blocks:
𝑃0 = 𝑄𝑊 and 𝑃1 = 𝑄𝐷 and use MH and CSB respectively as the partial algorithms, with
macrostates of the form (𝐻, (𝐶0, 𝐵0), (𝐶1, 𝑆1, 𝐵1)). For each state 𝑞𝑁 ∈ 𝑄𝑁 , there are
two options: either 𝑞𝑁 ∉ 𝐻 or 𝑞𝑁 ∈ 𝐻. For each state 𝑞𝑊 ∈ 𝑄𝑊 , there are three options:
(i) 𝑞𝑊 ∉ 𝐶0, (ii) 𝑞𝑊 ∈ 𝐶0 \ 𝐵0, or (iii) 𝑞𝑊 ∈ 𝐶0 ∩ 𝐵0. Finally, for each 𝑞𝐷 ∈ 𝑄𝐷 , there
are four options: (i) 𝑞𝐷 ∉ 𝐶1∪𝑆1, (ii) 𝑞𝐷 ∈ 𝑆1, (iii) 𝑞𝐷 ∈ 𝐶1 \𝐵1, or (iv) 𝑞𝐷 ∈ 𝐶1∩𝐵1.
Therefore, the total number of macrostates is 2 · 2 |𝑄𝑁 | · 3 |𝑄𝑊 | · 4 |𝑄𝐷 | ∈ O(4𝑛) where
the initial factor 2 is due to degeneralization from two to one colour (the two colours
can actually be avoided by using our shared breakpoint optimization from Sec. 5.4). ⊓⊔

5 Optimizations of the Modular Construction
In this section, we propose optimizations of the basic modular algorithm. In Sec. 5.1,
we give a partial algorithm to complement initial partition blocks with DACs. Further,
in Sec. 5.2, we propose the postponed construction allowing to use automata reduction
on intermediate results. In Sec. 5.3, we propose the round-robin algorithm alleviating
the problem with the explosion of the size of the Cartesian product of partial successors.
In Sec. 5.4, we provide an optimization for partial algorithms that are based on the
breakpoint construction, and, finally, in Sec. 5.5, we show how to employ simulation to
decrease the size of macrostates in the synchronous construction.

5.1 Complementation of Initial Deterministic Partition Blocks
Our first optimization is an algorithm CoB for a subclass of partition blocks containing
DACs. In particular, the condition 𝜑CoB specifies that the partition block 𝑃 is deterministic
and can be reached only deterministically in A (i.e., A𝑃 after removing redundant states
is deterministic). Then, we say that 𝑃 is an initial deterministic partition block. The
algorithm is based on complementation of deterministic BAs into co-Büchi automata.

The algorithm CoB𝑃 is formalized below:

– TCoB𝑃 = 𝑃 ∪ {∅}, InitCoB𝑃 = 𝐼 ∩ 𝑃, ColoursCoB𝑃 = { 0 }, AccCoB𝑃 = Fin(0),

95

258 V. Havlena et al.

– SuccCoB𝑃 (𝐻, 𝑞, 𝑎) = {(𝑞′, 𝛼)} where

• 𝑞′ =

{
𝑟 if 𝛿(𝐻, 𝑎) ∩ 𝑃 = {𝑟} and
∅ otherwise,

• 𝛼 =

{
{ 0 } if 𝑞 𝑎→ 𝑞′ ∈ 𝐹 and
∅ otherwise.

Intuitively, all runs reach 𝑃 deterministically, which means that over a word 𝑤, at
most one run can reach 𝑃 (so |InitCoB𝑃 | = 1). Thus, we have |𝛿(𝐻, 𝑤 𝑗) ∩ 𝑃 | = 1 for
some 𝑗 ≥ 0 if there is a run over 𝑤 to 𝑃, corresponding to 𝛿(𝐻, 𝑎) ∩ 𝑃 = {𝑟} in the
construction. To check whether 𝑤 is not accepted in 𝑃, we only need to check whether the
run from 𝑟 ∈ 𝑃 over 𝑤 visits accepting transitions only finitely often. We give an example
of complementation of a BA containing an initial deterministic partition block in [27].

Lemma 3. The partial algorithm CoB is correct.

5.2 Postponed Construction
The modular synchronous construction from Sec. 3.1 utilizes the assumption that in the
simultaneous construction of successors for each partition block over 𝑎, if one partial
macrostate 𝑀𝑖 does not have a successor over 𝑎, then there will be no successor of the
(𝐻, 𝑀1, . . . , 𝑀𝑛) macrostate in 𝛿C as well. This is useful, e.g., for inclusion testing,
where it is not necessary to generate the whole complement. On the other hand, if we
need to generate the whole automaton, a drawback of the proposed modular construction
is that each partial complementation algorithm itself may generate a lot of useless states.
In this section, we propose the postponed construction, which complements the partition
blocks (with their surrounding) independently and later combines the intermediate
results to obtain the complement automaton for A. The main advantage of the postponed
construction is that one can apply automata reduction (e.g., based on removing useless
states or using simulation [13,18,1,9]) to decrease the size of the intermediate automata.

In the postponed construction, we use product-based BA intersection operation (i.e.,
for two TELAs B1 and B2, a product automaton B1 ∩ B2 satisfying L(B1 ∩ B2) =
L(B1) ∩ L(B2) 10). Further, we employ a function Red performing some language-
preserving reduction of an input TELA. Then, the postponed construction for an elevator
automaton A with a partitioning 𝑃1, . . . , 𝑃𝑛 and a sequence Alg1, . . . , Alg𝑛 where Alg𝑖
is a partial complementation algorithm for 𝑃𝑖 , is defined as follows:

PostpCompl(Alg1𝑃1
, . . . , Alg𝑛𝑃𝑛

,A) =
𝑛⋂
𝑖=1

Red
(
ModCompl(Alg𝑖𝑃𝑖

,A𝑃𝑖)
)
. (2)

The correctness of the construction is then summarized by the following theorem.

Theorem 3. Let A be a BA, 𝑃1, . . . , 𝑃𝑛 be a partitioning of A, and Alg1, . . . , Alg𝑛

be a sequence of partial complementation algorithms such that Alg𝑖 is correct for 𝑃𝑖 .
Then, L(PostpCompl(Alg1𝑃1

, . . . , Alg𝑛𝑃𝑛
,A)) = Σ𝜔 \ L(A).

5.3 Round-Robin Algorithm
The proposed basic synchronous approach from Sec. 3.1 may suffer from the combinato-
rial explosion because the successors of a macrostate are given by the Cartesian product
of all successors of the partial macrostates. To alleviate this explosion, we propose

10 Alternatively, one might also avoid the product and generate linear-sized alternating TELA,
but working with those is usually much harder and not used in practice.

96

Modular Mix-and-Match Complementation of Bˇchi Automata 259

a round-robin top-level algorithm. Intuitively, the round-robin algorithm actively tracks
runs in only one partial complementation algorithm at a time (while other algorithms
stay passive). The algorithm periodically changes the active algorithm to avoid starvation
(the decision to leave the active state is, however, fully directed by the partial comple-
mentation algorithm). This can alleviate an explosion in the number of successors for
algorithms that generate more than one successor (e.g., for rank-based algorithms where
one needs to make a nondeterministic choice of decreasing ranks of states in order to be
able to accept [34,21,48,10,24,29]; such a choice needs to be made only in the active
phase while in the passive phase, the construction just needs to make sure that the run
is consistent with the given ranking, which can be done deterministically).

The round-robin algorithm works on the level of partial complementation round-
robin algorithms. Each instance of the partial algorithm provides passive types to rep-
resent partial macrostates that are passive and active types to represent currently active
partial macrostates. In contrast to the basic partial complementation algorithms from
Sec. 3.1, which provide only a single successor function, the round-robin partial al-
gorithms provide several variants of them. In particular, SuccPass returns (passive)
successors of a passive partial macrostate, Lift gives all possible active counterparts
of a passive macrostate, and SuccAct returns successors of an active partial macrostate.
If SuccAct returns a partial macrostate of the passive type, the round-robin algorithm
promotes the next partial algorithm to be the active one. For instance, in the round-robin
version of CSB, the passive type does not contain the breakpoint and only checks that
safe runs stay safe, so it is deterministic. Due to space limitations, we give a formal
definition and more details about the round-robin algorithm in [27].

5.4 Shared Breakpoint
The partial complementation algorithms CSB and MH (and later RNK defined in Sec. 6)
use a breakpoint to check whether the runs under inspection are accepting or not. As
an optimization, we consider merging of breakpoints of several algorithms and keeping
only a single breakpoint for all supported algorithms. The top-level algorithm then needs
to manage only one breakpoint and emit a colour only if this sole breakpoint becomes
empty. This may lead to a smaller number of generated macrostates since we synchronize
the breakpoint sampling among several algorithms. The second benefit is that this allows
us to generate fewer colours (in the case of elevator automata complemented using
algorithms CSB and MH, we get only one colour).

5.5 Simulation Pruning
Our construction can be further optimized by a simulation (or other compatible) relation
for pruning macrostates.11 A simulation is, broadly speaking, a relation ≼ ⊆ 𝑄 ×
𝑄 implying language inclusion of states, i.e., ∀𝑝, 𝑞 ∈ 𝑄 : 𝑝 ≼ 𝑞 =⇒ L(A[𝑝]) ⊆
L(A[𝑞]). Intuitively, our optimization allows to remove a state 𝑝 from a macrostate 𝑀
if there is also a state 𝑞 in 𝑀 such that (i) 𝑝 ≼ 𝑞, (ii) 𝑝 is not reachable from 𝑞, and
(iii) 𝑝 is smaller than 𝑞 in an arbitrary total order over 𝑄 (this serves as a tie-breaker for

11 This optimization can be seen as a generalization of the simulation-based pruning techniques
that appeared, e.g., in [41,28] in the context of concrete determinization/complementation
procedures. Here, we generalize the technique to all procedures that are based on run tracking.

97

260 V. Havlena et al.

simulation-equivalent mutually unreachable states). The reason why 𝑝 can be removed
is that its behaviour can be completely mimicked by 𝑞. In our construction, we can then,
roughly speaking, replace each call to the functions 𝛿(𝑈, 𝑎) and 𝛿𝐹 (𝑈, 𝑎), for a set of
states𝑈, by pr (𝛿(𝑈, 𝑎)) and pr (𝛿𝐹 (𝑈, 𝑎)) respectively in each partial complementation
algorithm, as well as in the top-level algorithm, where pr (𝑆) is obtained from 𝑆 by
pruning all eligible states. The details are provided in [27].

6 Modular Complementation of Non-Elevator Automata
A non-elevator automaton A contains at least one NAC, besides possibly other IWCs
or DACs. To complement A in a modular way, we apply the techniques seen in Sec. 4
to its DACs and IWCs, while for its NACs we resort to a general complementation
algorithm Alg. In theory, rank- [34], slice- [32], Ramsey- [50], subset-tuple- [2], and
determinization- [46] based complementation algorithms adapted to work on a single
partition block instead of the whole automaton are all valid instantiations of Alg. Below,
we give a high-level description of two such algorithms: rank- and determinization-based.

Rank-based partial complementation algorithm. Working on each NAC independently
benefits the complementation algorithm even if the input BA contains only NACs. For
instance, in rank-based algorithms [34,21,48,33,10,24,29], the fact whether all runs
of A over a given 𝜔-word 𝑤 are non-accepting is determined by ranks of states,
given by the so-called ranking functions. A ranking function is a (partial) function
from 𝑄 to 𝜔. The main idea of rank-based algorithms is the following: (i) every run is
initially nondeterministically assigned a rank, (ii) ranks can only decrease along a run,
(iii) ranks need to be even every time a run visits an accepting transition, and (iv) the
complement automaton accepts iff all runs eventually get trapped in odd ranks12. In the
standard rank-based procedure, the initial assignment of ranks to states in (i) is a function
𝑄 ⇀ {0, . . . , 2𝑛 − 1} for 𝑛 = |𝑄 |. Using our framework, we can, however, significantly
restrict the considered ranks in a partition block 𝑃 to only 𝑃 ⇀ {0, . . . , 2𝑚 − 1} for
𝑚 = |𝑃 | (here, it makes sense to use partition blocks consisting of single SCCs). One
can further reduce the considered ranks using the techniques introduced in, e.g., [24,29].

In order to adapt the rank-based construction as a partial complementation algorithm
RNK in our framework, we need to extend the ranking functions by a fresh “box state”
representing states outside the partition block. The ranking function then uses to
represent ranks of runs newly coming into the partition block. The box-extension also
requires to change the transition in a way that always represents reachable states from
the outside. We provide the details of the construction, which includes the MaxRank
optimization from [24], in [27].

Determinization-based partial complementation algorithm. In [52,29] we can see that
determinization-based complementation is also a good instantiation of Alg in practice,
so, we also consider the standard Safra-Piterman determinization [46,43,45] as a choice
of Alg for complementing NACs. Determinization-based algorithms use a layered subset
construction to organize all runs over an𝜔-word 𝑤. The idea is to identify a subset 𝑆 ⊆ 𝐻
of reachable states that occur infinitely often along reading𝑤 such that between every two
occurrences of 𝑆, we have that (i) every state in the second occurrence of 𝑆 can be reached

12 Since we focus on intuition here, we use runs rather than the directed acyclic graphs of runs.

98

Modular Mix-and-Match Complementation of Bˇchi Automata 261

Table 1: Statistics for our experiments. The column unsolved classifies unsolved in-
stances by the form timeouts : out of memory : other failures. For the cases of VBS we
provide just the number of unsolved cases. The columns states and runtime provide
mean : median of the number of states and runtime, respectively.

tool solved unsolved states runtime
Kofola𝑆 39,738 89 : 10 : 0 76 : 3 0.32 : 0.03
Kofola𝑃 39,750 76 : 11 : 0 86 : 3 0.41 : 0.03
VBS+ 39,834 3 78 : 3 0.05 : 0.01
VBS− 39,834 3 96 : 3 0.05 : 0.01

tool solved unsolved states runtime
COLA 39,814 21 : 0 : 2 80 : 3 0.17 : 0.02
Ranker 38,837 61 : 939 : 0 45 : 4 3.31 : 0.01
Seminator 39,026 238 : 573 : 0 247 : 3 1.98 : 0.03
Spot 39,827 8 : 0 : 2 160 : 4 0.08 : 0.02

by a state in the first occurrence of 𝑆 and (ii) every state in the second occurrence is
reached by a state in the first occurrence while seeing an accepting transition. According
to König’s lemma, there must then be an accepting run of A over 𝑤.

The construction initially maintains only one set 𝐻: the set of reachable states.
Since 𝑆 as defined does not necessarily need to be 𝐻, every time there are runs visiting
accepting transitions, we create a new subset 𝐶 for those runs and remember which
subset 𝐶 is coming from. This way, we actually organize the current states of all runs
into a tree structure and do subset construction in parallel for the sets in each tree node.
If we find a tree node whose labelled subset, say 𝑆′, is equal to the union of states in
its children, we know the set 𝑆′ satisfies the condition above and we remove all its child
nodes and emit a good event. If such good event happens infinitely often, it means that
𝑆′ also occurs infinitely often. So in complementation, we only need to make sure those
good events only happen for finitely many times. Working on each NAC separately also
benefits the determinization-based approach since the number of possible trees will be
less with smaller number of reachable states. Following the idea of [37], to adapt for
the construction as the partial complementation algorithm, we put all the newly coming
runs from other partition blocks in a newly created node without a parent node. In this
way, we actually maintain a forest of trees for the partial complementation construction.
We denote the determinization-based construction as DET; cf. [37] for details.

7 Experimental Evaluation
To evaluate the proposed approach, we implemented it in a prototype tool Kofola [25]
(written in C++) built on top of Spot [16] and compared it against COLA [37],
Ranker [28] (v. 2), Seminator [5] (v. 2.0), and Spot [15,16] (v. 2.10.6), which are
the state of the art in BA complementation [29,28,37]. Due to space restrictions, we
give results for only two instantiations of our framework: Kofola𝑆 and Kofola𝑃 . Both
instantiations use MH for IWCs, CSB for DACs, and DET for NACs. The partitioning
selection algorithm merges all IWCs into one partition block, all DACs into one par-
tition block, and keeps all NACs separate. Simulation-based pruning from Sec. 5.5 is
turned on, and round-robin from Sec. 5.3 is turned off (since the selected algorithms
are quite deterministic). Kofola𝑆 employs the synchronous and Kofola𝑃 employs the
postponed strategy. We also consider the Virtual Best Solver (VBS), i.e., a virtual tool
that would choose the best solver for each single benchmark among all tools (VBS+) and
among all tools except both versions of Kofola (VBS−). We ran our experiments on an
Ubuntu 20.04.4 LTS system running on a desktop machine with 16 GiB RAM and an

99

262 V. Havlena et al.

101 103 105

101

103

105

States KofolaS

S
ta
te
s
V
B
S
−

100

101

102

103

101 103 105

101

103

105

States KofolaS

S
ta
te
s
C
O
L
A

100

101

102

103

104

101 103 105

101

103

105

States KofolaS

S
ta
te
s
R
a
n
k
e
r

100

101

102

103

101 103 105

101

103

105

States KofolaS

S
ta
te
s
K
o
f
o
l
a
P

100

101

102

103

101 103 105

101

103

105

States KofolaS

S
ta
te
s
S
e
m
in
a
t
o
r

100

101

102

103

101 103 105

101

103

105

States KofolaS

S
ta
te
s
S
p
o
t

100

101

102

103

Fig. 2: Scatter plots comparing the numbers of states generated by the tools.

Intel 3.6 GHz i7-4790 CPU. To constrain and collect statistics about the executions of
the tools, we used BenchExec [3] and imposed a memory limit of 12 GiB and a timeout
of 10 minutes; we used Spot to cross-validate the equivalence of the automata generated
by the different tools. An artifact reproducing our experiments is available as [26].

As our data set, we used 39,837 BAs from the automata-benchmarks reposi-
tory [36] (used before by, e.g., [29,28,37]), which contains BAs from the following
sources: (i) randomly generated BAs used in [52] (21,876 BAs), (ii) BAs obtained from
LTL formulae from the literature and randomly generated LTL formulae [5] (3,442 BAs),
(iii) BAs obtained from Ultimate Automizer [11] (915 BAs), (iv) BAs obtained from
the solver for first-order logic over Sturmian words Pecan [31] (13,216 BAs), (v) BAs
obtained from an S1S solver [23] (370 BAs), and (vi) BAs from LTL to SDBA trans-
lation [49] (18 BAs). From these BAs, 23,850 are deterministic, 6,147 are SDBAs (but
not deterministic), 4,105 are elevator (but not SDBAs), and 5,735 are the rest.

In Table 1 we present an overview of the outcomes. Despite being a prototype,
Kofola can already complement a large portion of the input automata, with very few
cases that can be complemented successfully only by Spot or COLA. Regarding the
mean number of states, Kofola𝑆 has the least mean value from all tools (except
Ranker, which, however, had 1,000 unsolved cases) Moreover, Kofola significantly
decreased the mean number of states when included into the VBS: from 96 to 78!
We consider this to be a strong validation of the usefulness of our approach. Regarding
the runtime, both versions of Kofola are rather similar; Kofola is just slightly slower
than Spot and COLA but much faster than both Ranker and Seminator (cf. [27]).

In Fig. 2 we present a comparison of the number of states generated by Kofola𝑆 and
other tools; we omit VBS+ since the corresponding plot can be derived from the one for
VBS− (since Ranker and Seminator only output BAs, we compare the sizes of outputs
transformed into BAs for all tools to be fair). In the plots, the number of benchmarks
represented by each mark is given by its colour; a mark above the diagonal means that
Kofola𝑆 generated a BA smaller than the other tool while a mark on the top border
means that the other tool failed while Kofola𝑆 succeeded, and symmetrically for the

100

Modular Mix-and-Match Complementation of Bˇchi Automata 263

bottom part and the right-hand border. Dashed lines represent the maximum number of
states generated by one of the tools in the plot, axes are logarithmic.

101 103 105

101

103

105

States KofolaS

S
ta
te
s
R
a
n
k
e
r

100

101

102

103

From the results, Kofola𝑆 clearly domi-
nates state-of-the-art tools that are not based
on SCC decomposition (Ranker, Spot, Sem-
inator). The outputs are quite comparable to
COLA, which also uses SCC decomposition
and can be seen as an instantiation of our frame-
work. This supports our intuition that working
on the single SCCs helps in reducing the size
of the final automaton, confirming the validity
of our modular mix-and-match Büchi comple-
mentation approach. Lastly, in the figure in the right we compare our algorithm for
elevator automata with the one in Ranker (the only other tool with a dedicated algo-
rithm for this subclass). Our new algorithm clearly dominates the one in Ranker.

8 Related Work
To the best of our knowledge, we provide the first general framework where one can
plug-in different BA complementation algorithms while taking advantage of the specific
structure of SCCs. We will discuss the difference between our work and the literature.

The breakpoint construction [42] was designed to complement BAs with only IWCs,
while our construction treats it as a partial complementation procedure for IWCs and
differs in the need to handle incoming states from other partition blocks. The NCSB
family of algorithms [6,11,5,28] for SDBAs do not work when there are nondeterministic
jumps between DACs; they can, however, be adapted as partial procedures for comple-
menting DACs in our framework, cf. Sec. 4.2. In [29], a deelevation-based procedure
is applied to elevator automata to obtain BAs with a fixed maximum rank of 3, for
which a rank-based construction produces a result of the size in O(16𝑛). In our work,
we exploit the structure of the SCCs much more to obtain an exponentially better upper
bound of O(4𝑛) (the same as for SDBAs). The upper bound O(4𝑛) for complementing
unambiguous BAs was established in [39], which is orthogonal to our work, but seems
to be possible to incorporate into our framework in the future.

There is a huge body of work on complementation of general BAs
[8,50,7,34,21,22,10,24,29,48,2,46,43,45,5,52,32,53,19,20]; all of them work on the
whole graph structure of the input BAs. Our framework is general enough to allow
including all of them as partial complementation procedures for NACs. On the contrary,
our framework does not directly allow (at least in the synchronous strategy) to use al-
gorithms that do not work on the structure of the input BA, such as the learning-based
complementation algorithm from [38]. The recent determinization algorithm from [37],
which serves as our inspiration, also handles SCCs separately (it can actually be seen
as an instantiation of our framework). Our current algorithm is, however, more flex-
ible, allowing to mix-and-match various constructions, keep SCCs separate or merge
them into partition blocks, and allows to obtain the complexity O(4𝑛), while [37] only
allowed O(𝑛!) (which is tight since SDBA determinization is in Ω(𝑛!) [17,40]).

Regarding the tool Spot [15,16], it should not be perceived as a single comple-
mentation algorithm. Instead, Spot should be seen as a highly engineered platform

101

264 V. Havlena et al.

utilizing breakpoint construction for inherently weak BAs, NCSB [6,11] for SDBAs,
and determinization-based complementation [46,43,45] for general BAs, while using
many other heuristics along the way. Seminator uses semi-determinization [14,4,5] to
make sure the input is an SDBA and then uses NCSB [6,11] to compute the complement.

9 Conclusion and Future Work
We have proposed a general framework for BA complementation where one can plug-in
different partial complementation procedures for SCCs by taking advantage of their
specific structure. Our framework not only obtains an exponentially better upper bound
for elevator automata, but also complements existing approaches well. As shown by the
experimental results (especially for the VBS), our framework significantly improves the
current portfolio of complementation algorithms.

We believe that our framework is an ideal testbed for experimenting with different
BA complementation algorithms, e.g., for the following two reasons: (i) One can develop
an efficient complementation algorithm that only works for a quite restricted sub-class of
BAs (such as the algorithm for initial deterministic SCCs that we showed in Sec. 5.1) and
the framework can leverage it for complementation of all BAs that contain such a sub-
structure. (ii) When one tries to improve a general complementation algorithm, they can
focus on complementation of the structurally hard SCCs (mainly the nondeterministic
accepting SCCs) and do not need to look for heuristics that would improve the algorithm
if there were some easier substructure present in the input BA (as was done, e.g., in [29]).
From how the framework is defined, it immediately offers opportunities for being used
for on-the-fly BA language inclusion testing, leveraging the partial complementation
procedures present. Finally, we believe that the framework also enables new directions
for future research by developing smart ways, probably based on machine learning, of
selecting which partial complementation procedure should be used for which SCC, based
on their features. In future, we want to incorporate other algorithms for complementation
of NACs, and identify properties of SCCs that allow to use more efficient algorithms
(such as unambiguous NACs [39]). Moreover, it seems that generalizing the Delayed
optimization from [24] on the top-level algorithm could also help reduce the state space.

Acknowledgements. We thank the reviewers for their useful remarks that helped us im-
prove the quality of the paper and Alexandre Duret-Lutz for sharing a TikZ package for
beautiful automata. This work was supported by the Strategic Priority Research Program
of the Chinese Academy of Sciences (grant no. XDA0320000); the National Natural Sci-
ence Foundation of China (grants no. 62102407 and 61836005); the CAS Project for
Young Scientists in Basic Research (grant no. YSBR-040); the Engineering and Physical
Sciences Research Council (grant no. EP/X021513/1); the Czech Ministry of Educa-
tion, Youth and Sports project LL1908 of the ERC.CZ programme; the Czech Science
Foundation project GA23-07565S; and the FIT BUT internal project FIT-S-23-8151.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant no. 101008233.

Data Availability Statement. An environment with the tools and data used for the exper-
imental evaluation in the current study is available in the following Zenodo repository:
https://doi.org/10.5281/zenodo.7505210.

102

Modular Mix-and-Match Complementation of Bˇchi Automata 265

References

1. Abdulla, P.A., Chen, Y., Holı́k, L., Vojnar, T.: Mediating for reduction (on minimizing
alternating büchi automata). Theor. Comput. Sci. 552, 26–43 (2014). https://doi.org/
10.1016/j.tcs.2014.08.003, https://doi.org/10.1016/j.tcs.2014.08.003

2. Allred, J.D., Ultes-Nitsche, U.: A simple and optimal complementation algorithm for Büchi
automata. In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 46–55.
ACM (2018). https://doi.org/10.1145/3209108.3209138, https://doi.org/10.
1145/3209108.3209138

3. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solutions.
Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019). https://doi.org/10.1007/
s10009-017-0469-y, https://doi.org/10.1007/s10009-017-0469-y

4. Blahoudek, F., Duret-Lutz, A., Klokocka, M., Kretı́nský, M., Strejcek, J.: Seminator: A tool
for semi-determinization of omega-automata. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st
International Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, May 7-12, 2017. EPiC Series in Computing, vol. 46, pp. 356–367. Easy-
Chair (2017). https://doi.org/10.29007/k5nl, https://doi.org/10.29007/k5nl

5. Blahoudek, F., Duret-Lutz, A., Strejcek, J.: Seminator 2 can complement generalized Büchi
automata via improved semi-determinization. In: Lahiri, S.K., Wang, C. (eds.) Computer
Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12225, pp.
15–27. Springer (2020). https://doi.org/10.1007/978-3-030-53291-8_2, https:
//doi.org/10.1007/978-3-030-53291-8_2

6. Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.: Complementing semi-
deterministic Büchi automata. In: Chechik, M., Raskin, J. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9636, pp. 770–787. Springer (2016). https://doi.org/10.1007/
978-3-662-49674-9_49, https://doi.org/10.1007/978-3-662-49674-9_49

7. Breuers, S., Löding, C., Olschewski, J.: Improved Ramsey-based Büchi complementation.
In: Birkedal, L. (ed.) Foundations of Software Science and Computational Structures - 15th
International Conference, FOSSACS 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7213, pp. 150–164. Springer
(2012).https://doi.org/10.1007/978-3-642-28729-9_10,https://doi.org/10.
1007/978-3-642-28729-9_10

8. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Mac Lane,
S., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 425–435. Springer
(1990).https://doi.org/10.1007/978-1-4613-8928-6_23,https://doi.org/10.
1007/978-1-4613-8928-6_23

9. Bustan, D., Grumberg, O.: Simulation-based Minimization. ACM Transactions on Compu-
tational Logic 4(2), 181–206 (2003)

10. Chen, Y., Havlena, V., Lengál, O.: Simulations in rank-based Büchi automata complemen-
tation. In: Lin, A.W. (ed.) Programming Languages and Systems - 17th Asian Symposium,
APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11893, pp. 447–467. Springer (2019).https://doi.org/10.1007/
978-3-030-34175-6_23, https://doi.org/10.1007/978-3-030-34175-6_23

103

266 V. Havlena et al.

11. Chen, Y., Heizmann, M., Lengál, O., Li, Y., Tsai, M., Turrini, A., Zhang, L.: Advanced
automata-based algorithms for program termination checking. In: Foster, J.S., Grossman,
D. (eds.) Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. pp. 135–
150. ACM (2018). https://doi.org/10.1145/3192366.3192405, https://doi.org/
10.1145/3192366.3192405

12. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.:
Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) Principles of Security
and Trust - Third International Conference, POST 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings. Lecture Notes in Computer Science, vol. 8414, pp. 265–284. Springer
(2014).https://doi.org/10.1007/978-3-642-54792-8_15,https://doi.org/10.
1007/978-3-642-54792-8_15

13. Clemente, L., Mayr, R.: Efficient reduction of nondeterministic automata with application to
language inclusion testing. Log. Methods Comput. Sci. 15(1) (2019). https://doi.org/
10.23638/LMCS-15(1:12)2019, https://doi.org/10.23638/LMCS-15(1:12)2019

14. Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state probabilis-
tic programs. In: 29th Annual Symposium on Foundations of Computer Science, White
Plains, New York, USA, 24-26 October 1988. pp. 338–345. IEEE Computer Society
(1988). https://doi.org/10.1109/SFCS.1988.21950, https://doi.org/10.1109/
SFCS.1988.21950

15. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.: Spot 2.0 - A
framework for LTL and 𝜔-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.)
Automated Technology for Verification and Analysis - 14th International Symposium, ATVA
2016, Chiba, Japan, October 17-20, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9938, pp. 122–129 (2016). https://doi.org/10.1007/978-3-319-46520-3_8,
https://doi.org/10.1007/978-3-319-46520-3_8

16. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-Caissier,
P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From Spot 2.0 to Spot 2.10:
What’s new? In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th International
Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 13372, pp. 174–187. Springer (2022). https://doi.org/10.
1007/978-3-031-13188-2_9, https://doi.org/10.1007/978-3-031-13188-2_9

17. Esparza, J., Kretı́nský, J., Raskin, J., Sickert, S.: From LTL and limit-deterministic Büchi
automata to deterministic parity automata. In: Legay, A., Margaria, T. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 10205, pp. 426–442 (2017). https://doi.org/10.1007/
978-3-662-54577-5_25, https://doi.org/10.1007/978-3-662-54577-5_25

18. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–
1175 (2005). https://doi.org/10.1137/S0097539703420675, https://doi.org/
10.1137/S0097539703420675

19. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word automata,
with application to determinization. Inf. Comput. 245, 136–151 (2015). https://doi.org/
10.1016/j.ic.2014.12.021, https://doi.org/10.1016/j.ic.2014.12.021

20. Fogarty, S., Kupferman, O., Wilke, T., Vardi, M.Y.: Unifying Büchi complementation
constructions. Log. Methods Comput. Sci. 9(1) (2013). https://doi.org/10.2168/
LMCS-9(1:13)2013, https://doi.org/10.2168/LMCS-9(1:13)2013

104

Modular Mix-and-Match Complementation of Bˇchi Automata 267

21. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter. Int. J. Found.
Comput. Sci. 17(4), 851–868 (2006). https://doi.org/10.1142/S0129054106004145,
https://doi.org/10.1142/S0129054106004145

22. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing nonde-
terministic Büchi automata. In: Geist, D., Tronci, E. (eds.) Correct Hardware Design
and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference,
CHARME 2003, L’Aquila, Italy, October 21-24, 2003, Proceedings. Lecture Notes in Com-
puter Science, vol. 2860, pp. 96–110. Springer (2003). https://doi.org/10.1007/
978-3-540-39724-3_10, https://doi.org/10.1007/978-3-540-39724-3_10

23. Havlena, V., Lengál, O., Smahlı́ková, B.: Deciding S1S: down the rabbit hole and through
the looking glass. In: Echihabi, K., Meyer, R. (eds.) Networked Systems - 9th International
Conference, NETYS 2021, Virtual Event, May 19-21, 2021, Proceedings. Lecture Notes in
Computer Science, vol. 12754, pp. 215–222. Springer (2021).https://doi.org/10.1007/
978-3-030-91014-3_15, https://doi.org/10.1007/978-3-030-91014-3_15

24. Havlena, V., Lengál, O.: Reducing (to) the ranks: Efficient rank-based Büchi automata comple-
mentation. In: Haddad, S., Varacca, D. (eds.) 32nd International Conference on Concurrency
Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference. LIPIcs, vol. 203, pp. 2:1–
2:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.
4230/LIPIcs.CONCUR.2021.2, https://doi.org/10.4230/LIPIcs.CONCUR.2021.2

25. Havlena, V., Lengál, O., Li, Y., Šmahlı́ková, B., Turrini, A.: Kofola (2022), https://
github.com/VeriFIT/kofola

26. Havlena, V., Lengál, O., Li, Y., Šmahlı́ková, B., Turrini, A.: Artifact for the TACAS’23 paper
“Modular Mix-and-Match Complementation of Büchi Automata” (Jan 2023). https://doi.
org/10.5281/zenodo.7505210, https://doi.org/10.5281/zenodo.7505210

27. Havlena, V., Lengál, O., Li, Y., Šmahlı́ková, B., Turrini, A.: Modular mix-and-match comple-
mentation of Büchi automata (technical report). CoRR abs/2301.01890 (2023). https://
doi.org/10.48550/arXiv.2301.01890, https://doi.org/10.48550/arXiv.2301.
01890

28. Havlena, V., Lengál, O., Šmahlı́ková, B.: Complementing Büchi automata with Ranker. In:
Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th International Conference,
CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 13372, pp. 188–201. Springer (2022). https://doi.org/10.1007/
978-3-031-13188-2_10, https://doi.org/10.1007/978-3-031-13188-2_10

29. Havlena, V., Lengál, O., Šmahlı́ková, B.: Sky is not the limit: Tighter rank bounds for eleva-
tor automata in Büchi automata complementation. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 13244, pp. 118–136. Springer (2022). https://doi.org/10.
1007/978-3-030-99527-0_7, https://doi.org/10.1007/978-3-030-99527-0_7

30. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning terminating
programs. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8559,
pp. 797–813. Springer (2014). https://doi.org/10.1007/978-3-319-08867-9_53,
https://doi.org/10.1007/978-3-319-08867-9_53

31. Hieronymi, P., Ma, D., Oei, R., Schaeffer, L., Schulz, C., Shallit, J.O.: Decidability for
Sturmian words. In: Manea, F., Simpson, A. (eds.) 30th EACSL Annual Conference on
Computer Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual
Conference). LIPIcs, vol. 216, pp. 24:1–24:23. Schloss Dagstuhl - Leibniz-Zentrum für

105

268 V. Havlena et al.

Informatik (2022). https://doi.org/10.4230/LIPIcs.CSL.2022.24, https://doi.
org/10.4230/LIPIcs.CSL.2022.24

32. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi au-
tomata unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algo-
rithms, Automata, Complexity, and Games. Lecture Notes in Computer Science, vol. 5125,
pp. 724–735. Springer (2008). https://doi.org/10.1007/978-3-540-70575-8_59,
https://doi.org/10.1007/978-3-540-70575-8_59

33. Karmarkar, H., Chakraborty, S.: On minimal odd rankings for Büchi complementation.
In: Liu, Z., Ravn, A.P. (eds.) Automated Technology for Verification and Analysis, 7th
International Symposium, ATVA 2009, Macao, China, October 14-16, 2009. Proceed-
ings. Lecture Notes in Computer Science, vol. 5799, pp. 228–243. Springer (2009).
https://doi.org/10.1007/978-3-642-04761-9_18, https://doi.org/10.1007/
978-3-642-04761-9_18

34. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Com-
put. Log. 2(3), 408–429 (2001). https://doi.org/10.1145/377978.377993, https:
//doi.org/10.1145/377978.377993

35. Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time. J. Comput.
Syst. Sci. 35(1), 59–71 (1987). https://doi.org/10.1016/0022-0000(87)90036-5,
https://doi.org/10.1016/0022-0000(87)90036-5

36. Lengál, O.: Automata benchmarks (2022), https://github.com/ondrik/

automata-benchmarks

37. Li, Y., Turrini, A., Feng, W., Vardi, M.Y., Zhang, L.: Divide-and-conquer determinization
of Büchi automata based on SCC decomposition. In: Shoham, S., Vizel, Y. (eds.) Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10,
2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13372, pp. 152–173.
Springer (2022). https://doi.org/10.1007/978-3-031-13188-2_8, https://doi.
org/10.1007/978-3-031-13188-2_8

38. Li, Y., Turrini, A., Zhang, L., Schewe, S.: Learning to complement Büchi automata. In:
Dillig, I., Palsberg, J. (eds.) Verification, Model Checking, and Abstract Interpretation
- 19th International Conference, VMCAI 2018, Los Angeles, CA, USA, January 7-9,
2018, Proceedings. Lecture Notes in Computer Science, vol. 10747, pp. 313–335. Springer
(2018).https://doi.org/10.1007/978-3-319-73721-8_15,https://doi.org/10.
1007/978-3-319-73721-8_15

39. Li, Y., Vardi, M.Y., Zhang, L.: On the power of unambiguity in Büchi complementation.
In: Raskin, J., Bresolin, D. (eds.) Proceedings 11th International Symposium on Games,
Automata, Logics, and Formal Verification, GandALF 2020, Brussels, Belgium, September
21-22, 2020. EPTCS, vol. 326, pp. 182–198 (2020). https://doi.org/10.4204/EPTCS.
326.12, https://doi.org/10.4204/EPTCS.326.12

40. Löding, C.: Optimal bounds for transformations of omega-automata. In: Rangan, C.P., Raman,
V., Ramanujam, R. (eds.) Foundations of Software Technology and Theoretical Computer
Science, 19th Conference, Chennai, India, December 13-15, 1999, Proceedings. Lecture
Notes in Computer Science, vol. 1738, pp. 97–109. Springer (1999). https://doi.org/
10.1007/3-540-46691-6_8, https://doi.org/10.1007/3-540-46691-6_8

41. Löding, C., Pirogov, A.: New optimizations and heuristics for determinization of Büchi
automata. In: Chen, Y., Cheng, C., Esparza, J. (eds.) Automated Technology for Verification
and Analysis - 17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-31,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11781, pp. 317–333. Springer

106

Modular Mix-and-Match Complementation of Bˇchi Automata 269

(2019).https://doi.org/10.1007/978-3-030-31784-3_18,https://doi.org/10.
1007/978-3-030-31784-3_18

42. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Comput. Sci.
32, 321–330 (1984). https://doi.org/10.1016/0304-3975(84)90049-5, https://
doi.org/10.1016/0304-3975(84)90049-5

43. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. Log. Methods Comput. Sci. 3(3) (2007). https://doi.org/10.2168/LMCS-3(3:
5)2007, https://doi.org/10.2168/LMCS-3(3:5)2007

44. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977.
pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32,
https://doi.org/10.1109/SFCS.1977.32

45. Redziejowski, R.R.: An improved construction of deterministic omega-automaton using
derivatives. Fundam. Informaticae 119(3-4), 393–406 (2012). https://doi.org/10.
3233/FI-2012-744, https://doi.org/10.3233/FI-2012-744

46. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on Foundations
of Computer Science, White Plains, New York, USA, 24-26 October 1988. pp. 319–327.
IEEE Computer Society (1988). https://doi.org/10.1109/SFCS.1988.21948, https:
//doi.org/10.1109/SFCS.1988.21948

47. Safra, S., Vardi, M.Y.: On omega-automata and temporal logic (preliminary report). In:
Johnson, D.S. (ed.) Proceedings of the 21st Annual ACM Symposium on Theory of Com-
puting, May 14-17, 1989, Seattle, Washington, USA. pp. 127–137. ACM (1989). https:
//doi.org/10.1145/73007.73019, https://doi.org/10.1145/73007.73019

48. Schewe, S.: Büchi complementation made tight. In: Albers, S., Marion, J. (eds.) 26th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2009, February
26-28, 2009, Freiburg, Germany, Proceedings. LIPIcs, vol. 3, pp. 661–672. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany (2009). https://doi.org/10.4230/LIPIcs.
STACS.2009.1854, https://doi.org/10.4230/LIPIcs.STACS.2009.1854

49. Sickert, S., Esparza, J., Jaax, S., Kretı́nský, J.: Limit-deterministic Büchi automata for lin-
ear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 9780, pp. 312–332. Springer
(2016).https://doi.org/10.1007/978-3-319-41540-6_17,https://doi.org/10.
1007/978-3-319-41540-6_17

50. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi au-
tomata with applications to temporal logic. Theor. Comput. Sci. 49, 217–237 (1987).
https://doi.org/10.1016/0304-3975(87)90008-9, https://doi.org/10.1016/
0304-3975(87)90008-9

51. The SV-COMP Community: International competition on software verification (2022),
https://sv-comp.sosy-lab.org/

52. Tsai, M., Fogarty, S., Vardi, M.Y., Tsay, Y.: State of Büchi complementation. Log. Methods
Comput. Sci. 10(4) (2014). https://doi.org/10.2168/LMCS-10(4:13)2014, https:
//doi.org/10.2168/LMCS-10(4:13)2014

53. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Flum, J., Grädel, E., Wilke,
T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games, vol. 2,
pp. 629–736. Amsterdam University Press (2008)

54. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification
(preliminary report). In: Proceedings of the Symposium on Logic in Computer Science (LICS
’86), Cambridge, Massachusetts, USA, June 16-18, 1986. pp. 332–344. IEEE Computer
Society (1986)

107

270 V. Havlena et al.

55. Yan, Q.: Lower bounds for complementation of omega-automata via the full automata tech-
nique. Log. Methods Comput. Sci. 4(1) (2008). https://doi.org/10.2168/LMCS-4(1:
5)2008, https://doi.org/10.2168/LMCS-4(1:5)2008

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

108

Advanced Automata-Based Algorithms for Program
Termination Checking

Yu-Fang Chen
Academia Sinica, Taiwan

National Taipei University, Taiwan
yfc@iis.sinica.edu.tw

Matthias Heizmann
University of Freiburg, Germany

heizmann@informatik.uni-freiburg.
de

Ondřej Lengál
FIT, Brno University of Technology
IT4Innovations Centre of Excellence
Czech Republic, lengal@fit.vutbr.cz

Yong Li
State Key Laboratory of Computer

Science, Institute of Software
Chinese Academy of Sciences

University of Chinese Academy of
Sciences, China, liyong@ios.ac.cn

Ming-Hsien Tsai
Academia Sinica, Taiwan
mhtsai208@gmail.com

Andrea Turrini
State Key Laboratory of Computer

Science, Institute of Software
Chinese Academy of Sciences

China
turrini@ios.ac.cn

Lijun Zhang
State Key Laboratory of Computer

Science, Institute of Software
Chinese Academy of Sciences

University of Chinese Academy of
Sciences, China, zhanglj@ios.ac.cn

Abstract
In 2014, Heizmann et al. proposed a novel framework for
program termination analysis. The analysis starts with a ter-
mination proof of a sample path. The path is generalized to
a Büchi automaton (BA) whose language (by construction)
represents a set of terminating paths. All these paths can be
safely removed from the program. The removal of paths is
done using automata difference, implemented via BA com-
plementation and intersection. The analysis constructs in
this way a set of BAs that jointly “cover” the behavior of the
program, thus proving its termination. An implementation
of the approach in Ultimate Automizer won the 1st place
in the Termination category of SV-Comp 2017.
In this paper, we exploit advanced automata-based al-

gorithms and propose several non-trivial improvements of
the framework. To alleviate the complementation computa-
tion for BAs—one of the most expensive operations in the
framework—, we propose a multi-stage generalization con-
struction.We start with generalizations producing subclasses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192405

of BAs (such as deterministic BAs) for which efficient com-
plementation algorithms are known, and proceed to more
general classes only if necessary. Particularly, we focus on
the quite expressive subclass of semideterministic BAs and
provide an improved complementation algorithm for this
class. Our experimental evaluation shows that the proposed
approach significantly improves the power of termination
checking within the Ultimate Automizer framework.

CCS Concepts • Theory of computation→ Automata
over infinite objects; • Software and its engineering→
Formal software verification;

Keywords Program Termination, Büchi Automata Comple-
mentation and Language Difference

ACM Reference Format:
Yu-Fang Chen, Matthias Heizmann, Ondřej Lengál, Yong Li, Ming-
Hsien Tsai, Andrea Turrini, and Lijun Zhang. 2018. Advanced
Automata-Based Algorithms for Program Termination Checking.
In Proceedings of 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3192366.3192405

1 Introduction
Termination analysis of programs is a challenging area of for-
mal verification, which has attracted the interest of many re-
searchers approaching the problem from different angles [4,
13, 17–19, 27, 28, 31, 33, 34, 36, 38, 42, 45–48, 51, 52]. All ap-
proaches need to deal with the following challenge: when
a program contains loops with branching or nesting, how to

135

109

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

The scope of the paperP always terminates

Program P and
uvω ∈ L(AP)

Prove the termina-
tion of uvω [6, 8, 9,
14, 16, 32, 39, 44].

A multi-stage ap-
proach to generalize
uvω to a certified
module (AM , f ,I).

(Section 3)

Efficient automata
algorithms to find
a word uvω in the
uncertified part of P .

(Sections 4-6)

uvω

uvω with a proof

AM

uvω

Figure 1. The flow of the automata-based termination anal-
ysis and the scope of the paper

devise a termination argument that holds for any possible
interleaving of different paths through the loop body?

Due to the difficulty of solving the general problem, many
researchers have focused on its simplified version that ad-
dresses only lasso-shaped programs, i.e., programs where the
control flow consists of a stem followed by a simple loopwith-
out any branching. Proving termination of this class of pro-
grams can be done rather efficiently [6, 8, 9, 14, 16, 32, 39, 44].
The approach of Heizmann et al. [33] leverages those re-

sults and proposes a modular construction of termination
proofs for a general program P from termination proofs of
lasso-shaped programs obtained from its concrete paths. On
a high level, the approach repeatedly performs the follow-
ing sequence of operations (see Figure 1). First, it samples
a path τ = uvω from the possible behaviors of P and at-
tempts to prove its termination using an off-the-shelf ap-
proach. Second, it generalizes τ into a (potentially infinite)
set of pathsM, called a certified module, that all share the
same termination proof with τ . Finally, it checks whether the
behavior of P contains a path τ ′ not covered by any certified
module generated so far and, if so, the procedure is restarted.
This sequence is repeated until either a non-terminating path
is found or all behaviors of P are covered by the modules.

Let us followwith an informal description of the procedure
on the example program Psort in Figure 2a. Figure 2b shows
the control flow graph (CFG) of Psort as a Büchi automaton
(BA) AP sort . The alphabet of AP sort is the set of all state-
ments occurring in Psort and each state ofAP sort is a location
of Psort. All states of AP sort are accepting so every infinite
sequence of statements of the program corresponds to an
infiniteword in the languageL(AP sort). The task is to decom-
pose AP sort into a finite set of BAs {A1, . . . ,An}, each rep-
resenting a program with a termination argument, such that
L(AP sort) ⊆ L(A1) ∪ · · · ∪ L(An), so every path of Psort

is represented by a word in AP sort and is guaranteed to ter-
minate by an argument for some Ai . More concretely, each
BAAi is associated with a ranking function fi and a rank cer-
tificate Ii mapping each state to a predicate over the program
variables (cf. Section 3). The tripleMi = (Ai , fi ,Ii) is called

program sort(int i):
ℓ1: while (i>0):

ℓ2: int j:=1

ℓ3: while (j<i):

// if (a[j]>a[i]):

// swap(a[j],a[i])

ℓ4: j++

ℓ5: i--

(a) Program Psort

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

i>0

j:=1

j<ij++

j>=i

i--

(b) The BA AP sort

Figure 2. An example program and its BA representation

a certified module. The construction of the set {M1, . . . ,Mn}
is step-wise (see Figure 1). First, we find an ultimately pe-
riodic word uvω ∈ L(AP sort)—which is essentially a lasso-
shaped program—and use a standard approach to check if it
corresponds to a terminating path. In our example, we start
with sampling the word uvω = i>0 j:=1 (j<i j++)ω .
We can prove termination of the path corresponding to uvω
by finding, e.g., the ranking function f1(i, j) = i − j.
In the following, we will denote the outer loop of AP sort

as Outer = j>=i i-- i>0 j:=1 and its inner loop as
Inner = j<i j++ . We can observe that f1 is also a ranking
function for the set of paths obtained by generalizing uvω
into the set of words that correspond to all paths that even-
tually stay in the inner loop, i.e., words from

L1 = i>0 j:=1 · (Inner + Outer)∗ · Innerω . (1)
The language L1 together with a ranking function f1 and

a rank certificate I1 can be represented by the certified mod-
uleM1 = (A1, f1,I1)where L(A1) = L1. We proceed by re-
moving all paths covered by L1 from AP sort to know which
paths still need to be examined. The removal can be per-
formed by executing a BA difference algorithm, followed
by checking language emptiness (potentially finding a new
counterexample uvω on failure). In our example, the differ-
ence corresponds to the (non-empty) language

L(AP sort

|A1
) = i>0 j:=1 · (Inner∗Outer)ω (2)

represented by AP sort

|A1
. Suppose the next sampling gives us

uvω = i>0 j:=1 · Outerω , for which, e.g., the ranking
function f2(i, j) = i is applicable. Note that f2 is also a valid
ranking function for all paths taking the outer while loop
infinitely often, i.e., all paths corresponding to words from

L2 = i>0 j:=1 · (Inner∗Outer)ω . (3)
We represent these paths by the certified module M2 =
(A2, f2,I2) where L(A2) = L2. After removing the words
from L(AP sort

|A1
), we, finally, obtain the BA AP sort

|A1,A2
, whose

language is empty. This means that the modulesM1 andM2
cover all possible paths of the program Psort and, because
each of them comes with a termination argument, we can
conclude that all paths of Psort are guaranteed to terminate.

136

110

Automata-Based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Note that the above procedure performs extensively com-
putation of language difference of a pair of BAs. The com-
putation of difference involves computing the complement
of a BA, one of the most difficult operations in automata
theory—it is known that complementing a BA with n states
has the lower-bound space complexity 2O(n logn) [40].
In this paper, we exploit advanced automata-based algo-

rithms and propose several non-trivial improvements of the
framework. Our main contributions are the following:
Contribution 1: We devise a multi-stage generalization ap-
proach, which tries to avoid the costly complementation of
general BAs by considering several subclasses of BAs with
cheaper complementation operations. For every terminating
trace represented as a word uvω , we consider the follow-
ing subclasses: (i) finite-trace BAs (BAs accepting the lan-
guagewΣω for a wordw ∈ Σ∗), (ii) deterministic BAs (DBAs),
(iii) semideterministic BAs (SDBAs; BAs where, intuitively,
all strongly connected components (SCCs) containing an ac-
cepting state are deterministic), and, finally, (iv) general BAs.
These subclasses indeed have more efficient complementa-
tion procedures: the complementation of finite-trace BAs
needs only O(1) space, DBAs can be complemented in O(n)
space [35], and complementing SDBAs requires only 2O(n)
space [12]. The details of the multi-stage approach are pre-
sented in Section 3. Our observation from running the multi-
stage approach is that general BAs are needed only rarely—in
the vast majority of cases, SDBAs are expressive enough.
Contribution 2: In our multi-stage approach shown above,
the computation of the difference automaton for a BA and
an SDBA is one of the most expensive operations in the loop
of automata-based termination analysis. Our second contri-
bution is an efficient algorithm for computing the language
difference of a BA and an SDBA. The difference algorithm
performs on-the-fly intersection and complement, on the top
level using the (as far as we know currently the most effi-
cient) SCC-based BA emptiness checking algorithm of [26].
The details of the algorithm are given in Section 4.
Contribution 3: Our third contribution is the improvement
of the efficiency of state-of-the-art algorithms manipulat-
ing SDBAs. We, in particular, provide several heuristics of
the SDBA complementation procedure of Blahoudek et al.
from [12]. The main ideas of the heuristics are the following:
(i) lazy construction, which delays nondeterministic choices
in a way similar to partial order reduction [30, 43, 54] (Sec-
tion 5), and (ii) subsumption-based pruning of states inspired
by antichain-based algorithms for testing universality and
language inclusion over finite automata [2, 23] (Section 6).

We implemented the proposed solutions in the open source
tool Ultimate Automizer and evaluated them on the bench-
marks from SV-Comp [1]. Our experimental evaluation (Sec-
tion 7) shows that the approach we propose in this work has
significantly improved the power of termination checking
within the Ultimate Automizer framework.

2 Preliminaries
We fix an alphabet Σ. A (nondeterministic) generalized Büchi
automaton (GBA) with k accepting sets is a tuple A =

(Q,δ ,QI ,F), whereQ is a finite set of states, δ : Q ×Σ→ 2Q
is a transition function, QI ⊆ Q is a set of initial states, and
F = { Fj ⊆ Q | j ∈ {1, . . . ,k} } is a set of accepting con-
ditions. Unless stated explicitly, we assume that all GBAs
are complete, i.e., for each q ∈ Q and a ∈ Σ, it holds that
δ (q,a) , ∅. We use q a−→p to denote that p ∈ δ (q,a), and
we define post(q) = ⋃

a∈Σ δ (q,a). We lift δ to sets of states
in the usual way. We abuse notation and for q ∈ Q use
F (q) = { j ∈ {1, . . . ,k} | q ∈ Fj } to denote the set of ac-
cepting conditions that q satisfies. Moreover, we sometimes
use F also to denote the set {1, . . . ,k}.
A trace of A on an infinite word w = w0w1 . . . ∈ Σω

from a state q0 is an infinite sequence of transitions π =
q0

w0−−→q1
w1−−→ · · · such that for each i ≥ 0, we have qi

wi−−→qi+1.
The trace π is accepting iff for each 1 ≤ j ≤ k , there are in-
finitely many i such that qi ∈ Fj , and is safe iff for all i ≥ 0,
qi <

⋃
1≤j≤k Fj . A run ρ = q0q1 . . . is the projection of a trace

to states. The concept that a run is accepting or safe is defined
analogously. The language of a state q ∈ Q in A is the set
LA(q) = {w ∈ Σω | A has an accepting trace onw from q}
(denoted also as L(q) ifA is obvious). If L(q) = ∅, we call q
useless. The language of the GBA A is defined as L(A) =⋃

qi ∈QI
L(qi). We use ⊆L to denote the relation of language

inclusion of states: p ⊆L q ⇐⇒ L(p) ⊆ L(q).
A Büchi automaton (BA) is a GBA with just k = 1 ac-

cepting condition, i.e., F = {F }. We often denote a BA as
(Q,δ ,QI , F). A complement of A is a BA AC that accepts
the language L(AC) = Σω \ L(A). A is a deterministic BA
(DBA) if ∀q ∈ Q,a ∈ Σ : |δ (q,a)| ≤ 1 ∧ |QI | = 1. Moreover,
A is a semideterministic BA (SDBA) if, for each qf ∈ F , the
automaton A(qf) is deterministic, where A(qf) is obtained
from the BA (Q,δ , {qf }, F) by removing states unreachable
from qf . Intuitively, this means that an SDBA can move non-
deterministically until it visits an accepting state; then it can
only move deterministically. The set Q can be divided into
two disjoint parts Q1 and Q2 representing the states in the
nondeterministic part and deterministic part, respectively;
note that F ⊆ Q2. The transition function δ = δ1∪δt∪δ2 then
consists of the following three disjoint transition functions:
δ1 : Q1×Σ→ 2Q1 , δt : Q1×Σ→ 2Q2 , and δ2 : Q2×Σ→ 2Q2 ,
where the relation δ2 is deterministic. To simplify presenta-
tion, we impose the following two additional requirements
on SDBAs: (1) we require that the entry points of Q2 are
accepting, i.e., δt (Q1,a) ⊆ F for all a ∈ Σ and (2) we require
that QI ∩ Q2 ⊆ F , i.e., all initial states in Q2 are accepting.
The two requirements guarantee that if a run in an SDBA
touches a state in Q2, it has already touched some accept-
ing state. Any SDBA can be transformed into an equiva-
lent SDBA satisfying the requirements by treating all non-
accepting entry or initial states q from Q2 (i.e., states from

137

111

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

either (⋃a∈Σ δt (Q1,a)) \ F or (QI ∩Q2) \ F) as follows: (1) we
add a new accepting state q′, (2) for all transitions entering q
from Q1, we redirect them to q′, and (3) we duplicate all
outgoing transitions of q to q′. Note that SDBAs recognize
the same class of languages as BAs, but can be, in the worst
case, exponentially larger.

3 Multi-Stage Generalization of Certified
Modules

Asmentioned in the introduction, a program P is represented
by a BA A. The termination proof of P can be obtained
by decomposing A into several BAs A1, . . . ,An , whose
languages jointly cover L(A), and then showing that each
of them is terminating by means of a certified module [33].
Given a well-ordered set (W ,≺), let ∞ denote a value

strictly larger than any other value inW . In the following,
we use ®v to denote the vector of program variables of P .
A valuation Φ is a function assigning a value to each variable
from ®v. A statement is a command appearing in the program,
such as an assignment or the guard of a while loop. The
alphabet Σ is the set of statements appearing in P . Each
statement is associated with a binary relation over valuations
representing the effect of the statement; for instance, the
relation associated with the statement i>0 contains the
pairs (Φ,Φ) where Φ(i) =⇒ i > 0. A Hoare triple is a triple
{ψ } stmt {ψ ′} where stmt is a statement and ψ , ψ ′ are
predicates over program variables; a Hoare triple is valid if,
for each pair of valuations (Φ,Φ′) in the relation associated
with stmt , if Φ satisfiesψ , then Φ′ satisfiesψ ′.

Definition 3.1 (cf. [33, Definition 3]). Given a BA AM =
(Q,δ , {qi }, {qf }) and a ranking function fM from valuations
into a well-ordered set (W ,≺), we call a mapping IM from
states to predicates over program variables a rank certificate
for fM and AM if the following properties hold:
• The initial state qi is mapped by IM to the predicate
where the auxiliary variable oldrnk has the value∞,
i.e., IM(qi) ⇐⇒ oldrnk = ∞.
• The accepting state qf is mapped by IM to a predicate
in which the value of f over the program variables is
strictly smaller than the value of the variable oldrnk,
i.e., IM(qf) =⇒ fM(®v) ≺ oldrnk.
• Each outgoing transition q

stmt−−−−→q′ from a state q ,
qf corresponds to a valid Hoare triple, i.e., the triple
{IM(q)} stmt {IM(q′)} is valid.
• Each outgoing edge qf

stmt−−−−→q′ from the accepting
state qf corresponds to a valid Hoare triple if we in-
sert an additional assignment statement that updates
oldrnk with the value of the ranking function, i.e.,
{IM(qf)} oldrnk:= fM (®v) ; stmt {IM(q′)} is valid.

We callM = (AM , fM ,IM) a certified module and define its
language asL(M) = L(AM). A certified module represents
a set of paths in P that share the same termination argument.

That is, for all paths represented byM, the evaluation of
the ranking function fM strictly decreases on visiting the
accepting state qf .

3.1 The Multi-Stage Approach to ConstructM
In this section, we describe our algorithm that generalizes
an ultimately periodic word uvω accompanied by a termi-
nation proof (obtained using an off-the-shelf termination
checker) into a certified module (cf. Figure 1).

First, we construct the initial certified lasso moduleMuvω

(cf. Section 3.1.1), which closely resembles the structure
of uvω . The alphabet Σ of Muvω (and of its generaliza-
tions, see below) consists of all statements occurring in uvω .
While such a module would work correctly in the later refine-
ment, it is of a very limited practical use. In our experience,
it usually covers only a very small fragment of programpaths;
sometimes it only covers the path corresponding to uvω .
The previous work [33] uses a generalization procedure

that usesMuvω to construct a moduleMnondet consisting of
a nondeterministic BA (cf. Section 3.1.5). AlthoughMnondet
is usually quite general, the drawback of this solution is
the extremely high complexity of complementing a nonde-
terministic BA, which is performed in the subsequent step.
To alleviate this issue, we propose the following multi-stage
approach for construction of certified modules.
Our multi-stage approach attempts to use the alphabet

and states ofMuvω to construct a certified module that is
as easy to complement as possible, while also satisfying the
condition that its language contains the word uvω (so that
when its language is removed from the set of uncertified
traces, we are guaranteed to remove at least uvω). The con-
struction proceeds in stages, starting with a module that
is the easiest to complement, and gradually progresses to
modules whose complementation is harder (they exhibit
a higher degree of nondeterminism), until it builds a module
whose language contains uvω . As the last option, we con-
struct Mnondet , which is guaranteed to contain uvω in its
language, but is the hardest to complement.

In this work we consider 4 stages: besides stage 0, where
the initial certified lasso moduleMuvω is built, we have at
stage 1 the finite-trace certified module construction (cf. Sec-
tion 3.1.2). The result contains a finite-trace BA whose com-
plementation takes constant time; the generalization is, how-
ever, possible only under certain conditions. At stage 2, we
build the deterministic certified module (cf. Section 3.1.3),
which is relatively easy to complement since it is determin-
istic. If it does not suffice, at stage 3, we create the semide-
terministic certified module (cf. Section 3.1.4), which allows
limited nondeterminism. The last construction we consider
at stage 4 is the nondeterministic certified module Mnondet
(cf. Section 3.1.5), which is guaranteed to accept uvω but
has the highest level of nondeterminism. More intermediate
constructions can be added into this multi-stage approach.

138

112

Automata-Based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

3.1.1 Stage 0: Initial Certified Lasso Module
The initial certified lasso moduleMuvω consists of a BA ac-
cepting solely the worduvω , a ranking function f , and a rank
certificate I (from a lasso program termination prover). The
construction starts with the BA of the form depicted below,
for the stem u = u1u2 . . .ul and the loop v = v1v2 . . .vm .1

.u1 ul−1 ul

v1 v2

vm−1vm

For instance, consider again the sorting program Psort

and the ω-word uvω = i>0 j:=1 (j<i j++)ω . The cor-
responding BA and rank certificate Isort are depicted below,
where each state is annotated with the corresponding predi-
cate given by Isort for the ranking function f sort(i, j) = i− j .

q1

{oldrnk = ∞}

q2

{oldrnk = ∞}

q3

{i − j < oldrnk}

q4

{0 ≤ i − j ≤ oldrnk}

i>0 j:=1
j<i

j++

ModuleMuvω is obtained by generalizing the constructed
BA by merging states with the same predicate. Note that
for the given word uvω , two states can be merged only
if they both belong to the stem part u or both belong to
the loop part v; a state from the stem part can never be
merged with a state from the loop part, since the former
implies oldrnk = ∞ in its predicate while the latter im-
plies its negation. If we merge such states for the BA from
above, we obtain the following module accepting all words
of the form (i>0)∗ j:=1 (j<i j++)ω , not just uvω =
i>0 j:=1 (j<i j++)ω .

q1

{oldrnk = ∞}

q3

{i − j < oldrnk}

q4

{0 ≤ i − j ≤ oldrnk}

i>0

j:=1
j<i

j++

We denote the module from the example above asMsort
uvω .

3.1.2 Stage 1: Finite-trace Certified Module
The first module we try to construct is the finite-trace cer-
tified moduleM1 =Mfin. This module can be constructed
when uvω corresponds to a path that is infeasible already
in the stem part. In such a case, there must be a state q on
some path from the initial state qi to the accepting state qf
s.t. I(q) is unsatisfiable and for every q′ on the shortest path
from qi to q, I(q′) is satisfiable. More concretely,Mfin can
be constructed fromMuvω by (1) removing all states that

1Note that if u = ε , the construction does not create a certified module
(since qi = qf). As a remedy for this, in such a case we materialize v once,
i.e., we use the identity εvω = vvω , and continue in the standard way.

are not on a path from qi to q, (2) removing all outgoing tran-
sitions of q, (3) adding self-loops q stmt−−−−→q for all stmt ∈ Σ,
and (4) setting q as the single new accepting state.

3.1.3 Stage 2: Deterministic Certified Module
IfM1 cannot be constructed, we proceed by building a de-
terministic certified moduleM2 =Mdet. The high-level intu-
itive idea is to construct a DBA using sets of states ofMuvω

with transitions that respect the predicates ofMuvω (so that
the termination argument for uvω correctly extends to the
whole language of the module) and are in some sense maxi-
mal. In particular, the successor of a set of statesQ ofMuvω

over a statement stmt is computed as the maximal set of
states Q ′ satisfying the following property: the predicate of
every state inQ ′ is a logical consequence of the conjunction
of the predicates of the states inQ and the semantics of stmt .

For instance, let us consider an initial certified lasso mod-
uleMuvω whose alphabet contains the statement z:=x+y

and whose states q23,q42,q65 are annotated by I as follows:
I(q23) is x = 23, I(q42) is y = 42, and I(q65) is z = 65.
Then, regardless of the transitions ofMuvω , the successor of
{q23,q42} over z:=x+y is the set {q23,q42,q65}, since I(q65)
is implied by I(q23) ∧ I(q42) and the relation for z:=x+y ,
which contains all pairs (Φ,Φ′) such thatΦ′(z) =⇒ z = x+y
and Φ(v) =⇒ Φ′(v) for v , z.

Definition 3.2. Let Muvω = (A, f ,I) be an initial cer-
tified lasso module such that A = (Q,δ , {qi }, {qf }). The
deterministic certified module Mdet = (Adet, f ,Idet) with
a DBA Adet = (Qdet,δdet,QI

det, F det) is defined as follows:

• The set of states of Adet is Qdet = 2Q .
• Let δ∧ : 2Q × Σ→ 2Q be a function s.t. δ∧(Q, stmt) =
{q′ ∈ Q | {∧q∈Q I(q)} stmt ′ {I(q′)} is a valid Hoare
triple}, where stmt ′ = oldrnk:=f (®v) ; stmt if qf ∈ Q,
otherwise stmt ′ = stmt .
Now, the transition function δdet for a state Q ∈ Qdet

and a statement stmt is defined as δdet(Q, stmt) =
{Q ′}, where Q ′ = δ∧(Q, stmt) if qf < δ∧(Q, stmt),
otherwisewe omit all non-accepting states whose pred-
icate contains oldrnk, i.e., Q ′ = δ∧(Q, stmt) \ {q ∈
Q | q , qf ∧ oldrnk ∈ var(I(q)) } where var(I(q))
denotes all variables occurring in I(q).
Note that the statement oldrnk:=f (®v) is used only
for defining δ∧; it is not in the alphabet of Adet.
• There is a single initial state, i.e., QI

det = {{qi }}.
• The set of accepting states F det contains all statesQ ∈
Qdet such that qf ∈ Q or

∧
q∈Q I(q) is unsatisfiable.

Moreover, Idet is such that Idet : Q 7→ ∧
q∈Q I(q).

By applying the certified deterministic module construc-
tion toMsort

uvω , we obtain the following module:

139

113

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

{q1}
{oldrnk = ∞}

{q3}
{i − j < oldrnk}

{q4}
{0 ≤ i − j ≤ oldrnk}

∅
{true}

Σ

j++

j<i

i>0

j:=1

i>0
j<i

j++

j:=1

Σ

Note that this moduleMsort
det , despite accepting a non-empty

language, is absolutely useless for the refinement of Psort,
since it rejects the word uvω = i>0 j:=1 (j<i j++)ω
representing the path whose termination has been proved.

While a DBA is easy to use in computing language differ-
ence, the certified deterministic module is not always useful,
as we can see from the example above (in general, DBAs are
known to be less expressive than BAs [3]).

3.1.4 Stage 3: Semideterministic Certified Module
In order to overcome the shortcomings of the determinis-
tic certified module, we now present the semideterministic
certified moduleM3 =Msemi, which isMdet enriched with
additional transitions. In particular, for a statement stmt ,
each stateQ that is not reachable from an accepting state s.t.
qf ∈ δ∧(Q, stmt) (cf. Definition 3.2) has two stmt-successors:
• δ∧(Q, stmt) \ {q ∈ Q | q , qf ∧ oldrnk ∈ var(I(q)) },
the original successor in δdet;
• an additional successor δ∧(Q, stmt) \ {qf }.

Obviously, the resulting automaton is an SDBA that, further-
more, satisfies the requirements from Section 2 (the require-
ment that any run entering an accepting loop needs to enter
via an accepting state—i.e., none of its states contains at the
same time a state from the stem and a state from the loop—
is guaranteed by the fact that all states in the stem imply
oldrnk = ∞, while all states in the loop imply oldrnk < ∞).
By applying the certified semideterministic module con-

struction toMsort
uvω , we obtain the following moduleMsort

semi .

{q1}
{oldrnk = ∞}

{q1,q4}
{0 ≤ i − j ≤ oldrnk = ∞}

{q3}
{i − j < oldrnk}

{q4}
{0 ≤ i − j ≤ oldrnk}

∅
{true}

Σ \ j<i

Σ

j<i

j<i

i>0
j++

j:=1 Σ

j++

j<i

i>0

j:=1

i>0
j<i

j++

j:=1

Σ

Note that, in contrast toMsort
det , the moduleMsort

semi already
accepts the word uvω = i>0 j:=1 (j<i j++)ω .

Note that although the construction of the semidetermin-
istic module can theoretically produce an exponential-sized
automaton, we rarely experienced this case in our evaluation.

3.1.5 Stage 4: Nondeterministic Certified Module
The nondeterministic certified moduleM4 =Mnondet is the
most powerful generalization we considered. It is obtained

by adding every possible transition between each pair of
states toMuvω , as long as the rank certificate is still correct.

For instance, the above lasso moduleMsort
uvω becomes the

following nondeterministic module.

q1

{oldrnk = ∞}

q3

{i − j < oldrnk}

q4

{0 ≤ i − j ≤ oldrnk}

Σ

Σ

j<i

j<i

j++

j++
j<i i>0

While usually accepting significantly more words than
Muvω , the use ofMnondet in the refinement can pose practi-
cal problems, caused by its high level of nondeterminism.

Although Mnondet is always guaranteed to accept uvω
(since it contains all transitions ofMuvω), its use in the over-
all termination procedure is expensive, because algorithms
for complementing BAs have a prohibitive complexity. Based
on our experiments, constructingMnondet is seldom neces-
sary, and inmany cases,Msemi is sufficient (in the worst case)
for a successful generalization of a program path. As also
observed in our experiments, computing the difference of
a GBA representing program paths and a module can domi-
nate the overall execution time, so constructing modules that
are easier to complement is crucial. In the following sections,
we provide efficient algorithms for computing the difference
of a GBA and a BA (Section 4) and for complementing an
SDBA (Sections 5 and 6) that serve as an enabling technology
of the whole termination checking procedure.

4 Building Difference of a GBA and a BA
In this section, we introduce an algorithm that, given aGBAA
(in our setting representing program paths whose termina-
tion has not yet been established) and, in general, a BA B
(which represents the program paths whose termination we
have just proved), constructs a GBA D such that L(D) =
L(A) \ L(B). We present the algorithm and its optimiza-
tions in several steps. Note that we use GBAs since they are
usually smaller than their equivalent BA counterparts and
have a more efficient language intersection operation.
From a high-level view, our algorithm can be seen as an

optimization of a naïve algorithm that first builds the comple-
ment of B, further denoted as B, then constructs a GBA AI
accepting the intersection L(AI) = L(A) ∩ L(B) and, fi-
nally, removes useless states from AI (yielding an empty
automaton in the caseL(AI) = ∅). Recall that a stateq is use-
less iff LAI (q) = ∅, otherwise, q is useful. Our optimizations
that make the algorithm usable in practice are the following.

1. B is constructed on the fly when constructing AI , i.e.,
only those states of B that occur in some product state
ofAI = A∩B are constructed (note that intersection
of GBAs produces a GBA whose structure corresponds
to finite automaton-like product construction).

140

114

Automata-Based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Algorithm 1: Removing useless states from a GBA
Input :GBA A = (Q,δ ,QI ,F)
Output :GBA A ′ = (Q ′,δ ′,QI

′,F ′) s.t. ∀q ∈ Q ′ : L(q) , ∅
Global :Q ′← ∅, emp← ∅, SCCs← ∅, act← ∅, cnt← 0
1 Function remove_useless(A):
2 foreach qI ∈ I do
3 if qI < Q ′∪ emp then // qI < Q ′ ∪ ⌈emp⌉
4 construct(qI);
5 return A ′ = (Q ′,δ ∩ (Q ′ × Σ × 2Q ′), I ∩Q ′,F|Q ′);
6 Function construct(s):
7 ++cnt; s .dfsnum← cnt; is_nemp← false;
8 SCCs.push((s,F (s))); act.push(s);
9 foreach t ∈ post(s) do
10 if t ∈ Q ′ then is_nemp← true;
11 else if t ∈ emp then continue; // t ∈ ⌈emp⌉
12 else if t < act then
13 is_nemp← construct(t) ∨ is_nemp;
14 else
15 B← ∅;
16 do
17 (u,C) ← SCCs.pop(); B ← B ∪C;
18 if B = F then is_nemp← true ;
19 while u.dfsnum > t .dfsnum;
20 SCCs.push((u,B));
21 if SCCs.top() = (s, _) then
22 SCCs.pop();
23 do
24 u ← act.pop();
25 if is_nemp then Q ′.add(u);
26 else emp.add(u);
27 while u , s;
28 return is_nemp;

2. We remove useless states from AI using a modifica-
tion of the state-of-the-art SCC-based algorithm for
testing emptiness of the language of a GBA by Gaiser
& Schwoon [26], which refines the algorithm of Cou-
vreur [22] (Section 4.1).

3. When B is an SDBA, we optimize the construction
of B from [12] by delaying nondeterministic choices
as long as possible, thus significantly reducing the
number of generated states (Section 5).

4. We prune the search from Point 2 by using an antichain-
like [23] subsumption on the states of AI (Section 6).

4.1 Removing Useless States in a GBA
Algorithm 1 is a modification of the algorithm for check-
ing emptiness of a GBA A = (Q,δ ,QI ,F = {F1, . . . , Fk })
proposed by Gaiser & Schwoon [26] (GS for short), which

is based on finding a reachable strongly connected compo-
nent (SCC) that contains at least one state from every set Fj .
Our modification not only tests the emptiness of L(A), but
also efficiently constructs a copy A ′ of A without any use-
less state (and, therefore, if L(A) = ∅, then A ′ is empty).
Similarly to GS, Algorithm 1 uses two stacks, SCCs and

act, to keep track of the possible entry states of SCCs and
the active states, which may be constituting the SCCs. Our
algorithm uses additional data structures, namely the pair of
sets Q′ and emp, which are used to store all states that have
been proved to be useful or useless. The algorithm starts in
the function remove_useless and traverses the reachable
states ofA in a depth first search manner. Each state has the
data field dfsnum, which is used to record the relative order of
the visit of the states, i.e., if t .dfsnum > s .dfsnum, then s has
been visited before t . Therefore, if such a t can reach the said s
and, at the same time, s is in act, this means thatA contains
an SCC that includes both s and t . From all states forming an
SCC, the one with the lowest value of dfsnum is the SCC’s
entry point. The stack SCCs also assigns each possible SCC
entry point qe the set of accepting conditions from F that qe
can infinitely many times reach (F (s) ⊆ {1, . . . ,k} denotes
all accepting conditions that s belongs to).

The differences of Algorithm 1 from GS are the following:
(i) Algorithm 1 does not stop immediately when an accepting
SCC is found (line 18), but continues in the construction,
(ii) in lines 25–26 (which correspond to leaving a possible
SCC), the states popped from the stack act are classified
to be either useful (then they are added to Q ′) or useless
(then they are added to emp), and (iii) we use Q ′ and emp in
lines 10–11 to check whether we already knowwhether t has
a non-empty language. The algorithm returnsA projected to
the statesQ ′, which are known to have non-empty languages.
Note that Algorithm 1 is amenable to on-the-fly traversal of
the automaton A, i.e., A can be provided implicitly.
Proposition 4.1. Algorithm 1 is correct.

5 Efficient Complementation of SDBAs
Algorithm 1 can be used for constructing the useful part of
the GBAD such thatL(D) = L(A)\L(B) = L(A)∩L(B),
which requires an efficient construction of B. In this section,
we present such a construction for an SDBA B.

We first explain the NCSB algorithm of Blahoudek et
al. [12] for complementing SDBAs, which is, to the best
of our knowledge, the most efficient complementation algo-
rithm for SDBAs up to date. Later, we identify a source of
inefficiency and propose a solution that mitigates it.

5.1 The NCSB-Original Algorithm
The NCSB-Original algorithm [12] can be viewed as an exten-
sion of the classical algorithm for complementing a nondeter-
ministic finite automaton using the power set construction
(used to determinize the automaton). The extension assigns

141

115

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

every state in a macro-state one of the labels {N ,C, S,C+B}
depending on the component where the state is present (as
defined formally later, B is always a subset of C so the label
C+B means that the state is both in C and B). The labels
characterize the expected status of the runs going through
the states. To avoid confusion, we will call a run of the com-
plement automaton AC = (QC,δC,QI C, FC) a macro-run.
We usually denote states inQC as q̂ = (N ,C, S,B), where the
components have the following intuitive meaning:

N (nondeterministic): If a run of A touches a state in N ,
then it is still in the nondeterministic part Q1.

C (choice): If a run of A touches a state in C , then it can
never leave the setQ2, but we are not yet sure whether
it is an accepting run. Therefore, every time a run in
C leaves an accepting state, we nondeterministically
guess whether it was the last time the run has touched
an accepting state (in which case we move the run to
the set S) or not (in which case it remains in C).

S (safe): If a run arrives into S , it can only remain safe,
i.e., it will touch no more accepting states in the future.
In the case the run is not safe, it will be blocked inAC
as soon as it attempts to touch an accepting state, i.e.,
if q ∈ S and δ2(q,a) ∈ F , then δC(q̂,a) = ∅ (there can
still be another safe run in some other guess though).

B (breakpoint): The set B is used for tracking that all
runs of A that arrive into Q2 will eventually become
safe. In particular, once B becomes empty (denoting an
accepting state), we copy the runs that are currently
in C into B, and remove them from B only when they
become safe (i.e., when they have been moved to S).

The construction is formally defined as follows.

Definition 5.1 (cf. [12, Section 3.2]). Given an SDBA A =
(Q1 ∪ Q2,δ ,QI , F), where Q1 and Q2 are defined as in Sec-
tion 2, its complement automaton AC = (QC,δC,QI C, FC)
is defined as follows:
• QC = {(N ,C, S,B) ∈ 2Q1 × 2Q2 × 2Q2\F × 2Q2 | B ⊆ C}.
• QI C = {(Q1 ∩QI ,Q2 ∩QI , ∅,Q2 ∩QI)}.
• FC = { (N ,C, S,B) ∈ QC | B = ∅ }.
• δC is the transition function δC : QC × Σ→ 2QC such
that (N ′,C ′, S ′,B′) ∈ δC((N ,C, S,B),a) iff
1. N ′ = δ1(N ,a),
2. C ′ ∪ S ′ = δt (N ,a) ∪ δ2(C ∪ S,a),
3. C ′ ∩ S ′ = ∅,
4. S ′ ⊇ δ2(S,a),
5. C ′ ⊇ δ2(C \ F ,a), and
6. B′ = C ′ if B = ∅, otherwise B′ = δ2(B,a) ∩C ′.

Informally, rules 2–5 enforce that (1) the successors of
states in S remain in S ′, (2) the successors of non-accepting
states inC remain inC ′, (3) all accepting states in δt (N ,a) ∪
δ2(C ∪ S,a) stay in C ′, because S ′ is a set of non-accepting
states, and (4) the rest of the states in δt (N ,a) ∪ δ2(C ∪ S,a)
are nondeterministically partitioned into C ′ and S ′.

We note that the original definition [12] used yet another
condition: “for all q ∈ C \ F it holds that δ2(q,a) , ∅.” Since
we assume the input BA to be complete (cf. Section 2), the
condition always holds and hence we drop it. Also note that
in order for the result of the NCSB algorithm to be complete,
we may need to add a sink state (we hide this from the
algorithm to make the presentation clearer). When talking
about the size of the set of states or transitions, we only
consider those states and transitions reachable from QI C .
The best way to get an intuition about the algorithm is

to simulate both accepting and rejecting runs of A in AC .
Let ρ = q0q1 . . .qi . . . be an accepting run of A over some
wordw ∈ Σω and qi be the first accepting state in ρ. Assume
w.l.o.g. that q0 ∈ Q1. It is easy to observe that for any macro-
run Π = (N0,C0, S0,B0)(N1,C1, S1,B1) . . . (Ni ,Ci , Si ,Bi) . . .,
the run ρ is moved from N to C at position i (rule 2 and the
fact that S is disjoint with F), i.e., qk ∈ Nk for all 1 ≤ k ≤ i−1
and qi ∈ Ci . (Moving a run from a set X to another set X ′
can be achieved by moving the corresponding state from X
to X ′.) For any j > i with qj ∈ F , we have the following two
cases (nondeterministic guessing by rules 2–5):
• Case (1): The run ρ is moved from C to S at a posi-
tion j + 1. In this case, Π will be blocked later at the
position of the next occurrence of an accepting state
in ρ (which there are infinitely many), because once ρ
has moved to S , it will stay in S (rule 4). It follows that
Π is finite and, therefore, not an accepting macro-run.
• Case (2): If we assume that ρ stays in C for all such
positions j, then (rule 6) the run ρ will be copied to B
the next time B becomes empty (if it ever happens). But
then B cannot become empty again because ρ will stay
inside it forever (our assumption is that ρ stays in C
forever and hence also in B by rule 6). It follows that
although Π is infinite, it is not an accepting macro-run.

On the other hand, we can show that ifw < L(A), we can
construct from its rejecting runs ρ = q0q1 . . .qi . . .qj . . . an
accepting macro-run Π = (N0,C0, S0,B0)(N1,C1, S1,B1) . . .
(Ni ,Ci , Si ,Bi) . . . (Nj ,Cj , S j ,Bj) . . . of AC . The strategy of
the construction is simple. All such ρ will be moved from N
to C at the first occurrence of an accepting state and then
to S after the last occurrence of an accepting state. Because
all states in C ∪ S ∪ B can only proceed via deterministic
transitions from δ2, there is only one corresponding run for
each of them.

More concretely, we again have two cases: (i) if the run ρ
never touches an accepting state, then ρ will stay inN forever
(rule 1) and (ii) ifqi andqj are the first and the last occurrence
of an accepting state in ρ (it can happen that i = j), then there
is amacro-runwhere ρ is moved fromN toC at position i and
thenmoved to S at position j+1 (rules 2–5).We can show that
the following two conditions hold for such a macro-run Π:
1. Π is non-blocking. From the definition of δC , a macro-
state can become blocking only in one of two cases: (1) the

142

116

Automata-Based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

successor of a non-accepting state q in C coincides with the
successor of some state in S (rules 3–5) or (2) the successor of
a state in S is accepting (by definition of S and rule 4). The
case (2) will never happen since Πmoves a run to S only after
the last occurrence of an accepting state. Suppose that the
case (1) happens. Then, it means that there is no accepting
state after q in the corresponding run, i.e., q is the successor
of the last accepting state, which should already have been
moved to S , leading to a contradiction. So Π is non-blocking.
2. Π contains infinitely many accepting macro-states. Starting
from any macro-state of Π, no new runs can be moved to B
until it becomes empty (rule 6). Since all runs ρ of A onw
are rejecting, they will be moved to S eventually after the last
accepting state, i.e., no run can stay in B forever. The set B
will eventually become empty and will be reset to C (rule 6).
This will occur infinitely often.

5.2 Eager Guessing as the Source of Inefficiency
In this section, we show that complement automata con-
structed using NCSB-Original are unnecessarily large. Con-
sider the example of an SDBA and its complement in Figure 3
(the figure shows only interesting parts of the automata).

Observe that in Figure 3b, the NCSB-Original algorithm
made a guess at the macro-state ∅,{q′1,q′2},{q′′′3 },∅ . In fact,
the construction needs to knowwhether ρ is in S orC only for
the purpose of deciding whether a macro-state is accepting
or rejecting (recall that B ⊆ C). In Figure 3b, we can find
several macro-states (shown as) that are redundant
because the guessing of whether to keep a run ρ in C or
move it to S was performed too eagerly.

A good point to do this guessing is to wait for B to become
empty; before that we can simply keep the runs in C ∪ S in
the same set (in Figure 3b, we keep all of them inC in the left-
most branch of the complement automaton). If we do so, then
none of the macro-states needs to be constructed. Note
that their successors can be reconstructed from the macro-
state ∅,{q′1,q′2},{q′′′3 },∅ . Having arrived at this macro-state,
the guessing of all states inC have been postponed and hence
any of them can nondeterministically either stay in C or be
moved to S (dashed lines in Figure 3b).
To achieve the effect of delaying the guessing, our first

attempt is to redefine the successor relation δC from Defini-
tion 5.1 such that (N ′,C ′, S ′,B′) ∈ δC((N ,C, S,B),a) iff

1. N ′ = δ1(N ,a),
2. C ′ ∪ S ′ = δt (N ,a) ∪ δ2(C ∪ S,a),
3. C ′ ∩ S ′ = ∅,
4. [new] S ′ ⊇ δ2(S,a) if B = ∅, else S ′ = δ2(S,a), and
5. [removed]
6. B′ = C ′ if B = ∅, otherwise B′ = δ2(B,a) ∩C ′

In particular, rule 4 has been exchanged for a new one and
rule 5 has been removed. The new rule 4 enforces that all runs
that are in S remain there and no new runs are added into S
until an accepting macro-state (a macro-state where B = ∅)

is encountered. Additionally, rule 5 from Definition 5.1 has
been removed, so now one can nondeterministically move
any non-accepting states fromC to S when B becomes empty.
The justification is that any run ρ in C must have had its
guessing postponed (recall that if a run is in C , it must have
seen at least one accepting state) and in NCSB-Original could
have been moved to S by now. A complement automaton
constructed using NCSB-Original will have macro-runs cor-
responding to every postponed guessing, i.e., macro-runs
traversing macro-states in Figure 3b. Those macro-
runs eventually reach successors of accepting macro-states
produced by the modified algorithm, which in Figure 3b
correspond to destinations of the dashed transitions.
Unfortunately, the change proposed above is not yet cor-

rect due to the issue that some run ρ in B has no chance to
be moved to S , even for the case when ρ has no accepting
states after the state in B. In such a case, ρ should correspond
to an accepting run in the complement automaton AC , but
B can never become empty. This can be fixed by allowing the
move of the successors of accepting states in B to S nonde-
terministically, i.e., guessing that it is the last occurrence of
an accepting state in the run. This leads to an algorithm with
lazy guessing, which we provide in the following section.

5.3 The NCSB-Lazy Algorithm
Combining the observations in the previous section, we ob-
tain a new SDBA complementation algorithm, called NCSB-
Lazy. The algorithm is obtained by redefining the transition
function δC from Definition 5.1 such that (N ′,C ′, S ′,B′) ∈
δC((N ,C, S,B),a) iff
• When B = ∅:
a1. N ′ = δ1(N ,a),
a2. C ′ ∪ S ′ = δt (N ,a) ∪ δ2(C ∪ S,a),
a3. C ′ ∩ S ′ = ∅,
a4. S ′ ⊇ δ2(S,a), and
a5. [removed]
a6. B′ = C ′.
• When B , ∅:
b1. N ′ = δ1(N ,a),
b2. [new] B′ ∪ S ′ = δ2(B ∪ S,a),
b3. [new] B′ ∩ S ′ = ∅,
b4. S ′ ⊇ δ2(S,a),
b5. [new] C ′ = (δ2(C,a) ∪ δt (N ,a)) \ S ′, and
b6. [new] B′ ⊇ δ2(B \ F ,a).

When B = ∅, the construction works in the same way as the
one presented in Section 5.2. When B , ∅, rules b2–b4 and
b6 enforce that (1) a run in B that touches an accepting state
can be nondeterministically moved to S and (2) a run in S
will remain in S forever. Rule b5 enforces that if a state is
moved from B to S , then it should also be removed from C .

Proposition 5.2. The complement BA constructed by NCSB-
Lazy contains at most as many macro-states as the comple-
ment BA constructed by NCSB-Original.

143

117

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

q1

q′1

q2

q′2

q3

q′3

q′′3

q′′′3

· · · · · · · · ·

(a) A part of A (we assume that all
shown states are in Q2).

· · ·
∅,{q1,q2,q3},∅,{q3}

∅,{q′1,q′2,q′3},∅,{q′3} ∅,{q′1,q′3},{q′2},{q′3} ∅,{q′2,q′3},{q′1},{q′3} ∅,{q′3},{q′1,q′2},{q′3}

∅,{q′1,q′2,q′′3 },∅,{q′′3 } ∅,{q′1,q′′3 },{q′2},{q′′3 } ∅,{q′2,q′′3 },{q′1},{q′′3 } ∅,{q′′3 },{q′1,q′2},{q′′3 }

∅,{q′1,q′2},{q′′′3 },∅
∅,{q′1},{q′2,q′′′3 },∅ ∅,{q′2},{q′1,q′′′3 },∅

∅,∅,{q′1,q′2,q′′′3 },∅

· · · · · · · · · · · ·

∅,{q′1,q′2},{q′′′3 },{q′1,q
′
2}

∅,{q′1},{q′2,q′′′3 },{q′1}
∅,{q′2},{q′1,q′′′3 },{q′2}

(b) A part of the complemented automaton AC . Here we only draw macro-states (N ,C, S,B)
starting from (∅, {q1,q2,q3}, ∅, {q3}) and omit the macro-states that keep q′′′3 in C .

Figure 3. An example of inefficiency of eager guessing in NCSB-Original (we assume all transitions are over the symbol a ∈ Σ)

Belowwe give a lemma that will be used in the correctness
proof of NCSB-Lazy.

Lemma 5.3. Consider an SDBA A, its complement AC con-
structed by NCSB-Lazy, a word w ∈ Σω , and a macro-state
p̂ = (N ,C, S,B) from AC . Further, assume that for all runs ρ
overw in A, it holds that

1. if ρ starts from a state q ∈ N ∪C ∪ S , it is rejecting,
2. if ρ starts from a state q ∈ S , it is safe, and
3. if ρ starts from a state q ∈ B, it is not safe.

Then one can construct an accepting macro-run overw inAC .

Proof. Our strategy for constructing an accepting macro-
run Π from p̂ is the following. If B = ∅, we move all safe runs
in C into S and copy all unsafe runs to the B component of
the next macro-state. If B , ∅, we move all runs in B into S
immediately when they become safe, i.e., immediately after
they touch an accepting state for the last time. The other
parts of the construction of Π are deterministic, i.e., one can
construct deterministically every macro-state in Π following
the transition relation of NCSB-Lazy. We now show that Π
is an accepting macro-run in AC by proving two properties.

1. Π is non-blocking. From the definition of the transition
relation of NCSB-Lazy, a macro-state can become blocking
only in one of the following cases: (1) the successor of a non-
accepting state q in B coincides with the successor of some
state in S (rules b3, b4, and b6) and (2) the successor of a state
in S is accepting (by definition of S and rule b4). The case (2)
will never happen since, as defined above, Π moves a run
to S only after the last occurrence of an accepting state.
Suppose that case (1) happens. Then, it means that there is
no accepting state after q in the corresponding run, i.e., q is
the successor of the last accepting state, which should have
already been moved to S , leading to a contradiction.

2. Π contains infinitely many accepting macro-states. Starting
from any macro-state of Π, no new runs can be moved to B
until it becomes empty (rule a6). Since all runs ρ of A onw
are rejecting starting from any states in p̂, they will be moved
to S eventually after the last accepting state, i.e., no run can
stay in B forever. The set B will eventually become empty
and will (infinitely often) be reset to C (rule a6). □

Theorem 5.4. Given an SDBAA, NCSB-Lazy produces a BA
AC such that L(AC) = Σω \ L(A).
Proof. The case that w ∈ L(A) implies w < L(AC) can be
proved in a similar way as in NCSB-Original. In particular,
we need to show that any accepting run ρ of A overw will
either stay forever in B or move to S and block the macro-run.
For the case thatw < L(A) impliesw ∈ L(AC), we can

construct an accepting macro-run Π from the runs ρ of A
onw using Lemma 5.3. In order to do so, we need to ensure
that the initial macro-state (Q1 ∩ QI ,Q2 ∩ QI , ∅,Q2 ∩ QI)
satisfies the requirements of Lemma 5.3, i.e., for all runs ρ
overw in A, it holds that

1. if ρ starts from a state q ∈ N ∪C ∪ S , it is rejecting,
2. if ρ starts from a state q ∈ S , it is safe, and
3. if ρ starts from a state q ∈ B, it is not safe.
Requirement 1 is satisfied because w has only rejecting

runs from the initial states QI . Requirement 2 is satisfied
because S = ∅. Requirement 3 is satisfied because all states
in Q2 ∩ QI are also in F (due to our restriction on SDBAs,
cf. Section 2), so runs starting from them are not safe. □

From the experimental results (cf. Section 7), one can see
that although the changes in the algorithm are small, they
induce a large difference in performance. We believe that the
idea of delaying nondeterministic choices can be useful in
other algorithms, such as rank-based BA complementation.

144

118

Automata-Based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

6 Subsumption-based Pruning in the
Construction of a Difference Automaton

In this section we describe subsumption relations that can
be used to optimize the construction of the difference au-
tomaton described in Section 4. The subsumption relations
are, in a way, similar to the so-called antichain [2, 23] algo-
rithms used in language inclusion and universality testing
over nondeterministic finite automata.
We start by describing the notation used in this section.

For macro-states p̂ = (Np ,Cp , Sp ,Bp) and r̂ = (Nr ,Cr , Sr ,Br),
we define the following two subsumption relations:

p̂ ⊑ r̂
def⇐⇒ Np ⊇ Nr ∧Cp ⊇ Cr ∧ Sp ⊇ Sr and (4)

p̂ ⊑B r̂
def⇐⇒ p̂ ⊑ r̂ ∧ Bp ⊇ Br . (5)

LetAO
C andAL

C be the complement automata constructed us-
ing NCSB-Original and NCSB-Lazy, respectively. We define
two language inclusion relations ⊆OL and ⊆LL over macro-
states p̂ and r̂ as follows:

p̂ ⊆OL r̂
def⇐⇒ LAO

C
(p̂) ⊆ LAO

C
(r̂), (6)

p̂ ⊆LL r̂
def⇐⇒ LAL

C
(p̂) ⊆ LAL

C
(r̂). (7)

The main result of this section is that for any macro-states p̂
and r̂ , the following implications hold:

p̂ ⊑ r̂ =⇒ p̂ ⊆OL r̂ (Section 6.1) and (8)
p̂ ⊑B r̂ =⇒ p̂ ⊆LL r̂ (Section 6.2). (9)

As a consequence, we can use ⊑ and ⊑B in Algorithm 1
(when computing the difference automatonA \ B) for early
termination when checking whether a language of an en-
countered macro-state is empty (lines 3 and 11). In particular,
we change testing (non-)membership of a macro-state q̂ in
the set emp into testing the same in the set ⌈emp⌉ defined as
⌈emp⌉ = {(qA , q̂B) | ∃(qA , r̂B) ∈ emp : q̂B ⊑′ r̂B}, (10)

where ⊑′∈ {⊑,⊑B } depending on the particular algorithm
used for complementation (⊑ for NCSB-Original and ⊑B for
NCSB-Lazy). Note that on line 26, emp can be maintained
in the form of an antichain, i.e., to contain only elements
incomparable w.r.t. ⊑′.

6.1 Subsumption Relation for NCSB-Original
We first show that p̂ ⊑ r̂ =⇒ p̂ ⊆OL r̂ for any two macro-
states p̂ = (Np ,Cp , Sp ,Bp) and r̂ = (Nr ,Cr , Sr ,Br). We prove
this fact by constructing a strategy that for any accepting
macro-run from p̂ returns an accepting macro-run from r̂
over the same word. Our proof consists of two parts. First,
we define two new notions of simulation relation, named
early simulations, between traces and states of a BA and
we show that they under-approximate language inclusion.
Second, we prove that both subsumption relations ⊑ and ⊑B
are instances of the corresponding early simulation relations.

6.1.1 Early Simulation
Consider a BA A = (Q,δ ,QI , F) and a pair of traces πp =
p0

w0−−→p1
w1−−→ · · · and πr = r0

w0−−→ r1
w1−−→ · · · over the word

w = w0w1 . . . ∈ Σω from the states p0 ∈ Q and r0 ∈ Q .
We say that πp is early simulated by πr (or, alternatively, that
πr early simulates πp), denoted as πp ⪯e πr , iff

∀i < j : ((pi ∈ F ∨ i = −1) ∧ pj ∈ F)
=⇒ ∃i < k ≤ j : rk ∈ F , (11)

and that πp is early+1 simulated by πr (written πp ⪯e+1 πr) iff
∀i < j : (pi ,pj ∈ F) =⇒ ∃i < k ≤ j : rk ∈ F . (12)

Intuitively, the early+1 simulation requires that between ev-
ery two times πp touches an accepting state, πr also touches
an accepting state; the early simulation further requires that
πr first touches an accepting state not later than πp does.
We extend the proposed notions of simulation to states

as follows. First, we define a strategy as a function σ : Q ×
(Q × Σ ×Q) → (Q × Σ ×Q) such that σ (r ,p a−→p ′) = r

a−→ r ′

where r ′ ∈ δ (r ,a). That is, σ picks a transition from r based
on the transition p a−→p ′ selected by the environment. Next,
we lift strategy to traces such that for a trace πp defined as
above, we set σ (r0,πp) = r0 w0−−→ r1

w1−−→ · · · where for all i ≥ 0
it holds that σ (ri ,pi wi−−→pi+1) = ri wi−−→ ri+1. We say that p0 is
early (resp. early+1) simulated by r0, denoted as p0 ⪯e r0
(resp. p0 ⪯e+1 r0) iff there exists a strategy σe (resp. σe+1)
such that for every trace πp starting in p0, it holds that πp ⪯e
σe (r0,πp) (resp. πp ⪯e+1 σe+1 (r0,πp)).

The following proposition states that the introduced sim-
ulations under-approximate language inclusion.

Proposition 6.1. Given a BA A, the following holds for the
relations over the states of A:

⪯e ⊆ ⪯e+1 ⊆ ⊆L . (13)

6.1.2 The Subsumption ⊑ is an Early Simulation
Consider an SDBA A and its complement BA AO

C con-
structed by NCSB-Original, and let us fix the following two
states of AO

C : p̂ = (Np ,Cp , Sp ,Bp) and r̂ = (Nr ,Cr , Sr ,Br).
Lemma 6.2. The relations ⊑ and ⊑B on AO

C are an early+1
simulation and an early simulation respectively:

p̂ ⊑ r̂ =⇒ p̂ ⪯e+1 r̂ and (14)
p̂ ⊑B r̂ =⇒ p̂ ⪯e r̂ . (15)

Proof of (14). We use the strategy σ⊑ that for a transition
p̂

a−→ p̂ ′ = (Np′,Cp′, Sp′,Bp′) chooses a transition r̂
a−→ r̂ ′ =

(Nr ′,Cr ′, Sr ′,Br ′) that respects all nondeterministic choices
made in p̂

a−→ p̂ ′. In particular, if the successor q′ of a state
q ∈ Cp ∩ Cr was moved to Sp′ , i.e., q′ = δ2(q,a) ∈ Sp′ , the
strategy σ⊑ will also move q′ to Sr ′ , otherwise q′ will stay
inCr ′ . Other parts of the construction of r̂ ′ are deterministic

145

119

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

(i.e., just follow the definition of δC in Definition 5.1). The
strategy guarantees that (1) p̂ ⊑ r̂ =⇒ p̂ ′ ⊑ r̂ ′ and (2) the
transition r̂

a−→ r̂ ′ exists (proof omitted due to lack of space).
Next, we show that for any two tracesπp = p̂0

w0−−→ p̂1
w1−−→ · · ·

and πr = σ⊑(r0,πp) = r̂0 w0−−→ r̂1
w1−−→ · · · , such that p̂0 = p̂ and

r̂0 = r̂ , the condition πp ⪯e+1 πr is satisfied, i.e., ∀i < j :
(p̂i , p̂j ∈ FO) =⇒ ∃i < k ≤ j : r̂k ∈ FO holds, where FO is
the set of accepting macro-states of AO

C .
Claim: For all i ≥ 0, if p̂i ∈ FO , then p̂i+1 ⊑B r̂i+1.
Proof: Let the macro-states p̂i+1 and r̂i+1 be as follows: p̂i+1 =
(Npi+1 ,Cpi+1 , Spi+1 ,Bpi+1) and r̂i+1 = (Nri+1 ,Cri+1 , Sri+1 ,Bri+1).
The following holds: (i) Bpi+1 = Cpi+1 (because p̂i ∈ FO),
(ii) Cpi+1 ⊇ Cri+1 (due to the property of σ⊑, i.e., p̂ ⊑ r̂ =⇒
p̂ ′ ⊑ r̂ ′), and (iii)Cri+1 ⊇ Bri+1 (the property of a macro-state).
It follows that Bpi+1 ⊇ Bri+1 and hence p̂i+1 ⊑B r̂i+1. ■
Claim: If p̂i+1 ⊑B r̂i+1 and p̂j ∈ FO for some i < j , then there
exists some k such that i < k ≤ j and r̂k ∈ FO .
Proof: Since Bpi+1 ⊇ Bri+1 and due to the property of σ⊑ that
every state that is moved from Bpi+1 to Spi+1 in πp will be
by σ⊑ also simultaneously moved from Bri+1 to Sri+1 in πr ,
the set Bri+1 in πr will become empty not later than Bpi+1
becomes empty in πp . ■

The two claims above imply that πp ⪯e+1 πr . □

Proof of (15). We use the same strategy σ⊑ from the proof
of (14).We show that for any two tracesπp = p̂0

w0−−→ p̂1
w1−−→ · · ·

and πr = σ⊑(r0,πp) = r̂0 w0−−→ r̂1
w1−−→ · · · , it follows that πp ⪯e

πr , i.e., ∀i < j : ((p̂i ∈ FO ∨ i = −1) ∧ p̂j ∈ FO) =⇒ ∃i <
k ≤ j : r̂k ∈ FO , where FO is the set of accepting macro-
states of AO

C . First, we change πp ⪯e πr into an equivalent
conjunction of the following two conditions:

∀i < j : (p̂i , p̂j ∈ FO) =⇒ ∃i < k ≤ j : r̂k ∈ FO , (16)
p̂i ∈ FO =⇒ ∃k ≤ i : r̂k ∈ FO . (17)

We notice that Condition (16) is equivalent to πp ⪯e+1 πr and
since ⊑B is stronger than ⊑, from (14) it follows that p̂ ⪯e+1 r̂ ,
and because the strategy σ⊑ in the proof of (14) is the same,
Condition (16) also holds. Condition (17), on the other hand,
follows from the second claim in the proof of (14). □

The following theorem states that ⊑ and ⊑B are subsump-
tion relations over the macro-states of AO

C .

Theorem 6.3. The relations ⊑B and ⊑ under-approximate
language inclusion of macro-states in a complement automaton
constructed using NCSB-Original:

⊑B ⊆ ⊑ ⊆ ⊆OL . (18)

Proof. Follows from Proposition 6.1 and Lemma 6.2. □

6.2 Subsumption relation for NCSB-Lazy
The BAs produced by NCSB-Lazy are different from the BAs
produced by NCSB-Original. This, in particular, means that
the subsumption relation ⊑ does not under-approximate the
language inclusion ⊆LL in BAs produced by NCSB-Lazy.

Remark: Let AL
C by a BA produced by NCSB-Lazy from A

and p̂ and r̂ be a pair of macro-states ofAL
C . In general, p̂ ⊑ r̂

does not imply p̂ ⊆LL r̂ . In particular, let q be a non-accepting
state of A with only one outgoing transition that is a self-
loop and let p̂ = (∅, {q}, ∅, ∅) and r̂ = (∅, {q}, ∅, {q}). Note
that p̂ ⊑ r̂ (as ⊑ does not relate the B components). Also note
that there exists an accepting macro-run p̂ · (∅, ∅, {q}, ∅)ω
from p̂, while there exists no accepting macro-run from r̂ ,
since the B component of r̂ can never become empty (cf.
condition b6 in Section 5.3). □

Fortunately, the stronger subsumption relation ⊑B still
under-approximates the language inclusion ⊆LL , so it can be
used to optimize the difference automaton construction.
Theorem 6.4. The relation ⊑B under-approximates language
inclusion of macro-states in a complement automaton con-
structed using NCSB-Lazy:

⊑B ⊆ ⊆LL . (19)

Proof. Let p̂ = (N ,C, S,B) and r̂ = (N ′,C ′, S ′,B′) s.t. p̂ ⊑B r̂ .
For any wordw ∈ LAL

C
(p̂), it is not difficult to observe that

• all runs overw from states in N ∪C ∪ S are rejecting
and the runs from states in N ′∪C ′∪S ′ are their subset,
• all runs overw from states in S are safe, and the runs
from states in S ′ are their subset, and
• all runs over w from states in B are unsafe, and the
runs from states in B′ are their subset.

Hence, we can apply Lemma 5.3 to obtain an accepting
macro-run from r̂ overw in AL

C . It follows that p̂ ⊆LL r̂ . □

7 Experimental Evaluation
We implemented the presented techniques as an extension
of Ultimate Automizer [33] and experimentally evaluated
their performance. The results are presented in Figures 4
and 5. The points in the top/right-most regions of the plot rep-
resent experiments where the corresponding setting timed
out (>300 s) or went out of available memory (4GiB).

In the first set of experiments, shown in Figure 4, we eval-
uated the performance of three versions of the SDBA com-
plementation algorithm: NCSB-Original from [12], NCSB-
Lazy (Section 5.3), and NCSB-Lazy with subsumption (Sec-
tion 6.2). We used the set of all 1159 SDBAs produced by
Ultimate Automizer during termination analysis of all non-
recursive benchmarks (1375 programs) in the Termination
category of SV-Comp [1, 10]2.
2We used 6 different settings and collected all SDBAs produced before
the timeout. Because Ultimate Automizer constructs the difference of

146

120

Automata-Based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●
●

●●
●

●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●
●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●●●
●

●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●
●

●

●

●●

●

●

●●●●
●● ●● ●

●
●

●

● ●
●

●

●

●●●● ●●

●

●

●

●●●●
●

●

●

●

●

●●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

0e+00 2e+05 4e+05

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

NCSB−Original

N
C

S
B

−
L

az
y

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●

●

●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●
●

●●
●●
●

●●
●

●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●
●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●
●

●●●●
●

●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●●●●●●●
●

●

●

●
●

●
●

●●●●
●●●●●

●●

●

●●
●

●
●

●●●●●
●●●

●

●

●

●●●●
●

●

●

●

●

●●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

0e+00 2e+05
0

1
0
0
0
0
0

2
5
0
0
0
0

NCSB−Lazy

N
C

S
B

−
L

az
y
 +

 s
u
b
su

m
p

(a) Number of states

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●
●

●●
●

●●●
●●●

●●●

●●

●●●●●●●●●●●●●●●
●

●
●●

●
●●

●
●

●●●

●●
●

●●
●

●●
●●●●●●●●●●
●●●

●●●

●●
●●●
●●●
●

●●●

●●●

●●●

●●●

●

●

●

●

●

●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●

●
●●●

●●●●●●

●●●●●●

●

●

●

●

●●●●●●

●●●

●●●

●●●●●●●●●●●●
●●●

●
●●●

●
●●●

●●●●●●

●

●

●

●

●

●

●●●●●●

●●●

●●●

●●

●

●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●
●

●●●
●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●
●

●

●

●●

●
●

●●●●
●●●●●

●●

●

●●
●

●
●

●●●●●
●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●

●

●
●

●

●
●

●

●

●●●●●●●●●●●●●
●

●●●
●

●

●

●●●●●
●

●

●

●

●●●
●

●
●●

●

●●●

●

●●

0e+00 2e+06 4e+06

0
e
+

0
0

2
e
+

0
6

4
e
+

0
6

NCSB−Original

N
C

S
B

−
L

az
y

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●
●

●●
●

●●●
●●●

●●●

●●

●●●●●●●●●●●●●●●
●

●
●●

●
●●

●
●

●●●

●●
●

●●
●

●●
●●●●●●●●●●
●●●

●●●

●●
●●●
●●●
●

●●●

●●●

●●●

●●●

●

●

●

●

●

●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●

●
●●●

●●●●●●

●●●●●●

●

●

●

●

●●●●●●

●●●

●●●

●●●●●●●●●●●●
●●●

●
●●●

●
●●●

●●●●●●

●

●

●

●

●

●

●●●●●●

●●●

●●●

●●

●

●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●
●

●●●
●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●
●

●

●
●●

●
●

●●●●●
●●●●
●●

●

●●
●
●●

●●●●●
●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●

●

●
●

●

●
●

●

●

●●●●●●●●●●●●●
●

●●●
●

●

●

●●●●●
●

●

●

●

●●●
●

●
●●

●

●●●

●

●●

0e+00 2e+06 4e+06

0
e
+

0
0

2
e
+

0
6

4
e
+

0
6

NCSB−Lazy

N
C

S
B

−
L

az
y
 +

 s
u
b
su

m
p

(b) Number of transitions

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●

●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●
●●
●●●●●●●●

●●●
●●●

●
●

●●●●●●●●●●●●●●●
●●●

●
●
●●●●

●
●
●

●●●●
●●●

●
●●●●●●
●
●●●●●●

●

●

●

●
●

●●●●
●

●
●

●●●

●
●
●

●●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●●

●

●
●

●●●●●●
●●●

●
●

●

●●●●●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●●
●

●●●●●●

●●●
●

●●

●

●

●

●

●●●●●●

●●●

●

●

●

●●●●●●●●●●●●

●
●●●
●●●

●
●●●

●
●●●●●

●

●

●

●

●

●

●●●●●●
●

●
●

●

●

●

●●

●

●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●
●●
● ●

●

●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●
●

●●●
●

●●●●●●●●●
●

●

●
●●

●
●

●●●●
●● ●●●

●●

●

●● ● ●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●

●
●●

●●●●●●

●

●●

●

●●

●

●

●●●●●●●●●●●●●
●

●●
●

●

●

●

●●●●
●

●
●

●

●

●●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●

●

●●

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

NCSB−Original

N
C

S
B

−
L

az
y

●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●
●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●
●●●●●●●●●
●●●

●
●

●
●

●
●

●●●

●●●
●●●

●●●

●●●

●●●●●●●●●

●●
●

●●●●●●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●

●●●

●●

●

●●
●

●

●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●
●●
●
●
●●●●●●●●●
●●

●

●●●
●
●

●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●

●
●●

●
●●

●
●●
●

●

●

●●●●●
●

●

●

●

●●●
●
●●●

●

●●●

●

●●

0 50 150 250

0
5
0

1
5
0

2
5
0

NCSB−Lazy

N
C

S
B

−
L

az
y
 +

 s
u
b
su

m
p

(c) Execution time [s]

Figure 4. Comparing the performance of NCSB-Lazy with
NCSB-Original and evaluating the effect of subsumption

Figure 4a shows that NCSB-Lazy significantly improves
the number of states of the complemented automata, and that
the subsumption can save even more states. In Figure 4b, we
see that in the majority of cases, NCSB-Lazy also reduces the
number of transitions. This is not guaranteed though; in sev-
eral cases, the number of transitions increased. Subsumption
is also not so helpful in reducing the number of transitions.
In Figure 4c, we observe that in most cases, NCSB-Lazy also
reduces the execution time. On the other hand, subsumption
does not help that much as it brings significant overhead.
Nevertheless, subsumption always produces fewer states in
the BA language difference operation, which is an impor-
tant factor for the overall performance of the termination
analysis. More precisely, the average numbers of States and
Transitions for the three settings are the following:
NCSB-Original: 4,700 S and 122,200 T
NCSB-Lazy: 2,900 S and 132,300 T
NCSB-Lazy + Subsumption: 1,600 S and 111,700 T

automata on the fly, if the construction does not finish before the timeout,
the SDBA is not fully built and so cannot be used for this experiment.

●●

●

●

●

●●●●●●
●

●●

●

●●
●

●

●

●●●●

●

● ●●●●●

●

●

● ●

●●

●

●●

●
●
●●●

●

●●●●● ●● ●●●●●● ●● ●●
●

●●●●● ●

●

●●●●●●

●
●

●●
●
●

●●●●●
●

●

●

●

●●
●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●● ●●
●

●

●●●

●●

●

●

●

●

●

●●●

●●
●● ●●●

●

●

●●● ●●●

●

●●●●●●● ●●●●

●

●●

●

●●●●●●● ●●

●

●

●●●

●

●●●
●

●●

●
●●

●

●● ●●●●●●●●●

●

●

● ●

●

●

●●●●●●● ●●●●●●●●●●
● ●● ●●●

●●●●● ●●●●● ● ●●● ●● ●●●●● ●●●●●●●●●●
●●●

●●●●● ●●●●●

●

●

●

●

●●
●

●●

●●●
●●

●

●
●

●

●

●●

●

●
●

●

●
●

●
●

●
●●

●

●

●●

●●●●
●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●
●

●

●

●●
●
●●●

●

●

●

●●

●

●●

●

●
●●

●
●

●●

●
●●

●●

●

●
●

●

●●

●

●●
●●

●●

●

●
●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●● ●●●●●●●

●

●●

●

●

●

●●

●●● ●

●●●●

●

●
●●● ●●●●

●

●

●●

●

● ●

●

●
●

●●●

●

●●

●

●
●●●●● ●●●●

●

●● ●●

●

●
●

●●●●●●●
●

●●

●

●●●

●

●●●●●●●●

●

●●●● ●●●●

●

●

●

●
●● ●● ●

●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ● ●●● ●● ●● ●●●● ●● ●●●●● ●●●●● ●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●● ● ●●● ●● ●●● ●●●● ●●● ●●●● ●●●● ●●

●●● ●●●●
●●●●●●

●

●

●

●●●

●

●● ●● ●

●

●
●
●

●
● ●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●
●●

●

●●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●● ●●

●●

●

●

●●

● ●●●

●

●
●

●

●●●●

●

●●

●

●

● ●●●
●●
●

●

●
● ●●●●

●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●

●
●

●

●

●

●

●●

●
●

●●

●

●

●●●

●

● ●

●●

●●

●

●

●

●

●

●●●
●●●● ●

●

●

●

●●

●●
●

●

●●●● ●

●

●●

●

●

●

●

●

●
●●●●●●●●●●●●●

●

● ●●● ●●●●●●●●●

●●●●●
● ●●● ●

●●●
●●

●●● ●● ●●●●
●●●
●●●●

●

●

●

●●●

●●

●●
●
●
●●● ●● ●

●
●
●●●

●

●●●●● ●●●●●●●● ●●●●●●●●●●

●
●

●

●

●

●

●●
●●

●

● ●

●●

●

●

●

●

●

●

●●

●●●●
●

●
●
●

●

●

●●●●●●
●

●
●

●●●●●●
●●

●

●●●
●

●

●

●

●

●

●●

●

●●●
● ●●●●

●
●●

●●
●●

●

●

●

●

●

●●

●
●

●

●

● ●
●

● ●

●

●

●

●

●

● ●●● ●●●● ●●●●●●●●●●

0 50 150 250

0
5
0

1
5
0

2
5
0

Single−stage

M
u
lt

i−
st

ag
e

●●

●

●

●

●●●●●●
●

●●

●

●●
●

●

●

●●●●

●

●●●●●●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●

●
●
●●

●

●

●●●●●
●

●

●

●

●
●

●

● ●

●
●
●

●

●

●
●●
●

●

●

●

●

●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●●●
●●

●●●●●

●

●

●●●●●●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●

●●●

●

●●●
●

●●

●
●●

●

●●●●●●●●●●●

●

● ●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●

●

●

●●

●●
●

●

●

●●●●●

●

●
●

●

●

●●

●

●●

●

●●●●●
●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●
●●

●

●

●

●●●●●●

●

●

●

●●

●

●●

●

●●●●
●

●

●

●
●●

●●

●

●●
●

●●

●

●
●
●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●
●

●

●

●

●

●●●●
●

●

●

●●●●●●●●●●

●

●●

●

●

●

●●

●●
●●

●●●●

●

●
●●●●●●●

●

●

●● ●●●

●

●

●

●●●

●

●●

●

●
●●●●●●●●●

●

●●●●

●

●

●
●●●●●●●

●
●●

●

●●
●

●

●●●●●●●●

●

●●●●●●●●

●●

●●
●●●●●

●●
●

●●●
●●
●●●●●●●●●

●●●●●●●
●●●●●●

●

●

●

●●●

●

●●●●●

●

●
●●

●
●●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●

●

●
●●

●●
●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●●●●

●●

●

●

●●

●●●●

●

●●

●

●●●●

●

●●

●

●

●●●●
●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●

●
●

●●

●

●

●●●

●

●●

●
●

●●

●

●

●

●

●

●●●●●●●●
●

●

● ●

●

●●
●

●

●●●●●

●

●●

●

●

●

●

●

●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●●●●●
●●●●

●●●
●
●

●●●●●●●●
●
●●●

●●●●

●

●

●

●●●

●●

●●●
●

●●●●●●

●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●● ●
●

●

●
●

●

●●
●●

●
●

●

●●
●

●

●

●

●

●
●
●●●●●

●
●
●

●

●
●●●●●●●

●
●

●
●●●●
●●
●●

●

●●●
●

●●
●

●
●

●●
●

●●●
●●●●●

●
●●

●●
●●

●

●
●●

●

●●

●
●

●
●

●●
●

●●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●

0 50 150 250

0
5
0

1
5
0

2
5
0

Multi−stage

M
u
lt

i−
st

ag
e

+
 o

p
t

Figure 5. Evaluating the performance of the multi-stage
approach and the optimized difference operation [s]

In the next experiment, we evaluated the performance
of the proposed optimizations within program termination
analysis. We again use all non-recursive programs from the
Termination category of SV-Comp. In the left-hand side of
Figure 5, we evaluated the performance of the multi-stage
approach w.r.t. the single-stage approach (which always di-
rectly generalizes a counterexample to a nondeterministic
moduleMnondet). For the multi-stage approach, we first eval-
uated three different generalization sequences:

(i) Muvω →Mfin →Msemi →Mnondet (we skipMdet)
(ii) Muvω →Mfin →Mdet →Mnondet (we skipMsemi)
(iii) Muvω →Mfin →Mdet →Msemi →Mnondet

All of them solved roughly the same amount of examples
(±2 in the set of 1375 programs) when the SDBA difference
optimization was not used. Therefore, we chose option (i),
which produces the most SDBAs, so we can exploit the full
potential of our optimizations. Using this option, the analysis
of 1375 programs generated 6375 finite-trace modules, 1200
semideterministic modules, and 3 nondeterministic modules.
We can see that the multi-stage approach solves significantly
more cases than the single-stage approach (fewer points in
the up-most region of the plot). The improvement is obtained
mainly by avoiding the construction ofMnondet , which has
a costly complementation procedure. The occasional slow-
down can still happen since different counterexample gener-
alization constructions produce BAs with different languages
(in the subsequent steps, we then obtain different counterex-
amples, giving rise to a different global search space).
In the right-hand side of Figure 5, we evaluated the per-

formance of the proposed optimizations of the difference au-
tomaton construction (“Multi-stage + opt” uses NCSB-Lazy
+ subsumption to complement SDBAs). We can observe that
there are some cases where the version with optimizations
has a worse time or even times out, but the version without
optimizations can solve them. This can happen because of
one of the following reasons: (1) the subsumption techniques
impose overhead on the execution time or (2) NCSB-Lazy
produces more transitions than NCSB-Original.We can, how-
ever, clearly see that the proposed optimizations are indeed
helpful in the overall performance of the termination anal-
ysis, as the number of solved cases is significantly higher
than for the version without them.

147

121

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

In particular, the number of benchmarks that timeouted
or ran out of memory is for the various settings as follows:

Single-stage: 691
Multi-stage without optimizations: 296
Multi-stage with Subsumption: 253
Multi-stage with NCSB-Lazy: 250
Multi-stage with NCSB-Lazy + Subsumption: 249

One can see that both NCSB-Lazy and Subsumption are
already quite useful to improve the overall performance, but
the best result is obtained by turning all optimizations on.

8 Related Work
To the best of our knowledge, there is no other tool imple-
menting a termination analysis closely related to the algo-
rithm implemented in Ultimate Automizer. Hence, our
evaluation in Section 7 was focussed on different variations
of this algorithm. For a comparison with other tools, we
rather refer to the results of the independent competition
on software verification SV-Comp. In SV-Comp 2018 [10] the
Ultimate Automizer team used the optimizations that were
presented in this paper and won the Termination category.3
For the sake of completeness, we give a brief overview of
other termination analyses that make use of automata or
that have participated in SV-Comp.
One line of research is based on the size-change princi-

ple [4, 5, 37]. In this technique, one examines the flow of
values among variables in each code block, which values
are bounded from below (e.g., by the condition of an if
statement), which values are not increasing, and which val-
ues are decreasing. The basic idea of this approach is that
if on each (infinite) path there is at least one value that is
bounded from below, never increasing, and infinitely often
decreasing, then the program terminates. This property is
inferred using one of two techniques. One is based on BAs,
the other is based on Ramsey’s theorem. In contrast to our
approach, there is only one BA, in general not semideter-
ministic. The BA is, however, reverse-deterministic, which
also allows a more efficient language inclusion check [24].
Although this approach and the approach implemented in
Ultimate Automizer both use BAs, they are not closely
connected. Using size-change termination, one always has
a fixed domain of constraints, which is used to track decreas-
ing values, whereas in Ultimate Automizer we may use
ranking functions to track the values of arbitrary expressions.
Furthermore, Ultimate Automizer infers the ranking func-
tions on-demand and splits the program into components
where these ranking functions serve as termination proofs.

Another line of research is based on transition invari-
ants [45]. There, the basic idea is that if the transitive closure
of the program’s transition relation is a subset of a union
of well-founded relations, then the program is terminating.

3https://sv-comp.sosy-lab.org/2018/results/results-verified/

In this line of research, soundness is also proved via Ram-
sey’s theorem. The approach has been first implemented
in the Terminator tool [17], and later also in T2 [15] and
CPAchecker [11, 41]. The set of well-founded relations used
there is obtained from a set of functions, where each of them
is a ranking function for a set of paths in the program. Ter-
minator constructs this set of functions incrementally in
the following CEGAR-style algorithm. The tool lets a safety
checker analyze if, in each loop location, at least one of
the functions is a ranking function. If not, a lasso-shaped
counterexample is obtained and its termination is analyzed
by techniques specialized for lasso-shaped programs [6–
9, 14, 16, 32, 39, 44]. If the counterexample is spurious, i.e.,
the lasso-shaped program is terminating, a ranking function
of this paths is constructed and added to the set of func-
tions. This process is repeated until a real counterexample
is found or the safety checker detected that, for each path,
one of the functions is a ranking function. A bottleneck of
this approach is that the safety checks become costlier over
time since the set of ranking functions is growing. In Ulti-
mate Automizer, this bottleneck is shifted from a program
analysis task to an automata theory task. We never have
to combine several ranking functions since the program is
decomposed into several modules and there is only one func-
tion for eachmodule. This comes at the price that the number
of modules is growing over time, so the automata operations
that are applied to these modules also become costlier.
The AProVe tool [28] first applies several transforma-

tions (e.g., removing pointers [48]) to translate a program
into an integer term rewriting system. Afterwards, it ap-
plies various techniques to analyze termination of the result-
ing system [25, 29]. Termination can also be analyzed via
an abstract interpretation framework [21]. Several abstract
domains have been developed [20, 49, 52, 53] and imple-
mented in the FuncTion tool [50]. In contrast to Ultimate
Automizer, which is decomposing the set of program traces,
there are also tools that decompose the state space of the
program, such as HipTNT+ [36] and SeaHorn [51]. Decom-
posing the state space allows them to infer ranking functions
for each component separately.

Acknowledgments
We thank the reviewers for their suggestions, which signifi-
cantly helped to improve the readability of the paper. The
work on this paper was supported by the Czech Science
Foundation project 17-12465S, the IT4IXS: IT4Innovations
Excellence in Science project (LQ1602), the FIT BUT project
FIT-S-17-4014, the National Natural Science Foundation of
China (Grants No. 61532019, 61650410658, 61761136011), the
CAS/SAFEA International Partnership Program for Creative
Research Teams, the CDZ project CAP (GZ 1023), and the
Ministry of Science and Technology of Taiwan (project 106-
2221-E-001-009-MY3).

148

122

Automata-Based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] Software Verification Competition (SV-Comp) Benchmarks. https:

//github.com/sosy-lab/sv-benchmarks. Accessed: 2017-11-01.
[2] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr,

and Tomáš Vojnar. 2010. When Simulation Meets Antichains: On
Checking Language Inclusion of Nondeterministic Finite (Tree) Au-
tomata. In Proceedings of 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’10).
Springer-Verlag, Berlin, Heidelberg, 158–174. https://doi.org/10.1007/
978-3-642-12002-2_14

[3] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Check-
ing. The MIT Press.

[4] Amir M. Ben-Amram. 2010. Size-Change Termination, Monotonicity
Constraints and Ranking Functions. Logical Methods in Computer
Science 6, 3 (2010). http://arxiv.org/abs/1005.0253

[5] Amir M. Ben-Amram. 2011. Monotonicity Constraints for Termination
in the Integer Domain. Logical Methods in Computer Science 7, 3 (2011).
https://doi.org/10.2168/LMCS-7(3:4)2011

[6] Amir M. Ben-Amram and Samir Genaim. 2013. On the Linear Rank-
ing Problem for Integer Linear-Constraint Loops. In Proceedings of
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’13). ACM, New York, NY, USA, 51–62.
https://doi.org/10.1145/2429069.2429078

[7] Amir M. Ben-Amram and Samir Genaim. 2014. Ranking Functions
for Linear-Constraint Loops. J. ACM 61, 4 (2014), 26:1–26:55. https:
//doi.org/10.1145/2629488

[8] Amir M. Ben-Amram and Samir Genaim. 2015. Complexity of
Bradley-Manna-Sipma Lexicographic Ranking Functions. In Proceed-
ings of 27th International Conference on Computer Aided Verification
(CAV’15), Vol. 9207. Springer, Cham, 304–321. https://doi.org/10.1007/
978-3-319-21668-3_18

[9] Amir M. Ben-Amram and Samir Genaim. 2017. On Multiphase-Linear
Ranking Functions. In Proceedings of 29th International Conference
on Computer Aided Verification (CAV’17), Vol. 10427. Springer, Cham,
601–620. https://doi.org/10.1007/978-3-319-63390-9_32

[10] Dirk Beyer. 2017. Software Verification with Validation of Results -
(Report on SV-Comp 2017). In Proceedings of 23rd International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’17). Springer-Verlag New York, Inc., New York, NY,
USA, 331–349. https://doi.org/10.1007/978-3-662-54580-5_20

[11] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool
for Configurable Software Verification. In Proceedings of 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11). Springer-
Verlag, Berlin, Heidelberg, 184–190. http://dl.acm.org/citation.cfm?id=
2032305.2032321

[12] František Blahoudek, Matthias Heizmann, Sven Schewe, Jan Strejček,
and Ming-Hsien Tsai. 2016. Complementing Semi-deterministic Büchi
Automata. In Proceedings of 22nd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’16).
Springer Berlin Heidelberg, Berlin, Heidelberg, 770–787. https://doi.
org/10.1007/978-3-662-49674-9_49

[13] Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliv-
eras, Enric Rodríguez-Carbonell, and Albert Rubio. 2017. Proving
Termination Through Conditional Termination. In Proceedings of 23rd
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’17), Vol. 10205. Springer, Berlin, Hei-
delberg, 99–117. https://doi.org/10.1007/978-3-662-54577-5_6

[14] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear
Ranking with Reachability. In Proceedings of 17th International Confer-
ence on Computer Aided Verification (CAV’05). Springer-Verlag, Berlin,
Heidelberg, 491–504. https://doi.org/10.1007/11513988_48

[15] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir
Piterman. 2016. T2: Temporal Property Verification. In Proceedings of

22nd International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’16), Vol. 9636. Springer, Berlin,
Heidelberg, 387–393. https://doi.org/10.1007/978-3-662-49674-9_22

[16] Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M.
Wintersteiger. 2013. Ranking function synthesis for bit-vector relations.
Formal Methods in System Design 43, 1 (2013), 93–120. https://doi.org/
10.1007/s10703-013-0186-4

[17] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Ter-
mination Proofs for Systems Code. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’06). ACM, New York, NY, USA, 415–426. https:
//doi.org/10.1145/1133981.1134029

[18] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2011. Prov-
ing Program Termination. Commun. ACM 54, 5 (2011), 88–98. https:
//doi.org/10.1145/1941487.1941509

[19] Byron Cook, Abigail See, and Florian Zuleger. 2013. Ramsey vs. Lexi-
cographic Termination Proving. In Proceedings of 19th International
Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS’13). Springer-Verlag, Berlin, Heidelberg, 47–61.
https://doi.org/10.1007/978-3-642-36742-7_4

[20] Nathanaël Courant and Caterina Urban. 2017. Precise Widen-
ing Operators for Proving Termination by Abstract Interpretation.
In Proceedings of 23rd International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’17),
Vol. 10205. Springer, Berlin, Heidelberg, 136–152. https://doi.org/10.
1007/978-3-662-54577-5_8

[21] Patrick Cousot and Radhia Cousot. 2012. An Abstract Interpre-
tation Framework for Termination. In Proceedings of 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’12). ACM, New York, NY, USA, 245–258. https:
//doi.org/10.1145/2103656.2103687

[22] Jean-Michel Couvreur. 1999. On-the-fly Verification of Linear Tem-
poral Logic. In Proceedings of International Symposium on Formal
Methods (FM’99). Springer-Verlag, London, UK, UK, 253–271. https:
//doi.org/10.1007/3-540-48119-2_16

[23] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. 2006. Antichains: A New Algorithm for Checking
Universality of Finite Automata. In Proceedings of 18th International
Conference on Computer Aided Verification (CAV’06), Vol. 4144. Springer,
Berlin, Heidelberg, 17–30. https://doi.org/10.1007/11817963_5

[24] Seth Fogarty and Moshe Y. Vardi. 2012. Büchi Complementation and
Size-Change Termination. Logical Methods in Computer Science 8, 1
(2012). https://doi.org/10.2168/LMCS-8(1:13)2012

[25] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and
Stephan Falke. 2009. Proving Termination of Integer Term Rewriting.
In Proceedings of 20th International Conference on Rewriting Techniques
and Applications (RTA’09). Springer-Verlag, Berlin, Heidelberg, 32–47.
https://doi.org/10.1007/978-3-642-02348-4_3

[26] Andreas Gaiser and Stefan Schwoon. 2009. Comparison of Algorithms
for Checking Emptiness of Büchi Automata. In Annual Doctoral Work-
shop on Mathematical and Engineering Methods in Computer Science
(MEMICS’09), Vol. 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany. http://drops.dagstuhl.de/opus/volltexte/2009/2349

[27] Pierre Ganty and Samir Genaim. 2013. Proving Termination Start-
ing from the End. In Proceedings of 25th International Conference on
Computer Aided Verification (CAV’13), Vol. 8044. Springer-Verlag New
York, Inc., New York, NY, USA, 397–412. https://doi.org/10.1007/
978-3-642-39799-8_27

[28] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian
Emmes, Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin
Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski,
and René Thiemann. 2017. Analyzing Program Termination and Com-
plexity Automatically with AProVe. J. Autom. Reasoning 58, 1 (2017),
3–31. https://doi.org/10.1007/s10817-016-9388-y

149

123

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

[29] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan
Falke. 2006. Mechanizing and Improving Dependency Pairs. J.
Autom. Reasoning 37, 3 (2006), 155–203. https://doi.org/10.1007/
s10817-006-9057-7

[30] Patrice Godefroid. 1996. Partial-Order Methods for the Verification
of Concurrent Systems - An Approach to the State-Explosion Problem.
Springer. https://doi.org/10.1007/3-540-60761-7

[31] William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani.
2010. Alternation for Termination. In Proceedings of 17th International
Conference on Static Analysis (SAS’10). Springer-Verlag, Berlin, Heidel-
berg, 304–319. http://dl.acm.org/citation.cfm?id=1882094.1882113

[32] Matthias Heizmann, Jochen Hoenicke, Jan Leike, and Andreas Podelski.
2013. Linear Ranking for Linear Lasso Programs. In Proceedings of
15th International Symposium on Automated Technology for Verification
and Analysis (ATVA’13), Vol. 8172. Springer, Cham, 365–380. https:
//doi.org/10.1007/978-3-319-02444-8_26

[33] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2014.
Termination Analysis by Learning Terminating Programs. In Proceed-
ings of 26th International Conference on Computer Aided Verification
(CAV’14). Springer-Verlag New York, Inc., New York, NY, USA, 797–813.
https://doi.org/10.1007/978-3-319-08867-9_53

[34] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and
ChristophM.Wintersteiger. 2010. TerminationAnalysis with Composi-
tional Transition Invariants. In Proceedings of 22nd International Confer-
ence on Computer Aided Verification (CAV’10). Springer-Verlag, Berlin,
Heidelberg, 89–103. https://doi.org/10.1007/978-3-642-14295-6_9

[35] Robert P. Kurshan. 1987. Complementing Deterministic Büchi Au-
tomata in Polynomial Time. J. Comput. Syst. Sci. 35, 1 (1987), 59–71.
https://doi.org/10.1016/0022-0000(87)90036-5

[36] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. 2015. Termi-
nation and Non-termination Specification Inference. In Proceedings
of 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). ACM, New York, NY, USA, 489–498.
https://doi.org/10.1145/2737924.2737993

[37] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The size-
change principle for program termination. In Proceedings of 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’01). ACM, New York, NY, USA, 81–92. https://doi.org/10.1145/
360204.360210

[38] Wonchan Lee, Bow-Yaw Wang, and Kwangkeun Yi. 2012. Termi-
nation Analysis with Algorithmic Learning. In Proceedings of 24th
International Conference on Computer Aided Verification (CAV’12).
Springer-Verlag, Berlin, Heidelberg, 88–104. https://doi.org/10.1007/
978-3-642-31424-7_12

[39] Jan Leike and Matthias Heizmann. 2015. Ranking Templates for Linear
Loops. Logical Methods in Computer Science 11, 1 (2015). https://doi.
org/10.2168/LMCS-11(1:16)2015

[40] Max Michel. 1988. Complementation is more difficult with automata on
infinite words. Technical Report. CNET, Paris.

[41] Sebastian Ott. 2016. Implementing a Termination Analysis using
Configurable Software Analysis. Master’s Thesis, University of Passau,
Software Systems Lab.

[42] Oded Padon, JochenHoenicke, Giuliano Losa, Andreas Podelski, Mooly
Sagiv, and Sharon Shoham. 2018. Reducing Liveness to Safety in
First-Order Logic. ACM Program. Lang. 2, POPL (2018), 26:1–26:33.

https://doi.org/10.1145/3158114
[43] Doron Peled. 1993. All from One, One for All: on Model Checking

Using Representatives. In Proceedings of 5th International Conference
on Computer Aided Verification (CAV’93). Springer-Verlag, London, UK,
409–423. http://dl.acm.org/citation.cfm?id=647762.735490

[44] Andreas Podelski and Andrey Rybalchenko. 2004. A Complete Method
for the Synthesis of Linear Ranking Functions. In Proceedings of 5th
International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’04), Vol. 2937. Springer, Berlin, Heidelberg, 239–
251. https://doi.org/10.1007/978-3-540-24622-0_20

[45] Andreas Podelski and Andrey Rybalchenko. 2004. Transition Invari-
ants. In Proceedings of 19th Annual IEEE Symposium on Logic in Com-
puter Science (LICS’04). IEEE Computer Society, Washington, DC, USA,
32–41. https://doi.org/10.1109/LICS.2004.50

[46] Andreas Podelski, Andrey Rybalchenko, and ThomasWies. 2008. Heap
Assumptions on Demand. In Proceedings of 20th International Confer-
ence on Computer Aided Verification (CAV’08). Springer-Verlag, Berlin,
Heidelberg, 314–327. https://doi.org/10.1007/978-3-540-70545-1_31

[47] Corneliu Popeea and Andrey Rybalchenko. 2012. Compositional Ter-
mination Proofs for Multi-threaded Programs. In Proceedings of 18th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’12). Springer-Verlag, Berlin, Heidel-
berg, 237–251. https://doi.org/10.1007/978-3-642-28756-5_17

[48] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-
chermann. 2017. Automatically Proving Termination and Memory
Safety for Programs with Pointer Arithmetic. J. Autom. Reasoning 58,
1 (2017), 33–65. https://doi.org/10.1007/s10817-016-9389-x

[49] Caterina Urban. 2013. The Abstract Domain of Segmented Ranking
Functions. In Proceedings of 24th International Symposium on Static
Analysis (SAS’13), Vol. 7935. Springer, Berlin, Heidelberg, 43–62. https:
//doi.org/10.1007/978-3-642-38856-9_5

[50] Caterina Urban. 2015. FuncTion: An Abstract Domain Functor for
Termination - (Competition Contribution). In Proceedings of 21st Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’15). Springer-Verlag New York, Inc., New
York, NY, USA, 464–466. https://doi.org/10.1007/978-3-662-46681-0_46

[51] Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai. 2016. Syn-
thesizing Ranking Functions from Bits and Pieces. In Proceedings
of 22nd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’16). Springer-Verlag
New York, Inc., New York, NY, USA, 54–70. https://doi.org/10.1007/
978-3-662-49674-9_4

[52] Caterina Urban and Antoine Miné. 2014. An Abstract Domain to
Infer Ordinal-Valued Ranking Functions. In Proceedings of 23rd Euro-
pean Symposium on Programming Languages and Systems (ESOP’14).
Springer-Verlag New York, Inc., New York, NY, USA, 412–431. https:
//doi.org/10.1007/978-3-642-54833-8_22

[53] Caterina Urban and Antoine Miné. 2014. A Decision Tree Abstract
Domain for Proving Conditional Termination. In Proceedings of 21st
International Symposium on Static Analysis (SAS’14), Vol. 8723. Springer,
Cham, 302–318. https://doi.org/10.1007/978-3-319-10936-7_19

[54] Antti Valmari. 1991. Stubborn Sets for Reduced State Space Generation.
In Proceedings of 10th International Conference on Applications and
Theory of Petri Nets: Advances in Petri Nets (ICATPN’89). Springer,
491–515. https://doi.org/10.1007/3-540-53863-1_36

150

124

International Journal on Software Tools for Technology Transfer (2020) 22:523–539
https://doi.org/10.1007/s10009-019-00520-8

REGULAR PAPER

Approximate reduction of finite automata for high-speed network
intrusion detection

Milan Češka1 · Vojtěch Havlena1 · Lukáš Holík1 ·Ondřej Lengál1 · Tomáš Vojnar1

Published online: 24 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Weconsider the problemof approximate reduction of non-deterministic automata that appear in hardware-accelerated network
intrusion detection systems (NIDSes). We define an error distance of a reduced automaton from the original one as the
probability of packets being incorrectly classified by the reduced automaton (wrt the probabilistic distribution of packets in
the network traffic). We use this notion to design an approximate reduction procedure that achieves a great size reduction
(much beyond the state-of-the-art language-preserving techniques) with a controlled and small error. We have implemented
our approach and evaluated it on use cases from Snort, a popular NIDS. Our results provide experimental evidence that the
method can be highly efficient in practice, allowing NIDSes to follow the rapid growth in the speed of networks.

Keywords Reduction · Nondeterministic finite automata · Deep packet inspection · High-speed network monitoring

1 Introduction

The recent years have seen a boom in the number of secu-
rity incidents in computer networks. In order to alleviate the
impact of network attacks and intrusions, Internet service
providers want to detect malicious traffic at their network’s
entry points and on the backbones between sub-networks.
Software-based network intrusion detection systems (NID-
Ses), such as the popular open-source system Snort [50],
are capable of detecting suspicious network traffic by testing

B Ondřej Lengál
lengal@fit.vutbr.cz
http://www.fit.vutbr.cz/∼lengal

Milan Češka
ceskam@fit.vutbr.cz
http://www.fit.vutbr.cz/∼ceskam

Vojtěch Havlena
ihavlena@fit.vutbr.cz
http://www.fit.vutbr.cz/∼ihavlena

Lukáš Holík
holik@fit.vutbr.cz
http://www.fit.vutbr.cz/∼holik

Tomáš Vojnar
vojnar@fit.vutbr.cz
http://www.fit.vutbr.cz/∼vojnar

1 IT4Innovations Centre of Excellence, FIT, Brno University of
Technology, Brno, Czech Republic

(among others) whether a packet payload matches a regular
expression (regex) describing known patterns of malicious
traffic. NIDSes collect and maintain vast databases of such
regexes that are typically divided into groups according to
types of the attacks and target protocols.

Regex matching is the most computationally demanding
task of a NIDS as its cost grows with the speed of the net-
work traffic as well as with the number and complexity
of the regexes being matched. The current software-based
NIDSes cannot perform the regex matching on networks
beyond1Gbps [5,28], so they cannot handle the current speed
of backbone networks ranging between tens and hundreds
of Gbps. A promising approach to speed up NIDSes is to
(partially) offload regex matching into hardware [27,28,36].
The hardware then serves as a pre-filter of the network traffic,
discarding the majority of the packets from further process-
ing. Such pre-filtering can easily reduce the traffic the NIDS
needs to handle by two or three orders of magnitude [28].

Field-programmable gate arrays (FPGAs) are the lead-
ing technology in high-throughput regex matching. Due to
their inherent parallelism, FPGAs provide an efficient way
of implementing non-deterministic finite automata (NFAs),
which naturally arise from the input regexes. Although
the amount of available resources in FPGAs is continually
increasing, the speed of networks grows even faster. Work-
ing with multi-gigabit networks requires the hardware to
use many parallel packet processing branches in a single

123

125

524 M. Češka et al.

FPGA [36]; each of them implementing a separate copy of
the concerned NFA, and so reducing the size of the NFAs
is of the utmost importance. Various language-preserving
automata reduction approaches exist, mainly based on com-
puting (bi)simulation relations on automata states (cf. the
related work). The reductions they offer, however, do not sat-
isfy the needs of high-speed hardware-accelerated NIDSes.

Our answer to the problem is approximate reduction of
NFAs, allowing for a trade-off between the achieved reduc-
tion and the precision of the regex matching. To formalize
the intuitive notion of precision, we propose a novel proba-
bilistic distance of automata. It captures the probability that
a packet of the input network traffic is incorrectly accepted
or rejected by the approximated NFA. The distance assumes
a probabilistic model of the network traffic. (We show later
how such a model can be obtained.)

Having formalized the notion of precision, we specify the
target of our reductions as two variants of an optimization
problem: (1) minimizing the NFA size given the maximum
allowed error (distance from the original), or (2) minimiz-
ing the error given the maximum allowed NFA size. Finding
such optimal approximations is, however, computationally
hard (PSPACE-complete, the same as precise NFA mini-
mization).

Consequently, we sacrifice the optimality and, motivated
by the typical structure of NFAs that emerge from a set
of regexes used by NIDSes (a union of many long “tenta-
cles”with occasional small strongly connected components),
we limit the space of possible reductions by restricting the
set of operations they can apply to the original automaton.
Namely, we consider two reduction operations: (i) collapsing
the future of a state into a self-loop (this reduction over-
approximates the language), or (ii) removing states (such
a reduction is under-approximating).

The problem of identifying the optimal sets of states on
which these operations should be applied is still PSPACE-
complete.The restrictedproblem is, however,more amenable
to an approximation by a greedy algorithm. The algorithm
applies the reductions state-by-state in an order determined
by a pre-computed error labelling of the states. The process
is stopped once the given optimization goal in terms of the
size or error is reached. The labelling is based on the proba-
bility of packets that may be accepted through a given state
and hence over-approximates the error that may be caused by
applying the reduction at a given state. As our experiments
show, this approach can give us high-quality reductionswhile
ensuring formal error bounds.

Finally, it turns out that even the pre-computation of
the error labelling of the states is costly (again PSPACE-
complete). Therefore, we propose several ways to cheaply
over-approximate it such that the strong error bound guaran-
tees are still preserved. In particular, we are able to exploit
the typical structure of the “union of tentacles” of the hard-

ware NFA in an algorithm that is exponential in the size of
the largest “tentacle” only, which gives us a method that is
indeed much faster in practice.

We have implemented our approach and evaluated it on
regexes used to classifymalicious traffic in Snort.We obtain
quite encouraging experimental results demonstrating that
our approach provides a much better reduction than lan-
guage-preserving techniques with an almost negligible error.
In particular, our experiments, going down to the level of an
actual implementation of NFAs in FPGAs, confirm that we
can squeeze into an up-to-date FPGA chip real-life regexes
encoding malicious traffic, allowing them to be used with a
negligible error for filtering at speeds of 100Gbps (and even
400Gbps). This is far beyond what one can achieve with
current exact reduction approaches.

This paper is an extended version of the paper that
appeared in the proceedings of TACAS’18 [12], containing
complete proofs of the presented lemmas and theorems.
Related Work Hardware acceleration for regex matching
at the line rate is an intensively studied technology that
uses general-purpose hardware [3,4,29–33,49,53] as well
as FPGAs [8,14,25,27,28,36,39,45,47]. Most of the works
focus on DFA implementation and optimization techniques.
NFAs can be exponentially smaller than DFAs but need,
in the worst case, O(n) memory accesses to process each
byte of the payload where n is the number of states. In
most cases, this incurs an unacceptable slowdown. Several
works alleviate this disadvantage of NFAs by exploiting
reconfigurability and fine-grained parallelism of FPGAs,
allowing one to process one character per clock cycle (e.g.
[8,27,28,36,39,45,47]).

In [33], which is probably the closest work to ours,
the authors consider a set of regexes describing network
attacks. They replace a potentially prohibitively large DFA
by a tree of smaller DFAs, an alternative to using NFAs
that minimizes the latency occurring in a non-FPGA-based
implementation. The language of every DFA-node in the tree
over-approximates the languages of its children. Packets are
filtered through the tree from the root downwards until they
belong to the language of the encountered nodes, and may
be finally accepted at the leaves, or are rejected otherwise.
The over-approximating DFAs are constructed using a simi-
lar notion of probability of an occurrence of a state as in our
approach. Themain differences fromourwork are that (1) the
approach targets approximation of DFAs (not NFAs), (2) the
over-approximation is based on a given traffic sample only (it
cannot benefit from a probabilistic model), and (3) no prob-
abilistic guarantees on the approximation error are provided.

Approximation of DFAs was considered in various other
contexts. Hyper-minimization is an approach that is allowed
to alter language membership of a finite set of words [21,35].
ADFAwith agivenmaximumnumber of states is constructed
in [20], minimizing the error defined either by (i) counting

123

126

Approximate reduction of finite automata for high-speed network intrusion detection 525

prefixes ofmisjudgedwords up to some length, or (ii) the sum
of the probabilities of the misjudged words wrt the Poisson
distribution over Σ∗. Neither of these approaches considers
reduction of NFAs nor allows to control the expected error
with respect to the real traffic.

In addition to the metrics mentioned above when dis-
cussing the works [20,21,35], the following metrics should
also be mentioned. The Cesaro–Jaccard distance studied in
[44] is, in spirit, similar to [20] and does also not reflect
the probability of individual words. The edit distance of
weighted automata from [41] depends on the minimum edit
distance between pairs of words from the two compared
languages, again regardless of their statistical significance.
One might also consider using the error metric on a pair of
automata introduced by Angluin in the setting of PAC (prob-
ably approximately correct) learning of DFAs [1], where
n words are sampled from a given distribution and their (non-
)acceptance tested in the two automata. If the outputs of both
automata agree on all n words, one can say that with confi-
dence δ the distance between the two automata is at most ε,
where δ and ε can be determined from n. None of these
notions is suitable for our needs.

Language-preserving minimization of a given NFA is
a PSPACE-complete problem [26,34]. More feasible (poly-
nomial time) is language-preserving size reduction of NFAs
based on (bi)simulations [9,13,24,42],which does not aim for
a truly minimal NFA. A number of advanced variants exist,
based onmulti-pebble or look-ahead simulations, or on com-
binations of forward and backward simulations [15,18,37].
The practical efficiency of these techniques is, however, often
insufficient to allow them to handle the large NFAs that occur
in practice and/or they do not manage to reduce the NFAs
enough. Finally, even a minimal NFA for the given set of
regexes is often too big to be implemented in the given FPGA
operating on the required speed (as shown even in our exper-
iments). Our approach is capable of a much better reduction
for the price of a small change of the accepted language.

2 Preliminaries

We use 〈a, b〉 to denote the set {x ∈ R | a ≤ x ≤ b} and N
to denote the set {0, 1, 2, . . . }. Given a pair of sets X1 and
X2, we use X1 � X2 to denote their symmetric difference,
i.e. the set {x | ∃!i ∈ {1, 2} : x ∈ Xi }. We use the notation
[v1, . . . , vn] to denote a vector of n elements, 1 to denote
the all 1’s vector [1, . . . , 1] (the dimension of 1 is always
clear from the context), A to denote a matrix, and A
 for its
transpose, and I for the identity matrix.

In the following, we fix a finite non-empty alphabet Σ .
A non-deterministic finite automaton (NFA) is a quadru-
ple A = (Q, δ, I , F) where Q is a finite set of states,
δ : Q × Σ → 2Q is a transition function, I ⊆ Q is a set

of initial states, and F ⊆ Q is a set of accepting states. We
use Q[A], δ[A], I [A], and F[A] to denote Q, δ, I , and F ,
respectively, and q

a−→ q ′ to denote that q ′ ∈ δ(q, a). Often,
we abuse notation and treat δ as a subset of Q × Σ × 2Q .
A sequence of states ρ = q0 · · · qn is a run of A over
a word w = a1 · · · an ∈ Σ∗ from a state q to a state q ′,
denoted as q

w,ρ� q ′, if ∀1 ≤ i ≤ n : qi−1
ai−→ qi , q0 = q,

and qn = q ′. Sometimes, we use ρ in set operations where it
behaves as the set of states it contains. We also use q

w� q ′
to denote that ∃ρ ∈ Q∗ : q w,ρ� q ′ and q � q ′ to denote
that ∃w : q w� q ′. The language of a state q is defined as
LA(q) = {w | ∃qF ∈ F : q w� qF } and its banguage (back-
language) is defined as L�

A(q) = {w | ∃qI ∈ I : qI w� q}.
Both notions can be naturally extended to a set S ⊆ Q:
LA(S) = ⋃

q∈S LA(q) and L�

A(S) = ⋃
q∈S L

�

A(q). We
drop the subscript A when the context is obvious. A accepts
the language L(A) defined as L(A) = LA(I). A is called
deterministic (DFA) if |I | = 1 and ∀q ∈ Q and ∀a ∈ Σ :
|δ(q, a)| ≤ 1, and unambiguous (UFA) if ∀w ∈ L(A) :
∃!qI ∈ I , ρ ∈ Q∗, qF ∈ F : qI w,ρ� qF .

The restriction of A to S ⊆ Q is an NFA A|S given
as A|S = (S, δ ∩ (S × Σ × 2S), I ∩ S, F ∩ S). We define
the trim operation as trim(A) = A|C where C = {q | ∃qI ∈
I , qF ∈ F : qI � q � qF }. For a set of states R ⊆ Q, we
use reach(R) to denote the set of states reachable from R,
reach(R) = {r ′ | ∃r ∈ R : r � r ′}. We use the number of
states of A as a measure of its size, i.e. |A| = |Q|.

A (discrete probability) distribution over a countable set X
is a mapping Pr : X → 〈0, 1〉 such that

∑
x∈X Pr(x) = 1.

An n-state probabilistic automaton (PA) over Σ is a triple
P = (α, γ , {Δa}a∈Σ)where α ∈ 〈0, 1〉n is a vector of initial
weights, γ ∈ 〈0, 1〉n is a vector of final weights, and for every
a ∈ Σ , Δa ∈ 〈0, 1〉n×n is a transition matrix for symbol a.
We abuse notation and use Q[P] to denote the set of states
Q[P] = {1, . . . , n}. Moreover, the following two properties
need to hold: (i)

∑{α[i] | i ∈ Q[P]} = 1 (the initial prob-
ability is 1) and (ii) for every state i ∈ Q[P] it holds that∑{Δa[i, j] | j ∈ Q[P], a ∈ Σ} + γ [i] = 1. (The probabil-
ity of accepting or leaving a state is 1.) We define the support
of P as the NFA supp(P) = (Q[P], δ[P], I [P], F[P]) s.t.
δ[P] = {(i, a, j) | Δa[i, j] > 0},
I [P] = {i | α[i] > 0},
F[P] = {i | γ [i] > 0}.
Let us assume that every PA P is such that supp(P) =
trim(supp(P)). For a word w = a1 . . . ak ∈ Σ∗, we use
Δw to denote the matrix Δa1 · · · Δak . For the empty word
ε, we define Δε = I . It can be easily shown that P
represents a distribution over words w ∈ Σ∗ defined as
PrP (w) = α
 ·Δw · γ . We call PrP (w) the probability of w

in P . Given a language L ⊆ Σ∗, we define the probability
of L in P as PrP (L) = ∑

w∈L PrP (w).

123

127

526 M. Češka et al.

In some of the proofs later, we use the PA PExp defined as
PExp = (

1, [μ], {[μ]a}a∈Σ

)
where μ = 1

|Σ |+1 . PExp models
a distribution over the words from Σ∗ using a combination
of an exponential distribution (for selecting the length l of
a word) and the uniform distribution (for selecting symbols
in a word of the length l). In particular, the purpose of PExp

is to assign every word w ∈ Σ∗ the (nonzero) probability
PrPExp(w) = μ|w|+1; any other PA assigning nonzero prob-
abilities to all words would work as well.

If Conditions (i) and (ii) from the definition of PAs are
dropped, we speak about a pseudo-probabilistic automaton
(PPA), which may assign a word from its support a quantity
that is not necessarily in the range 〈0, 1〉, denoted as the sig-
nificance of the word below. PPAs may arise during some of
our operations performed on PAs. Note that PPAs can be seen
as instantiations of multiplicity or weighted automata [46].

3 Approximate reduction of NFAs

In this section, we first introduce the key notion of our
approach: a probabilistic distance of a pair of finite automata
wrt a given probabilistic automaton that, intuitively, repre-
sents the significance of particular words. We discuss the
complexity of computing the probabilistic distance. Finally,
we formulate two problems of approximate automata reduc-
tion via probabilistic distance.

3.1 Probabilistic distance

We start by defining our notion of a probabilistic distance
of two NFAs. Assume NFAs A1 and A2 and a probabilistic
automatonP specifying the distribution PrP : Σ∗ → 〈0, 1〉.
The probabilistic distance dP (A1,A2) between A1 and A2

wrt PrP is defined as

dP (A1,A2) = PrP (L(A1)� L(A2)).

Intuitively, the distance captures the significance of thewords
accepted by one of the automata only. We use the distance
to drive the reduction process towards automata with small
errors and to assess the quality of the result. (The distance is
sometimes called the symmetric difference semi-metric [17].)

The value of PrP (L(A1)� L(A2)) can be computed as
follows. Using the fact that (1) L1 � L2 = (L1\L2)�(L2\
L1) and (2) L1\L2 = L1\(L1 ∩ L2), we get

dP (A1,A2)

= PrP (L(A1)\L(A2)) + PrP (L(A2)\L(A1))

= PrP (L(A1)\(L(A1) ∩ L(A2)))

+ PrP (L(A2)\(L(A2) ∩ L(A1)))

= PrP (L(A1))+PrP (L(A2)) − 2 · PrP (L(A1) ∩ L(A2)).

Hence, the key step is to compute PrP (L(A)) for an NFA A
and aPAP . Problems similar to computing such a probability
have been extensively studied in several contexts including
verification of probabilistic systems [2,6,52].

In our approach, we apply the method of [6] and compute
PrP (L(A)) in the following way. We first check whether
the NFA A is unambiguous. This can be done by using the
standard product construction (denoted as ∩) for comput-
ing the intersection of the NFA A with itself and trimming
the result, formally B = trim(A ∩ A), followed by a check
whether there is some state (p, q) ∈ Q[B] s.t. p �= q [40].
If A is ambiguous, we either determinize it or disambiguate
it [40], leading to a DFA/UFA A′, respectively.1 Then, we
construct the trimmed product of A′ and P (this can be
seen as computing A′ ∩ supp(P) while keeping the prob-
abilities from P on the edges of the result), yielding a PPA
R = (αR, γ R, {ΔR

a }a∈Σ).2 Intuitively, R represents not
only the words of L(A) but also their probability in P (we
give the formal definition ofR inside the proof of Lemma 2).
Now, letΔ = ∑

a∈Σ Δa be thematrix that expresses, for any
p, q ∈ Q[R], the significance of getting from p to q via any
a ∈ Σ . Further, it can be shown (cf. the proof of Lemma 1)
that the matrix Δ∗, representing the significance of going
from p to q via anyw ∈ Σ∗, can be computed as (I −Δ)−1.
Then, to get PrP (L(A)), it suffices to take α
 · Δ∗ · γ .
Note that, due to the determinization/disambiguation step,
the obtained value indeed is PrP (L(A)) despite R being
a PPA. The two lemmas below summarize the complexity of
this step for NFAs and UFAs, respectively.

Lemma 1 Let P be a PA and A an NFA. The problem of
computing PrP (L(A)) is PSPACE-complete.

Proof Themembership inPSPACE can be shown as follows.
The computation described above corresponds to solving
a linear equation system. The system has an exponential
size because of the blowup caused by the determiniza-
tion/disambiguation of A required by the product construc-
tion. The equation system can, however, be constructed by
a PSPACE transducer Meq. Moreover, as solving linear
equation systems can be done using a polylogarithmic-space
transducer MSysLin, one can combine these two transducers
to obtain a PSPACE algorithm. Details of the construction
follow:

First, we construct a transducer Meq that, given an NFA
A = (QA, δA, IA, FA) and a PA P = (α, γ , {Δa}a∈Σ) on
its input, constructs a system of m = 2|QA| · |Q[P]| linear
equations S(A,P) of m unknowns ξ [R,p] for R ⊆ QA and
p ∈ Q[P] representing the product of A′ and P , where A′

1 In theory, disambiguation can produce smaller automata, but, in our
experiments, determinization proved to work better.
2 R is not necessarily a PA since there might be transitions in P that
are either removed or copied several times in the product construction.

123

128

Approximate reduction of finite automata for high-speed network intrusion detection 527

is a deterministic automaton obtained fromA using the stan-
dard subset construction. The system of equations S(A,P)

is defined as follows (cf. [6]):

ξ [R,p]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if LA(R) ∩ LP ′(p)=∅,
∑

a∈Σ

∑

p′∈Q[P]

(
Δa[p, p′] · ξ [δA(R,a),p′]

) + γ [p]
if R ∩ FA �= ∅,

∑

a∈Σ

∑

p′∈Q[P]
Δa[p, p′] · ξ [δA(R,a),p′]

otherwise,

such that P ′ = supp(P) and δA(R, a) = ⋃
r∈R δ(r , a).

The test LA(R) ∩ LP ′(p) = ∅ can be performed by check-
ing ∃r ∈ R : LA(r) ∩ LP ′(p) = ∅, which can be done in
polynomial time.

It holds that PrP (L(A)) = ∑
p∈Q[P] α[p] · ξ [IA,p].

Although the size ofS(A,P) (which is the output ofMeq) is
exponential in the size of the input of Meq, the internal con-
figuration of Meq only needs to be of polynomial size, i.e.
Meq works in PSPACE. Note that the size of each equation
is at most polynomial.

Given a system S ofm linear equations withm unknowns,
solving S can be done in the time O(log2 m) using O(mk)

processors for a fixed k [16, Corollary 2] (i.e. it is in the
class NC).3 According to [19, Lemma 1b], an O(log2 m)

time-bounded parallel machine can be simulated by an
O(log4 m) space-bounded Turing machine. Therefore, there
exists anO(log4 m) space-bounded Turing machineMSysLin

that solves a system ofm linear equations withm unknowns.
As a consequence, MSysLin can solve S(A,P) using the
space

O(log4(2|QA| · |Q[P]|)) = O(log4 2|QA| + log4 |Q[P]|))
= O(|QA|4 + log4 |Q[P]|)).

The missing part is how to combine Meq and MSysLin

to avoid using the exponential-size output tape of Meq. For
this, we use the following standard technique for combining
reductions [43, Proposition 8.2].

We take turns in simulating MSysLin and Meq. We start
with simulatingMSysLin.WhenMSysLinmoves its head right,
we pause it and simulateMeq until it outputs the correspond-
ing bit, which is fed into the input of MSysLin. Then we
pause Meq and resume the run of MSysLin. On the other
hand, when MSysLin moves its head left (from the k-th posi-
tion on the tape),we pause it, restartMeq from its initial state,
and simulate it until it outputs the (k − 1)-st bit of its output
tape, and then pause Meq and return the control to MSysLin.
In order to keep track of the position k of the head ofMSysLin

on its tape, we use a binary counter.

3 We use log k to denote the base-2 logarithm of k.

The internal configuration of both Meq and MSysLin is of
a polynomial size and the overhead of keeping track of the
position of the head ofMSysLin also requires only polynomial
space.Therefore, thewhole transducer runs in a polynomially
bounded space.

The PSPACE-hardness is obtained by a reduction from
the (PSPACE-complete) universality of NFAs: using the
PA PExp defined in Sect. 2, which assigns every word a
nonzero probability. it holds that

L(A) = Σ∗ iff PrPExp(L(A)) = 1.

��

Lemma 2 Let P be a PA and A a UFA. The problem of com-
puting PrP (L(A)) is in PTIME.

Proof We modify the proof from [6] into our setting. First,
we give a formal definition of the product of a PA P =
(α, γ , {Δa}a∈Σ) and an NFA A = (Q, δ, I , F) as the
(|Q[P]| · |Q|)-state PPA R = (αR, γ R, {ΔR

a }a∈Σ) where4

αR[(qP , qA)] = αR[qP] · |{qA} ∩ I |,
γ R[(qP , qA)] = γ R[qP] · |{qA} ∩ F |,

ΔR
a [(qP , qA), (q ′

P , q ′
A)]=Δa[qP , q ′

P] · |{q ′
A}∩δ(qA, a)|.

Note thatR is not necessarily a PA anymore because forw ∈
Σ∗ such that PrP (w) > 0, (i) ifw /∈ L(A), then PrR(w) = 0
and (ii) if w ∈ L(A) and A can accept w using n different
runs, then PrR(w) = n · PrP (w). As a consequence, the
probabilities of allwords fromΣ∗ are no longer guaranteed to
add up to 1. IfA is unambiguous, the second issue is avoided
and R preserves the probabilities of words from L(A), i.e.
PrR(w) = PrP (w) for allw ∈ L(A), soR can be seen as the
restriction of PrP to L(A). In the following, we assume R
is trimmed.

In order to compute PrP (L(A)), we construct a matrix E
defined as E = ∑

a∈Σ ΔR
a . Because R is trimmed, the

spectral radius of E, denoted as ρ(E), is less than one, i.e.
ρ(E) < 1. (The proof of this fact can be found, for example,
in [6].) Intuitively, ρ(E) < 1 holds because we trimmed
the redundant states from the product of P and A. We fur-
ther use the following standard result in linear algebra: if
ρ(E) < 1, then (i) the matrix I − E is invertible and (ii)
the sum of powers of E, denoted as E∗, can be computed
as E∗ = ∑∞

i=0 E
i = (I − E)−1 [23]. Moreover, note that

matrix inversion can be done in polynomial time [48].
E∗ represents the reachability between nodes of R, i.e.

E∗[r , r ′] is the sum of significances of all (possibly infinitely

4 We assume an implicit bijection between states of the product R and
{1, . . . , |Q[R]|}.

123

129

528 M. Češka et al.

many) paths from r to r ′ in R. When related to P and A, the
matrix E∗ represents the reachability in P wrt L(A), i.e.

E∗[(qP , qA), (q ′
P , q ′

A)]
=

∑ {
Δw[qP , q ′

P] ∣
∣ qA

w� q ′
A, w ∈ Σ∗} . (1)

We prove Equation (1) using the following reasoning. First,
we show that

En[(qP , qA), (q ′
P , q ′

A)]
=

∑ {
Δw[qP , q ′

P] ∣
∣ qA

w� q ′
A, w ∈ Σn

}
, (2)

i.e. En represents the reachability inP wrt L(A) for words of
lengthn.WeproveEquation (2) by induction onn: For n = 0,
the equation follows from the fact that E0 = I . For n = 1,
the equation follows directly from the definition of R and
Δ. Next, suppose that Equation (2) holds for n > 1; we
show that it holds also for n + 1. We start with the following
reasoning:

bEn+1[(qP , qA), (q ′
P , q ′

A)]
= EnE)[(qP , qA), (q ′

P , q ′
A)]

= sum
{
En[(qP , qA), (q ′′

P , q ′′
A)] · E[(q ′′

P , q ′′
A),

(q ′
P , q ′

A)]
∣
∣
∣ (q ′′

P , q ′′
A) ∈ Q[R]

}
.

The last line is obtained via the definition of matrix multipli-
cation. Further, using the induction hypothesis, we get

bEn+1[(qP , qA), (q ′
P , q ′

A)]
= sum

{ ∑ {
Δw[qP , q ′′

P]
∣
∣
∣ qA

w� q ′′
A, w ∈ Σn

}
·

∑ {
Δa[q ′′

P , q ′
P]

∣
∣
∣ q ′′

A
a−→ q ′

A, a ∈ Σ
} ∣

∣
∣
∣

(q ′′
P , q ′′

A) ∈ Q[R]
}

=
∑ { ∑ {

Δw[qP , q ′′
P] · Δa[q ′′

P , q ′
P]

∣
∣
∣ qA

w� q ′′
A,

q ′′
A

a−→ q ′
A, a ∈ Σ,w ∈ Σn

} ∣
∣
∣
∣ (q ′′

P , q ′′
A) ∈ Q[R]

}

=
∑ {

Δw′ [qP , q ′
P]

∣
∣
∣ qA

w′
� q ′

A, w′ ∈ Σn+1
}
.

Since E∗ = ∑∞
i=0 E

i , Equation (1) follows. Using the
matrix E∗, it remains to compute PrP (L(A)) as

PrP (L(A)) = α

R · E∗ · γ R.

��

3.2 Automata reduction using probabilistic distance

We now exploit the probabilistic distance introduced above
to formulate the task of approximate reduction of NFAs as
two optimization problems. Given an NFA A and a PA P
specifying the distribution PrP : Σ∗ → 〈0, 1〉, we define

– size-driven reduction: for n ∈ N, find an NFA A′ such
that |A′| ≤ n and the distance dP (A,A′) is minimal,

– error-driven reduction: for ε ∈ 〈0, 1〉, find an NFA A′
such that dP (A,A′) ≤ ε and the size |A′| is minimal.

The following lemma shows that the natural decision prob-
lem underlying both of the above optimization problems is
PSPACE-complete, which matches the complexity of com-
puting the probabilistic distance as well as that of the exact
reduction of NFAs [26].

Lemma 3 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
an NFA A′ with n states s.t. dP (A,A′) ≤ ε.

Proof Membership in PSPACE: We non-deterministically
generate an automatonA′ with n states and test (in PSPACE,
as shown in Lemma 1) that dP (A,A′) ≤ ε. This shows the
problem is in NPSPACE = PSPACE.

PSPACE-hardness: We use a reduction from the problem
of checking universality of anNFAA = (Q, δ, I , F)overΣ ,
i.e. from checking whether L(A) = Σ∗, which is PSPACE-
complete. First, for a reason that will become clear later, we
test ifA accepts all words overΣ of length 0 and 1,which can
be done in polynomial time. It holds that L(A) = Σ∗ iff there
is a 1-state NFA A′ s.t. dPExp(A,A′) ≤ 0. (PExp is defined
in Sect. 2.) The implication from left to right is clear: A′ can
be constructed as A′ = ({q}, {q a−→ q | a ∈ Σ}, {q}, {q})).
To show the reverse implication, we note that we have tested
that {ε}∪Σ ⊆ L(A). Since the probability of any word from
{ε}∪Σ ⊆ L(A) inPExp is nonzero, the only 1-stateNFA that
processes those words with zero error is the NFA A′ defined
above. Because the language of A′ is L(A′) = Σ∗, it holds
that dPExp(A,A′) ≤ 0 iff L(A) = Σ∗. ��

The notions defined above do not distinguish between
introducing a false positive (A′ accepts a word w /∈
L(A)) or a false negative (A′ rejects a word w ∈ L(A))
answers. To this end, we define over-approximating and
under-approximating reductions as reductions for which the
conditions L(A) ⊆ L(A′) and L(A) ⊇ L(A′) hold.

A naïve solution to the reductions would enumerate all
NFAs A′ of sizes from 0 up to k (resp. |A|), for each of
them compute dP (A,A′), and take an automaton with the
smallest probabilistic distance (resp. a smallest one satisfying

123

130

Approximate reduction of finite automata for high-speed network intrusion detection 529

Algorithm 1: A greedy size-driven reduction
Input : NFA A = (Q, δ, I , F), PA P , n ≥ 1
Output: NFA A′, ε ∈ R s.t. |A′| ≤ n and dP (A,A′) ≤ ε

1 V ← ∅;
2 for q ∈ Q in the order �A,label(A,P) do
3 V ← V ∪ {q}; A′ ← reduce(A, V);
4 if |A′| ≤ n then break
5 return A′, ε = error(A, V , label(A,P));

the restriction on dP (A,A′)). Obviously, this approach is
computationally infeasible.

4 A heuristic approach to approximate
reduction

In this section, we introduce two techniques for approxi-
mate reduction of NFAs that avoid the need to iterate over
all automata of a certain size. The first approach is based on
under-approximating the automata by removing states—we
call it the pruning reduction—while the second approach
is based on over-approximating the automata by adding
self-loops to states and removing redundant states—we call
it the self-loop reduction. Finding an optimal automaton
using these reductions is also PSPACE-complete, but more
amenable to heuristics like greedy algorithms. We start with
introducing two high-level greedy algorithms, one for the
size- and one for the error-driven reduction, and follow by
showing their instantiations for the pruning and the self-loop
reduction.A crucial role in the algorithms is played by a func-
tion that labels states of the automata by an estimate of the
error that will be caused when some of the reductions is
applied at a given state.

4.1 A general algorithm for size-driven reduction

Algorithm 1 shows a general greedy method for performing
the size-driven reduction. In order to use the same high-
level algorithm in both directions of reduction (over-/under-
approximating), it is parameterized with the functions: label,
reduce, and error. The real intricacy of the procedure is
hidden inside these three functions. Intuitively, label(A,P)

assigns every state of anNFAA an approximation of the error
that will be caused wrt the PA P when a reduction is applied
at this state, while the purpose of reduce(A, V) is to create
a new NFAA′ obtained fromA by introducing some error at
states from V .5 Further, error(A, V , label(A,P)) estimates

5 Weemphasize that this does notmean that states fromV will be simply
removed from A—the performed operation depends on the particular
reduction.

the error introduced by the application of reduce(A, V), pos-
sibly in amore precise (and costly)way than by just summing
the concerned error labels: Such a computation is possible
outside of the main computation loop. We show instantia-
tions of these functions later, when discussing the reductions
used. Moreover, the algorithm is also parameterized with
a total order �A,label(A,P) that defines which states of A are
processed first and which are processed later. The ordering
may take into account the pre-computed labelling. The algo-
rithm accepts an NFA A, a PA P , and n ∈ N and outputs
a pair consisting of an NFA A′ of the size |A′| ≤ n and an
error bound ε such that dP (A,A′) ≤ ε.

The main idea of the algorithm is that it creates a set V
of states where an error is to be introduced. V is constructed
by starting from an empty set and adding states to it in the
order given by �A,label(A,P), until the size of the result of
reduce(A, V) has reached the desired bound n (in our set-
ting, reduce is always antitone, i.e. for V ⊆ V ′, it holds
that |reduce(A, V)| ≥ |reduce(A, V ′)|). We now define the
necessary condition for label, reduce, and error that makes
Algorithm 1 correct.

Condition C1 holds if for every NFAA, PAP , and a set V ⊆
Q[A], we have that

(a) error(A, V , label(A,P)) ≥ dP (A, reduce(A, V)),
(b) |reduce(A, Q[A])| ≤ 1, and
(c) reduce(A,∅) = A.

C1(a) ensures that the error computed by the reduction
algorithm indeed over-approximates the exact probabilistic
distance,C1(b) is a boundary condition for the case when the
reduction is applied at every state of A, and C1(c) ensures
that when no error is to be introduced at any state, we obtain
the original automaton.

Lemma 4 Algorithm 1 is correct if C1 holds.

Proof Follows straightforwardly from Condition C1. ��

4.2 A general algorithm for error-driven reduction

In Algorithm 2, we provide a high-level method of com-
puting the error-driven reduction. The algorithm is in many
ways similar to Algorithm 1; it also computes a set of
states V where an error is to be introduced, but an impor-
tant difference is that we compute an approximation of the
error in each step and only add q to V if it does not raise the
error over the threshold ε. Note that the error does not need
to be monotone, so it may be advantageous to traverse all
states from Q and not terminate as soon as the threshold is
reached. The correctness of Algorithm 2 also depends onC1.

Lemma 5 Algorithm 2 is correct if C1 holds.

Proof Follows straightforwardly from Condition C1. ��

123

131

530 M. Češka et al.

Algorithm 2: A greedy error-driven reduction.
Input : NFA A = (Q, δ, I , F), PA P , ε ∈ 〈0, 1〉
Output: NFA A′ s.t. dP (A,A′) ≤ ε

1 	 ← label(A, P);
2 V ← ∅;
3 for q ∈ Q in the order �A,label(A,P) do
4 e ← error(A, V ∪ {q},);
5 if e ≤ ε then V ← V ∪ {q}
6 return A′ = reduce(A, V);

4.3 Pruning reduction

The pruning reduction is based on identifying a set of states
to be removed from an NFA A, under-approximating the
language of A. In particular, for A = (Q, δ, I , F), the prun-
ing reduction finds a set R ⊆ Q and restricts A to Q\R,
followed by removing useless states, to construct a reduced
automatonA′ = trim(A|Q\R). Note that the natural decision
problem corresponding to this reduction is also PSPACE-
complete.

Lemma 6 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that
dP (A,A|R) ≤ ε.

Proof Membership in PSPACE: We non-deterministically
generate a subset R of Q[A] having n states and test (in
PSPACE, as shown in Lemma 1) that dP (A,A|R) ≤ ε. This
shows the problem is in NPSPACE = PSPACE.

PSPACE-hardness:Weuse a reduction from thePSPACE-
complete problem of checking universality of an NFA A =
(Q, δ, I , F) over Σ . Consider a symbol x /∈ Σ . Let us con-
struct an NFA A′ over Σ ∪ {x} s.t. L(A′) = x∗.L(A).
A′ is constructed by adding a fresh state qnew to A that
can loop over x and make a transition to any initial state
of A over x : A′ = (Q �{qnew}, δ ∪ {qnew x−→ q | q ∈
I ∪ {qnew}}, I ∪ {qnew}, F). We set n = |A′| + 1. Fur-
ther, we also construct an (n + 1)-state NFA B accepting
the language xn .Σ∗ defined as B = (QB, δB, {q1}, {qn+1})
where QB = {q1, . . . , qn+1} and δB = {qi x−→ qi+1 | 1 ≤
i ≤ n} ∪ {qn+1

a−→ qn+1 | a ∈ Σ}. Moreover, let P be
a PA representing a distribution PrP that is defined for each
w ∈ (Σ ∪ {x})∗ as

PrP (w) =

⎧
⎪⎨

⎪⎩

μ|w′|+1 for w = xn .w′, w′ ∈ Σ∗,
and μ = 1

|Σ |+1 ,

0 otherwise.

(3)

Note that PrP (xn .w) = PrPExp(w) for w ∈ Σ∗, and
PrP (u) = 0 for u /∈ xn .Σ∗ (P can be easily con-
structed from PExp.) Also note that B accepts exactly those
words w such that PrP (w) �= 0 and that PrP (L(B)) =
1. Using the automata defined above, we construct an
NFA C = A′ ∪ B where the union of two NFAs is
defined as A1 ∪ A2 = (Q[A1] � Q[A2], δ[A1] � δ[A2],
I [A1] � I [A2], F[A1] � F[A2]). NFA C has 2n states, the
language of C is L(C) = x∗.L(A) ∪ xn .Σ∗ and its probabil-
ity is PrP (L(C)) = 1.

The important property of C is that if there exists a set
R ⊆ Q[C] of the size |R| = n s.t. dP (C, C|R) ≤ 0, then
L(A) = Σ∗. The property holds because since |Q[A′]| =
n−1, whenwe remove n states from C, at least one state from
Q[B] is removed, making the whole subautomaton of C cor-
responding to B useless, and, therefore, L(C|R) ⊆ x∗.L(A).
Because dP (C, C|R) ≤ 0, we know that PrP (L(C|R)) = 1, so
xn .Σ∗ ⊆ x∗.L(A) = L(C|R) and, therefore, L(A) = Σ∗.
For the other direction, if L(A) = Σ∗, then there exists a set
R ⊆ Q[A′] ∪ Q[B] of the size |R| = n s.t. dP (C, C|R) ≤ 0.
(In particular, R can be such that R ⊆ Q[B].) ��

Although Lemma 6 shows that the pruning reduction is as
hard as a general reduction (cf. Lemma 3), the pruning reduc-
tion is more amenable to using heuristics like the greedy
algorithms from Sects. 4.1 and 4.2. We instantiate reduce,
error, and label in these high-level algorithms in the follow-
ing way (the subscript p stands for pruning):

reducep(A, V) = trim(A|Q\V),

errorp(A, V ,) = min
V ′∈�V �p

∑ {
	(q) | q ∈ V ′} ,

where �V �p is defined in the rest of this paragraph: Because
of the use of trim in reducep, for a pair of sets V , V ′
s.t. V ⊂ V ′, it holds that reducep(A, V) may, in general,
yield the same automaton as reducep(A, V ′). Therefore, in
order to obtain a tight approximation, we wish to compute
the least error that is obtained when removing the states
in V . We define a partial order �p on 2Q as V1 �p V2
iff reducep(A, V1) = reducep(A, V2) and V1 ⊆ V2, and use
�V �p to denote the set of minimal elements of the set of
elements that are smaller than V (wrt �p). The value of the
approximation errorp(A, V ,) is therefore the minimum of
the sum of errors over all sets from �V �p.

Note that the size of �V �p can again be exponential, and
thus we employ a greedy approach for guessing an opti-
mal V ′. Clearly, this cannot affect the soundness of the
algorithm, but only decreases the precision of the bound
on the distance. Our experiments indicate that for automata
appearing in NIDSes, this simplification has typically only a
negligible impact on the precision of the bounds.

For computing the state labelling, we provide the follow-
ing three functions, which differ in the precision they provide

123

132

Approximate reduction of finite automata for high-speed network intrusion detection 531

and the difficulty of their computation (naturally, more pre-
cise labellings are harder to compute): label1p, label

2
p, and

label3p. Given an NFA A and a PA P , they generate the
labellings 	1p, 	

2
p, and 	3p, respectively, defined as

	1p(q) =
∑ {

PrP (L�

A(q ′))
∣
∣ q ′ ∈ reach({q}) ∩ F

}
,

	2p(q) = PrP
(
L�

A(F ∩ reach(q))
)

,

	3p(q) = PrP
(
L�

A(q).LA(q)
)

.

A state label 	(q) approximates the error of the words
removed from L(A) when q is removed. More concretely,
	1p(q) is a rough estimate saying that the error can be
bounded by the sum of probabilities of the banguages of
all final states reachable from q. (In the worst case, all those
final states might become unreachable.) Note that 	1p(q) (1)
counts the error of a word accepted in two different final
states of reach(q) twice and (2) it also considers words that
are accepted in some final state in reach(q) without going
through q. The labelling 	2p deals with (1) by computing
the total probability of the banguage of the set of all final
states reachable from q, and the labelling 	3p in addition
also deals with (2) by only considering words that traverse
through q. (They can, however, be accepted in some final
state not in reach(q) by a run completely disjoint from q and
reach(q) ∩ F , so even 	3p can still be imprecise.) Note that if
A is unambiguous, then 	1p = 	2p.

Each state labelling is given as the probability (or the sum
of probabilities in the case of 	1p) of the language related to q.
Therefore, when computing the particular label of q, we first
modify A to obtain A′ accepting the language related to the
labelling. Then, we compute the value of PrP (L(A′)) using
the algorithm fromSect. 3.1. Recall that this step is in general
costly, due to the determinization/disambiguation of A′. The
key property of the labelling computation resides in the fact
that if A is composed of several disjoint sub-automata, the
automaton A′ is typically much smaller than A and thus
the computation of the label is considerably less demanding.
Since the automata appearing in regex matching for NIDS
are composed of the union of “tentacles”, the particular A′s
are very small, which enables an efficient component-wise
computation of the labels.

The following lemma states the correctness of using the
pruning reduction as an instantiation of Algorithms 1 and 2
and also the relation among 	1p, 	

2
p, and 	3p.

Lemma 7 For every x ∈ {1, 2, 3}, the functions reducep,
errorp, and labelxp satisfyC1. Moreover, consider an NFAA,
a PA P , and let 	xp = labelxp(A,P) for x ∈ {1, 2, 3}. Then,
for each q ∈ Q[A], we have 	1p(q) ≥ 	2p(q) ≥ 	3p(q).

Proof We start by proving the inequalities 	1p(q) ≥ 	2p(q) ≥
	3p(q) for each q ∈ Q[A], which will then help us prove

the first part of the lemma. The first inequality follows from
the fact that if the banguages of reachable final states are not
disjoint, in the case of 	1p, we may sum probabilities of the
same words multiple times. The second inequality follows
from the inclusion L�

A(q).LA(q) ⊆ L�

A(F ∩ reach(q)).
Second, we prove that the functions reducep, errorp, and

labelxp satisfy the properties of C1:

– C1(a): In order to show the inequality

errorp(A, V , labelxp(A,P)) ≥ dP (A, reducep(A, V)),

we prove it for 	3p = label3p(A,P); the rest follows from
	1p(q) ≥ 	2p(q) ≥ 	3p(q), which is proved above.
Consider some set of states V ⊆ Q[A] and a set V ′ ∈
�V �p s.t. for any V ′′ ∈ �V �p, it holds that∑{	3p(q) | q ∈
V ′} ≤ ∑{	3p(q) | q ∈ V ′′}. We have

L(A)� L(reducep(A, V))

= L(A)� L(reducep(A, V ′)) �def. of �p�
= langof A\L(reducep(A, V ′))
�L(A) ⊇ L(reducep(A, V ′))�
⊆

⋃

q∈V ′
L�

A(q).LA(q). �def. of reducep�

(4)

Finally, using (4), we obtain

dP (A, reducep(A, V))

= PrP (L(A)� L(reducep(A, V ′)))
�def. of dP�
≤

∑

q∈V ′
PrP (L�

A(q).LA(q)) �(4)�

=
∑

{	3p(q) | q ∈ V ′} �def. of 	3p�
= min
V ′′∈�V �p

∑
{	3p(q) | q ∈ V ′′} �def. of V ′�

= errorp(A, V , 	3p). �def. of errorp�

– C1(b): |reducep(A, Q[A])| ≤ 1 because

|reducep(A, Q[A])| = |trim(A|∅)| = 0.

– C1(c): reducep(A,∅) = A since

reducep(A,∅) = trim(A|Q[A]) = A.

(We assume that A is trimmed at the input.) ��

123

133

532 M. Češka et al.

4.4 Self-loop reduction

The main idea of the self-loop reduction is to over-approxi-
mate the language of A by adding self-loops over every
symbol at selected states. Thismakes some states ofA redun-
dant, allowing them to be removed without introducing any
more error. Given an NFA A = (Q, δ, I , F), the self-loop
reduction searches for a set of states R ⊆ Q, which will have
self-loops added, and removes other transitions leading out of
these states, making some states unreachable. The unreach-
able states are then removed.

Formally, let sl(A, R) be the NFA (Q∪{s}, δ′, I , F∪{s})
where s /∈ Q and the transition function δ′ is defined such
that δ′(s, a) = {s} and, for all states p ∈ Q and symbols
a ∈ Σ , δ′(p, a) = (δ(p, a)\R) ∪ {s} if δ(p, a) ∩ R �= ∅
and δ′(p, a) = δ(p, a) otherwise. Similarly to the pruning
reduction, the natural decision problem corresponding to the
self-loop reduction is also PSPACE-complete.

Lemma 8 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that
dP (A, sl(A, R)) ≤ ε.

Proof Membership in PSPACE can be proved in the same
way as in the proof of Lemma 6.

PSPACE-hardness: We reduce from the PSPACE-comp-
lete problem of checking universality of an NFA A =
(Q, δ, I , F). First, we check whether I [A] �= ∅. We have
that L(A) = Σ∗ iff there exists a set of states R ⊆ Q of the
size |R| = |Q| such that dPExp(A, sl(A, R)) ≤ 0. (Note that
this means that a self-loop is added to every state of A.) ��

The required functions in the error- and size-driven reduc-
tion algorithms are instantiated in the following way (the
subscript sl stands for self-loop):

reducesl(A, V) = trim(sl(A, V)),

errorsl(A, V ,) =
∑

{	(q) | q ∈ min (�V �sl)} ,

where �V �sl is defined in a similar manner as �V �p in the
previous section (using a partial order �sl defined similarly
to �p; the difference is that in this case, the order �sl has
a single minimal element, though).

The functions label1sl, label
2
sl, and label

3
sl compute the state

labellings 	1sl, 	
2
sl, and 	3sl for an NFA A and a PA P , which

are defined as follows:

	1sl(q) = weightP (L�

A(q)),

	2sl(q) = PrP
(
L�

A(q).Σ∗) ,

	3sl(q) = 	2sl(q) − PrP
(
L�

A(q).LA(q)
)

.

In the definitions above, the function weightP (w) for
a PAP = (α, γ , {Δa}a∈Σ) and a wordw ∈ Σ∗ is defined as
weightP (w) = α
 ·Δw ·1 (i.e. similarly as PrP (w) but with
the final weights γ discarded), and weightP (L) for L ⊆ Σ∗
is defined as weightP (L) = ∑

w∈L weightP (w).
Intuitively, the state labelling 	1sl(q) computes the proba-

bility that q is reached from an initial state, so if q is pumped
upwith all possibleword endings, this is themaximumpossi-
ble error introduced by the added word endings. This has the
following sources of imprecision: (1) the probability of some
words may be included twice, e.g. when L�

A(q) = {a, ab},
the probabilities of all words from {ab}.Σ∗ are included
twice in 	1sl(q) because {ab}.Σ∗ ⊆ {a}.Σ∗, and (2) 	1sl(q)

can also contain probabilities of words already accepted on
a run traversing q. The state labelling 	2sl deals with (1) by

considering the probability of the language L�

A(q).Σ∗, and
	3sl deals also with (2) by subtracting from the result of 	2sl
the probabilities of the words that pass through q and are
accepted.

The computation of the state labellings for the self-loop
reduction is done in a similar way as the computation of the
state labellings for the pruning reduction (cf. Sect. 4.3). For a
computation of weightP (L), one can use the same algorithm
as for PrP (L), only the final vector for PA P is set to 1. The
correctness of Algorithms 1 and 2 when instantiated using
the self-loop reduction is stated in the following lemma.

Lemma 9 For every x ∈ {1, 2, 3}, the functions reducesl,
errorsl, and labelxsl satisfyC1. Moreover, consider an NFAA,
a PA P , and let 	xsl = labelxsl(A,P) for x ∈ {1, 2, 3}. Then,
for each q ∈ Q[A], we have 	1sl(q) ≥ 	2sl(q) ≥ 	3sl(q).

Proof First, we prove the inequalities 	1sl(q) ≥ 	2sl(q) ≥
	3sl(q) for each q ∈ Q[A], whichwe then use to prove the first
part of the lemma. We start with the equality weightP (w) =
PrP (w.Σ∗), which follows from the fact that for each state
p of P the sum of probabilities of all words, when consider-
ing p as the only initial state of P , is 1. Then, we obtain the
equality

∑

w∈L�
A(q)

weightP (w) =
∑

w∈L�
A(q)

PrP (w.Σ∗),

which, in turn, implies

	1sl(q) = weightP (L�

A(q)) =
∑

w∈L�
A(q)

PrP
(
w.Σ∗)

≥ PrP
(
L�

A(q).Σ∗)= 	2sl(q).

(5)

For example, for L�

A(q) = {w,wa} where w ∈ Σ∗ and
a ∈ Σ , we have

123

134

Approximate reduction of finite automata for high-speed network intrusion detection 533

weightP (L�

A(q)) = weightP ({w,wa})
= weightP (w) + weightP (wa)

= PrP (w.Σ∗) + PrP (wa.Σ∗),
(6)

while

PrP
(
L�

A(q).Σ∗) = PrP
({w,wa}.Σ∗) = PrP

(
w.Σ∗) .

The inequality 	2sl ≥ 	3sl holds trivially.
Second, we prove that the functions reducesl, errorsl, and

labelxsl satisfy the properties of C1:

– C1(a): To show that errorsl(A, V , labelxsl(A,P)) ≥
dP (A, reducesl(A, V)), we prove that the inequality
holds for 	3sl = label3sl(A,P); the rest follows from
	1sl(q) ≥ 	2sl(q) ≥ 	3sl(q) proved above.
Consider some set of states V ⊆ Q[A] and the set
V ′ = min(�V �sl). We can estimate the symmetric dif-
ference of the languages of the original and the reduced
automaton as

L(A)� L(reducesl(A, V))

= L(A)� L(reducesl(A, V ′)) �def. of �sl�
= L(reducesl(A, V ′))\L(A)

�L(A) ⊆ L(reducesl(A, V ′))�
⊆

⋃

q∈V ′
L�

A(q).Σ∗\
⋃

q∈V ′
L�

A(q).LA(q).

�def. of reducesl�
(7)

The last inclusion holds because sl(A, V) adds self-loops
to the states in V , so the newly accepted words are for
sure those that traverse through V , and they are for sure
not those that could be accepted by going through V
before the reduction (but they could be accepted without
touching V , hence the inclusion). We can estimate the
probabilistic distance of A and reducesl(A, V) as

dP (A, reducesl(A, V))

≤ PrP

(⋃

q∈V ′
L�

A(q).Σ∗\
⋃

q∈V ′
L�

A(q).LA(q)

)

�(7)�

≤ PrP

(⋃

q∈V ′

(
L�

A(q).Σ∗\L�

A(q).LA(q)
))

�properties of union and set difference�
≤

∑

q∈V ′
PrP

(
L�

A(q).Σ∗\L�

A(q).LA(q)
)

�union bound�
=

∑

q∈V ′

(
PrP

(
L�

A(q).Σ∗) − PrP
(
L�

A(q).LA(q)
))

�prop. of Pr and the fact that L�

A(q).LA(q) ⊆ L�

A(q).Σ∗�
=

∑
{	3sl(q) | q ∈ min(�V �sl)}

�def. of 	3sl and V ′�
= errorsl(A, V , 	3sl). (8)

– C1(b): |reducesl(A, Q[A])| ≤ 1 because, from the defi-
nition, |reducesl(A, Q[A])| = |trim(sl(A, Q[A]))| ≤ 1.

– C1(c): reducesl(A,∅) = A since

reducesl(A,∅) = trim(sl(A,∅)) = A.

(We assume that A is trimmed at the input.) ��

5 Reduction of NFAs in network intrusion
detection systems

We have implemented our approach in a Python prototype
named Appreal (APProximate REduction of Automata and
Languages)6 and evaluated it on the use case of network
intrusion detection using Snort [50], a popular open-source
NIDS. The version of Appreal used for the evaluation in
the current paper is available as an artefact [11] for the
TACAS’18 artefact virtual machine [22].

5.1 Network traffic model

The reduction we describe in this paper is driven by a prob-
abilistic model representing a distribution over the words
from Σ∗, and the formal guarantees are also wrt this model.
We use learning to obtain a model of network traffic over the
8-bit ASCII alphabet at a given network point. Our model is
created from several gigabytes of network traffic from amea-
suring point of the CESNET Internet provider connected to a
100Gbps backbone link. (Unfortunately, we cannot provide
the traffic dump since it may contain sensitive data.)

Learning a PA representing the network traffic faithfully
is hard. The PA cannot be too specific—although the number
of different packets that can occur is finite, it is still extremely
large. (A conservative estimate assuming the most com-
mon scenario Ethernet/IPv4/TCP would still yield a number
over 210,000.) If we assigned nonzero probabilities only to
the packets from the dump (which are less than 220), the
obtained model would completely ignore virtually all pack-
ets that might appear on the network, and, moreover, the
model would also be very large (millions of states), making
it difficult to use in our algorithms. A generalization of the
obtained traffic is therefore needed.

A natural solution is to exploit results from the area of
PA learning, such as [10,51]. Indeed, we experimented with

6 https://github.com/vhavlena/appreal/tree/tacas18

123

135

534 M. Češka et al.

the use of Alergia [10], a learning algorithm that constructs
a PA from a prefix tree (where edges are labelled with multi-
plicities) by merging nodes that are “similar.” The automata
that we obtained were, however, too general. In particular,
the constructed automata destroyed the structure of network
protocols—the merging was too permissive and the general-
ization merged distant states, which introduced loops over a
very large substructure in the automaton. (Such a case usually
does not correspond to the design of network protocols.) As
a result, the obtained PAmore or less represented the Poisson
distribution, having essentially no value for us.

In Sect. 5.2, we focus on the detection of malicious traffic
transmitted over HTTP. We take advantage of this fact and
create a PA representing the traffic while taking into account
the structure of HTTP. We start by manually creating a DFA
that represents the high-level structure of HTTP. Then, we
proceed by feeding 34,191 HTTP packets from our sample
into the DFA, at the same time taking notes about how many
times every state is reached and how many times every tran-
sition is taken. The resulting PA PHTTP (of 52 states) is then
constructed from the DFA and the labels in the obvious way.

The described method yields automata that are much
better than those obtained using Alergia in our exper-
iments. A disadvantage of the method is that it is only
semi-automatic—the basic DFA needed to be provided by
an expert. We have yet to find an algorithm that would suit
our needs for learning more general network traffic.

5.2 Evaluation

We start this section by introducing the experimental setting,
namely, the integration of our reduction techniques into the
tool chain implementing efficient regex matching, the con-
crete settings of Appreal, and the evaluation environment.
Afterwards, we discuss the results evaluating the quality of
the obtained approximate reductions as well as of the pro-
vided error bounds. Finally, we present the performance of
our approach and discuss its key aspects. We selected the
most interesting results demonstrating the potential as well
as the limitations of our approach.

General setting. Snort detects malicious network traffic
based on rules that contain conditions. The conditions take
into consideration, among others, network addresses, ports,
or Perl compatible regular expressions (PCREs) that the
packet payload should match. In our evaluation, we select
a subset of Snort rules, extract the PCREs from them, and
use Netbench [45] to transform them into a single NFA A.
Before applying Appreal, we use the state-of-the-art NFA
reduction tool Reduce [38] to reduce A. Reduce per-
forms a language-preserving reduction of A using advanced
variants of simulation [37]. (In the experiment reported in
Table 3, we skip the use of Reduce at this step as discussed

later in the performance evaluation.) The automaton ARed

obtained as the result of Reduce is the input of Appreal,
which performs one of the approximate reductions fromSect.
4 wrt the traffic model PHTTP, yielding AApp. After the
approximate reduction, we, one more time, use Reduce and
obtain the result A′.

Settings of Appreal In the use case of NIDS pre-filtering,
it may be important to never introduce a false negative, i.e.
to never drop a malicious packet. Therefore, we focus our
evaluation on the self-loop reduction (Sect. 4.4). In particular,
we use the state labelling function label2sl, since it provides a
good trade-off between the precision and the computational
demands. (Recall that the computation of label2sl can exploit
the “tentacle” structure of the NFAs we work with.) We give
more attention to the size-driven reduction (Sect. 4.1) since,
in our setting, a bound on the available FPGA resources is
typically given and the task is to create an NFA with the
smallest error that fits inside. The order �A,	2sl

over states

used in Sect. 4.1 and Sect. 4.2 is defined as s �A,	2sl
s′ ⇔

	2sl(s) ≤ 	2sl(s
′).

Evaluation environment All experiments ran on a 64-bit
Linux Debian workstation with the Intel Core(TM) i5-661
CPU running at 3.33GHz with 16GiB of RAM.

Description of tables In the caption of every table, we pro-
vide the name of the input file (in the directory regexps/
tacas18/ of the repository of Appreal) with the selection
of Snort regexes used in the particular experiment, together
with the type of the reduction (size- or error-driven). All
reductions are over-approximating (self-loop reduction). We
further provide the size of the input automaton |A|, the size
after the initial processing by Reduce (|ARed|), and the time
of this reduction (time(Reduce)). Finally, we list the times of
computing the state labelling label2sl onARed (time(label2sl)),
the exact probabilistic distance (time(Exact)), and also the
number of look-up tables (LUTs(ARed)) consumed on the
targeted FPGA (Xilinx Virtex 7 H580T) when ARed was
synthesized (more on this in Sect. 5.3). The meaning of the
columns in the tables is the following:

k/ε is the parameter of the reduction. In partic-
ular, k is used for the size-driven reduction
and denotes the desired reduction ratio k =

n
|ARed| for an input NFA ARed and the

desired size of the output n. On the other
hand, ε is the desired maximum error on
the output for the error-driven reduction.

|AApp| shows the number of states of the automa-
ton AApp after the reduction by Appreal
and the time the reduction took. (We omit it
when it is not interesting.)

123

136

Approximate reduction of finite automata for high-speed network intrusion detection 535

Table 1 Results for the
http-malicious regex,
|Amal| = 249, |ARed

mal| = 98,
time(Reduce) = 3.5s,
time(label2sl) = 38.7s,
time(Exact) = 3.8–6.5 s, and
LUTs(ARed

mal) = 382

k |AApp
mal| |A′

mal| Error Exact Traffic LUTs
bound error error

(a) Size-driven reduction

0.1 9 (0.65 s) 9 (0.4 s) 0.0704 0.0704 0.0685 –

0.2 19 (0.66 s) 19 (0.5 s) 0.0677 0.0677 0.0648 –

0.3 29 (0.69 s) 26 (0.9 s) 0.0279 0.0278 0.0598 154

0.4 39 (0.68 s) 36 (1.1 s) 0.0032 0.0032 0.0008 –

0.5 49 (0.68 s) 44 (1.4 s) 2.8e−05 2.8e−05 4.1e−06 –

0.6 58 (0.69 s) 49 (1.7 s) 8.7e−08 8.7e−08 0.0 224

0.8 78 (0.69 s) 75 (2.7 s) 2.4e−17 2.4e−17 0.0 297

ε |AApp
mal| |A′

mal| Error Exact Traffic
bound error error

(b) Error-driven reduction

0.08 3 3 0.0724 0.0724 0.0720

0.07 4 4 0.0700 0.0700 0.0683

0.04 35 32 0.0267 0.0212 0.0036

0.02 36 33 0.0105 0.0096 0.0032

0.001 41 38 0.0005 0.0005 0.0003

1e−04 47 41 7.7e−05 7.7e−05 1.2e−05

1e−05 51 47 6.6e−06 6.6e−06 0.0

|A′| contains the number of states of the NFAA′
obtained after applying Reduce on AApp

and the time used by Reduce at this step
(omitted when not interesting).

Error bound shows the estimation of the error of A′ as
determined by the reduction itself, i.e. it is
the probabilistic distance computed by the
corresponding function error from Sect. 4.

Exact error contains the values of dPHTTP(A,A′) that
we computed after the reduction in order
to evaluate the precision of the result given
in Error bound. The computation of this
value is very expensive (time(Exact)) since
it inherently requires determinization of the
whole automaton A. We do not provide it
in Table 3 (presenting the results for the
automaton Abd with 1,352 states) because
the determinization ran out ofmemory. (The
step is not required in the reduction pro-
cess.)

Traffic error shows the error that we obtained when
compared A′ with A on an HTTP traffic
sample, in particular the ratio of packets
misclassified by A′ to the total number of
packets in the sample (242,468). Compar-
ing Exact error with Traffic error gives
us a feedback about the fidelity of the traf-

fic model PHTTP. We note that there are
no guarantees on the relationship between
Exact error and Traffic error.

LUTs is the number of LUTs consumed by A′
when synthesized into the target FPGA.
Hardware synthesis is a costly step, there-
fore we provide this value only for selected
interesting NFAs.

5.2.1 Approximation errors

Table 1 presents the results of the self-loop reduction for the
NFA Amal describing regexes from http-malicious.
We can observe that the differences between the upper
bounds on the probabilistic distance and its real value are
negligible (typically in the order of 10−4 or less).We can also
see that the probabilistic distance agrees with the traffic error.
This indicates a good quality of the trafficmodel employed in
the reduction process. Further, we can see that our approach
can provide useful trade-offs between the reduction error and
the reduction factor. Finally, Table 1b shows that a significant
reduction is obtained when the error threshold ε is increased
from 0.04 to 0.07.

Table 2 presents the results of the size-driven self-
loop reduction for NFA Aatt describing http-attacks
regexes. We can observe that the error bounds provide again
a very good approximation of the real probabilistic distance.

123

137

536 M. Češka et al.

Table 2 Results for the http-attacks regex, size-driven reduction,
|Aatt| = 142, |ARed

att| = 112, time(Reduce) = 7.9s, time(label2sl) =
28.3min, time(Exact) = 14.0–16.4min

k |AApp
att| |A′

att| Error Exact Traffic
bound error error

0.1 11 (1.1s) 5 (0.4s) 1.0 0.9972 0.9957

0.2 22 (1.1s) 14 (0.6s) 1.0 0.8341 0.2313

0.3 33 (1.1s) 24 (0.7s) 0.081 0.0770 0.0067

0.4 44 (1.1s) 37 (1.6s) 0.0005 0.0005 0.0010

0.5 56 (1.1s) 49 (1.2s) 3.3e−06 3.3e−06 0.0010

0.6 67 (1.1s) 61 (1.9s) 1.2e−09 1.2e−09 8.7e−05

0.7 78 (1.1s) 72 (2.4s) 4.8e−12 4.8e−12 1.2e−05

0.9 100 (1.1s) 93 (4.7s) 3.7e−16 1.1e−15 0.0

On the other hand, the difference between the probabilistic
distance and the traffic error is larger than that for Amal.
Since all experiments use the same probabilistic automaton
and the same traffic, this discrepancy is accounted to the dif-
ferent set of packets that are incorrectly accepted by ARed

att.
If the probability of these packets is adequately captured in
the traffic model, the difference between the distance and
the traffic error is small and vice versa. This also explains
an even larger difference in Table 3 (presenting the results
for Abd constructed from http-backdoor regexes) for
k ∈ 〈0.2, 0.4〉. Here, the traffic error is very small and caused
by a small set of packets (approx. 70), whose probability is
not correctly captured in the traffic model. Despite this prob-
lem, the results clearly show that our approach still provides
significant reductions while keeping the traffic error small:
about a fivefold reduction is obtained for the traffic error
0.03% and a tenfold reduction is obtained for the traffic error
6.3%. We discuss the practical impact of such a reduction in
Sect. 5.3.

5.2.2 Performance of the approximate reduction

In all our experiments (Tables 1, 2, 3), we can observe that
the most time-consuming step of the reduction process is
the computation of state labellings. (It takes at least 90% of
the total time.) The crucial observation is that the structure
of the NFAs fundamentally affects the performance of this
step. Although after Reduce, the size of Amal is very sim-
ilar to the size of Aatt, computing label2sl takes more time
(28.3min vs. 38.7 s). The key reason behind this slowdown
is the determinization (or alternatively disambiguation) pro-
cess required by the product construction underlying the state
labelling computation (cf. Sect. 4.4). For Aatt, the process
results in a significantly larger product when compared to the
product forAmal. The size of the product directly determines
the time and space complexity of solving the linear equation
system required for computing the state labelling.

Table 3 Results for http-backdoor, size-driven reduction,
|Abd| = 1, 352, time(label2sl) = 19.9min, LUTs(ARed

bd) = 2, 266

k |AApp
bd | |A′

bd| Error Traffic LUTs
bound error

0.1 135 (1.2m) 8 (2.6 s) 1.0 0.997 202

0.2 270 (1.2m) 111 (5.2 s) 0.0012 0.0631 579

0.3 405 (1.2m) 233 (9.8 s) 3.4e−08 0.0003 894

0.4 540 (1.3m) 351 (21.7 s) 1.0e−12 0.0003 1,063

0.5 676 (1.3m) 473 (41.8 s) 1.2e−17 0.0 1,249

0.7 946 (1.4m) 739 (2.1m) 8.3e−30 0.0 1,735

0.9 1216 (1.5m) 983 (5.6m) 1.3e−52 0.0 2,033

As explained in Sect. 4, the computation of the state
labelling label2sl can exploit the “tentacle” structure of the
NFAs appearing inNIDSes and thus can be done component-
wise. On the other hand, our experiments reveal that the
use of Reduce typically breaks this structure and thus the
component-wise computation cannot be effectively used.
For the NFA Amal, this behaviour does not have any
major performance impact as the determinization leads to
a moderate-sized automaton and the state labelling compu-
tation takes less than 40s. On the other hand, this behaviour
has a dramatic effect for the NFAAatt. By disabling the ini-
tial application of Reduce and thus preserving the original
structure of Aatt, we were able to speed up the state label
computation from 28.3 to 1.5min. Note that other steps of
the approximate reduction took a similar time as before dis-
abling Reduce and also that the trade-offs between the error
and the reduction factor were similar. Surprisingly, disabling
Reduce caused that the computation of the exact probabilis-
tic distance became computationally infeasible because the
determinization ran out of memory.

Due to the size of the NFA Abd, the impact of disabling
the initial application of Reduce is even more fundamen-
tal. In particular, computing the state labelling took only
19.9min, in contrast to running out of memory when the
Reduce is applied in the first step. (Therefore, the input
automaton is not processed by Reduce in Table 3; we still
give the number of LUTs of its reduced version for compari-
son, though.) Note that the size ofAbd also slows down other
reduction steps (the greedy algorithm and the final Reduce
reduction). We can, however, clearly see that computing the
state labelling is still the most time-consuming step of the
process.

5.3 The real impact in an FPGA-accelerated NIDS

To demonstrate the practical usefulness and impact of the
proposed approximation techniques, we employ the reduced
automata in a real use case from the area of HW-accelerated

123

138

Approximate reduction of finite automata for high-speed network intrusion detection 537

deep packet inspection. We consider the framework of [36]
implementing a high-speed NIDS pre-filter in an FPGA. The
crucial challenge is to obtain a pre-filter with a sufficiently
small false positive rate (and no false negatives), while being
able to handle the traffic of current networks operating on
100 Gbps and beyond. The implementation of NFAs per-
forming regex matching in FPGAs uses two types of HW
resources: LUTs, which are used to build the combinational
circuit representing the NFA transition function, and flip-
flops, representing NFA states. In our use case, we omit the
analysis of flip-flop consumption because it is always domi-
nated by the LUT consumption.

In our setting, the amount of resources available for the
FPGA-based regex matching engine is 15,000 LUTs and the
frequency of the engine is 200MHz using a 32-bit-wide data
path. As explained in [36], the engine containing a single unit
(i.e. the singleNFA implementation) can achieve the through-
put of 6.4Gbps (200MHz × 32b). Therefore, 16 units are
required for the desired link speed of 100Gbps and 63 units
are needed to handle 400Gbps. With the given amount of
LUTs, the size of a single NFA is thus bounded by 937
LUTs (15,000/16) for 100Gbps and 238 LUTs for 400Gbps,
respectively. These bounds directly limit the complexity of
regexes the engine can handle.

We now analyse the resource consumption of the match-
ing engine for two automata, http-backdoor (ARed

bd) and
http-malicious (ARed

mal), and evaluate the impact of the
reduction techniques. Recall that the automata represent two
important sets of know network attacks from Snort [50].

– 100Gbps: For this speed, ARed
mal can be used without

any approximate reduction as it is small enough (it has
382 LUTs) to fit in the available space. On the other hand,
ARed

bd without the approximate reduction is way too large
to fit. (It has 2,266 LUTs and thus at most 6 units fit
inside the available space, yielding the throughput of only
38.4Gbps, which is unacceptable.) The column LUTs in
Table 3 shows that using our framework, we are able to
reduceARed

bd such that it uses 894 LUTs (for k = 0.3), and
so all of the 16 needed units fit into the FPGA, yielding
the throughput over 100Gbps and the theoretical error
bound of a false positive ≤ 3.4 × 10−8 wrt the network
traffic model PHTTP.

– 400Gbps: Regex matching at this speed is extremely
challenging. In the case of ARed

bd , the reduction k = 0.1
is required to fit 63 units in the available space. As such
a reduction has error bound almost 1, this solution is
not useful due to a prohibitively high false positive rate.
The situation is better for ARed

mal. In the exact version,
at most 39 units can fit inside the FPGA with the maxi-
mum throughput of 249.6Gbps. On the other hand, when
using our reduced automata, we are able to place 63 units

into the FPGA, each of the size 224 LUTs (k = 0.6), and
achieve a throughput of over 400 Gbps with the theoret-
ical error bound of a false positive ≤ 8.7× 10−8 wrt the
model PHTTP.

6 Conclusion

We have proposed a novel approach for approximate reduc-
tion of NFAs used in network traffic filtering. Our approach
is based on a proposal of a probabilistic distance of the origi-
nal and reduced automaton using a probabilistic model of the
input network traffic, which characterizes the significance of
particular packets. We characterized the computational com-
plexity of approximate reductions based on the described
distance and proposed a sequence of heuristics allowing one
to perform the approximate reduction in an efficient way. Our
experimental results are quite encouraging and show that we
can often achieve a very significant reduction for a negligi-
ble loss of precision. We showed that using our approach,
FPGA-accelerated network filtering on large traffic speeds
can be applied on regexes of malicious traffic where it could
not be applied before.

In the future, we plan to investigate other approximate
reductions of theNFAs,maybe using some variant of abstrac-
tion from abstract regularmodel checking [7], adapted for the
given probabilistic setting. Another important issue for the
future is to develop better ways of learning a suitable proba-
bilistic model of the input traffic.

Acknowledgements We thank Jan Kořenek, Vlastimil Košař, and
Denis Matoušek for their help with translating regexes into automata
and synthesis of FPGA designs, and Martin Žádník for providing us
with the backbone network traffic. We thank Stefan Kiefer for help-
ing us proving the PSPACE part of Lemma 1 and Petr Peringer for
testing our artefact. We also thank the anonymous reviewers for their
useful comments, which improved the quality of the paper. The work
on this paper was supported by the Czech Science Foundation project
16-24707Y, the IT4IXS: IT4Innovations Excellence in Science project
(LQ1602), and the FIT BUT internal project FIT-S-17-4014.

References

1. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/
0890-5401(87)90052-6

2. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D.,Worrell,
J.: Markov chains and unambiguous Büchi automata. In: CAV’16,
pp. 23–42. Springer (2016)

3. Becchi, M., Crowley, P.: A hybrid finite automaton for practical
deep packet inspection. In: CoNEXT’07, p. 1. ACM (2007)

4. Becchi,M., Crowley, P.: An improved algorithm to accelerate regu-
lar expression evaluation. In: ANCS’07, pp. 145–154. ACM (2007)

5. Becchi, M., Wiseman, C., Crowley, P.: Evaluating regular expres-
sion matching engines on network and general purpose processors.
In: Proceedings of the 5th ACM/IEEE Symposium on Architec-

123

139

538 M. Češka et al.

tures for Networking and Communications Systems, ANCS ’09,
pp. 30–39. ACM (2009)

6. Benedikt, M., Lenhardt, R., Worrell, J.: Model checking
Markov chains against unambiguous Büchi automata. CoRR
arXiv:1405.4560v2 (2016)

7. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract
regular (tree) model checking. STTT 14(2), 167–191 (2012)

8. Brodie,B.C., Taylor,D.E., Cytron,R.K.:A scalable architecture for
high-throughput regular-expression patternmatching. In: ISCA’06,
pp. 191–202. IEEE Computer Society (2006)

9. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM
Trans. Comput. Log. 4(2), 181–206 (2003)

10. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars
by means of a state merging method. In: Proceedings of the Second
International Colloquium on Grammatical Inference and Applica-
tions, ICGI ’94, pp. 139–152. Springer (1994)

11. Češka, M., Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Approx-
imate reduction of finite automata for high-speed network intru-
sion detection. In: Figshare (2018). https://doi.org/10.6084/m9.
figshare.5907055

12. Češka, M., Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Approxi-
mate reduction of finite automata for high-speed network intrusion
detection. In: Proceedings of TACAS’18, LNCS, vol. 10806.
Springer (2018)

13. Champarnaud, J., Coulon, F.: NFA reduction algorithms by means
of regular inequalities. Theor. Comput. Sci. 327(3), 241–253
(2004)

14. Clark, C.R., Schimmel, D.E.: Efficient reconfigurable logic cir-
cuits for matching complex network intrusion detection patterns.
In: FPL’03, Lecture Notes in Computer Science, vol. 2778, pp.
956–959. Springer (2003)

15. Clemente, L.: Büchi automata can have smaller quotients. In:
ICALP’11, Lecture Notes in Computer Science, vol. 6756, pp.
258–270. Springer (2011)

16. Csanky, L.: Fast parallel matrix inversion algorithms. In: 16th
Annual Symposium on Foundations of Computer Science, pp. 11–
12 (1975). https://doi.org/10.1109/SFCS.1975.14

17. Deza,M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin
(2009)

18. Etessami, K.: A hierarchy of polynomial-time computable simu-
lations for automata. In: CONCUR 2002—Concurrency Theory,
13th International Conference, Brno, Czech Republic, August 20-
23, 2002, Proceedings, Lecture Notes in Computer Science, vol.
2421, pp. 131–144. Springer (2002)

19. Fortune, S., Wyllie, J.: Parallelism in random access machines. In:
Proceedings of the Tenth Annual ACM Symposium on Theory of
Computing, STOC ’78, pp. 114–118. ACM, New York, NY, USA
(1978). https://doi.org/10.1145/800133.804339

20. Gange, G., Ganty, P., Stuckey, P.J.: Fixing the state budget: approx-
imation of regular languages with small DFAs. In: ATVA’17,
Lecture Notes in Computer Science, vol. 10482, pp. 67–83.
Springer (2017)

21. Gawrychowski, P., Jez, A.: Hyper-minimisation made efficient. In:
MFCS’09, LectureNotes in Computer Science, vol. 5734, pp. 356–
368. Springer (2009)

22. Hartmanns, A., Wendler, P.: TACAS 2018 artifact evaluation VM.
In: Figshare (2018). https://doi.org/10.6084/m9.figshare.5896615

23. Hogben, L.: Handbook of Linear Algebra, 2nd edn. CRC Press,
Boca Raton (2013)

24. Hopcroft, J.E.: An N log N algorithm for minimizing states in a
finite automaton. Technical report (1971)

25. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intru-
sion detection with reconfigurable hardware. In: FCCM’02, pp.
111–120. IEEE Computer Society (2002)

26. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM
J. Comput. 22(6), 1117–1141 (1993)

27. Kaštil, J., Kořenek, J., Lengál, O.: Methodology for fast pattern
matching by deterministic finite automaton with perfect hashing.
In: 2009 12th Euromicro Conference on Digital System Design,
Architectures, Methods and Tools, pp. 823–829 (2009)

28. Kořenek, J., Kobierský, P.: Intrusion detection system intended for
multigigabit networks. In: 2007 IEEE Design and Diagnostics of
Electronic Circuits and Systems, pp. 1–4 (2007)

29. Kumar, S., Chandrasekaran, B., Turner, J.S., Varghese, G.: Curing
regular expressions matching algorithms from insomnia, amnesia,
and acalculia. In: ANCS’07, pp. 155–164. ACM (2007)

30. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.S.:
Algorithms to accelerate multiple regular expressions matching
for deep packet inspection. In: SIGCOMM’06, pp. 339–350. ACM
(2006)

31. Kumar, S., Turner, J.S., Williams, J.: Advanced algorithms for
fast and scalable deep packet inspection. In: ANCS’06, pp. 81–
92. ACM (2006)

32. Liu, C., Wu, J.: Fast deep packet inspection with a dual finite
automata. IEEE Trans. Comput. 62(2), 310–321 (2013)

33. Luchaup, D., DeCarli, L., Jha, S., Bach, E.: Deep packet inspection
with DFA-trees and parametrized language overapproximation. In:
INFOCOM’14, pp. 531–539. IEEE (2014)

34. Malcher, A.: Minimizing finite automata is computationally hard.
Theor. Comput. Sci. 327(3), 375–390 (2004)

35. Maletti, A., Quernheim, D.: Optimal hyper-minimization. CoRR
arXiv:1104.3007 (2011)

36. Matoušek, D., Kořenek, J., Puš, V.: High-speed regular expression
matching with pipelined automata. In: 2016 International Con-
ference on Field-Programmable Technology (FPT), pp. 93–100
(2016)

37. Mayr, R., Clemente, L.: Advanced automata minimization. In:
POPL’13, Transactions on Computer Logic, pp. 63–74. ACM
(2013)

38. Mayr, R., et al.: Reduce: A tool for minimizing nondeterminis-
tic finite-word and Büchi automata. http://languageinclusion.org/
doku.php?id=tools (2017). Accessed 30 Sept 2017

39. Mitra, A., Najjar, W.A., Bhuyan, L.N.: Compiling PCRE to FPGA
for accelerating SNORT IDS. In: ANCS’07, pp. 127–136. ACM
(2007)

40. Mohri, M.: A disambiguation algorithm for finite automata and
functional transducers. In: CIAA’12, pp. 265–277. Springer (2012)

41. Mohri, M.: Edit-distance of weighted automata. In: CIAA’02, Lec-
ture Notes in Computer Science, vol. 2608, pp. 1–23. Springer
(2002)

42. Paige, R., Tarjan, R.E.: Three partition refinement algorithms.
SIAM J. Comput. 16(6), 973–989 (1987)

43. Papadimitriou, C.M.: Computational Complexity. Addison-
Wesley, Reading (1994)

44. Parker, A.J., Yancey, K.B., Yancey, M.P.: Regular language dis-
tance and entropy. CoRR arXiv:1602.07715 (2016)

45. Puš, V., Tobola, J., Košař, V., Kaštil, J., Kořenek, J.: Netbench:
framework for evaluationof packet processing algorithms. In: Sym-
posium On Architecture For Networking And Communications
Systems pp. 95–96 (2011)

46. Shützenberger, M.: On the definition of a family of automata. Inf.
Control 4, 245–270 (1961)

47. Sidhu, R.P.S., Prasanna, V.K.: Fast regular expression matching
using FPGAs. In: FCCM’01, pp. 227–238. IEEEComputer Society
(2001)

48. Solodovnikov, V.I.: Upper bounds on the complexity of solving
systems of linear equations. J. Sov.Math. 29(4), 1482–1501 (1985)

49. Tan, L., Sherwood, T.: A high throughput string matching archi-
tecture for intrusion detection and prevention. In: ISCA’05, pp.
112–122. IEEE Computer Society (2005)

50. The Snort Team: Snort. http://www.snort.org. Accessed 30 Sept
2017

123

140

Approximate reduction of finite automata for high-speed network intrusion detection 539

51. Thollard, F., Clark, A.: Learning stochastic deterministic regu-
lar languages. In: G. Paliouras, Y. Sakakibara (eds.) Grammatical
Inference: Algorithms and Applications: 7th International Col-
loquium, ICGI 2004, Athens, Greece, October 11–13, 2004.
Proceedings, pp. 248–259. SpringerBerlinHeidelberg,Berlin,Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30195-0_22

52. Vardi, M.Y.: Automatic verification of probabilistic concurrent
finite state programs. In: SFCS ’85, pp. 327–338. IEEE

53. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and
memory-efficient regular expression matching for deep packet
inspection. In: ANCS’06, pp. 93–102. ACM (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

141

Journal of Automated Reasoning (2021) 65:971–999
https://doi.org/10.1007/s10817-021-09597-w

Automata Terms in a Lazy WSkS Decision Procedure

Vojtěch Havlena1 · Lukáš Holík1 ·Ondřej Lengál1 · Tomáš Vojnar1

Received: 15 April 2020 / Accepted: 20 August 2020 / Published online: 3 August 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We propose a lazy decision procedure for the logic WSkS. It builds a term-based symbolic
representation of the state space of the tree automaton (TA) constructed by the classical
WSkS decision procedure. The classical decision procedure transforms the symbolic rep-
resentation into a TA via a bottom-up traversal and then tests its language non-emptiness,
which corresponds to satisfiability of the formula. On the other hand, we start evaluating
the representation from the top, construct the state space on the fly, and utilize opportunities
to prune away parts of the state space irrelevant to the language emptiness test. In order to
do so, we needed to extend the notion of language terms (denoting language derivatives)
used in our previous procedure for the linear fragment of the logic (the so-called WS1S) into
automata terms. We implemented our decision procedure and identified classes of formulae
on which our prototype implementation is significantly faster than the classical procedure
implemented in the Mona tool.

Keywords WSkS · Tree automata · Automata term · Finite automata ·Monadic
second-order logic

1 Introduction

Weak monadic second-order logic of k successors (WSkS) is a logic for describing regular
properties of finite k-ary trees. In addition to talking about trees, WSkS can also encode
complex properties of a rich class of general graphs by referring to their tree backbones [28].
WSkS offers extreme succinctness for the price of non-elementary worst-case complexity.
As noticed first by the authors of [16] in the context of WS1S (a restriction that speaks
about finite words only), the trade-off between complexity and succinctnessmay, however, be
turned significantly favourable inmany practical cases through a use of clever implementation
techniques and heuristics. Such techniques were then elaborated in the tool Mona [12,22],
the best-known implementation of decision procedures for WS1S and WS2S. Mona has
found numerous applications in verification of programs with complex dynamic linked data
structures [8,25,26,28,42], string programs [34], array programs [43], parametric systems [3,

B Ondřej Lengál
lengal@fit.vutbr.cz

1 IT4I Centre of Excellence, Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 00 Brno, Czech Republic

123142

972 V. Havlena et al.

4,6], distributed systems [24,32], hardware verification [2], automated synthesis [18,20,31],
and even computational linguistics [29].

Despite the extensive research and engineering effort invested into Mona, due to which
it still offers the best all-around performance among existing WS1S/WS2S decision proce-
dures, it is, however, easy to reach its scalability limits. Particularly, Mona implements the
classical WS1S/WS2S decision procedures that build a word/tree automaton representing
models of the given formula and then check emptiness of the automaton’s language. The
non-elementary complexity manifests in that the size of the automaton is prone to explode,
which is caused mainly by the repeated determinisation (needed to handle negation and alter-
nation of quantifiers) and synchronous product construction (used to handle conjunctions and
disjunctions). Users of WSkS are then forced to either find workarounds, such as in [26], or,
often restricting the input of their approach, give up using WSkS altogether [38].

As in Mona, we further consider WS2S only (this does not change the expressive power
of the logic since k-ary trees can be easily encoded into binary ones).We revisit the use of tree
automata (TAs) in the WS2S decision procedure and obtain a new decision procedure that
is much more efficient in certain cases. It is inspired by works on antichain algorithms for
efficient testing of universality and language inclusion of finite automata [1,5,11,39], which
implement the operations of testing emptiness of a complement (universality) or emptiness
of a product of one automaton with the complement of the other one (language inclusion) via
an on-the-fly determinisation and product construction. The on-the-fly approach allows one
to achieve significant savings by pruning the state space that is irrelevant for the language
emptiness test. The pruning is achieved by early termination when detecting non-emptiness
(which represents a simple form of lazy evaluation), and subsumption (which basically allows
one to disregard proof obligations that are implied by other ones). Antichain algorithms
and their generalizations have shown great efficiency improvements in applications such as
abstract regular model checking [5], shape analysis [17], LTL model checking [40], or game
solving [41].

Our work generalizes the above mentioned approaches of on-the-fly automata construc-
tion, subsumption, and lazy evaluation for the needs of decidingWS2S. In our procedure, the
TAs that are constructed explicitly by the classical procedure are represented symbolically by
the so-called automata terms. More precisely, we build automata terms for subformulae that
start with a quantifier (and for the top-level formula) only—unlike the classical procedure,
which builds a TA for every subformula. Intuitively, automata terms specify the set of leaf
states of the TAs of the appropriate (sub)formulae. The leaf states themselves are then rep-
resented by state terms, whose structure records the automata constructions (corresponding
to Boolean operations and quantification on the formula level) used to create the given TAs
from base TAs corresponding to atomic formulae. The leaves of the terms correspond to
states of the base automata. Automata terms may be used as state terms over which further
automata terms of an even higher level are built. Non-leaf states, the transition relation, and
root states are then given implicitly by the transition relations of the base automata and the
structure of the state terms.

Our approach is a generalization of our earlier work [13] on WS1S. Although the term
structure and the generalized algorithm may seem close to [13], the reasoning behind it is
significantly more involved. Particularly, [13] is based on defining the semantics (language)
of terms as a function of the semantics of their sub-terms. For instance, the semantics of the
term {q1, . . . , qn} is defined as the union of languages of the state terms q1, . . . , qn , where the
language of a state of the base automaton consists of the words accepted at that state. With
TAs, it is, however, not meaningful to talk about trees accepted from a leaf state, instead,
we need to talk about a given state and its context, i.e., other states that could be obtained

123 143

Automata Terms in a Lazy WSkS Decision Procedure 973

via a bottom-up traversal over the given set of symbols. Indeed, trees have multiple leafs,
which may be accepted by a number of different states, and so a tree is accepted from a set
of states, not from any single one of them alone. We therefore cannot define the semantics of
a state term as a tree language, and so we cannot define the semantics of an automata term as
the union of the languages of its state sub-terms. This problem seems critical at first because
without a sensible notion of the meaning of terms, a straightforward generalization of the
algorithm of [13] to trees is not possible. The solution we present here is based on defining
the semantics of terms not as functions of languages of their sub-terms, but, instead, via the
automata constructions they represent.

Unlike the classical decision procedure, which builds a TA corresponding to a formula
bottom-up, i.e. from the atomic formulae, we build automata terms top-down, i.e., from
the top-level formula. This approach offers a lot of space for various optimisations. Most
importantly, we test non-emptiness of the terms on the fly during their construction and
construct the terms lazily. In particular, we use short-circuiting for dealing with the ∧ and
∨ connectives and early termination with possible continuation when implementing the
fixpoint computations neededwhen dealingwith quantifiers. That is,we terminate the fixpoint
computation whenever the emptiness can be decided in the given computation context and
continuewith the computationwhen such a need appears once the context is changed on some
higher-level term. Further, we define a notion of subsumption of terms, which, intuitively,
compares the terms with respect to the sets of trees they represent, and allows us to discard
terms that are subsumed by others.

We have implemented our approach in a prototype tool. When experimenting with it, we
have identified multiple parametric families of WS2S formulae where our implementation
can—despite its prototypical form—significantly outperformMona. We find this encourag-
ing since there is a lot of space for further optimisations and, moreover, our implementation
can be easily combined with Mona by treating automata constructed by Mona in the same
way as if they were obtained from atomic predicates.

This paper is an extended version of the paper with the same name that appeared in
the proceedings of CADE-27 [19], containing more examples and complete proofs of the
presented lemmas and theorems, as well as one more optimization of our efficient decision
procedure (cf. Sect. 4.5).

2 Preliminaries

In this section, we introduce basic notation, trees, and tree automata, and give a quick intro-
duction to the weak monadic second-order logic of two successors (WS2S) and its classical
decision procedure. We give the minimal syntax of WS2S only; see, e.g., Comon et al. [9]
for more details.

2.1 Basics, Trees, and Tree Automata

Let Σ be a finite set of symbols, called an alphabet. The set Σ∗ of words over Σ consists
of finite sequences of symbols from Σ . The empty word is denoted by ε, with ε /∈ Σ . The
concatenation of two words u and v is denoted by u.v or simply uv. The domain of a partial
function f : X → Y is the set dom(f) = {x ∈ X | ∃y : x �→ y ∈ f }, its image is the
set img(f) = {y ∈ Y | ∃x : x �→ y ∈ f }, and its restriction to a set Z is the function

123144

974 V. Havlena et al.

(a) A tree τ over (b) A tree μ used for the derivative (c) A tree τ from the derivative
of τ with respect to {μ}

Fig. 1 An example of the derivative. Consider trees τ and μ over the alphabet Σ = {a, b, c} given in (a)
and (b) respectively. The derivative of τ with respect to {μ} is the set {τ, τ ′} where τ ′ is given in (c)

f|Z = f ∩ (Z × Y). For a binary operator •, we write A [•] B to denote the augmented
product {a • b | (a, b) ∈ A × B} of A and B.

We will consider ordered binary trees. We call a word p ∈ {L,R}∗ a tree position and p.L
and p.R its left and right child, respectively. Given an alphabet Σ such that ⊥ /∈ Σ , a tree
overΣ is a finite partial function τ : {L,R}∗ → (Σ∪{⊥}) such that (i) dom(τ) is non-empty
and prefix-closed, and (ii) for all positions p ∈ dom(t), either τ(p) ∈ Σ and p has both
children, or τ(p) = ⊥ and p has no children, in which case it is called a leaf. We let leaf (τ)

be the set of all leaves of τ . The position ε is called the root, and we write Σ to denote
the set of all trees over Σ . (Intuitively, the [·] operator can be seen as a generalization of
the Kleene star to tree languages. The symbol is the Chinese character for a tree.) We
abbreviate {a} as a for a ∈ Σ .

The sub-tree of τ rooted at a position p ∈ dom(τ) is the tree τ ′ = {p′ �→ τ(p.p′) |
p.p′ ∈ dom(τ)}. A prefix of τ is a tree τ ′ such that τ ′|dom(τ ′)\leaf (τ ′) ⊆ τ|dom(τ)\leaf (τ). The

derivative of a tree τ with respect to a set of trees S ⊆ Σ is the set τ − S of all prefixes
τ ′ of τ such that, for each position p ∈ leaf (τ ′), the sub-tree of τ at p either belongs to S
or it is a leaf of τ . Intuitively, τ − S are all prefixes of τ obtained from τ by removing some
of the sub-trees in S. The derivative of a set of trees T ⊆ Σ with respect to S is the set⋃

τ∈T (τ − S). See Fig. 1 for an example of the derivative.
A (binary) tree automaton (TA) over an alphabetΣ is a quadrupleA = (Q, δ, I , R)where

Q is a finite set of states, δ : Q2 ×Σ → 2Q is a transition function, I ⊆ Q is a set of leaf
states, and R ⊆ Q is a set of root states. We use (q, r)−{a}→s to denote that s ∈ δ((q, r), a).
A run ofA on a tree τ is a total map ρ : dom(τ) → Q such that if τ(p) = ⊥, then ρ(p) ∈ I ,
else (ρ(p.L), ρ(p.R))−{a}→ρ(p) with a = τ(p). The run ρ is accepting if ρ(ε) ∈ R, and
the language L (A) of A is the set of all trees on which A has an accepting run. A is
deterministic if |I | = 1 and ∀q, r ∈ Q, a ∈ Σ : |δ((q, r), a)| ≤ 1, and complete if I ≥ 1
and ∀q, r ∈ Q, a ∈ Σ : |δ((q, r), a)| ≥ 1. Last, for a ∈ Σ , we shorten δ((q, r), a) as
δa(q, r), and we use δΓ (q, r) to denote

⋃{δa(q, r) | a ∈ Γ } for a set Γ ⊆ Σ .

2.2 Syntax and Semantics ofWS2S

WS2S is a logic that allows quantification over second-order variables, which are denoted
by upper-case letters X , Y , . . . and range over finite sets of tree positions in {L,R}∗ (the
finiteness of variable assignments is reflected in the name weak). See Fig. 2a for an example
of a set of positions assigned to a variable. Atomic formulae (atoms) ofWS2S are of the form:
(i) X ⊆ Y , (ii) X = SL(Y), and (iii) X = SR(Y). Informally, the SL(Y) function returns
all positions from Y shifted to their left child and the SR(Y) function returns all positions

123 145

Automata Terms in a Lazy WSkS Decision Procedure 975

(a) Positions assigned to the variable X (b) Encoding of ν into a tree τν ; a node at a position p has
the value x y where x = 1 if and only if τν (p) maps X

to 1 and y = 1 if and only if τν (p) maps Y to 1.

Fig. 2 An example of an assignment ν to a pair of variables {X , Y } such that ν(X) = {LR,R,RLR,RR} and
ν(Y) = {ε,L,LL,R,RR} and its encoding into a tree

from Y shifted to their right child. Formulae are constructed from atoms using the logical
connectives ∧,∨,¬, and the quantifier ∃X where X is a finite set of variables (we write ∃X
when X is the singleton set {X}). Other connectives (such as⇒ or ∀) and predicates (such
as the predicate Sing(X) for the singleton set X) can be obtained as syntactic sugar (e.g., we
can define the emptiness predicate X = ∅ as ∀Y . X ⊆ Y and the singleton predicate Sing(X)

as ∀Y . Y ⊆ X ⇒ (Y = X ∨ Y = ∅)).
A valuation of a set of variables X is an assignment ν : X → 2{L,R}∗ of X to finite subsets

of {L,R}∗. We use ν � {X �→ S} to denote a valuation obtained from ν by changing the
assignment of X to S. A model of a WS2S formula ϕ(X) with the set of free variables X is
a valuation of X for which the formula is satisfied, written ν |� ϕ. Satisfaction of formulae
is defined as follows:

(i) ν |� X ⊆ Y if and only if ν(X) is a subset of ν(Y),
(ii) ν |� X = SL(Y) if and only if ν(X) is {p.L | p ∈ ν(Y)},
(iii) ν |� X = SR(Y) if and only if ν(X) is {p.R | p ∈ ν(Y)},
(iv) ν |� ¬ϕ if and only if not ν |� ϕ,
(v) ν |� ϕ ∧ ψ if and only if ν |� ϕ and ν |� ψ ,
(vi) ν |� ϕ ∨ ψ if and only if ν |� ϕ or ν |� ψ , and
(vii) ν |� ∃X . ϕ if and only if there is a finite S ⊆ {L,R}∗ such that ν � {X �→ S} |� ϕ.

A formula ϕ is valid, written |� ϕ, if and only if all assignments of its free variables are its
models, and satisfiable if it has a model. Without loss of generality, we assume that each
variable in a formula either has only free occurrences or is quantified exactly once; we denote
the set of (free and quantified) variables occurring in a formula ϕ as Vars(ϕ).

2.3 RepresentingModels as Trees

We fix a formula ϕ with variables Vars(ϕ) = X. A symbol ξ over X is a (total) function
ξ : X → {0, 1}, e.g., ξ = {X �→ 0, Y �→ 1} is a symbol over X = {X , Y }. We use ΣX to
denote the set of all symbols over X and 0 to denote the symbol mapping all variables in X
to 0, i.e., 0 = {X �→ 0 | X ∈ X}.

A finite assignment ν : X → 2{L,R}∗ of ϕ’s variables can be encoded as a finite tree τν

of symbols over X where every position p ∈ {L,R}∗ satisfies the following conditions:
(a) if p ∈ ν(X), then τν(p) contains {X �→ 1}, and (b) if p /∈ ν(X), then either τν(p)

123146

976 V. Havlena et al.

contains {X �→ 0} or τν(p′) = ⊥ for some prefix p′ of p (note that the occurrences of⊥ in τ

are limited since τ still needs to be a tree). Observe that ν can have multiple encodings: the
unique minimum one τminν and (infinitely many) extensions of τminν with 0-only trees. The
language of ϕ is defined as the set of all encodings of its models L (ϕ) = {τν ∈ ΣX | ν |�
ϕ and τν is an encoding of ν}. See Fig. 2 for an example of an assignment and its encoding.

Let ξ be a symbol over X. For a set of variables Y ⊆ X, we define the projection of ξ

with respect to Y as the set of symbols πY(ξ) = {ξ ′ ∈ ΣX | ξ|X\Y ⊆ ξ ′}. Intuitively,
the projection removes the original assignments of variables from Y and allows them to be
substituted by any possible value. We define πY(⊥) = ⊥ and write πY if Y is the singleton
set {Y }. As an example, for X = {X , Y } the projection of 0 with respect to {X} is given
as πX (0) = {{X �→ 0, Y �→ 0}, {X �→ 1, Y �→ 0}}.1 The definition of projection can be
extended to trees τ over ΣX so that πY(τ) is the set of trees {τ ′ ∈ ΣX | ∀p ∈ dom(τ) :
if τ(p) = ⊥, then τ ′(p) = ⊥, else τ ′(p) ∈ πY(τ (p))} and subsequently to languages L so
that πY(L) = ⋃{πY(τ) | τ ∈ L}.

2.4 The Classical Decision Procedure forWS2S

The classical decision procedure for the WS2S logic goes through a direct construction
of a TA Aϕ having the same language as a given formula ϕ. Let us briefly recall the
automata constructions used (cf. [9]). Given a complete TA A = (Q, δ, I , R), the comple-
ment assumes thatA is deterministic and returnsA� = (Q, δ, I , Q\R), the projection returns
πX (A) = (Q, δπX , I , R) with δ

πX
a (q, r) = δπX (a)(q, r), and the subset construction returns

the deterministic and complete automaton AD = (2Q, δD, {I }, RD) where δD
a (S, S′) =⋃

q∈S,q ′∈S′ δa(q, q ′) and RD = {S ⊆ Q | S ∩ R �= ∅}. The binary operators ◦ ∈ {∪,∩}
are implemented through a product construction, which—given the TA A and another com-
plete TA A′ = (Q′, δ′, I ′, R′)—returns the automaton A ◦ A′ = (Q × Q′,Δ×, I×, R◦)
where Δ×a ((q, r), (q ′, r ′)) = Δa(q, q ′)×Δ′a(r , r ′), I× = I × I ′, and for (q, r) ∈ Q × Q′,
(q, r) ∈ R∩ ⇔ q ∈ R ∧ r ∈ R′ and (q, r) ∈ R∪ ⇔ q ∈ R ∨ r ∈ R′. Testing non-
emptiness of A can be implemented through the equivalence L (A) �= ∅ if and only if
reachδ(I) ∩ R �= ∅ where the set reachδ(S) of states reachable from a set S ⊆ Q through
δ-transitions is computed as the least fixpoint

reachδ(S) = μZ . S ∪
⋃

q,r∈Z
δ(q, r). (1)

The same fixpoint computation is used to compute the derivative with respect to a for some
a ∈ Σ as A − a = (Q, δ, reachδa (I), R): the new leaf states are all those reachable from
I through a-transitions.

The classicalWSkS decision procedure uses the above operations to construct the automa-
ton Aϕ inductively to the structure of ϕ as follows: (i) If ϕ is an atomic formula, then Aϕ

is a pre-defined base TA over ΣX (we show those TAs in Fig. 3). (ii) If ϕ = ϕ1 ∧ ϕ2, then
Aϕ = Aϕ1∩Aϕ2 . (iii) If ϕ = ϕ1∨ϕ2, thenAϕ = Aϕ1∪Aϕ2 . (iv) If ϕ = ¬ψ , thenAϕ = A�

ψ .

(v) Finally, if ϕ = ∃X . ψ , then Aϕ = (πX (Aψ))D − 0 .
Points (i) to (iv) are self-explanatory. In point (v), the projection implements the quan-

tification by forgetting the values of the X component of all symbols. Since this yields

1 Note that our definition of projection differs from the usual one, which would create a symbol over the
alphabet X \ Y; in the example, it would produce a single symbol {Y �→ 0} over the alphabet of symbols
over {Y }.

123 147

Automata Terms in a Lazy WSkS Decision Procedure 977

(a) (b) (c)

Fig. 3 Tree automata for atomic WS2S formulae. Transitions are represented using multiple-source hyper-
edges. For instance, the transition (s0, s1)−{{X �→1,Y �→1}}→s1 in AX=SL(Y) is represented by the hyper-edge
with sources s0 and s1 over the symbol {X �→ 1, Y �→ 1} that joins just before entering s1. The L and R labels
on the “legs” of the hyper-edge going to s0 and s1 denote the position in the left-hand side of the transition (L
and R stand for “left” and “right”)

non-determinism, projection is followed by determinisation by the subset construction. Fur-
ther, the projection can produce some new trees that contain 0-only labelled sub-trees, which
need not be present in some smaller encodings of the same model. Consider, for example,
a formulaψ having the languageL (ψ) given by the tree τν in Fig. 2b and all its 0-extensions.
To obtain L (∃X .ψ), it is not sufficient to make the projection πX (L (ψ)) because the pro-
jected language does not contain the minimum encoding τminν of ν : Y �→ {ε,L,LL,R,RR},
but only those encodings ν′ such that ν′(RLR) = {Y �→ 0}. Therefore, the 0-derivative
is needed to saturate the language with all encodings of the encoded models (if some of
these encodings were missing, the inductive construction could produce a wrong result, for
instance, if the language were subsequently complemented). As mentioned above, on the
level of automata, the 0 derivative can be achieved by replacing the set of leaf states I of Aϕ

by reachΔ0(I) where Δ is the transition function of Aϕ . See [9] for more details.

3 Automata Terms

Our algorithm for deciding WS2S may be seen as an alternative implementation of the
classical procedure from Sect. 2.4. The main innovation is the data structure of automata
terms,which implicitly represent the automata constructedby the automata operations.Unlike
the classical procedure—which proceeds by a bottom-up traversal on the formula structure,
building an automaton for each sub-formula before proceeding upwards—automata terms
allow for constructing parts of automata at higher levels from parts of automata on the lower
levels even though the construction of the lower level automata has not yet finished. This
allows one to test the language emptiness on the fly and use techniques of state space pruning,
which will be discussed later in Sect. 4.

123148

978 V. Havlena et al.

Fig. 4 Tree automata for the
predicates used in Example 1

(a) (b)

3.1 Syntax of Automata Terms

Terms are created according to the grammar

A ::= S | D (automata term)
S ::= {t, . . . , t} (set term)
D ::= S − 0 (derivative term)
t ::= q | t + t | t & t | t | πX (t) | S | D (state term)

starting from states q ∈ Qi , denoted as atomic states, of a given finite set of base automata
Bi = (Qi , δi , Ii , Ri) with pairwise disjoint sets of states. For simplicity, we assume that the
base automata are complete, and we denote by B = (QB, δB, IB, RB) their component-wise
union. Automata terms A specify the set of leaf states of an automaton. Set terms S list a finite
number of the leaf states explicitly, while derivative terms D specify them symbolically as
states reachable from a set of states S via 0’s. The states themselves are represented by state
terms t . (Notice that set terms S and derivate terms D can be both automata terms and state
terms.) Intuitively, the structure of state terms records the automata constructions used to
create the top-level automaton from states of the base automata. Non-leaf state terms, the
state terms’ transition function, and root state terms are then defined inductively from base
automata as described below in detail. We will normally use t, u to denote terms of all types
(unless the type of the term needs to be emphasized).

Example 1 Consider a formulaϕ ≡ ¬∃X .Sing(X)∧X = {ε} and its corresponding automata

term tϕ =
{
{πX ({q0}&{p0})} − 0

}
(we will show how tϕ was obtained from ϕ later). For

the sake of presentation, we will consider the base automata given in Fig. 4 for the predicates

Sing(X) and X = {ε}. The term tϕ above denotes the TA
(
(πX (ASing(X)∩AX={ε}))D−0

)�

constructed using the automata operations of intersection, projection, subset construction,
derivative, and complement. ��

123 149

Automata Terms in a Lazy WSkS Decision Procedure 979

(a) Root term states (b) Transitions among compatible state terms

Fig. 5 Semantics of terms

3.2 Semantics of Terms

We will define the denotation of an automata term t as the automaton At = (Q,Δ, I , R).
For a set automata term t = S, we define I = S, Q = reachΔ(S) (i.e., Q is the set of
state terms reachable from the leaf state terms), and Δ and R are defined inductively to the
structure of t . Particularly, R contains the terms of Q that satisfy the predicate R defined in
Fig. 5a, and Δ is defined in Fig. 5b, with the addition that whenever the rules in Fig. 5b do
not apply, then we let Δa(t, t ′) = {∅}. The ∅ here is used as a universal sink state in order
to maintain Δ complete, which is needed for automata terms representing complements to
yield the expected language. In Figs. 5a, b, the terms t, t ′, u, u′ are arbitrary terms, S, S′ are
set terms, and q, r ∈ QB.

The transitions of Δ for terms of the type +, &, πX , · , and S are built from the transition
function of their sub-terms analogously to how the automata operations of the product union,
product intersection, projection, complement, and subset construction, respectively, build the
transition function from the transition functions of their arguments (cf. Sect. 2). The only
difference is that the state terms stay annotated with the particular operation by which they
were made (the annotation of the set state terms are the set brackets). The root states are also
defined analogously as in the classical constructions.

Finally, we complete the definition of the term semantics by adding the definition of
semantics for the derivative term S − 0 . This term is a symbolic representation of the set
term that contains all state terms upward-reachable from S in AS over 0. Formally, we first
define the so-called saturation of AS as

(S − 0)s = reachΔ0(S) (14)

(with reachΔ0(S) defined as the fixpoint (1)), and we complete the definition of Δ and R in
Fig. 5a, b with three new rules to be used with a derivative term D:

Δa(D, u) = Δa(D
s, u) (15)

Δa(u, D) = Δa(u, Ds) (16)

R(D) ⇔ R(Ds) (17)

The automaton AD then equals ADs , i.e., the semantics of a derivative term is defined by its
saturation.

Example 2 Let us consider a derivative term t = {πX ({q0}&{p0})}−0 , which occurs within
the nested automata term tϕ of Example 1. The set term representing all terms reachable
upward from t is then the term

123150

980 V. Havlena et al.

ts = {πX ({q0}&{p0}), πX ({q1}&{p1}), πX ({qs}&{ps}),
πX ({q1}&{ps}), πX ({q0}&{ps})}.

The semantics of t is then the automaton At with the set of states given by ts. ��

3.3 Properties of Terms

In this section, we establish properties of automata terms that we will use later when estab-
lishing the correctness of our decision procedure. An implication of the definitions in the
previous section, essential for termination of our algorithm in Sect. 4, is that the automata
represented by terms indeed have finitely many states. This is a direct consequence of the
following lemma.

Lemma 1 The size of reachΔ(t) is finite for any automata term t.

Proof (idea) First, we define the depth of a term t , denoted as d(t), inductively as follows:
(i) d(q) = 1 for q ∈ QB, (ii) d(t1 ◦ t2) = 1+max(d(t1), d(t2)) for ◦ ∈ {&,+}, (iii) d(�t1) =
1+ d(t1) for � ∈ {πX , ·}, (iv) d(S) = 1+maxt∈S(d(t)), and (v) d(S − Γ) = 1+ d(S).

Then, since the number of reachable states in base automata is finite, for a given n there
is a finite number of terms of depth at most n. By induction on the depth of terms, we
can show that for a pair of terms t1 and t2, it holds that for each t ∈ Δa(t1, t2) we have
d(t) ≤ max(d(t1), d(t2)). Therefore, for an automata term S it holds that reachΔ(S) is finite.

��
Let us denote by L (t) the language L (At) of the automaton induced by a term t . In the

following, we often use the notions of a term expansion and an expanded term. An expanded
term is a term that does not contain a derivative term as a subterm. Term expansion is then
defined recursively as follows: (i)te = t if t is expanded and (ii) te = (t[u/us])e where u is
a derivative term of the form S−Γ for an expanded term S. Intuitively, the term expansion
saturates derivative subterms in a bottom-upmanner. Note that the expansion of any automata
term A is a set term, i.e., Ae = {t1, . . . , tn}.
Lemma 2 Given an automata term t and its expanded term te, it holds that

(i) te is of a finite size and
(ii) L

(
te

) = L (t).

Proof (idea) (i): This can be easily seen from the fact that term expansion is performed
by a bottom-up traversal on the structure of t while substituting derivative terms with their
saturations. From the definition of saturation in (14) and Lemma 1, it follows that each such
saturation is finite.

(ii): First, note that saturation preserves language, i.e., it holds that

L
(
(S − 0)

)
= L

(
(S − 0)s

)
. (18)

Theprevious fact follows from the definition of derivative automaton inSect. 2.4. In particular,
given AS = (Q,Δ, S, R), we have that

AS − 0 = (Q,Δ, reachΔ0(S), R), (19)

which matches the definition of saturation in (14). The lemma follows from the fact that the
expansion substitutes terms for saturated terms with equal languages. ��

123 151

Automata Terms in a Lazy WSkS Decision Procedure 981

Lemma 3 below shows that languages of terms can be defined from the languages of their
sub-terms if the sub-terms are set terms of derivative terms. The terms on the left-hand sides
are implicit representations of the automata operations of the respective language operators
on the right-hand sides. The main reason why the lemma cannot be extended to all types
of sub-terms and yield an inductive definition of term languages is that it is not meaningful
to talk about the bottom-up language of an isolated state term that is neither a set term
nor a derivative term (which both are also automata terms). This is also one of the main
differences from [13], where every term has its own language, which makes the reasoning
and the correctness proofs in the current paper significantly more involved.

Lemma 3 For automata terms A1, A2 and a set term S, the following equalities hold:

L({A1}) = L(A1) (a)

L({A1+ A2}) = L(A1) ∪ L(A2) (b)

L({A1 & A2}) = L(A1) ∩ L(A2) (c)

L({A1}) = L(A1) (d)

L({πX (A1)}) = πX (L(A1)) (e)

L(S − 0) = L(S)− 0 (f)

Proof (a): We prove the following more general form of (a):

L ({A1, . . . , An}) = L

⎛

⎝
⋃

1≤i≤n
Ae
i

⎞

⎠ . (20)

(Note that A1, . . . , An are automata terms—i.e., either set terms or derivative terms—so their
expanded terms will be set terms.) Intuitively, in this proof we show that determinisation does
not change the language of a term. Let us use A⋃

Ae
i
to denote the TA represented by the

term
⋃

1≤i≤n Ae
i .

(⊆)Let τ be a tree. It holds that τ ∈ L ({A1, . . . , An}) if and only if τ ∈ L
({Ae

1, . . . , A
e
n}

)
,

i.e., if there is an accepting run ρ on τ in A{Ae
1,...,A

e
n}. Note that ρ maps all leaves of τ to the

terms from {Ae
1, . . . , A

e
n}, i.e., each leaf of τ is labelled by some Ae

i , which is a set of terms
of a lower level (such a set term can be seen as a macrostate—i.e., a set of states—from
determinisation of TAs). Moreover, for all non-leaf positions w ∈ dom(τ) \ leaf (τ), let
ρ(w) = U , ρ(w.L) = UL, and ρ(w.R) = UR. Then, from (12), we have that if u ∈ U , then
there exist uL ∈ UL and uR ∈ UR such that u ∈ Δτ(w)(uL, uR). Let us define an auxiliary
function μ(w, u) = (uL, uR) that we will use later. Since ρ is accepting, there is a term
r ∈ ρ(ε) such that R(r).

We will now use ρ to construct a run ρ′ of A⋃
Ae
i
on τ . The run ρ′ will now map positions

to a single term as follows: For the root position, we set ρ′(ε) = r . Then, given w ∈
dom(τ)\ leaf (τ), the labels of children ofw are defined as ρ′(w.L) = uL and ρ′(w.R) = uR
where (uL, uR) = μ(w, ρ′(w)). As a consequence, we have that ∀w ∈ leaf (τ) : ρ′(w) ∈⋃

1≤i≤n Ae
i . Then, for eachw ∈ dom(τ), it holds that ρ′(w) ∈ reachΔ(

⋃
1≤i≤n Ae

i)whereΔ

is the transition function of A⋃
Ae
i
. Therefore, ρ′ is a run of A⋃

Ae
i
on τ and is accepting, so

τ ∈ L
(⋃

1≤i≤n Ae
i

)
.

(⊇) Consider a tree τ ∈ L
(⋃

1≤i≤n Ae
i

)
. Then there is an accepting run ρ on τ in A⋃

Ae
i
.

We can then use ρ to construct the run ρ′ on dom(τ) defined as follows: For u ∈ leaf (τ),
if ρ(u) ∈ Ae

i , we set ρ′(u) = Ae
i . For w ∈ dom(τ) \ leaf (τ), we set ρ′(w) = r such

123152

982 V. Havlena et al.

that {r} = Δτ(w)(ρ
′(w.L), ρ′(w.R)) (we know that Δτ(w)(ρ

′(w.L), ρ′(w.R)) is a singleton
set due to (12)). For the constructed run ρ′, it now holds that ∀w ∈ dom(τ) : ρ(w) ∈ ρ′(w),
therefore ρ′ is an accepting run on τ in A{Ae

1,...,A
e
n}, i.e., τ ∈ L ({A1, . . . , An}).

(b): (⊆) Let τ ∈ L ({A1+ A2}). Then there is an accepting run ρ on τ in A{Ae
1 + Ae

2}. Since ρ

is accepting, we can definemappings ρ1, ρ2 on dom(τ) such that for allw ∈ dom(τ)we have
ρ1(w) = l(ρ(w)) and ρ2(w) = r(ρ(w)) where l(S1+ S2) = S1 and r(S1+ S2) = S2. The
mappings ρ1 and ρ2 are runs ofA{Ae

1} andA{Ae
2} on τ respectively. Moreover, sinceR(ρ(ε)),

we have that R(ρ1(ε)) ∨ R(ρ2(ε)). To conclude, τ ∈ L
(
A{Ae

1}
)
or τ ∈ L

(
A{Ae

2}
)
, so

τ ∈ L ({A1}) ∪ L ({A2}) and from (a) we get τ ∈ L (A1) ∪ L (A2).
(⊇) Consider τ ∈ L (A1)∪L (A2). From (a) we get τ ∈ L ({A1})∪L ({A2}). Then there

are runs ρ1 in A{Ae
1} and ρ2 in A{Ae

2} on τ such that at least one of them is accepting. We can
define a mapping ρ on dom(τ) such that ∀w ∈ dom(τ) : ρ(w) = ρ1(w)+ ρ2(w), which is
an accepting run on τ in A{Ae

1 + Ae
2}. Therefore τ ∈ L ({A1+ A2}).

(c): Dual to (b).
(d): Let τ be a tree. We will consider runs ρ and ρ of A{Ae

1} and A{Ae
1} on τ respectively.

First, note that both runs exist, which is guaranteed by the presence of the universal sink
state ∅, cf. Sect. 3.2. Second, note that the two runs are unique, since there is a single leaf
state and the transition function is deterministic by (12). Further, from (11), it holds that
∀w ∈ dom(τ) : ρ(w) = ρ(w). From the definition of R we have R(ρ(ε)) ⇔ ¬R(ρ(ε)),
therefore, ρ is not accepting inA{Ae

1} if and only if ρ is accepting inA{Ae
1}. As a consequence,

τ ∈ L({Ae
1}) if and only if τ /∈ L({Ae

1}). From (a), we know that L({Ae
1}) = L(Ae

1).
(e): (⊆) Let τ ∈ L ({πX (A1)}) and ρ be an accepting run of A{πX (Ae

1)} on τ . From the
definition of the transition function in (10) and (4), we get that there is an accepting run ρ′
on some τ ′ in A{Ae

1} where τ ∈ πX (τ ′) and ∀w ∈ dom(τ) : ρ(w) = πX (ρ′(w)). Therefore,
τ ∈ πX (L ({A1})) = πX (L (A1)).

(⊇) Let τ ∈ πX (L (A1)). From the definition of projection, there is τ ′ ∈ L (A1) such
that τ ∈ πX (τ ′). According to (a), there is an accepting run ρ on τ ′ in A{Ae

1}. Then there is
also an accepting run ρ′ on τ in A{πX (Ae

1)} where ∀w ∈ dom(τ) : ρ′(w) = πX (ρ(w)).

(f): We prove the following more general equality: L (S)− Γ = L
(
S − Γ

)
, for a set of

symbols Γ (note that S is a set term). In the following text, given a set term U , we define
U � Γ = U e ∪⋃{ΔΓ (t1, t2) | t1, t2 ∈ U e}. Note that reachΔ(U e) = reachΔ(U � Γ).
Further, we use Γ ≤n to denote the set of trees over Γ of height at most n, i.e., Γ ≤n = {t ∈
Γ | ∀w ∈ dom(t) : |w| ≤ n}. We first prove the following two claims.

Claim 1 Let U be a set term. Then L (U � Γ) = L (U)− Γ ≤1.

Proof (⊆)Let τ ∈ L (U � Γ) andρ be an accepting runofAU�Γ on τ . The runρmaps leaves
of τ to the leaf states in U � Γ . Moreover, for each w ∈ leaf (τ) such that ρ(w) /∈ U e (i.e.,
ρ maps w to a newly added leaf state) there exist twL , twR ∈ U e such that ρ(w) ∈ ΔΓ (twL , twR).
We can therefore extend ρ to the run ρ′ defined such that ρ′|dom(τ) = ρ and for allw ∈ leaf (τ)

such that ρ(w) /∈ U e, we define ρ′(w.L) = twL and ρ′(w.R) = twR . The run ρ′ is accepting
in AUe on a tree τ ′ ∈ L (U) such that τ ∈ τ ′ − Γ ≤1, and so τ ∈ L (U)− Γ ≤1.

(⊇) Let τ ∈ L (U)− Γ ≤1 and τ ′ ∈ L (U) be a tree such that τ ∈ τ ′ − Γ ≤1. Hence there
is an accepting run ρ′ of AUe on τ ′. Consider the set Θ = {w ∈ leaf (τ) | ρ′(w) /∈ U e} of
positions mapped by ρ′ to newly added states. Since τ ∈ τ ′ − Γ ≤1, it holds that ∀w ∈ Θ :
ρ′(w.L) ∈ U e ∧ ρ′(w.R) ∈ U e ∧ τ ′(w) ∈ Γ . Therefore, ρ = ρ′|dom(τ) is an accepting run
of AU�Γ on τ , i.e., τ ∈ L (U � Γ). �

123 153

Automata Terms in a Lazy WSkS Decision Procedure 983

Claim 2 Let U be a set term, U0 = U, and Ui+1 = Ui � Γ for i ≥ 0. Then L (Um) =
L (U)− Γ ≤m.

Proof We prove the claim by induction on m.

– Base case m = 0: L (U0) = L (U) = L (U)− Γ ≤0.
– Inductive case: We assume that the claim holds for 0, . . . ,m. We prove that it holds also

for m + 1. From Claim 1 we have

L (Um+1) = L (Um � Γ) = L (Um)− Γ ≤1. (21)

By the induction hypothesis we further have

L (Um+1) = (L (U)− Γ ≤m)− Γ ≤1. (22)

Finally, from the definition of the derivative we obtain

(L (U)− Γ ≤m)− Γ ≤1 = L (U)− Γ ≤m+1, (23)

which concludes the proof. �

We now prove the main part of the lemma. Consider the sequence of automata terms
S0, S1, . . . where S0 = Se and Si+1 = Si � Γ . From the monotonicity of � and Lemma 1,
there is an n such that Sn �= Sn−1 and Sn = Sn+i for all i ≥ 0. From Claim 2 we have
L (Si) = L (S)−Γ ≤i and, consequently, L (Sn) = L (S)−Γ ≤n . Because Sn is the fixpoint
of the sequence of automata terms S0, S1, . . ., it holds that L (Sn) = L (S)−Γ . Finally, we
have Sn = reachΔΓ (Se) = S−Γ (by (14)), sowe conclude thatL (S)−Γ = L

(
S − Γ

)
.
��

Lemma3 shows fundamental properties of terms. Based on itwe further focus on flattening
of terms, whose properties are described by the following lemma.

Lemma 4 For sets of terms S and S′ such that S �= ∅ and S′ �= ∅, we have:
L

({S+ S′}) = L
({S [+] S′}) , (a)

L
({S & S′}) = L

({S [&] S′}) , (b)

L ({πX (S)}) = L ({πX (t) | t ∈ S}) . (c)

Proof (a): (⊆)Let τ ∈ L
({S+ S′}). FromLemma3bwehaveL

({S+ S′}) = L (S)∪L
(
S′

)
.

Hence there are runs ρ1 in ASe and ρ2 in AS′e on τ and, moreover, at least one of them is
accepting (both runs exist since the transition functionΔ is complete). Then, we can construct
a mapping ρ from τ defined such that for all w ∈ dom(τ), we set ρ(w) = ρ1(w)+ ρ2(w).
Note that ρ is a run of A{te1 + te2 |t1∈S,t2∈S′} on τ , i.e., it maps leaves of dom(τ) to terms of the
form te1 + te2 for t1 ∈ S and t2 ∈ S′. Moreover, ρ is accepting since at least one of the runs ρ1
and ρ2 is accepting. Therefore, τ ∈ L

({t1+ t2 | t1 ∈ S, t2 ∈ S′}). From the definition of the
augmented product, it follows that τ ∈ L

(
S [+] S′) and, finally, from Lemma 3a, we have

τ ∈ L
({S [+] S′}).

(⊇) Let τ ∈ L
({S [+] S′}). From Lemma 3a, we get τ ∈ L

(
S [+] S′), and from the defi-

nition of the augmented product, we obtain that τ ∈ L
({t1+ t2 | t1 ∈ S, t2 ∈ S′}). Therefore,

there is an accepting run ρ on τ in A{te1 + te2 |t1∈S,t2∈S′}. Furthermore, let us consider the run ρ′
ofA{S+ S′} on τ (note that, due to (12) and the completeness of the transition function, there is
exactly one). By induction on the structure of τ , we can easily show that for all w ∈ dom(τ),
if ρ(w) = t1 + t2, then ρ′(w) = S1 + S2 such that t1 ∈ S1 and t2 ∈ S2 (the property clearly
holds at leaves and is also preserved by the transition function). Let ρ(ε) = tε1 + tε2 and

123154

984 V. Havlena et al.

ρ′(ε) = Sε
1 + Sε

2 . Since R(tε1 + tε2), it also holds that R(Sε
1 + Sε

2). Therefore, ρ
′ is accepting,

so τ ∈ L
({S+ S′}).

(b): Dual to (a).
(c): From Lemma 3e we have that L ({πX (S)}) = πX (L (S)). Therefore, it is sufficient

to prove the following identity: πX (L (S)) = L ({πX (t) | t ∈ S}).
(⊆) Let τ ∈ πX (L (S)). Then, there is a tree τ ′ ∈ L (S) such that τ ∈ πX (τ ′). Let ρ be

an accepting run of ASe on τ ′. We will construct a run ρ′ of A{πX (t)|t∈Se} on τ ′ such that for
all w ∈ dom(τ), we set ρ′(w) = πX (ρ(w)). It follows that τ ∈ L ({πX (t) | t ∈ S}).

(⊇) Let τ ∈ L ({πX (t) | t ∈ S}) and ρ be an accepting run of A{πX (t)|t∈Se} on τ . We will
now construct a mapping ρ′ from dom(τ) such that for all w ∈ dom(τ), we set ρ′(w) = t
where ρ(w) = πX (t). It follows that ρ′ is an accepting run of ASe on τ ′, and so τ ∈
πX (L (S)). ��

3.4 Terms of Formulae

Our algorithm in Sect. 4 will translate a WS2S formula ϕ into the automata term tϕ = {〈ϕ〉}
representing a deterministic automaton with its only leaf state represented by the state term
〈ϕ〉. The base automata of tϕ include the automaton Aϕ0 for each atomic predicate ϕ0 used
in ϕ. The state term 〈ϕ〉 is then defined inductively to the structure of ϕ as follows:

〈ϕ0〉 = Iϕ0 (24)

〈ϕ ∧ ψ〉 = 〈ϕ〉&〈ψ〉 (25)

〈ϕ ∨ ψ〉 = 〈ϕ〉+〈ψ〉 (26)

〈¬ϕ〉 = 〈ϕ〉 (27)

〈∃X . ϕ〉 = {πX (〈ϕ〉)} − 0 (28)

In the definition, ϕ0 is an atomic predicate, Iϕ0 is the set of leaf states of Aϕ0 , and ϕ and ψ

denote arbitrary WS2S formulae. We note that the translation rules may create sub-terms of
the form {{t}}, i.e., with nested set brackets. Since {·} semantically means determinisation
by subset construction, such double determinisation terms can be always simplified to {t}
(cf. Lemma 3a). See Example 1 for a formula ϕ and its corresponding term tϕ . Theorem 1
establishes the correctness of the formula-to-term translation.

Theorem 1 Let ϕ be a WS2S formula. Then L (ϕ) = L(tϕ).

Proof To simplify the proof, we restrict the definition of terms to deterministic terms U
constructed using the following grammar:

U ::= {u, . . . , u} | {πX (u), . . . , πX (u)} (29)

u ::= q | u+ u | u & u | u | U | U − Γ (30)

where q is a state of an automaton. It is easy to see that deterministic terms form a proper
subset of all terms constructed using the definition in Sect. 3.1 (e.g., the term πX (t1)&πX (t2)
is not deterministic). They are, however, sufficient to capture the terms that emerge from the
translation presented above. Note that for two expanded deterministic terms t1 and t2 we have
|Δa(t1, t2)| = 1. Further note that for a WS2S formula ϕ, 〈ϕ〉 is a deterministic term.

Now, we prove L (ϕ) = L ({〈ϕ〉}) by induction on the structure of ϕ. In the proof, we use
properties of the classical decision procedure from Sect. 2.4.

123 155

Automata Terms in a Lazy WSkS Decision Procedure 985

– ϕ = ϕ0 where ϕ0 is an atomic formula: Let Iϕ0 be the set of leaf states of Aϕ0 .

L ({〈ϕ0〉}) = L
({Iϕ0}

)
�(24)�

= L
(
Iϕ0

)
�Lemma 3a �

= L
(
Aϕ0

)
�term semantics�

= L (ϕ0) . �property of automata for atoms�

– ϕ = ψ1 ∧ ψ2: We use the following equational reasoning:

L ({〈ψ1 ∧ ψ2〉}) = L ({〈ψ1〉& 〈ψ2〉}) �(25)�
= L ({{〈ψ1〉& 〈ψ2〉}}) �Lemma 3a�
= L ({{〈ψ1〉}& {〈ψ2〉}}) �Lemma 4b�
= L ({〈ψ1〉}) ∩ L ({〈ψ2〉}) . �Lemma 3c�
= L (ψ1) ∩ L (ψ2) �induction hypothesis�
= L (ϕ) . �classical procedure�

– ϕ = ψ1 ∨ ψ2:
We use the following equational reasoning:

L ({〈ψ1 ∨ ψ2〉}) = L ({〈ψ1〉+ 〈ψ2〉}) �(26)�
= L ({{〈ψ1〉+ 〈ψ2〉}}) �Lemma 3a�
= L ({{〈ψ1〉}+ {〈ψ2〉}}) �Lemma 4a�
= L ({〈ψ1〉}) ∪ L ({〈ψ2〉}) . �Lemma 3b�
= L (ψ1) ∪ L (ψ2) �induction hypothesis�
= L (ϕ) . �classical procedure�

– ϕ = ¬ψ : First, we prove the following claim:

Claim 3 Let t be a deterministic term, then L
({{t}}) = L

({
t
})
.

Proof First, consider two expanded deterministic terms t1 and t2. Since t1 and t2 are determin-
istic, from (12) we have Δa(t1, t2) = {t ′} for some deterministic term t ′ and any symbol a.
Therefore (from (11)), Δa(t1, t2) = {t ′} and Δa({t1}, {t2}) = {{t ′}}. Hence, there is an
accepting run ρ on a tree τ in A{{t}} if and only if there is an accepting run ρ′ on τ in A{t}
where for all w ∈ dom(τ) it holds that ρ(w) = s ⇔ ρ′(w) = {s}. �

We proceed to the main part of the proof.

L ({〈¬ψ〉}) = L
({〈ψ〉}) �(27)�

= L
({{〈ψ〉}}) �Claim 3�

= L ({〈ψ〉}) �Lemma 3d�
= L (ψ) �induction hypothesis�
= L (ϕ) . �classical procedure�

– ϕ = ∃X . ψ : We start by proving the following claim:

Claim 4 Let t be a deterministic term, then L ({πX ({t})}) = L ({πX (t)}).

123156

986 V. Havlena et al.

Proof First, consider two expanded deterministic terms t1 and t2. Since t1 and t2 are both
deterministic, we have Δa(t1, t2) = {ta} for some deterministic term ta and any sym-
bol a. Therefore, according to (10), Δa(πX (t1), πX (t2)) = {πX (tb) | b ∈ πX (a)} and
Δa(πX ({t1}), πX ({t2})) = {πX ({tb}) | b ∈ πX (a)}. Hence, there is an accepting run ρ

on a tree τ in A{πX ({t})} if and only if there is an accepting run ρ′ on τ in A{πX (t)}, where for
all w ∈ dom(τ) it holds that ρ(w) = πX (s) ⇔ ρ′(w) = πX ({s}). �

We proceed to the main part of the proof.

L ({〈∃X . ψ〉}) = L
(
{πX (〈ψ〉)} − 0

)
�(28)�

= L ({πX (〈ψ〉)})− 0 �Lemma 3f�
= L ({πX ({〈ψ〉})})− 0 �Claim 4�
= πX (L ({〈ψ〉}))− 0 �Lemma 3e�
= πX (L (ψ))− 0 �induction hypothesis�
= L (ϕ) . �classical procedure�

��

4 An Efficient Decision Procedure

The development in Sect. 3 already implies a naive automata term-based satisfiability check.
Namely, by Theorem 1, we know that a formula ϕ is satisfiable if and only if L(Atϕ) �= ∅.
After translating ϕ into tϕ using rules (24)–(28), we may use the definitions of the transition
function and root states of Atϕ = (Q,Δ, I , F) in Sect. 3 to decide the language emptiness
through evaluating the root state test R(reachΔ(I)). The equalities and equivalences (8)–
(17) can be implemented as recursive functions. We will further refer to this algorithm as the
simple recursion. The evaluation of reachΔ(I) induces nested evaluations of the fixpoint (14):
the one on the top level of the language emptiness test and another one for every expansion
of a derivative sub-term. The termination of these fixpoint computations is guaranteed due
to Lemma 1.

Such a naive implementation is, however, inefficient and has only disadvantages in com-
parison to the classical decision procedure. In this section, we will discuss how it can be
optimized. Besides an essential memoization needed to implement the recursion efficiently,
we will show that the automata term representation is amenable to optimizations that cannot
be used in the classical construction. These are techniques of state space pruning: the fact that
the emptiness can be tested on the fly during the automata construction allows one to avoid
exploration of state space irrelevant to the test. The pruning is done through the techniques of
lazy evaluation and subsumption. We will also discuss optimizations of the transition func-
tion of Sect. 3 through product flattening and nondeterministic union, which are analogous
to standard implementations of automata intersection and union.

4.1 Memoization

The simple recursion repeats the fixpoint computations that saturate derivative terms from
scratch at every call of the transition function or root test. This is easily countered through
memoization, known, e.g., from compilers of functional languages, which caches results

123 157

Automata Terms in a Lazy WSkS Decision Procedure 987

of function calls in order to avoid their re-evaluation. Namely, after saturating a derivative
sub-term t = S − 0 of tϕ for the first time, we simply replace t in tϕ by the saturation
ts = reachΔ0(S). Since a derivative is a symbolic representation of its saturated version
(cf. (14)), the replacement does not change the language of tϕ . Using memoization, every
fixpoint computation is then carried out only once.

4.2 Lazy Evaluation

The lazy variant of the procedure uses short-circuiting to optimize connectives ∧ and ∨, and
early termination to optimize fixpoint computation in derivative saturations. Namely, assume
that we have a term t1+ t2 and that we test whetherR(t1+ t2). Suppose that we establish that
R(t1); we can short circuit the evaluation and immediately return true, completely avoiding
touching the potentially complex term t2. Similarly for a term of the form t1 & t2, where we
can short circuit the evaluation when one branch is false.

Furthermore, early termination is used to optimize fixpoint computations used to saturate
derivatives within tests R(S − 0) (obtained from sub-formulae such as ∃X . ψ). Namely,
instead of first unfolding the whole fixpoint into a set {t1, . . . , tn} and only then testing
whetherR(ti) is true for some ti , the terms ti can be tested as soon as they are computed, and
the fixpoint computation can be stopped early, immediately when the test succeeds on one
of them. Then, instead of replacing the derivative sub-term by its full saturation, we replace
it by the partial result {t1, . . . , ti } − 0 for i ≤ n. Finishing the evaluation of the fixpoint
computation might later be required in order to compute a transition from the derivative.
We note that this corresponds to the concept of continuations from functional programming,
used to represent a paused computation that may be required to continue later.

Example 3 Let us now illustrate the lazy decision procedure on our running example for-
mula ϕ ≡ ¬∃X . Sing(X) ∧ X = {ε} and the corresponding automata term tϕ =
{ {πX ({q0}&{p0})} − 0

}
from Example 1. The task of the procedure is to compute the

value of R(reachΔ(tϕ)), i.e., whether there is a root state reachable from the leaf state 〈ϕ〉
of Atϕ . The fact that ϕ is ground allows us to slightly simplify the problem because any
ground formula ψ is satisfiable if and only if⊥ ∈ L (ψ), i.e., if and only if the leaf state 〈ψ〉
of Atψ is also a root. It is thus enough to test R(〈ϕ〉) where 〈ϕ〉 = {πX ({q0}&{p0})} − 0 .

The computation proceeds as follows. First, we use (5) from Fig. 5a to propa-
gate the root test towards the derivative, i.e., to obtain that R(〈ϕ〉) if and only if
¬R({πX ({q0}&{p0})} − 0). Since the R-test cannot be directly evaluated on a derivative
term, we need to start saturating it into a set term, evaluating R on the fly, hoping for early
termination. We begin with evaluating the R-test on the initial element t0 = πX ({q0}&{p0})
of the set. The test propagates through the projection πX due to (4) and evaluates as false on
the left conjunct (through, in order, (3), (6), and (7)) since the state q0 is not a root state. As
a trivial example of short circuiting, we can skip evaluating R on the right conjunct {p0} and
conclude that R(t0) is false.

Thefixpoint computation then continueswith thefirst iteration, computing the0-successors
of the set {t0}. We will obtain the set Δ0(t0, t0) = {t0, t1} with t1 = πX ({q1}&{p1}). The
test R(t1) now returns true because both q1 and p1 are root states. With that, the fixpoint
computation may terminate early, with the R-test on the derivative sub-term returning true.
Memoization then replaces the derivative sub-term in 〈ϕ〉 by the partially evaluated version
{t0, t1} − 0 , and R(〈ϕ〉) is evaluated as false due to (5). We therefore conclude that ϕ is
unsatisfiable (and invalid since it is ground). ��

123158

988 V. Havlena et al.

4.3 Subsumption

The next technique we use is based on pruning out parts of a search space that are sub-
sumed by other parts. In particular, we generalize (in a similar way as we did for WS1S in
our previous work [13]) the concept used in antichain algorithms for efficiently deciding
language inclusion and universality of finite word and tree automata [1,5,11,39]. Although
the problems are in general computationally infeasible (they are PSPACE-complete for finite
word automata and EXPTIME-complete for finite tree automata), antichain algorithms can
solve them efficiently in many practical cases.

We apply the technique by keeping set terms in the form of antichains of simulation-
maximal elements and prune out any other simulation-smaller elements. Intuitively, the notion
of a term t being simulation-smaller than t ′ implies that trees that might be generated from
the leaf states T ∪ {t} can be generated from T ∪ {t ′} too, hence discarding t does not hurt.
Formally, we introduce the following rewriting rule:

{t1, t2, . . . , tn}�{t2, . . . , tn} for t1 t2, (31)

which may be used to simplify set sub-terms of automata terms. The rule (31) is applied after
every iteration of the fixpoint computation on the current partial result. Hence the sequence
of partial results is monotone, which, together with the finiteness of reachΔ(t), guarantees
termination. The subsumption relation used in the rule is defined as

S S′ ⇔ S ⊆ S′ ∨ S ∀∃ S′ (32)

t & u t ′ & u′ ⇔ t t ′ ∧ u u′ (33)

t + u t ′ + u′ ⇔ t t ′ ∧ u u′ (34)

t t ′ ⇔ t ′ t (35)

πX (t) πX (t ′)⇔ t t ′ (36)

where S ∀∃ S′ denotes ∀t ∈ S ∃t ′ ∈ S′. t t ′. Intuitively, on base TAs, subsumption
corresponds to inclusion of the set terms (the left disjunct of (32)). This clearly has the
intended outcome: a larger set of states can always simulate a smaller set in accepting a tree.
The rest of the definition is an inductive extension of the base case. It can be shown that
for any automata term t is an upward simulation on At in the sense of [1]. Consequently,
rewriting sub-terms in an automata term according to the new rule (31) does not change its
language.

4.4 Product Flattening

Product flattening is a technique that we use to reduce the size of fixpoint saturations
that generate conjunctions and disjunctions of sets as their elements. Consider a term
of the form D = {πX (S0 & S′0)} − 0 for a pair of sets of terms S0 and S′0 where the
TAs AS0 and AS′0 have sets of states Q and Q′, respectively. The saturation generates the set
{πX (S0 & S′0), . . . , πX (Sn & S′n)} with Si ⊆ Q, S′i ⊆ Q′ for all 0 ≤ i ≤ n. The size of this

set is 2|Q|+|Q′| in the worst case. In terms of the automata operations, this fixpoint expan-
sion corresponds to first determinizing both AS0 and AS′0 and only then using the product
construction (cf. Sect. 2.4). The automata intersection, however, works for nondeterministic
automata too—the determinization is not needed. Implementing this standard product con-
struction on terms would mean transforming the original fixpoint above into the following

123 159

Automata Terms in a Lazy WSkS Decision Procedure 989

fixpoint with a flattened product: D = {πX (S0 [&] S′0)} − 0 where [&] is the augmented
product for conjunction. This way, we can decrease the worst-case size of the fixpoint to
|Q| · |Q′|. A similar reasoning holds for terms of the form {πX (S0+ S′0)} − 0 . Formally,
the technique can be implemented by the following pair of sub-term rewriting rules where S
and S′ are non-empty sets of terms:

S+ S′�S [+] S′, (37)

S & S′�S [&] S′. (38)

Observe that for terms obtained from WS2S formulae using the translation from Sect. 3, the
rules are not helpful in their given form. Consider, for instance, the term {πX ({r}&{q})}−0
obtained from a formula ∃X . ϕ ∧ ψ with ϕ and ψ being atoms. The term would be, using
rule (38), rewritten into the term {πX ({r & q})}−0 . Then, during a subsequent fixpoint com-
putation,wemight obtain a fixpoint of the following form: {πX ({r & q}), πX ({r & q, r1 & q1}),
πX ({r1 & q1, r2 & q2})}, where the occurrences of the projection πX disallow one to perform
the desired union of the inner sets, and so the application of rule (38) did not help. We there-
fore need to equip our procedure with a rewriting rule that can be used to push the projection
inside a set term S:

πX (S)�{πX (t) | t ∈ S}. (39)

In the example above, using rule (39) we would now obtain the term {πX (r & q)} − 0 (note
that we rewrote {{·}} to {·} as mentioned in Sect. 3) and the fixpoint {πX (r & q), πX (r1 & q1),
πX (r2 & q2)}. The correctness of the rules is guaranteed by Lemma 4.

We, however, still have to note that there is a danger related with the rules (37)–(39).
Namely, if they are applied to some terms in a partially evaluated fixpoint but not to all, the
form of these terms might get different (cf. πX ({r & q}) and πX (r & q)), and it will not be
possible to combine them as source states of TA transitions when computing Δa , leading
thus to an incorrect result. We resolve the situation in such a way that we apply the rules as
a pre-processing step only before we start evaluating the top-level fixpoint, which ensures
that all terms will subsequently be generated in a compatible form.

4.5 Nondeterministic Union

Optimization of the product term saturations from the previous section can be pushed one
step further for terms of the form {πX (S+ S′)} − 0 . The idea is to use the nondeterministic
TA union to implement the union operation instead of the product construction. The TA union
is implemented as the component-wise union of the two TAs. Its size is hence linear to the
size of the input instead of quadratic as in the case of the product (i.e., |Q| + |Q′| instead of
|Q| · |Q′|). To work correctly, the nondeterministic union requires disjoint input sets of states
(otherwise, the combination of the two transition functions could generate runs that are not
possible in either of the input TAs). We implement the nondeterministic union through the
following rewriting rule:

S+ S′�S ∪ S′ for S �!� S′ (40)

where S and S′ are sets of terms (similarly to Sect. 4.4, in order to successfully reduce the
fixpoint state space on terms obtained fromWS2S formulae, we also need to apply rule (39)
to push projection inside set terms). The relation �!� used in the rule is the non-interference
of terms, which generalizes the state space disjointness requirement of the nondeterministic
union of TAs. Its complement, the interference of terms !�, is defined using the following

123160

990 V. Havlena et al.

equivalences:

S !� S′ ⇔ S = S′ ∨ ∃t ∈ S, t ′ ∈ S′. t !� t ′ (41)

t & u !� t ′ & u′ ⇔ t !� t ′ ∨ u !� u′ (42)

t + u !� t ′ + u′ ⇔ t !� t ′ ∨ u !� u′ (43)

t !� t ′ ⇔ t !� t ′ (44)

πX (t) !� πX (t ′) ⇔ t !� t ′ (45)

D !� t ⇔ Ds !� t (46)

t !� D ⇔ t !� Ds (47)

q !� r ⇔ ∃1 ≤ k ≤ n. q, r ∈ Qk (48)

For terms t and u that are not matched by any rule above, we define t �!� u (for instance,
t1 & t2 �!� u1+ u2). Interference between terms tells uswhenwe cannot perform the rewriting.
Intuitively, this happens when we obtain a term {S+ S′} where S and S′ contain states from
the same base automaton Bk with the set of states Qk .

In order to avoid interference in the terms obtained fromWS2S formulae, we can perform
the following pre-processing step: When translating a WS2S formula ϕ into a term tϕ , we
create a special version of a base TA for every occurrence of an atomic formula inϕ. This way,
we can never mix up terms that emerged from different subformulae to enable a transition
that would otherwise stay disabled.

To use rule (40), it is necessary to modify treatment of the sink state ∅ in the definition
of Δ of Sect. 3. The technical difficulty we need to circumvent is that (unlike for finite word
automata) the nondeterministic union of two (even complete) TAs is not complete.

This can cause situations such as the following: let D = {πX ({t} + {r})} − 0 such that
Δ0(t, t) = {t}, Δ0(r , r) = {r}, and R(t) and R(r) are both true, i.e., both t and r can accept
any 0-tree, which alsomeans that the union of their complements should not accept any 0-tree.
Indeed, the saturation of D is the set term Ds = reachΔ0({πX ({t}+{r})}) = {πX ({t}+{r})}
where it holds that ¬R(πX ({t} + {r})), i.e., it does not accept any 0-tree. On the other hand,
if we use the new rule (40) together with rule (39), we obtain the term {πX (t), πX (r)} − 0 .
When computing its saturation, we will obtain a new element Δ0(πX (t), πX (r)) = πX (∅).
The term πX (∅) was constructed using the implicit rule of Sect. 3 that sends the otherwise
undefined successors of a pair of terms to {∅}. Note that R(πX (∅)) is true, yielding that
the fixpoint approximation {πX (t), πX (r), πX (∅)} is a root state, so a 0-tree is accepted.
Therefore, the application of the new rule (40) changed the language.

Although the previous situation cannot happen with terms obtained fromWS2S formulae
using the translation rules from Sect. 3, in order to formulate a correctness claim for any
terms constructed using our grammar, we remedy the issue by modifying the definition of
implicit transitions of Δ to {∅} from Sect. 3. We give the modified transition function Δ� in
Fig. 6.

Note that in the previous example, when using the modified transition function Δ� for
computing the saturation of the term {πX (t), πX (r)}−0 , we would from t �!� r deduce that
πX (t) �!� πX (r). As a consequence, Δ�

0(πX (t), πX (r)) = {∅}, which is not accepting.
We will denote the semantics of a term t obtained using Δ� instead of Δ as L� (t). First,

we show that the properties of terms from Sect. 3 under the original semantics hold also for
the modified semantics.

123 161

Automata Terms in a Lazy WSkS Decision Procedure 991

Fig. 6 Modified transition
function a (t, t) =

•
a (t, t) if t t

{∅} otherwise

•
a (t + u, t + u) = a (t, t) [+] a (u, u)

•
a (t & u, t & u) = a (t, t) [&] a (u, u)

•
a (πX(t), πX(t)) = πX(u) u ∈ πX(a)(t, t)

•
a (t, t) = u u ∈ a (t, t)

•
a (S, S) =

t∈S,t ∈S

a (t, t)

•
a (q, r) = δB

a (q, r)

Lemma 5 For automata terms A1, A2 and a set term S, the following equalities hold:

L� ({A1}) = L� (A1) (a)

L� ({A1+ A2}) = L� (A1) ∪ L� (A2) (b)

L� ({A1 & A2}) = L� (A1) ∩ L� (A2) (c)

L�
({A1}

) = L� (A1) (d)

L� ({πX (A1)}) = πX (L� (A1)) (e)

L�
(
S − 0

)
= L� (S)− 0 (f)

Proof In the following proofs we abuse notation and denote by AS the automaton of the
term S with the altered transition function Δ�.

(a): We prove the following more general form of (a):

L� ({A1, . . . , An}) = L�

⎛

⎝
⋃

1≤i≤n
Ae
i

⎞

⎠ (g)

(Again, note that all expanded terms are set terms.) Intuitively, in this proof we show that
determinisation does not change the modified language of a term. Let us useA⋃

Ae
i
to denote

the TA represented by the term
⋃

1≤i≤n Ae
i . Recall that we are using the modified semantics

with the altered term transition function Δ�.
(⊆) Let τ be a tree. It holds that τ ∈ L� ({A1, . . . , An}) if and only if τ ∈

L�
({Ae

1, . . . , A
e
n}

)
, i.e., if there is an accepting run ρ on τ in A{Ae

1,...,A
e
n}. Note that ρ maps

all leaves of τ to the terms from {Ae
1, . . . , A

e
n}, i.e., each leaf of τ is labelled by some Ae

i ,
which is a set of terms of a lower level (such a set term can be seen as a macrostate—i.e.,
a set of states—from determinisation of TAs). Since ρ is accepting, there is a term r ∈ ρ(ε)

such that R(r). Note that because R(r), it follows that r �= ∅.
We will now use ρ to construct a run ρ′ of A⋃

Ae
i
on τ . The run ρ′ will now map every

position of τ to a single term. For the root position, we set ρ′(ε) = r .We proceed by induction
as follows: For all non-leaf positions w ∈ dom(τ) \ leaf (τ) such that ρ′(w) = u, assume
that in the original run it holds that ρ(w.L) = UL and ρ(w.R) = UR. Then, let uL ∈ UL

and uR ∈ UR be terms such that u ∈ Δ�(uL, uR) (the presence of such terms is guaranteed

123162

992 V. Havlena et al.

by (54)). The following inductive invariant holds: If u �= ∅, then uL �= ∅ and uR �= ∅
(the invariant follows from (54), the fact that r �= ∅, and (41)). We set ρ′(w.L) = uL and
ρ′(w.R) = uR.

As a consequence, we have that ∀w ∈ leaf (τ) : ρ′(w) ∈ ⋃
1≤i≤n Ae

i . Then, for each
w ∈ dom(τ), it holds thatρ′(w) ∈ reachΔ�(

⋃
1≤i≤n Ae

i)whereΔ� is the (modified) transition
function of A⋃

Ae
i
. This follows from the definition of modified transition function for set

terms (54). Therefore, ρ′ is a run of A⋃
Ae
i
on τ and is accepting, so τ ∈ L�

(⋃
1≤i≤n Ae

i

)
.

(⊇) Consider a tree τ ∈ L�
(⋃

1≤i≤n Ae
i

)
. Then there is an accepting run ρ on τ inA⋃

Ae
i
.

We can then use ρ to construct the run ρ′ on dom(τ) defined as follows: For u ∈ leaf (τ),
if ρ(u) ∈ Ae

i , we set ρ′(u) = Ae
i . For w ∈ dom(τ) \ leaf (τ), we set ρ′(w) = r such

that {r} = Δ
�

τ(w)(ρ
′(w.L), ρ′(w.R)) (we know that Δ

�

τ(w)(ρ
′(w.L), ρ′(w.R)) is a singleton

set due to (54)). For the constructed run ρ′, it now holds that ∀w ∈ dom(τ) : ρ(w) ∈ ρ′(w),
therefore ρ′ is an accepting run on τ in A{Ae

1,...,A
e
n}, i.e., τ ∈ L� ({A1, . . . , An}).

(b)–(e): The proof is identical to the proof of corresponding variant in Lemma 3 (with
altered term transition function).

(f): The proof is similar to the proof of Lemma 3f with one exception. In particular, in the
proof of (the modified version of) Claim 1, we need to make use of the fact that interference
is preserved along transition relation, which is formalized in the following claim.

Claim 5 For two terms t1, t2 such that t1 !� t2, symbol a, and for each t ∈ Δ
�
a(t1, t2) it holds

that t !� t1 and t !� t2.

Proof By induction on the structure of terms:

– Base case: Let t1 and t2 be states of some base automata. From t1 !� t2 and (48), we can
deduce that t1 and t2 are both states of some base automaton Bk , i.e., t1, t2 ∈ Qk . Then
it also holds that Δ

�
a(t1, t2) ⊆ Qk , so for every t ∈ Δ

�
a(t1, t2), we have that t !� t1 and

t !� t2.
Let us now continue with inductive cases.

– Let t1 = u1 & v1 and t2 = u2 & v2. From (42), it follows that either u1 !� u2 or v1 !� v2.

Δ�
a(t1, t2) = Δ�

a(u1 & v1, u2 & v2)

= Δ•a(u1 & v1, u2 & v2) �(49)�
= Δ�

a(u1, u2) [&]Δ�
a(v1, v2) �(51)�

= {u & v | u ∈ Δ�
a(u1, u2) ∧ v ∈ Δ�

a(v1, v2)} �def. of [&] �

Therefore, for all t = u & v ∈ Δ
�
a(t1, t2):

– if u1 !� u2, then u !� u1 and u !� u2, so, from (42), it also holds that t !� t1 and
t !� t2; and

– if v1 !� v2, then v !� v1 and v !� v2, so, from (42), it also holds that t !� t1 and
t !� t2.

– The proofs for other inductive cases are similar.

�

The other parts of the proof are similar. ��

123 163

Automata Terms in a Lazy WSkS Decision Procedure 993

Lemma 6 For sets of terms S and S′ such that S �= ∅ and S′ �= ∅, we have:

L�
({S+ S′}) = L�

({S [+] S′}) , (a)

L�
({S & S′}) = L�

({S [&] S′}) , (b)

L� ({πX (S)}) = L� ({πX (t) | t ∈ S}) . (c)

Proof (a): (⊆) Let τ ∈ L�
({S+ S′}). From Lemma 5b we have L�

({S+ S′}) = L� (S) ∪
L�

(
S′

)
. Hence there are runs ρ1 in ASe and ρ2 in AS′e on τ such that for all w ∈ dom(τ),

ρ1(w) �= ∅ ∧ ρ2(w) �= ∅, and, moreover, at least one of them is accepting. Note that both
runs exist since the transition function Δ� is complete (for a pair of terms t1 and t2, (i) if
t1 �!� t2, then trivially Δ�(t1, t2) = {∅} �= ∅ and (ii) if t1 !� t2, then, from the definition of
modified transition function we have Δ�(t1, t2) = Δ•(t1, t2) �= ∅). Then, we can construct
a mapping ρ from τ defined such that for all w ∈ dom(τ), we set ρ(w) = ρ1(w)+ ρ2(w).
Note that ρ is a run of A{te1 + te2 |t1∈S,t2∈S′} on τ , i.e., it maps leaves of dom(τ) to terms of the
form te1 + te2 for t1 ∈ S and t2 ∈ S′. Moreover, ρ is accepting since at least one of the runs ρ1

and ρ2 is accepting. Therefore, τ ∈ L�
({t1+ t2 | t1 ∈ S, t2 ∈ S′}). From the definition of the

augmented product, it follows that τ ∈ L�
(
S [+] S′) and, finally, from Lemma 5a, we have

τ ∈ L�
({S [+] S′}).

(⊇) Let τ ∈ L�
({S [+] S′}). From Lemma 5a, we get τ ∈ L�

(
S [+] S′), and from the

definition of the augmented product,we obtain τ ∈ L�
({t1+ t2 | t1 ∈ S, t2 ∈ S′}). Therefore,

there is an accepting run ρ on τ in A{te1 + te2 |t1∈S,t2∈S′}. Furthermore, let us consider the run ρ′
ofA{S+ S′} on τ (note that, due to (12), the definition of interference, and the completeness of
the transition function, there is exactly one). By induction on the structure of τ , we can easily
show that for all w ∈ dom(τ), if ρ(w) = t1+ t2, then ρ′(w) = S1+ S2 such that t1 ∈ S1 and
t2 ∈ S2 (the property clearly holds at leaves and is also preserved by the transition function).
Let ρ(ε) = tε1 + tε2 and ρ′(ε) = Sε

1 + Sε
2 . Since R(tε1 + tε2), it also holds that R(Sε

1 + Sε
2).

Therefore, ρ′ is accepting, so τ ∈ L�
({S+ S′}).

(b): Dual to (a).
(c): Identical to the proof of Lemma 4c (with the altered transition function). ��

The following theorem shows that formula-to-term translation is correct even for themodified
semantics.

Theorem 2 Let ϕ be a WS2S formula. Then, L�
(
tϕ

) = L (ϕ).

Proof In the proof we use the notion of expanded terms. By te,Δ we denote that a term t
is expanded using term transition function Δ from Sect. 3.2. In the first step we prove
L�

(
tψ

) = L
(
tψ

)
by showing that 〈ψ〉e,Δ = 〈ψ〉e,Δ�

for each subformulaψ ofϕ by induction
on the structure of ϕ:

– ϕ = ϕ0 where ϕ0 is an atomic formula: Let Iϕ0 be the set of leaf states and Qϕ0 set of
states of a unique Aϕ0 . For each q1, q2 ∈ Qϕ0 we have q1 !� q2. Since Iϕ0 is already

expanded, 〈ϕ0〉e,Δ = 〈ϕ0〉e,Δ�
.

123164

994 V. Havlena et al.

– ϕ = ψ1 ∧ ψ2: We use the following equational reasoning.

〈ϕ〉e,Δ = 〈ψ1 ∧ ψ2〉e,Δ = (〈ψ1〉& 〈ψ2〉)e,Δ �(25)�
= 〈ψ1〉e,Δ & 〈ψ2〉e,Δ �expansion propagation�
= 〈ψ1〉e,Δ�

& 〈ψ2〉e,Δ� �induction hypothesis�
= (〈ψ1〉& 〈ψ2〉)e,Δ� �expansion propagation�
= 〈ϕ〉e,Δ� �(25)�

– ϕ = ψ1 ∨ ψ2: Dual to ψ1 ∧ ψ2.
– ϕ = ¬ψ : We use the following equational reasoning.

〈ϕ〉e,Δ = (〈ψ〉)e,Δ �(27)�
= 〈ψ〉e,Δ �expansion propagation�

= 〈ψ〉e,Δ�

�induction hypothesis�
= (〈ψ〉)e,Δ� �expansion propagation�
= 〈ϕ〉e,Δ� �(27)�

– ϕ = ∃X . ψ : We use the following equational reasoning.

〈∃X . ψ〉e,Δ = ({πX (〈ψ〉)} − 0)e,Δ �(28)�
= (

reachΔ0 ({πX (〈ψ〉)}))e,Δ �(14)�
= reachΔ0

({
πX (〈ψ〉e,Δ)

})
�expansion propagation�

= reachΔ0

({
πX (〈ψ〉e,Δ�

)
})

�induction hypothesis�

From the inductive construction of 〈ϕ〉 let us now observe that for every t1, t2 ∈
reachΔ0

({
πX (〈ψ〉e,Δ�

)
})

we have t1 !� t2. This follows from the definition of interfer-

ence and from the fact that for every set term S occurring in 〈ψ〉 and every t1, t2 ∈ S it
holds that t1 !� t2. Based on the previous, we have

〈∃X . ψ〉e,Δ = reachΔ0

({
πX (〈ψ〉e,Δ�

)
})

= reach
Δ

�
0

({
πX (〈ψ〉e,Δ�

)
})

�previous reasoning�

= 〈∃X . ψ〉e,Δ� �expansion prop. and (28)�

Since te,Δϕ = te,Δ
�

ϕ and the fact that for each a ∈ Σ and t1, t2 ∈ te,Δϕ :Δa(t1, t2) = Δ
�
a(t1, t2),

we haveL
(
tϕ

) = L�
(
tϕ

)
. Finally, fromTheorem 1we haveL

(
tϕ

) = L (ϕ), which concludes
the proof. ��
Based on Lemmas 5, Lemma 6, and Theorem 2 we can show correctness of the nondeter-
ministic union rule (40):

Lemma 7 Let S and S′ be sets of terms such that S �!� S′. Then

L�
({S+ S′}) = L�

(
S ∪ S′

)
.

123 165

Automata Terms in a Lazy WSkS Decision Procedure 995

Proof (⊆) From Lemma 5b, we have L�
({S+ S′}) = L� (S) ∪ L�

(
S′

)
. Let τ ∈ L� (S) ∪

L�
(
S′

)
and ρ be an accepting run on τ of either ASe or AS′e . Therefore, ρ is an accepting

run on τ also in ASe∪S′e .
(⊇) Let τ ∈ L�

(
S ∪ S′

)
. For each t1 ∈ Se and t2 ∈ S′e it holds that t1 �!� t2, so we have

that if t ∈ Δ
�
a(t1, t2), then t = ∅. Therefore, if ρ is an accepting run of ASe∪S′e on τ , then

ρ is an accepting run on τ in either ASe or AS′e . Without loss of generality, suppose that ρ

is an accepting run on τ of ASe and let ρ′ be the run of A{S+ S′} on τ (note that A{S+ S′} is
deterministic and complete, so ρ′ is unique). By induction on the structure of τ , we can easily
show that for all w ∈ dom(τ), if ρ(w) = t1, then ρ′(w) = S1 + S2 such that t1 ∈ S1 (the
property clearly holds at leaves and is also preserved by the modified transition function).
Let ρ(ε) = tε1 and ρ′(ε) = Sε

1 + Sε
2 . Since R(tε1), it also holds that R(Sε

1 + Sε
2). Therefore,

ρ′ is accepting, so τ ∈ L�
({S+ S′}). ��

Note that although the optimization presented in this section can improve the worst-case
number of reached terms, its use comes with a cost. In order to guarantee that rule (40) can be
performed, we need to use a different base automaton for each atomic formula. A different
base automaton can be obtained, e.g., by instantiating the automaton for a given formula every
time with different names of states. The use of different base automata makes it, however,
less likely that memoization avoids evaluating some function call (even though a similar one
might have already been evaluated), which may significantly impact the overall performance
of the decision procedure.

5 Experimental Evaluation

We have implemented the above introduced techniques (with the exception of Sect. 4.5 for
the reasons described therein) in a prototype Haskell tool.2 The base automata, hard-coded
into the tool, were the TAs for the basic predicates from Sect. 2, together with automata
for predicates Sing(X) and X = {p} for a variable X and a fixed tree position p. As an
additional optimisation, our tool uses the so-called antiprenexing (proposed already in [13]),
which pushes quantifiers down the formula tree using the standard logical equivalences.
Intuitively, antiprenexing reduces the complexity of elements within fixpoints by removing
irrelevant parts outside the fixpoint.

We have performed experiments with our tool on various formulae and compared its per-
formance with that of Mona. We appliedMona both on the original form of the considered
formulae as well as on their versions obtained by antiprenexing (which is built into our tool
and which—as we realised—can significantly helpMona too). Our preliminary implemen-
tation of product flattening (cf. Sect. 4.4) is restricted to parts below the lowest fixpoint, and
our experiments showed that it does not work well when applied on this level, where the
complexity is not too high, so we turned it off for the experiments. We ran all experiments
on a 64-bit Linux Debian workstation with the Intel(R) Core(TM) i7-2600 CPU running at
3.40GHz with 16GiB of RAM. The timeout was set to 100s.

We first considered various WS2S formulae on which Mona was successfully applied
previously in the literature. On them, our tool is quite slower than Mona, which is not
much surprising given the amount of optimisations built into Mona (for instance, for
the benchmarks from [25], Mona on average took 0.1 s, while we timeouted). Next,
we identified several parametric families of formulae (adapted from [13]), such as, e.g.,

2 The implementation is available at https://github.com/vhavlena/lazy-wsks.

123166

996 V. Havlena et al.

Table 1 Experimental results over the following parametric families of formulae: (a) ϕ
pt
n ≡

∀Z1, Z2. ∃X1, . . . , Xn . edge(Z1, X1) ∧
∧n

i=1 edge(Xi , Xi+1) ∧ edge(Xn , Z2) where edge(X , Y) ≡
edgeL(X , Y) ∨ edgeR(X , Y) and edgeL/R(X , Y) ≡ ∃Z . Z = SL/R(X) ∧ Z ⊆ Y (b) ϕcnstn ≡ ∃X . X =
{(LR)4}∧ X = {(LR)n} (c) ϕsubn = ∀X1, . . . , Xn ∃X .

∧n−1
i=1 Xi ⊆ X ⇒ (Xi+1 = SL(X)∨ Xi+1 = SR(X))

ϕ n Running time (sec) # of subterms/states

Lazy Mona Mona+AP Lazy Mona Mona+AP

ϕ
pt
n 1 0.02 0.16 0.15 149 216 216

2 0.50 – – 937 – –

3 0.83 – – 2487 – –

4 34.95 – – 8391 – –

5 60.94 – – 23,827 – –

ϕcnstn 80 14.60 40.07 40.05 1146 27,913 27,913

90 21.03 64.26 64.20 1286 32,308 32,308

100 28.57 98.42 98.91 1426 36,258 36,258

110 38.10 – – 1566 – –

120 49.82 – – 1706 – –

ϕsubn 3 0.01 0.00 0.00 140 92 92

4 0.04 34.39 34.47 386 170 170

5 0.24 – – 981 – –

6 2.01 – – 2376 – –

ϕhorn
n ≡ ∃X . ∀X1. ∃X2, . . . Xn . ((X1 ⊆ X ∧ X1 �= X2) ⇒ X2 ⊆ X) ∧ . . . ∧ ((Xn−1 ⊆
X ∧ Xn−1 �= Xn) ⇒ Xn ⊆ X), where our approach finished within 10ms, while the time
of Mona was increasing when increasing the parameter n, going up to 32s for n = 14 and
timeouting for k ≥ 15. It turned out thatMona could, however, easily handle these formulae
after antiprenexing, again (slightly) outperforming our tool. Finally, we also identified sev-
eral parametric families of formulae that Mona could handle only very badly or not at all,
even with antiprenexing, while our tool can handle them much better. These formulae are
mentioned in the caption of Table 1, which give detailed results of the experiments.

Particularly, the columns under “Running time (sec)” give the running times (in seconds) of
our tool (denoted Lazy), Mona, and Mona with antiprenexing (Mona +AP). The columns
under “# of subterms/states” characterize the size of the generated terms and automata.
Namely, for our approach, we give the number of nodes in the final term tree (with the leaves
being states of the base TAs). For Mona, we give the sum of the numbers of states of all the
minimal deterministic TAs constructed byMonawhen evaluating the formula. The “–” sign
means a timeout or that the tool ran out of memory.

The formulae considered in Table 1 speak about various paths in trees. We were originally
inspired by formulae kindly provided by Josh Berdine, which arose from attempts to translate
separation logic formulae to WS2S (and use Mona to discharge them), which are beyond
the capabilities of Mona (even with antiprenexing). We were also unable to handle them
with our tool, but our experimental results on the tree path formulae indicate (despite the
prototypical implementation) that our techniques can help one to handle some complex graph
formulae that are out of the capabilities of Mona. Thus, they provide a new line of attack on
deciding hard WS2S formulae, complementary to the heuristics used in Mona. Improving

123 167

Automata Terms in a Lazy WSkS Decision Procedure 997

the techniques and combining them with the classical approach of Mona is a challenging
subject for our future work.

6 RelatedWork

The seminal works [7,30] on the automata-logic connection were the milestones leading to
what we call here the classical tree automata-based decision procedure for WSkS [35]. Its
non-elementary worst-case complexity was proved in [33], and the work [16] presents the
first implementation, restricted to WS1S, with the ambition to use heuristics to counter the
high complexity. The authors of [9] provide an excellent survey of the classical results and
literature related to WSkS and tree automata.

The tool Mona [12] implements the classical decision procedures for both WS1S and
WS2S. It is still the standard tool of choice for decidingWS1S/WSkS formulae due to its all-
around most robust performance. The efficiency of Mona stems from many optimizations,
both higher-level (such as automata minimization, the encoding of first-order variables used
in models, or the use of multi-terminal BDDs to encode the transition function of the automa-
ton) as well as lower-level (e.g. optimizations of hash tables, etc.) [21,23]. The MSO(Str)
logic, a dialect ofWS1S, can also be decided by a similar automata-based decision procedure,
implemented within, e.g., jMosel [36] or the symbolic finite automata framework of [10].
In particular, jMosel implements several optimizations (such as second-order value num-
bering [27]) that allow it to outperform Mona on some benchmarks (Mona also provides
an MSO(Str) interface on top of the WS1S decision procedure).

The original inspiration for ourwork are the antichain techniques for checking universality
and inclusion of finite automata [1,5,11,39] and language emptiness of alternating automata
[11], which use symbolic computation together with subsumption to prune large state spaces
arising from subset construction. This paper is a continuation of our work on WS1S, which
started by [14], where we discussed a basic idea of generalizing the antichain techniques to
aWS1S decision procedure. In [13], we then presented a completeWS1S decision procedure
based on these ideas that is capable to rival Mona on already interesting benchmarks. The
work in [37] presents a decision procedure that, although phrased differently, is in essence
fairly similar to that of [13]. One additional feature of [37] over [13] is that it can employ
laziness even when generating base automata. This feature can have a significant effect for
formulae with large integer constants, such as x = 1,000,000,000 ∧ x = 1000. While the
formula is clearly unsatisfiable,Mona constructs the base automata, which might already be
too large to fit in the memory.

This paper generalizes [13] to WS2S. It is not merely a straightforward generalization of
the word concepts to trees. A nontrivial transition was needed from language terms of [13],
with their semantics being defined straightforwardly from the semantics of sub-terms, to tree
automata terms, with the semantics defined as a language of an automaton with transitions
defined inductively to the structure of the term. This change makes the reasoning and correct-
ness proof considerably more complex, though the algorithm itself stays technically quite
simple. Due to our implementation in Haskell, we can, similarly to [37], avoid constructing
large base automata and only construct those parts necessary to establishing the status of
input formulae.

Finally,GanzowandKaiser [15] developed anewdecision procedure for theweakmonadic
second-order logic on inductive structures within their tool Toss. Their approach completely
avoids automata; instead, it is based on the Shelah’s composition method. The paper reports

123168

998 V. Havlena et al.

that the Toss tool could outperform Mona on two families of WS1S formulae, one derived
from Presburger arithmetics and one formula of the form that we mention in our experiments
as problematic for Mona but solvable easily by Mona with antiprenexing.

Acknowledgements We thank the anonymous reviewers, both of the conference and the journal version of
the paper, for their careful reading of the drafts, the spotted bugs, and the helpful comments on how to improve
the exposition in this paper. This work was supported by the Czech Science Foundation project 19-24397S, the
FIT BUT internal project FIT-S-20-6427, and The Ministry of Education, Youth and Sports from the National
Programme of Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602.

References

1. Abdulla, P.A., Chen, Y.F., Holík, L., Mayr, R., Vojnar, T.:When simulationmeets antichains (on Checking
language inclusion of NFAs). In: TACAS’10, LNCS, vol. 6015, pp. 158–174. Springer (2010)

2. Basin, D., Klarlund, N.: Automata based symbolic reasoning in hardware verification. In: CAV’98, LNCS,
pp. 349–361. Springer (1998)

3. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S systems to verify parameterized
networks. In: TACAS’00, LNCS, vol. 1785, pp. 188–203. Springer (2000)

4. Bodeveix, J., Filali, M.: FMona: A tool for expressing validation techniques over infinite state systems.
In: TACAS’00, LNCS, vol. 1785, pp. 204–219. Springer (2000)

5. Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based universality and inclusion
testing over nondeterministic finite tree automata. In: CIAA’08, LNCS, vol. 5148, pp. 57–67. Springer
(2008)

6. Bozga, M., Iosif, R., Sifakis, J.: Structural invariants for parametric verification of systems with almost
linear architectures. Tech. Rep. arXiv:1902.02696 (2019)

7. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: International Congress on
Logic, Methodology, and Philosophy of Science, pp. 1–11. Stanford University Press (1962)

8. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag properties via
user-defined predicates in separation logic. Sci. Comput. Program. 77(9), 1006–1036 (2012)

9. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree automata techniques and applications (2008)

10. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: POPL’14., pp. 541–554 (2014)
11. Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: TACAS’10, LNCS, vol. 6015, pp.

2–22. Springer (2010)
12. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: New techniques for WS1S and WS2S. In: CAV’98.

LNCS, vol. 1427, pp. 516–520. Department of Computer Science, Aarhus University, Springer, BRICS
(1998)

13. Fiedor, T., Holík, L., Janků, P., Lengál, O., Vojnar, T.: Lazy automata techniques forWS1S. In: TACAS’17,
LNCS, vol. 10205, pp. 407–425. Springer (2017)

14. Fiedor, T., Holík, L., Lengál, O., Vojnar, T.: Nested antichains for WS1S. In: TACAS’15, LNCS, vol.
9035. Springer (2015)

15. Ganzow, T., Kaiser, L.: New Algorithm for weak monadic second-order logic on inductive structures. In:
CSL’10, LNCS, vol. 6247, pp. 366–380. Springer (2010)

16. Glenn, J., Gasarch, W.: Implementing WS1S via finite automata. In: Workshop on Implementing
Automata, LNCS, vol. 1260, pp. 50–63. Springer (1996)

17. Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verification of heap
manipulation. Formal Methods Syst. Des. 41(1), 83–106 (2012)

18. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over unbounded domains. In:
FMCAD’10, pp. 101–109. IEEE Computer Science (2010)

19. Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Automata terms in a lazy WSkS decision procedure. In:
Proceedings of of CADE-27, LNCS, vol. 11716, pp. 300–318. Springer (2019)

20. Hune, T., Sandholm, A.: A case study on using automata in control synthesis. In: FASE’00, LNCS, vol.
1783, pp. 349–362. Springer (2000)

21. Klarlund, N.: A theory of restrictions for logics and automata. In: CAV’99, LNCS, vol. 1633, pp. 406–417.
Springer (1999)

123 169

Automata Terms in a Lazy WSkS Decision Procedure 999

22. Klarlund, N., Møller, A.: MONA Version 1.4 user manual. BRICS, Department of Computer Science,
Aarhus University (2001). Notes Series NS-01-1. Available from http://www.brics.dk/mona/. Revision
of BRICS NS-98-3

23. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found. Comput.
Sci. 13(4), 571–586 (2002)

24. Klarlund, N., Nielsen,M., Sunesen, K.: A case study in automated verification based on trace abstractions.
In: Formal System Specification, The RPC-Memory Specification Case Study, LNCS, vol. 1169. Springer
(1996)

25. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and data. In: POPL’11,
pp. 611–622. ACM (2011)

26. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND. In: SAS’11, LNCS,
vol. 6887, pp. 43–59. Springer (2011)

27. Margaria, T., Steffen, B., Topnik, C.: Second-order value numbering. In: GraMoT’10, ECEASST, vol. 30,
pp. 1–15. EASST (2010)

28. Møller, A., Schwartzbach, M.: The pointer assertion logic engine. In: PLDI’01. ACM Press (2001). Also
in SIGPLAN Notices 36(5) (2001)

29. Morawietz, F., Cornell, T.: The logic-automaton connection in linguistics. In: LACL’97, LNAI, vol. 1582.
Springer (1997)

30. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Trans. Am. Math. Soc.
141, 1–35 (1969)

31. Sandholm, A., Schwartzbach, M.I.: Distributed safety controllers for web services. In: FASE’98, pp.
270–284. Springer (1998)

32. Smith, M.A., Klarlund, N.: Verification of a sliding window protocol using IOA and MONA. In:
FORTE/PSTV’00, IFIP, vol. 183, pp. 19–34. Kluwer (2000)

33. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (preliminary report). In: Fifth
Annual ACM Symposium on Theory of Computing. STOC’73, pp. 1–9. ACM, New York (1973)

34. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based on monadic second-
order logic. ACM Trans. Comput. Log. 22(4), 33:1–33:33 (2013)

35. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem
of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968)

36. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: a stand-alone tool and jABC plugin for
M2L(Str). In: SPIN’06, LNCS, vol. 3925, pp. 293–298. Springer (2006)

37. Traytel,D.:Acoalgebraic decisionprocedure forWS1S. In: 24thEACSLAnnualConferenceonComputer
Science Logic (CSL’15). Leibniz International Proceedings in Informatics (LIPIcs), vol. 41, pp. 487–503.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015)

38. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree data structures. In:
CADE’11, LNCS, vol. 6803, pp. 476–491. Springer (2011)

39. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: a new algorithm for checking univer-
sality of finite automata. In: CAV’06, LNCS, vol. 4144, pp. 17–30. Springer (2006)

40. Wulf, M.D., Doyen, L., Maquet, N., Raskin, J.F.: Antichains: alternative algorithms for LTL satisfiability
and model-checking. In: TACAS’08, LNCS, vol. 4693. Springer (2008)

41. Wulf, M.D., Doyen, L., Raskin, J.F.: A lattice theory for solving games of imperfect information. In:
HSCC’06, LNCS, vol. 3927. Springer (2006)

42. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In: POPL’08, pp.
349–361. ACM (2008)

43. Zhou, M., He, F., Wang, B., Gu, M., Sun, J.: Array theory of bounded elements and its applications. J.
Autom. Reason. 52(4), 379–405 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123170

The Journal of Systems & Software 201 (2023) 111673

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A symbolic algorithm for the case-split rule in solvingword constraints
with extensions✩

Yu-Fang Chen a, Vojtěch Havlena b, Ondřej Lengál b,∗, Andrea Turrini c,d
a Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nangang, 11500, Taipei, Taiwan
b Faculty of Information Technology, Brno University of Technology, Bozetechova 2, 61200, Brno, Czech Republic
c State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Haidian District, Zhongguancun 4# South Fourth
Street, 100190, Beijing, China
d Institute of Intelligent Software, 221, Nansha Street West, 511458, Guangzhou, China

a r t i c l e i n f o

Article history:
Received 2 December 2021
Received in revised form 13November 2022
Accepted 28 February 2023
Available online 5 March 2023

Keywords:
String constraints
Satisfiability modulo theories
Regular model checking
Nielsen transformation
Finite automata
Monadic second-order logic over strings

a b s t r a c t

Case split is a core proof rule in current decision procedures for the theory of string constraints. Its use
is the primary cause of the state space explosion in string constraint solving, since it is the only rule
that creates branches in the proof tree. Moreover, explicit handling of the case split rule may cause
recomputation of the same tasks in multiple branches of the proof tree. In this paper, we propose
a symbolic algorithm that significantly reduces such a redundancy. In particular, we encode a string
constraint as a regular language and proof rules as rational transducers. This allows us to perform
similar steps in the proof tree only once, alleviating the state space explosion. We also extend the
encoding to handle arbitrary Boolean combinations of string constraints, length constraints, and regular
constraints. In our experimental results, we validate that our technique works in many practical cases
where other state-of-the-art solvers fail to provide an answer; our Python prototype implementation
solved over 50% of string constraints that could not be solved by the other tools.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Constraint solving is a technique used as an enabling technol-
ogy in many areas of formal verification and analysis, such as
symbolic execution (Cadar et al., 2006; Godefroid et al., 2005;
King, 1976; Sen et al., 2013), static analysis (Wang et al., 2017;
Gulwani et al., 2008), or synthesis (Gulwani et al., 2011; Osera,
2019; Knoth et al., 2019). For instance, in symbolic execution,
feasibility of a path in a program is tested by creating a constraint
that encodes the evolution of the values of variables on the given
path and checking if it is satisfiable. Due to the features used in
the analyzed programs, checking satisfiability of the constraint
can be a complex task. For instance, the solver has to deal with
different data types, such as Boolean, Integer, Real, or String.
Theories for the first three data types are well known, widely
developed, and implemented in tools, while the theory for the
String data type has started to be investigated only recently
in Abdulla et al. (2014), Berzish et al. (2017), Bjørner et al. (2009),
Chen et al. (2019a, 2018), Holík et al. (2018), Lin and Majumdar
(2018), Liang et al. (2014), Wang et al. (2016), Yu et al. (2014),

✩ Editor: Earl Barr.
∗ Corresponding author.

E-mail addresses: yfc@iis.sinica.edu.tw (Y.-F. Chen), ihavlena@fit.vutbr.cz
(V. Havlena), lengal@fit.vutbr.cz (O. Lengál), turrini@ios.ac.cn (A. Turrini).

Abdulla et al. (2017, 2015), Kiezun et al. (2012), Lin and Barceló
(2016), Berzish et al. (2021), Reynolds et al. (2019), Blotsky et al.
(2018), Stanford et al. (2021), Loring et al. (2019), Trinh et al.
(2020) and Chen et al. (2019b), despite having been considered
already by A. A. Markov in the late 1960s in connection with
Hilbert’s 10th problem (see, e.g., Matiyasevich (1968), Durnev and
Zetkina (2009) and Kosovskii (1976)).

Most current decision procedures for string constraints in-
volve the so-called case-split rule. This rule performs a case
split with respect to the possible alignment of the variables.
The case-split rule is used in most, if not all, (semi-)decision
procedures for string constraints, including Makanin’s algorithm
in Makanin (1977), Nielsen transformation (Nielsen, 1917) (also
known as the Levi’s lemma Levi, 1944), and the procedures
implemented in most state-of-the-art solvers such as Z3 (Bjørner
et al., 2009), CVC4 (Liang et al., 2014), Z3Str3 (Berzish et al., 2017),
Norn (Abdulla et al., 2014), and many more. In this paper, we
will explain the general idea of our symbolic approach using the
Nielsen transformation, which is the simplest of the approaches;
nonetheless, we believe that the approach is applicable also to
other procedures.

Consider the word equation xz = yw, the primary type of
atomic string constraints considered in this paper, where x, z, y,
and w are word variables. When establishing satisfiability of the
word equation, the Nielsen transformation (introduced in Nielsen

https://doi.org/10.1016/j.jss.2023.111673
0164-1212/© 2023 Elsevier Inc. All rights reserved.

171

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 1. A partial proof tree of applying the Nielsen transformation on the string constraint xz = ab ∧ wabyx = awbzy. The leaves are the outcome of completely
processing the first word equation xz = ab. Branches leading to contradictions are omitted.

(1917)) proceeds by first performing a case split based on the
possible alignments of the variables x and y, the first symbol of
the left and right-hand sides of the equation, respectively. More
precisely, it reduces the satisfiability problem for xz = yw into
satisfiability of (at least) one of the following four cases (1) y is
a prefix of x, (2) x is a prefix of y, (3) x is an empty string, and
(4) y is an empty string. Note that these cases are not disjoint:
for instance, the empty string is a prefix of every variable. For
these cases, the Nielsen transformation generates the following
equations.

For the case (1), i.e., y is a prefix of x, all occurrences of x in
xz = yw are replaced with yx′, where x′ is a fresh word variable
(we denote this case as x ↪→ yx′), i.e., we obtain the equation
yx′z = yw, which can be simplified to x′z = w. In fact, since the
transformation x ↪→ yx′ removes all occurrences of the variable x,
we can just reuse the variable x and perform the transformation
x ↪→ yx instead (and take this into account when constructing
a model later).

Case (2) of the Nielsen transformation is just a symmetric
counterpart of case (1) discussed above. For cases (3) and (4),
x and y, respectively, are replaced by empty strings. Taking into
account all four possible transformations of the equation xz =

yw, we obtain the following equations:

(1) xz = w (2) z = yw (3) z = yw (4) xz = w

(Note that the results for (1) and (4) coincide, as well as the
results for (2) and (4).) If xz = yw has a solution, then at least one
of the above equations has a solution, too. The Nielsen transfor-
mation keeps applying the transformation rules on the obtained
equations, building a proof tree and searching for a tautology of
the form ϵ = ϵ.

Treating each of the obtained equations separately can cause
some redundancy (as we could already see above). Let us consider
the example in Fig. 1, where we apply the Nielsen transformation
to solve the string constraint xz = ab∧wabyx = awbzy, where x,
z, w, and y are word variables and a and b are constant symbols.
After processing the first word equation xz = ab, we obtain
a proof tree with three very similar leaf nodes wabyab = awby,
wabya = awbby, and waby = awbaby, which share the prefixes
waby and awb on the left and right-hand side of the equations,
respectively. If we continue applying the Nielsen transformation
on the three leaf nodes, we will create three very similar subtrees,
with almost identical operations. In particular, the nodes near the
root of such subtrees, which transform waby . . . = awb . . . , are
going to be essentially the same. The resulting proof trees will
therefore start to differ only after processing such a common part.
Therefore, handling those equations separately will cause that
some operations will be performed multiple times. If the proof
tree of each word equation has n leaves and the string constraint
is a conjunction of k word equations, we might need to create nk

similar subtrees.

Fig. 2. A finite automaton encoding the three equations wabyab = awby,
wabya = awbby, and waby = awbaby.

The case split can be performed more efficiently if we process
the common part of the said leaves together using a symbolic
encoding. In this paper, we use an encoding of a set of equations
as a regular language, which is represented by a finite automaton.
An example is given in Fig. 2, which shows a finite automaton
over a 2-track alphabet, where each of the two tracks represents
one side of the equation. For instance, the equation wabyab =

awby is represented by the word
[
w

a

][a
w

][b
b

][y
y

][a
□

][b
□

]
accepted by

the automaton, where the □ symbol is a padding used to make
sure that both tracks are of the same length.

Given our regular language-based symbolic encoding, we need
a mechanism to perform the Nielsen transformation steps on
a set of equations encoded as a regular language. We show
that the transformations can be encoded as rational relations,
represented using finite transducers, and the whole satisfiabil-
ity checking problem can be encoded within the framework of
regular model checking. We will provide more details on how
this is done in Sections 3–6 stepwise. In Section 3, we describe
the approach for a simpler case where the input is a quadratic
word equation, i.e., a word equation with at most two occur-
rences of every variable. In this case, the Nielsen transformation
is sound and complete, that is, the solution it returns is correct
and it returns a solution whenever a solution exists. In Section 4,
we extend the technique to support the conjunction of non-
quadratic word equations. In Section 5, we extend our approach
to support arbitrary Boolean combination of string constraints.
Section 6 extends our framework with two additional types of
atomic string constraints—length and regular constraints—which
can constrain the length of values assigned to word variables and
their membership in a regular language, respectively.

We have implemented our approach in a prototype Python
tool called Retro and evaluated its performance on two bench-
mark sets: Kepler22 obtained from Le and He (2018) and PyEx-
Hard obtained by running the PyEx symbolic execution engine
on Python programs from Reynolds et al. (2017) and collect-
ing examples on which CVC4 or Z3 fail. Retro solved most of
the problems in Kepler22 (on which CVC4 and Z3 do not per-
form well). Moreover, it solved over 50% of the benchmarks in
PyEx-Hard that could be solved by neither CVC4 nor Z3.

2

172

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

This paper is an extended version of the paper that appeared
in the proceedings of APLAS’20 (Chen et al., 2020), containing
complete proofs of the presented lemmas and theorems and
further extending the presented technique to handle (i) arbitrary
Boolean combination of string constraints (Section 5), (ii) length
constraints (Section 6.1), and (iii) regular constraints (Section 6.2).

2. Preliminaries

An alphabet Σ is a finite set of characters and a word over Σ is
a sequence w = a1 . . . an of characters from Σ , with ϵ denoting
the empty word. We use w1.w2 (and often just w1w2) to denote
the concatenation of words w1 and w2. Σ∗ is the set of all words
over Σ , Σ+

= Σ∗
\ {ϵ}, and Σϵ = Σ ∪ {ϵ}. A language over Σ is

a subset L ofΣ∗. Given a wordw = a1 . . . an, we use |w| to denote
the length n of w and |w|a to denote the number of occurrences
of the character a ∈ Σ in w. Further, we use w[i] to denote ai,
the ith character of w, and w[i :] to denote the word ai . . . an.
When i > n, the value of w[i] and w[i :] is in both cases ⊥,
a special undefined value, which is different from all other values
and also from itself (i.e., ⊥ ̸= ⊥). We use Σk for k ≥ 2 to denote
the stacked alphabet consisting of k-tuples of symbols from Σ ,
e.g.,

[a
b

]
∈ Σ2 for a, b ∈ Σ .

2.1. Automata and transducers

A (finite) k-tape transducer is a quintuple T = (Q ,Σ,∆,Qi,Qf)
such that Q is a finite set of states, Σ is an alphabet, ∆ ⊆

Q × Σk
ϵ × Q is a set of transitions of the form q−{a1,...,ak}→s

for a1, . . . , ak ∈ Σϵ , Qi ⊆ Q is a set of initial states, and
Qf ⊆ Q is a set of final states. A run π of T over a k-tuple of
words (w1, . . . , wk) is a sequence of transitions q0−{a11,...,a

k
1}→q1,

q1−{a12,...,a
k
2}→q2, . . . , qn−1−{a1n,...,a

k
n}→qn ∈ ∆ such that for each i ∈

[1, k] we have wi = ai1a
i
2 . . . a

i
n (note that aim can be ϵ, so wi and

wj may be of a different length, for i ̸= j). The run π is accepting
if q0 ∈ Qi and qn ∈ Qf , and a k-tuple (w1, . . . , wk) is accepted
by T if there exists an accepting run of T over (w1, . . . , wk).
The language L(T) of T is defined as the k-ary relation L(T) =

{ (w1, . . . , wk) ∈ (Σ∗)k | (w1, . . . , wk) is accepted by T }. We call
the class of relations accepted by transducers rational relations.
T is length-preserving if no transition in ∆ contains ϵ; the class of
relations accepted by length-preserving transducers is named as
regular relations. For a 2-tape transducer T and (w1, w2) ∈ L(T),
we denote w1 as an input and w2 as an output of T . A finite
automaton (FA) is a 1-tape finite transducer; languages accepted
by finite automata are called regular languages. See, e.g., Pin
(2021) for more details on automata and transducers.

Given two k-ary relations R1, R2, we define their concatenation
R1.R2 = { (u1v1, . . . , ukvk) ∈ (Σ∗)k | (u1, . . . , uk) ∈ R1 ∧

(v1, . . . , vk) ∈ R2 } and given two binary relations R1, R2, we
define their composition R1 ◦ R2 = { (x, z) ∈ (Σ∗)2 | ∃y ∈

Σ∗
: (x, y) ∈ R2 ∧ (y, z) ∈ R1 }. Given a k-ary relation R we define

R0
= {ϵ}k, Ri+1

= R.Ri for i ≥ 0. Iteration of R is then defined as
R∗

=
⋃

i≥0 R
i. Given a language L ⊆ Σ∗ and a binary relation R,

we use R(L) to denote the language { y ∈ Σ∗
| ∃x ∈ L : (x, y) ∈

R }, called the R-image of L. We also use R−1(w) to denote the
language {u | (w, u) ∈ R}, called the preimage of a word w.

Proposition 1 (Berstel, 1979). The following propositions hold:

(i) The class of binary rational relations is closed under (finite)
union, composition, concatenation, and iteration; it is not
closed under intersection and complement.

(ii) For a binary rational relation R, a regular language L, and a
word w, the languages R(L) and R−1(w) are also effectively
regular (i.e., they can be computed).

(iii) The class of regular relations is closed under Boolean opera-
tions.

2.2. String constraints

Let Σ be an alphabet and X be a set of word variables ranging
over Σ∗ s.t. X∩Σ = ∅. We use ΣX to denote the extended alpha-
bet Σ ∪ X. An assignment of X is a mapping I :X → Σ∗. A word
term is a string over the alphabet ΣX. We lift an assignment I to
word terms by defining I(ϵ) = ϵ, I(a) = a, and I(x.w) = I(x).I(w),
for a ∈ Σ , x ∈ ΣX, and w ∈ Σ∗

X. A word equation ϕe is of the
form t1 = t2 where t1 and t2 are word terms. I is a model of ϕe if
I(t1) = I(t2). We call a word equation an atomic string constraint.
A string constraint is obtained from atomic string constraints
using Boolean connectives (∧,∨,¬), with the semantics defined
in the standard manner. A string constraint is satisfiable if it has
a model. Given a word term t ∈ Σ∗

X, a variable x ∈ X, and
a word term u ∈ Σ∗

X, we use t[x ↦→ u] to denote the word
term obtained from t by replacing all occurrences of x by u,
e.g. (abxcxy)[x ↦→ cy] = abcyccyy. We call a string constraint ψ
quadratic if each variable has at most two occurrences in ψ , and
cubic if each variable has at most three occurrences in ψ .

We use the following terminology. LetΦ be a string constraint.
A (semi-)algoritm A for solving string constraints is

1. sound if it holds that if A returns an assignment I to the
variables of Φ , then I is a model of Φ ,

2. complete if it holds that if Φ is satisfiable, then A returns
a model of Φ in a finite number of steps, and

3. terminating if it holds that A always returns an assignment
or false in a finite number of steps.

2.3. Monadic second-order logic on strings (mso(str))

We define monadic second-order logic on strings (MSO(Str))
(Büchi, 1960) over the alphabet Γ as follows. Let W be a count-
able set of string variables whose values range over Γ ∗ and P
be a countable set of set (second-order) position variables whose
values range over finite subsets of N1 = N\{0} such that W∩P =

∅. A formula ϕ of MSO(Str) is defined as

ϕ ::= P ⊆ R | P = R + 1 | w[P] = a |

ϕ1 ∧ ϕ2 | ¬ϕ | ∀
PP(ϕ) | ∀

Ww(ϕ)

where P, R ∈ P, w ∈ W, and a ∈ Γ . We use ϕ(w1, . . . , wk) to
denote that the free variables of ϕ are contained in {w1, . . . , wk}.

The semantics of MSO(Str) is defined in Fig. 3. An MSO(Str)
variable assignment is an assignment σ :W∪P → (Γ ∗

∪2N1) that
respects the types of variables with the additional requirement
that for every u, v ∈ W we have |σ (u)| = |σ (v)|. (We often omit
unused variables in σ .) We use |σ | to denote the value |σ (w)| of
any w ∈ W. Note that |σ | is well defined since we assume that
all w ∈ W are mapped to strings of the same length. The notation
σ [x ↦→ v] denotes a variant of σ where the assignment of variable
x is changed to the value v.

We call an MSO(Str) formula a string formula if it contains
no free position variables. Such a formula (with k free string
variables) denotes a k-ary relation over Γ ∗. In particular, given
an MSO(Str) string formula ϕ(w1, . . . , wk) with k free string vari-
ables w1, . . . , wk, we use L(ϕ) to denote the relation { (x1, . . . , xk)
∈ (Γ ∗)k | {w1 ↦→ x1, . . . , wk ↦→ xk} |H ϕ }. In the special case of
k = 1, ϕ denotes a language L(ϕ) ⊆ Γ ∗.

Proposition 2 (Thatcher and Wright, 1968). The class of languages
denoted by MSO(Str) string formulae with 1 free string variable
is exactly the class of regular languages. Furthermore, the class of
relations denoted by MSO(Str) string formulae with k free string
variables, for k > 1, is exactly the class of regular relations.

3

173

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 3. Semantics of MSO(Str).

Fig. 4. Syntactic sugar for MSO(Str).

Syntactic sugar for mso(str). In Fig. 4, we define the standard
syntactic sugar to allow us to write more concise MSO(Str) for-
mulae. Most of the sugar is standard, let us, however, explain
some of the less standard notation: Sing(P) denotes that P is
a singleton set of positions, p ≤ r denotes that p and r are
single positions and that p is less than or equal to r , x = 1 and
x = $ denote that x is the first and the last position respectively,
and P = R + j denotes that P is equal to R with all positions
incremented by j. We also extend our syntax to allow first-order
variables (we abuse notation and use the same quantifier notation
as for second-order variables, but denote the first-order variable
with a lowercase letter):

∀
Pp(ϕ) ≜ ∀

PP(Sing(P) → ϕ[p ↦→ P])
∃
Pp(ϕ) ≜ ∃

PP(Sing(P) ∧ ϕ[p ↦→ P])

where ϕ[p ↦→ P] denotes the substitution of all free occurrences
of p in ϕ by P .

2.4. Nielsen transformation

As already briefly mentioned in the introduction, the Nielsen
transformation can be used to check satisfiability of a conjunction

Fig. 5. Rules of the Nielsen transformation, with x ∈ X, α ∈ ΣX , and
u, v ∈ Σ∗

X . Symmetric rules are omitted.

of word equations. We use the three rules shown in Fig. 5; besides
the rules x ↪→ αx and x ↪→ ϵ that we have seen in the
introduction, there is also the (trim) rule, used to remove a shared
prefix from both sides of the equation.

Given a system of word equations, multiple Nielsen transfor-
mations might be applicable to it, resulting in different trans-
formed equations on which other Nielsen transformations can be
performed, as shown in Fig. 1. Trying all possible transformations
generates a tree (or a graph in general) whose nodes contain
conjunctions of word equations and whose edges are labeled with
the applied transformation. The conjunction of word equations in
the root of the tree is satisfiable if and only if at least one of the

4

174

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 6. Proof graph of the equation xy = ax generated by the Nielsen
transformation.

leaves in the graph is a tautology, i.e., it contains a conjunction
of the form ϵ = ϵ ∧ · · · ∧ ϵ = ϵ. As an example, consider the
satisfiable equation xy = ax where x, y are word variables and a
is a symbol with the proof graph in Fig. 6.

Lemma 3 (cf. Makanin, 1977; Diekert, 2002). The Nielsen trans-
formation is sound and complete. Moreover, if the system of word
equations is quadratic, the proof graph is finite.

Lemma 3 is correct even if we construct the proof tree using
the following strategy: every application of x ↪→ αx or x ↪→ ϵ is
followed by as many applications of the (trim) rule as possible.
We use x↣αx to denote the application of one x ↪→ αx rule
followed by as many applications of (trim) as possible, and x↣ ϵ

for the application of x ↪→ ϵ followed by (trim).

2.5. Regular model checking

Regular model checking (RMC) (cf. Kesten et al. (2001), Wolper
and Boigelot (1998), Bouajjani et al. (2000), Abdulla (2012) and
Bouajjani et al. (2012)) is a framework for verifying infinite state
systems. In RMC, each system configuration is represented as
a word over an alphabet Σ . The set of initial configurations I
and destination configurations D are captured as regular languages
over Σ . The transition relation T is captured as a binary rational
relation over Σ∗. A regular model checking reachability problem
is represented by the triplet (I, T ,D) and asks whether T rt (I) ∩

D ̸= ∅, where T rt represents the reflexive and transitive closure
of T . One way how to solve the problem is to start computing
the sequence T (0)(I), T (1)(I), T (2)(I), . . . where T (0)(I) = I and
T (n+1)(I) = T (T (n)(I)). During the computation of the sequence,
we can check whether we find T (i)(I) that overlaps with D, and
if yes, we can deduce that D is reachable. On the other hand, if
we obtain a sequence such that

⋃
0≤i<n T i(I) ⊇ T n(I), we know

that we have explored all possible system configurations without
reaching D, so D is unreachable. The RMC reachability prob-
lem is in general undecidable (this can be easily shown, e.g., by
a reduction from Turing machine configuration reachability).

3. Solving word equations using RMC

In this section, we describe a symbolic RMC-based framework
for solving string constraints. The framework is based on encod-
ing a string constraint into a regular language and encoding steps
of the Nielsen transformation as a rational relation. Satisfiability
of a string constraint is then reduced to a reachability problem of
RMC.

3.1. Nielsen transformation as word operations

In the following, we describe how the Nielsen transformation
of a single word equation can be expressed as operations on
words. We view a word equation eq : tℓ = tr as a pair of word
terms eeq = (tℓ, tr) corresponding to the left and right hand sides
of the equation respectively; therefore eeq ∈ Σ∗

X × Σ∗
X. Without

loss of generality we assume that tℓ[1] ̸= tr [1]; if this is not the
case, we pre-process the equation by applying the (trim) Nielsen
transformation (cf. Fig. 5) to trim the common prefix of tℓ and tr .

Example 1. The word equation eq1 : xay = yx is represented
by the pair of word terms e1 = (xay, yx). The full proof graph
generated by applying the Nielsen transformation is depicted
in Fig. 7. □

A rule of the Nielsen transformation (cf. Section 2.4) is repre-
sented using a (partial) function τ : (Σ∗

X×Σ∗
X) → (Σ∗

X×Σ∗
X). Given

a pair of word terms (tℓ, tr) of a word equation eq, the function τ
transforms it into a pair of word terms of a word equation eq′

that would be obtained by performing the corresponding step of
the Nielsen transformation on eq. Before we express the rules of
the Nielsen transformation, we define functions performing the
corresponding substitution. For x ∈ X and α ∈ ΣX we define

τx↦→αx = { (tℓ, tr) ↦→ (t′ℓ, t
′

r) | t′ℓ = tℓ[x ↦→ αx] ∧ t′r = tr [x ↦→ αx] } and

τx↦→ϵ = { (tℓ, tr) ↦→ (t′ℓ, t
′

r) | t′ℓ = tℓ[x ↦→ ϵ] ∧ t′r = tr [x ↦→ ϵ] }.

(1)

The function τx↦→αx performs a substitution x ↦→ αx while the
function τx↦→ϵ performs a substitution x ↦→ ϵ.

Example 2. Consider the pair of word terms e1 = (xay, yx)
from Example 1. The application τx↦→yx(e1) would produce the pair
e2 = (yxay, yyx) and the application τx↦→ϵ(e1) would produce the
pair e3 = (ay, y). □

The functions introduced above do not take into account the
first symbols of each side and do not remove a common prefix of
the two sides of the equation, which is a necessary operation for
the Nielsen transformation to terminate. Let us, therefore, define

Fig. 7. Proof graph for a run of the Nielsen transformation on the equation xay = yx. The sets S0 , S1 , and S2 are the sets of nodes explored in 0, 1, and 2 steps of
our algorithm, respectively.

5

175

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

the following function, which trims (the longest) matching prefix
of word terms of the two sides of an equation:

τtrim = { (tℓ, tr) ↦→ (t′ℓ, t
′

r) | ∃i ≥ 1∀j < i
(
tℓ[i] ̸= tr [i] ∧ tℓ[j] = tr [j]

∧ t′ℓ = tℓ[i :] ∧ t′r = tr [i :]
)
}.

(2)

Example 3. Continuing in our running example, the applica-
tion τtrim(e2) produces the pair e′

2 = (xay, yx) and, furthermore,
τtrim(e3) produces the pair e′

3 = (ay, y). □

Now we are ready to define functions corresponding to the
rules of the Nielsen transformation. In particular, the rule x↣αx
and its symmetric variant (i.e., x is the first symbol of either left
or right side of an equation) for x ∈ X and α ∈ ΣX (cf. Section 2.4)
can be expressed using the function

τx↣αx = τtrim ◦ { (tℓ, tr) ↦→ τx↦→αx(tℓ, tr) | (tr [1] = x ∧ tℓ[1] = α) ∨

(tr [1] = α ∧ tℓ[1] = x) }

(3)

while the rule x↣ ϵ and its symmetric variant for x ∈ X can be
expressed as the function

τx↣ ϵ = τtrim ◦{ (tℓ, tr) ↦→ τx↦→ϵ(tℓ, tr) | (tℓ[1] = x∨ tr [1] = x)}. (4)

If we keep applying the functions defined above on individual
pairs of word terms, while searching for the pair (ϵ, ϵ)—which
represents the case when a solution to the original equation eq
exists—, we would obtain the Nielsen transformation graph (cf.
Section 2.4). In the following, we show how to perform the steps
symbolically on a representation of a set of word equations at
once.

3.2. Symbolic algorithm for word equations

In this section, we describe the main idea of our symbolic
algorithm for solving word equations. We first focus on the case
of a single word equation and in subsequent sections extend the
algorithm to a richer class.

Our algorithm is based on applying the transformation rules
not on a single equation, but on a whole set of equations at once.
For this, we define the relations Tx↣αx and Tx↣ ϵ that aggregate
the versions of τx↣αx and τx↣ ϵ for all possible x ∈ X and α ∈ ΣX.
The signature of these relations is (Σ∗

X × Σ∗
X) × (Σ∗

X × Σ∗
X) and

they are defined as follows:

Tx↣αx =

⋃
y∈X,α∈ΣX

τy↣αy Tx↣ ϵ =

⋃
y∈X

τy↣ ϵ (5)

Note the following two properties of the relations: (i) they pro-
duce outputs of all possible Nielsen transformation steps applica-
ble with the first symbols on the two sides of the equations and
(ii) they include the trimming operation.

We compose the introduced relations into a single one, de-
noted as Tstep and defined as Tstep = Tx↣αx ∪ Tx↣ ϵ . The relation
Tstep can then be used to compute all successors of a set of word
terms of equations in one step. For a set of word terms S we
can compute the Tstep-image of S to obtain all successors of
pairs of word terms in S. The initial configuration, given a word
equation eq : tℓ = tr , is the set Eeq = {(tℓ, tr)}.

Example 4. Lifting our running example to the introduced
notions over sets, we start with the set Eeq = S0 = {e1 =

(xay, yx)}. After applying Tstep on Eeq, we obtain the set S1 = {e′

2 =

(xay, yx), e′

3 = (ay, y), (axy, yx), (a, ϵ)}. The pairs e′

2 and e′

3 were

described earlier, the pair (axy, yx) is obtained by the transfor-
mation τy↣ xy, and the pair (a, ϵ) is obtained by the transforma-
tion τy↣ ϵ . If we continue by computing Tstep(S1), we obtain the
set S2 = S1 ∪ {(ax, x)}, as shown in Fig. 7 (the pair (ax, x) was
obtained from (axy, yx) using the transformation τy↣ ϵ). □

Using the symbolic representation, we can formulate the prob-
lem of checking satisfiability of a word equation eq as the task
of

• either testing whether (ϵ, ϵ) ∈ T rt
step(Eeq); if the membership

holds, it means that the constraint eq is satisfiable, or
• finding a set (called unsat-invariant) Einv such that Eeq ⊆ Einv,

(ϵ, ϵ) /∈ Einv, and Tstep(Einv) ⊆ Einv, implying that eq is
unsatisfiable.

In the following sections, we show how to encode the problem
into the RMC framework.

Example 5. To proceed in our running example, when we apply
Tstep on S2, we get Tstep(S2) ⊆ S2. Since e1 ∈ S2 and (ϵ, ϵ) /∈

S2, the set S2 is our unsat-invariant, which means that eq1 is
unsatisfiable. □

3.3. Towards symbolic encoding

Let us now discuss some possible encodings of the word equa-
tions satisfiability problem into RMC. Recall that our task is to
find an encoding such that the encoded equation (corresponding
to initial configurations in RMC) and satisfiability condition (cor-
responding to destination configurations) are regular languages
and the transformation (transition) relation is a rational relation.
We start by describing two possible methods of encodings that
do not work, analyze why they cannot be used, and then describe
a working encoding that we do use.

The first idea about how to encode a set of word equations
as a regular language is to encode a pair eeq = (tℓ, tr) as a word
tℓ · = · tr , where = /∈ ΣX. One immediately finds out that although
the transformations τx↣αx and τx↣ ϵ are rational (i.e., expressible
using a transducer), the transformation τtrim, which removes the
longest matching prefix from both sides, is not (a transducer
with an unbounded memory to remember the prefix would be
required).

The second attempt of an encoding might be to encode eeq =

(tℓ, tr) as a rational binary relation, represented, e.g., by a (not
necessarily length-preserving) 2-tape transducer (with one tape
for tℓ and the other tape for tr) and use four-tape transducers
to represent the transformations (with two tapes for tℓ and tr
and two tapes for t′ℓ and t′r). The transducers implementing τx↣ yx
and τx↣ ϵ can be constructed easily and so can be the transducer
implementing τtrim, so this solution looks appealing. One, how-
ever, quickly realizes that there is an issue in computing Tstep(Eeq).
In particular, since Eeq and Tstep are both represented as rational
relations, the intersection (Eeq ×Σ∗

X ×Σ∗
X)∩ Tstep, which needs to

be computed first, may not be rational any more. Why? Suppose
Eeq = { (ambn, cm) | m, n ≥ 0 } and Tstep = { (ambn, cn, ϵ, ϵ) |

m, n ≥ 0 }. Then the intersection (Eeq × Σ∗
X × Σ∗

X) ∩ Tstep =

{ (anbn, cn, ϵ, ϵ) | n ≥ 0 } is clearly not rational any more.

3.4. Symbolic encoding of quadratic equations into RMC

We therefore converge on the following method of repre-
senting word equations by a regular language. A set of pairs of
word terms is represented as a regular language over a 2-track
alphabet with padding Σ2

X,□, where ΣX,□ = ΣX ∪ {□}, using an
FA. For instance, e1 = (xay, yx) would be represented by the
regular language

[x a y
y x □

][
□

□

]∗

. In other words, the equation e1 has

6

176

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

many encodings that differ by the padding, with
[x a y
y x □

]
being

the shortest encoding. The valid representation of the equation
contains all of these encodings. On the other hand, Nielsen trans-
formations are represented by (in general, length non-preserving)
binary rational relations over the 2-track alphabet Σ2

X,□ (the first
item of each pair refers to an encoding of an equation and the
second one refers to the particular transformation applied to the
encoding). For instance, the transformation τx↣ ϵ is represented
by a rational relation containing, e.g., the pair

([x a y □

y x □ □

]
,

[a y □

y □ □

])
and the transformation τy↣ xy is represented by a rational relation
containing, e.g., the pair

([x a y □

y x □ □

]
,

[a x y
y x □

])
.

Formally, we first define the equation encoding function
eqencode : (Σ∗

X)
2

→ (Σ2
X,□ \ {

[
□

□

]
})∗ such that for a pair of

word terms tℓ = a1 . . . an and tr = b1 . . . bm (without loss of
generality we assume that n ≥ m), we have eqencode(tℓ, tr) =[
a1 · · · am am+1 · · · an
b1 · · · bm □ · · · □

]
. We also lift eqencode to sets of pairs

of word terms S ⊆ Σ∗
X ×Σ∗

X as eqencode(S) = {eqencode(tℓ, tr) |

(tℓ, tr) ∈ S}.
Let σ be a symbol. We define the padding of a word w with

respect to σ as the language padσ = {(w,w′) | w′
∈ {w}.{σ }

∗
},

i.e., it is a set of words obtained from w by extending it by an
arbitrary number of σ ’s. Moreover, we also create a (length non-
preserving) transducer Ttrim that performs trimming of its input;
this is easy to implement by a two-state transducer that replaces
a prefix of symbols of the form

[
β

β

]
with ϵ, for β ∈ ΣX,□. We

define the function encode, used for encoding word equations
into regular languages, as encode = Ttrim ◦ pad[

□

□

] ◦ eqencode,

i.e., it takes an encoding of the equation, adds padding, and trims
the maximum shared prefix of the two sides of the equation.
For example, encode(bxay, byx) =

[x a y
y x □

][
□

□

]∗

. Moreover, for an
equation e ∈ Σ∗

X × Σ∗
X, a word w ∈ encode(e), and a Nielsen

rule ρ, we use w[ρ] to denote the set encode(τρ(e)).

Lemma 4. Given a word equation eq : tℓ = tr for tℓ, tℓ ∈ Σ∗
X, the

set encode(eq) is regular.

Proof.
Without loss of generality we assume that |tr | ≤ |tℓ|. We give

the following MSO(Str) formula that encodes eq:

ϕeq(w,w′) ≜
⋀

1≤k≤|tℓ|

w[k] = tℓ[k] ∧

⋀
1≤k≤|tr |

w′
[k] = tr [k]

∧

⋀
|tr |<k≤|tℓ|

w′
[k] = □ ∧

∀
Pp((p > |tℓ|) → (w[p] = □ ∧ w′

[p] = □))

(6)

From Proposition 2, it follows that L(ϕeq) is a regular binary
relation and, moreover, it can be interpreted as a regular language
over the composed alphabet Σ2

X,□. Since the image of a regular
language with respect to a rational relation (realizing Ttrim) is also
regular (cf. Proposition 1), it follows that encode(L(ϕeq)) is also
regular. □

Using the presented encoding, when trying to express the
τx↣αx and τx↣ ϵ transformations, we, however, encounter an issue
with the need of an unbounded memory. For instance, for the
language L =

[x
y

]∗

, the transducer implementing τx↣ yx would
need to remember how many times it has seen x on the first track
of its input (indeed, the image of L with respect to τx↣ yx, i.e., the
set { encode(u, v) | ∃n ≥ 0 : u = (yx)n ∧ v = yn□n }, is no longer
regular).

We address this issue in several steps: first, we give a ra-
tional relation that correctly represents the transformation rules
for cases where the equation eq is quadratic, and extend our
algorithm to equations with more occurrences of variables in
Section 4. Let us define the following, more general, restriction of
τx↣αx to equations with at most i ∈ N occurrences of variable x:

τ≤i
x↣αx = τx↣αx ∩{ ((tℓ, tr), (w,w′)) | w,w′

∈ Σ∗

X, |tℓ.tr |x ≤ i }. (7)

We define τ≤i
x↣ ϵ , τ

≤i
x↦→αx, and τ

≤i
x↦→ϵ similarly.

3.4.1. Encoding Nielsen transformations as rational relations
Next, in order to be able to perform the operations given

by τ≤i
x↣ ϵ and τ≤i

x↣αx on our encoding within the RMC framework,
we need to encode them as rational relations. In this section,
we define rational relations T ≤i

x↣ ϵ and T ≤i
x↣αx that do exactly

this encoding. We obtain these relations in successive steps, by
defining several intermediate formulae with the transformation
as subscript and the number of variables as superscript, e.g., ϕ≤n

x↣ ϵ

and ψn
x↣αx.

We begin with defining some useful MSO(Str) predicates for
an MSO(Str) string variable w, a word constraint variable x, and
positions k1, . . . , km.

ordered(k1, . . . , km) ≜
⋀

1≤i<m

ki < ki+1 (8)

alleqwx (k1, . . . , km) ≜
⋀

1≤i≤m

w[ki] = x (9)

occurwx (k1, . . . , km) ≜ ordered(k1, . . . , km) ∧ alleqwx (k1, . . . , km)
∧∀

Pj
(
w[j] = x →

⋁
1≤i≤m j = ki

)
(10)

We use the following MSO(Str) formula to define the trans-
formation x ↦→ ϵ for n occurrences of x in a single string. The
formula guesses n positions of x and then ensures that all symbols
in w′ are correctly shifted. In particular, the symbols on positions
smaller than i1 are copied from w without change. Symbols in w
on positions between iℓ and iℓ+1 are shifted ℓ positions to the left
in w′. And the remaining positions in w′ are filled with □’s.

ψn
x↦→ϵ(w,w

′) ≜ ∃
Pi1, . . . , in

(
occurwx (i1, . . . , in) ∧

∀
Pj(j < i1 → w′

[j] = w[j]) ∧⋀
1≤k<n

∀
Pj((ik < j < ik+1) → w′

[j − k] = w[j]) ∧

∀
Pj(in < j → w′

[j − n] = w[j]) ∧⋀
1≤k≤n

w′
[$ − k] = □

)
,

(11)

where w′
[$ − k] = □ stands for the formula ∃

Pr∃Ps(r = $ ∧ r =

s + k ∧ w′
[s] = □) (cf. Fig. 4). We extend ψn

x↦→ϵ to describe the
relation on pairs of strings:

ψ ′n
x↦→ϵ(tℓ, tr , t

′

ℓ, t
′

r) ≜
⋁

0≤k≤n

ψk
x↦→ϵ(tℓ, t

′

ℓ) ∧ ψn−k
x↦→ϵ(tr , t

′

r) (12)

ψ ′≤n
x↦→ϵ(tℓ, tr , t

′

ℓ, t
′

r) ≜
⋁

0≤k≤n

ψ ′k
x↦→ϵ(tℓ, tr , t

′

ℓ, t
′

r) (13)

ϕ≤n
x↦→ϵ(tℓ, tr , t

′

ℓ, t
′

r) ≜ (tℓ[1] = x ∨ tr [1] = x) ∧ ψ ′≤n
x↦→ϵ(tℓ, tr , t

′

ℓ, t
′

r)
(14)

Next, we define the transformation x ↦→ αx for n occurrences of x
in a single string. The formula guesses n positions of x in w. Then,
it ensures that on iℓ + ℓ position in w′ there is the symbol α and
all other symbols from w are copied to the correct positions in

7

177

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 8. Example of a transducer realizing the relation T≤1
x↦→ϵ for the set of variables X = {x} and the alphabet Σ = {a}. The names of the states of the transducers

denote symbols that the transducers remember to output on the tape given by the symbols ↑ and ↓.

w′. In particular, symbols in w on positions between iℓ and iℓ+1
are shifted ℓ positions to the right in w′.

ψn
x↦→αx(w,w

′) ≜ ∃
Pi1, . . . , in

(
occurwx (i1, . . . , in) ∧

∀
Pj(j ≤ i1 → w′

[j] = w[j]) ∧⋀
1≤k<n

w′
[ik + k] = α ∧

∀
Pj((ik < j ≤ ik+1) → w′

[j + k] = w[j]) ∧

w′
[in + n] = α ∧

∀
Pj(in < j → w′

[j + n] = w[j]) ∧⋀
1≤k≤n

w[$ − k] = □

)
(15)

We extend ψn
x↦→αx to describe the relation on pairs of strings:

ψ ′n
x↦→αx(tℓ, tr , t

′

ℓ, t
′

r) ≜
⋁

0≤k≤n

ψk
x↦→αx(tℓ, t

′

ℓ) ∧ ψn−k
x↦→αx(tr , t

′

r) (16)

ψ ′≤n
x↦→αx(tℓ, tr , t

′

ℓ, t
′

r) ≜
⋁

0≤k≤n

ψ ′k
x↦→αx(tℓ, tr , t

′

ℓ, t
′

r) (17)

ϕ≤n
x↦→αx(tℓ, tr , t

′

ℓ, t
′
r) ≜

(
(tℓ[1] = x ∧ tr [1] = α) ∨ (tℓ[1] = α

∧ tr [1] = x)
)

∧ ψ ′≤n
x↦→αx(tℓ, tr , t

′

ℓ, t
′
r)

(18)

The constructed formulae ϕ≤n
x↦→ϵ and ϕ≤n

x↦→αx describe regular
relations with arity 4 over the alphabet ΣX,□. Since they are
regular (i.e., length-preserving), they can also be interpreted as
binary relations over the composed alphabet Σ2

X,□. This interpre-
tation can easily be done by modifying a length-preserving trans-
ducer corresponding to ϕ≤n

x↦→ϵ and ϕ≤n
x↦→αx respectively in a way

that each transition q−{a1,a2,a3,a4}→r is replaced by the transition
q−{

[a1
a2

]
,
[a3
a4

]
}→r (with the same sets of states). When interpreted as

binary relations in this way, they denote the relations containing
pairs (without loss of generality, we show this only for ϕ≤n

x↦→ϵ)([
u1 · · · um um+1 · · · un
v1 · · · vm □ · · · □

][
□

□

]i
,

[
w1 · · · wk wk+1 · · · wℓ
z1 · · · zk □ · · · □

][
□

□

]j)
such that

• τ≤n
x↦→ϵ((u1 . . . un, v1 . . . vm)) = (w1 . . . wℓ, z1 . . . zk) for ϕ≤n

x↦→ϵ ,
• τ≤n

x↦→αx((u1 . . . un, v1 . . . vm)) = (w1 . . . wℓ, z1 . . . zk) for ϕ≤n
x↦→αx,

and
• max(m, n) + i = max(k, ℓ) + j.

Let us now consider ϕ≤n
x↦→ϵ . We note that for every ((u, v),

(w, z)) ∈ τ≤n
x↦→ϵ , there will indeed be a corresponding pair in ϕ≤n

x↦→ϵ

(actually, there will be infinitely many such pairs that differ in
the number of used padding symbols).

In order to get closer to τx↣ ϵ , we need to modify the re-
lation of ϕ≤n

x↦→ϵ to also perform trimming of the shared prefix.
We do this modification by taking the (length-preserving) two-
track transducer T≤n

x↦→ϵ that recognizes ϕ
≤n
x↦→ϵ (it can be constructed

due to Proposition 2). Moreover, we also create a (length non-
preserving) transducer Ttrim that performs trimming of its input;

Algorithm 1: Solving a string constraint ϕ using RMC
Input: Encoding I of a formula ϕ (the initial set),

transformers Tx↣αx, Tx↣ ϵ , and
the destination set D

Output: A model of ϕ if ϕ is satisfiable, false otherwise
1 reach0 := I;
2 processed := ∅;
3 T := Tx↣αx ∪ Tx↣ ϵ;
4 i := 0;
5 while reachi ̸⊆ processed do
6 if D ∩ reachi ̸= ∅ then
7 return

ExtractModel({T }j∈{0,...,i},D, reach0, . . . , reachi);
8 processed := processed ∪ reachi;
9 reachi+1 := satur ◦ T (reachi); // satur•

◦ T (reachi)
10 i++;
11 return false;

this is easy to implement by a two-state transducer that replaces
a prefix of symbols of the form

[
β

β

]
with ϵ, for β ∈ ΣX,□. By

composing the two transducers, we obtain T≤n
x↣ ϵ = Ttrim ◦ T≤n

x↦→ϵ .
An example of a transducer realizing T≤1

x↦→ϵ is shown in Fig. 8.
We can repeat the previous reasoning for ϕ≤n

x↦→αx in a similar
way to obtain the (length non-preserving) transducer T≤n

x↣αx.

Lemma 5. It holds that τ≤n
x↣ ϵ((u1 . . . un, v1 . . . vm)) = (w1 . . . wℓ, z1

. . . zk) iff([
u1 · · · um um+1 · · · un
v1 · · · vm □ · · · □

][
□

□

]i
,[

w1 · · · wk wk+1 · · · wℓ
z1 · · · zk □ · · · □

][
□

□

]j)
∈ L(T≤n

x↣ ϵ)

for some i, j ∈ N.
Further, it holds that τ≤n

x↣αx((u1 . . . un, v1 . . . vm)) = (w1 . . . wℓ,

z1 . . . zk) iff([
u1 · · · um um+1 · · · un
v1 · · · vm □ · · · □

][
□

□

]i
,[

w1 · · · wk wk+1 · · · wℓ
z1 · · · zk □ · · · □

][
□

□

]j)
∈ L(T≤n

x↣αx)

for some i, j ∈ N.

Proof. The proof follows from the above described construction
of transducers T≤n

x↣αx and T≤n
x↣ ϵ . □

3.4.2. RMC for quadratic equations
In Algorithm 1, we give a high-level algorithm for solving

string constraints using RMC. The algorithm is parameterized by
the following: (i) a regular language I encoding a formula ϕ
(the initial set), (ii) rational relations given by the transduc-
ers Tx↣αx and Tx↣ ϵ , and (iii) the destination set D (also given
as a regular language). The algorithm tries to solve the RMC
problem (I, Tx↣αx ∪ Tx↣ ϵ,D) by an iterative unfolding of the

8

178

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 9. Input of Algorithm 1 for solving the word equation xay = yx. The size of T eq
x↣ ϵ and T eq

x↣ yx would be prohibitively large, so we only give relevant parts of
transducers T≤2

x↣ ϵ and T≤2
x↣ yx . Some transitions use shorthand notation with the obvious meaning.

Function ExtractModel({Tj}j∈{0,...,i},D, reach0, . . . , reachi)

1 I(a) := a for each a ∈ Σ , I(x) := ϵ for each x ∈ X;
2 let wi ∈ D ∩ reachi;
3 for ℓ = i downto 1 do
4 let wℓ−1 ∈ T −1

ℓ (wℓ) ∩ reachℓ−1;
5 let ρ be a rule s.t. wℓ ∈ wℓ−1[ρ];
6 if ρ = y↣αy then
7 I(y) := I(α).I(y);
8 return I;

transition relation T computed in Line 3, looking for an ele-
ment wi from D. If such an element is found in the set reachi,
we call Function ExtractModel to extract a model of the original
word equation by starting a backward run from wi, computing
pre-images wi−1, . . . , w1 over transformers Tx↣αx and Tx↣ ϵ (re-
stricting them to reachj for every wj), while updating values of the
variables according to the transformations that were performed.
Note that ExtractModel uses a more general interface allowing to
specify a transducer for each backward step (Line 4 of Function
ExtractModel). This is utilized later in Section 4; here, we just
pass i copies of T . Algorithm 1 also employs saturation of the sets
of reachable configurations defined as:

satur(L) =

{
u

⏐⏐ w ∈ L, w ∈ u.
[
□

□

]∗
}
. (19)

Intuitively, satur(L) removes some occurrences (possibly none of
them) of the padding symbol at the end of all words from L. If
L is a regular language, satur(L) is regular as well (from an FA
representing L we can get satur(L) by saturating its transitions
over the padding symbol). We saturate the sets of reachable
configurations, because we want to keep the shortest words
(i.e., words without padding symbols)—e.g., the transformer T eq

x↣ ϵ

need not generate all shortest words.

Algorithm 1 follows a breadth-first search (BFS) strategy: from
the initial set I, we apply both transformers Tx↣αx and Tx↣ ϵ on
all elements of I at the same time, before repeatedly applying
the transformers on the result. This corresponds to a breadth-first

application of the transformers if we applied them one element
of I at a time.

Our first instantiation of the algorithm is for checking sat-
isfiability of a single quadratic word equation eq : tℓ = tr . We
instantiate the RMC problem as the tuple (Ieq, T eq

x↣αx∪T eq
x↣ ϵ,Deq)

where

Ieq
= encode(tℓ, tr) T eq

x↣αx =

⋃
y∈X,α∈ΣX

T≤2
y↣αy Deq

=
{[

□

□

]}∗

T eq
x↣ ϵ =

⋃
y∈X

T≤2
y↣ ϵ

Lemma 6. Algorithm 1 instantiated with (Ieq, T eq
x↣αx ∪ T eq

x↣ ϵ,Deq)
is sound, complete, and terminating if eq : tℓ = tr is quadratic.

Proof. We encode the nodes of a Nielsen proof graph as strings.
The initial node tℓ = tr corresponds to a string from Ieq. Due
to the padding, the final node ϵ = ϵ corresponds to a string
from Deq. The relations T eq

x↣αx and T eq
x↣ ϵ implement Nielsen rules

x↣αx and x↣ ϵ. From Lemma 3 we have that the Nielsen proof
graph is finite. Since our approach implements the breadth-first
search (BFS) strategy, it is sound, complete, and terminating (see
Fig. 10). □

Example 6. Consider the word equation eq1 : xay = yx from
Section 3.1. We apply Algorithm 1 on the encoded equation
I = encode(xay, yx) =

[x a y
y x □

][
□

□

]∗

. The inputs of the algorithm
are in Fig. 9. In the first iteration of the main loop, the regular
set processed, represented by its minimal FA Areach1 , is given
in Fig. 10(a) (the FA also corresponds to reach1 and represents
the set S1 from Example 4). In particular, consider, e.g.,([x a y

y x □

]
,
[a y □

y □ □

])
∈ T eq

x↣ ϵ .

After saturation we get that
[a y
y □

]
∈ reach1. In the second

(and also the last) iteration, the set processed is given by the
minimal FA Areach2 in Fig. 10(b) (which also corresponds to reach2
and reach3, and the set S2 from Example 4). Since reach3 ⊆

processed, the algorithm terminates with false, establishing the
unsatisfiability of eq1. □

9

179

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 10. Examples of finite automata Areach1 , Areach2 representing sets of configurations reachable in one and two steps, respectively, when solving the word equation
xay = yx using Algorithm 1.

4. Solving a system of word equations using RMC

In the previous section we described how to solve a single
quadratic word equation in the RMC framework. In this section
we focus on an extension of this approach to handle a system of
word equations of the form

Φ : t1ℓ = t1r ∧ t2ℓ = t2r ∧ · · · ∧ tnℓ = tnr . (20)

In the first step we need to encode the system Φ as a regular
language. For this we extend the encode function to a system of
word equations by defining

encode(Φ) = encode(t1ℓ, t
1
r).

{[#
#

]}
.

{[#
#

]}
.encode(tnℓ, t

n
r), (21)

where # is a delimiter symbol, # /∈ ΣX,□. From Lemma 4 we know
that encode(tiℓ, t

i
r) is regular for all 1 ≤ i ≤ n. Moreover, since

regular languages are closed under concatenation (Proposition 1),
the set encode(Φ) is also regular. Because each equation is now
separated by a delimiter, we need to extend the destination set
to

{[
□

□

]
,
[#
#

]}∗

.
For the transition relation, we need to extend τ≤i

x↣αx and τ
≤i
x↣ ϵ

from the previous section to support delimiters. An application
of a rule x↣αx on a system of equations can be described as
follows: the rule x↣αx is applied to the first non-empty equation
and the rest of the equations are modified according to the
substitution x ↦→ αx. The substitution on the other equations
is performed regardless of their first symbols. The procedure is
analogous for the rule x↣ ϵ. A series of applications of the rules
can reduce the number of equations, which then leads to a string
in our encoding with a prefix from

{[
□

□

]
,
[#
#

]}∗. The relation imple-

menting x↣αx or x↣ ϵ on an encoded system of equations skips
this prefix. Formally, the rule x↣αx for a system of equations
where every equation has at most i occurrences of every variable
is given by the following relation:

T∧eq,i
x↣αx = Tskip.T≤i

x↣αx.

({[#
#

]
↦→

[#
#

]}
.(Ttrim ◦ S≤i

x↦→αx)
)∗

, (22)

where Tskip =
{[

□

□

]
↦→

[
□

□

]
,
[#
#

]
↦→

[#
#

]}∗ and S≤i
x↦→αx is the binary

transducer representing the formula ψ ′≤i
x↦→αx from Section 3.4.1

(which does not look at the first symbol on the tape). The relation
T∧eq,i
x↣ ϵ is defined in a similar manner. By construction and from

the closure properties of rational relations (cf. Proposition 1), it is
clear that T∧eq,i

x↣αx and T∧eq,i
x↣ ϵ are rational.

4.1. Quadratic case

When Φ is quadratic, its satisfiability problem can be re-
duced to an RMC problem (I∧eq

Φ , T ∧eq
x↣αx∪T ∧eq

x↣ ϵ,D∧eq) instantiating

Algorithm 1 where

I∧eq
Φ = encode(Φ) T ∧eq

x↣αx =

⋃
y∈X,α∈ΣX

T∧eq,2
y↣αy D∧eq

=
{[

□

□

]
,
[#
#

]}∗

T ∧eq
x↣ ϵ =

⋃
y∈X

T∧eq,2
y↣ ϵ

Rationality of T ∧eq
x↣αx and T ∧eq

x↣ ϵ follows directly from Proposi-
tion 1. In addition, we also need to modify Algorithm 1 such that
in Line 9, we substitute satur with satur• defined as follows:

satur•(L) =

{
u1.u2 . . . uk

⏐⏐ w ∈ L, w ∈ u1.
[
□

□

]+

.u2.
[
□

□

]+

· · · uk

for some k ∈ N
}
.

Intuitively, satur•(L) modifies satur to take into account the fact
that we now work with several word equations encoded into
a single word, where they are separated by delimiters. Now,
satur• does not only remove paddings at the end of the word
(when k = 1), but also in the middle.

The soundness and completeness of our procedure for a sys-
tem of quadratic word equations is summarized by the following
lemma.

Lemma 7. Algorithm 1 instantiated with (I∧eq
Φ , T ∧eq

x↣αx ∪ T ∧eq
x↣ ϵ,

D∧eq) is sound, complete, and terminating if Φ is quadratic.

Proof. We encode the nodes of a Nielsen proof graph as strings.
The initial node Φ corresponds to a string from I∧eq

Φ (conjunction
can be seen as the delimiter #). Because of the padding, the final
node ϵ = ϵ ∧ · · · ∧ ϵ = ϵ corresponds to a string from D∧eq.
The relations T ∧eq

x↣αx and T ∧eq
x↣ ϵ implement the Nielsen rules x↣αx

and x↣ ϵ. From Lemma 3 we have that the Nielsen proof graph
is finite (and hence the potential final node is in a finite depth).
Since our approach implements the BFS strategy, it is both sound,
complete, and terminating. □

4.2. General case

Let us now consider the general case when the system Φ is
not quadratic. In this section, we show that this general case is
also reducible to an extended version of RMC.

We first apply Algorithm 2 to a general system of string con-
straints Φ in order to get an equisatisfiable cubic system of word
equations Φ ′. If the input of the transformation is a system of
equations with n symbols, then the output of the transformation
will, in the worst case, contain n

2 additional word equations and
n
2 additional literals, so the transformation is linear. Then, we

10

180

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Algorithm 2: Transformation to a cubic system of equa-
tions

Input: System of word equations Φ
Output: Equisatisfiable cubic system of word equations Ψ

1 Ψ := Φ;
2 while ∃x ∈ X s.t. x occurs more than three times in Ψ do
3 Replace two occurrences of x in Φ by a fresh word

variable x′ to obtain a new system Ψ ′;
4 Ψ := (Ψ ′

∧ x = x′);
5 return Ψ ;

can use the transition relations T∧eq,3
x↣αx and T∧eq,3

x↣ ϵ to construct
transformations of the encoded system Φ ′.

Lemma 8. Any system of word equations can be transformed by
Algorithm 2 to an equisatisfiable cubic system of word equations.

Proof. Let Φ be the input system of word equations. Observe
that in every iteration of Algorithm 2, the number of occurrences
of a variable x is decreased by one and a new variable x′ with
exactly three occurrences is introduced. □

One more issue we need to solve is to make sure that we
work with a cubic system of word equations in every step of
our algorithm. It may happen that a transformation of the type
x↣ yx increases the number of occurrences of the variable y by
one, so if there had already been three occurrence of y before
the transformation, the result will not be cubic any more. More
specifically, assume a cubic system of word equations x.tℓ =

y.tr ∧ Φ , where x and y are distinct word variables and tℓ and tr
are word terms. If we apply the transformation x↣ yx, we will
obtain x(tℓ[x ↦→ yx]) = tr [x ↦→ yx] ∧ Φ[x ↦→ yx]. Observe
that (i) the number of occurrences of y is first reduced by one
because the first y on the right-hand side of x.tℓ = y.tr is removed
and (ii) the number of occurrences of y can be at most increased
by two because there exist at most two occurrences of x in tℓ,
tr , and Φ . Therefore, after the transformation x↣ yx, a cubic
system of word equations might become a (y-)quartic system of
word equations (at most four occurrences of the variable y and
at most three occurrences of any other variable). For this reason,
we need to apply the conversion to the cubic system after each
transformation.

Given a fresh variable v, we use Cv to denote the transforma-
tion from a single-quartic system of word equations to a cubic
system of equations using the fresh variable v.

Lemma 9. The relation TCv performing the transformation Cv on
an encoded single-quartic system of equations is rational.

Proof. We show how we can create a transducer for the transfor-
mation from a single-quartic system of word equations to a cubic
system of word equations.

In the first step, we create the transducer T sq
x,xi that accepts

only input that is an encoding of a x-quartic system of word
equations. This can be done by using states to trace the number
of occurrences of variables (we only need to count up to four). For
an encoding of a x-quartic system of word equations, the trans-
ducer T sq

x,xi returns an encoding that is obtained by replacing the
first two occurrences of x from the input to xi and concatenating
the language

[#
#

][x
xi

][
□

□

]∗

at the end.
In the second step, we create the transducer Tcub that accepts

only encodings of a cubic system of word equations and returns
the same encodings.

Algorithm 3: Solving a general string constraint ϕ using
RMC

Input: Encoding I of a formula ϕ (the initial set),
ordered set of indices V = {v1, v2, . . . },
parameterized transformers T vx↣αx, T vx↣ ϵ where
v ∈ V, and
the destination set D

Output: A model of ϕ if ϕ is satisfiable, false otherwise
1 reach0 := I;
2 processed := ∅;
3 T v := T vx↣αx ∪ T vx↣ ϵ;
4 i := 0;
5 while reachi ̸⊆ processed do
6 if D ∩ reachi ̸= ∅ then
7 return

ExtractModel({T vj}j∈{0,...,i},D, reach0, . . . , reachi);
8 processed := processed ∪ reachi;
9 reachi+1 := satur•

◦ T vi (reachi);
10 X := X ∪ {vi};
11 i++;
12 return false;

Now we have

TCv = L(Tcub) ∪

⋃
x∈X

L(T sq
x,v). (23)

The lemma then follows by Proposition 1. □

To express solving a system of string constraints Φ in the
terms of a (modified) RMC, we first convertΦ (using Algorithm 2)
to an equisatisfiable cubic systemΦ ′. The satisfiability of a system
of word equations Φ can be reduced to a modified RMC problem
(I∧eq
Φ , T vi,∧eq

x↣αx ∪ T vi,∧eq
x↣ ϵ ,D∧eq) instantiating Algorithm 1 with the

following components:

I∧eq
Φ = encode(Φ ′) T v,∧eq

x↣αx = TCv ◦

⋃
y∈X,α∈ΣX

T∧eq,3
y↣αy D∧eq

=
{[

□

□

]
,
[#
#

]}∗

T v,∧eq
x↣ ϵ = TCv ◦

⋃
y∈X

T∧eq,3
y↣ ϵ

For the modified RMC algorithm, we need to assume that
V = {v1, v2, . . . } ∩ ΣX = ∅, where V is a set of fresh index
variables. We also need to update Line 3 of Algorithm 1 to T v :=

T vx↣αx ∪ T vx↣ ϵ and Line 9 to reachi+1 := T vi (reachi); X := X ∪

{vi}; to allow using a new variable vi in every iteration (here,
in every iteration of the algorithm, T v will be instantiated with
a new value of the v parameter). The entire algorithm is shown
in Algorithm 3. Rationality of T v,∧eq

x↣αx and T v,∧eq
x↣ ϵ follows directly

from Proposition 1.

Lemma 10. Algorithm 3 instantiated with (I∧eq
Φ ,V, T v,∧eq

x↣αx ∪

T v,∧eq
x↣ ϵ ,D∧eq) is sound if Φ is cubic.

Proof. We again encode the nodes of a Nielsen proof graph as
strings. The initial and final node correspond to strings from the
encoded initial I∧eq

Φ and final language D∧eq, respectively. The
relations T v,∧eq

x↣αx and T v,∧eq
x↣ ϵ implement the Nielsen rules x↣αx

and x↣ ϵ. For an arbitrary system of word equations the Nielsen
proof graph may be infinite. However, since the transformation
Cv preserves satisfiability, the procedure is sound. □

Completeness. Since the previous approach can in each step in-
troduce a new equation (due to the transducer TCv transforming
the system of equations to a cubic one), completeness is not guar-
anteed in general. In order to get a sound and complete procedure

11

181

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

for cubic equations, it is necessary to use transducers with an
increasing number of symbols being rewritten. In particular, we
need to use transducers implementing the following relations:

T i,∧eq⋆
x↣αx =

⋃
y∈X,α∈ΣX

T∧eq,2i+1

y↣αy T i,∧eq⋆
x↣ ϵ =

⋃
y∈X

T∧eq,2i+1

y↣ ϵ

with i ∈ N1 being the number of iteration (moreover, it is also
necessary to skip Line 10 in Algorithm 3). After each step, the
maximum number of occurrences of a variable in the system is
in the worst case multiplied by two. Therefore, in the ith step,
the number of occurrence of a variable in the system can be up
to 2i+1, which can be handled by T i,∧eq⋆

x↣αx and T i,∧eq⋆
x↣ ϵ .

Lemma 11. Algorithm 3 instantiated with (I∧eq
Φ ,N, T i,∧eq⋆

x↣αx ∪

T i,∧eq⋆
x↣ ϵ ,D∧eq) and modified as described above is sound and com-

plete if Φ is cubic.

Proof. As in previous cases, we encode the nodes of a Nielsen
proof graph as strings. Since the transducer T∧eq,ℓ

y↣αy correctly im-
plements the Nielsen rule y↣αy for systems where each variable
occurs at most ℓ times, it suffices to show that in the ith iteration
in Algorithm 3, the number of occurrences of each variable is
bounded by 2i+1. The soundness and completeness then follows
from the BFS strategy of Algorithm 3 and Lemma 3.

Consider a system of equations Φ s.t. each variable occurs at
most n times. Application of the rule of the form y↣ ϵ does not
increase the number of occurrences of y. The situation is different
for a rule of the form y↣αy s.t. α ∈ X. Furthermore, observe
that there are at most n occurrences of y and (n− 1)+ (n− 1) =

2n−2 occurrences of α in the modified system (each y is replaced
by αy and the first occurrence of α is removed from the modified
system). The maximum number of occurrences of variables in
the ith iteration of Algorithm 3 is hence bounded by 2i+1 (note
that this is a loose upper bound, since the number of occurrences
increases to 2n − 2 ≤ 2n in the worst case), provided that Φ is
cubic. □

Termination. Since the Nielsen transformation does not guaran-
tee termination for the general case, neither does our algorithm.
Investigation of possible symbolic encodings of complete algo-
rithms, e.g. Makanin’s algorithm (Makanin, 1977), is our future
work.

5. Handling Boolean combination of string constraints

In this section, we will extend the procedure from handling
a conjunction of word equations into a procedure that handles
their arbitrary Boolean combination. An obvious approach is by
combining the solutions we have given in Sections 3 and 4 with
standard DPLL(T)-based solvers and use our procedure to handle
the string theory. We can, however, solve the whole formula with
our procedure by using the encoding proposed in this section.
Although we do not have hope that the presented solution can
compete with the highly-optimized DPLL(T)-based solvers, it (also
taking into account the extensions from Section 6) makes our
framework more robust, by having a homogeneous automata-
based encoding for a quite general class of constraints. When one,
e.g., tries to extend the approach by using abstraction (cf. Boua-
jjani et al. (2012)) to accelerate termination or by learning the
invariant in the spirit of Neider and Jansen (2013), they can
then still treat the encoding of the whole system of constraints
uniformly within the framework of RMC.

The negation of word equations can be handled in the standard
way. For instance, we can use the approach given by Abdulla
et al. (2014) to convert a negated word equation tℓ ̸= tr to the

following string constraint:⋁
c∈Σ

(tℓ = tr · cx∨ tℓ · cx = tr)∨
⋁

c1,c2∈Σ,c1 ̸=c2

(tℓ = yc1x1 ∧ tr = yc2x2)

(24)

The first part of the constraint says that either tℓ is a strict prefix
of tr or the other way around. The second part says that tℓ and tr
have a common prefix y and start to differ in the next characters
c1 and c2. For word equations connected using ∧ and ∨, we
apply distributive laws to obtain an equivalent formula in the
conjunctive normal form (CNF) whose size is at worst exponential
in the size of the original formula. Note that we cannot use
the Tseitin transformation (Tseitin, 1983), since it may introduce
fresh negated variables and their removal using Eq. (24) would
destroy the CNF form.

Let us now focus on how to express solving a string constraint
Φ composed of an arbitrary Boolean combination of word equa-
tions using a (modified) RMC. We start by removing inequalities
in Φ using Eq. (24), then we convert the system without inequal-
ities into CNF, and, finally, we apply the procedure in Lemma 8 to
convert the CNF formula to an equisatisfiable and cubic CNF Φ ′.
For deciding satisfiability of Φ ′ in the terms of RMC, both the
transition relations and the destination set remain the same as
in the previous section (general case). The only difference is the
initial configuration because the system is not a conjunction of
terms any more but rather a general formula in CNF. For this, we
extend the definition of encode to a clause c : (t1ℓ = t1r ∨ . . . ∨

tnℓ = tnr) as encode(c) =
⋃

1≤j≤n encode(t
j
ℓ, t

j
r). Then the initial

configuration for Φ ′ is given as

I∧∨eq
Φ′ = encode(c1).

{[#
#

]}
.

{[#
#

]}
.encode(cm), (25)

where Φ ′ is of the form Φ ′
: c1 ∧ . . .∧ cm and each clause ci : (t1ℓ =

t1r ∨ . . .∨ tniℓ = tnir). We obtain the following lemma directly from
Proposition 1.

Lemma 12. The initial set I∧∨eq
Φ′ is regular.

The transition relation and the destination set are the same as
the ones in the previous section, i.e., T v,∧∨eq

x↣αx = T v,∧eq
x↣αx , T v,∧∨eq

x↣ ϵ =

T v,∧eq
x↣ ϵ , and D∧∨eq

= D∧eq. The soundness of our procedure for
a Boolean combination of word equations is summarized by the
following lemma. The completeness can be achieved, as in Sec-
tion 4.2, by transducers with an increasing number of rewritten
symbols.

Lemma 13. Given a Boolean combination of word equations Φ ,
Algorithm 3 instantiated with (I∧∨eq

Φ′ ,V, T v,∧∨eq
x↣αx ∪ T v,∧∨eq

x↣ ϵ ,D∧∨eq)
is sound.

Proof. A system of full word equations can be converted ac-
cording to the steps described above to an equisatisfiable system
in CNF Ψ :

⋀n
i=1 ci where every ci is a disjunction of equalities.

Then, Ψ is satisfiable if there is some φ :
⋀n

i=1 t
i
ℓ = tir where

(tiℓ = tir) ∈ ci for all i. Moreover, we have encode(φ) ∈ I∧∨eq
Φ .

From Lemma 10 (and from the BFS strategy of RMC), we get that
our algorithm is sound in proving Φ is satisfiable. □

Completeness is guaranteed if we consider the transducers
T i,∧eq⋆ for Φ in the same way as in Section 4.2. Regarding ter-
mination, it cannot be guaranteed, due to the corresponding
result in Section 4.2 that holds for a special case of the Boolean
combination of string equations we consider here.

12

182

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

6. Extensions

In this section, we discuss how to extend our RMC-based
framework to support the following two types of atomic con-
straints:

(i) A length constraint ϕi is a formula of Presburger arithmetic
over the values of |x| for x ∈ X, where | · | : X → N is
the word length function (to simplify the notation we use
a formula of Presburger arithmetic with free variables X
and we keep in mind that the value assigned to x ∈ X
corresponds in fact to |x|).

(ii) A regular constraint ϕr is a conjunction of atoms of the form
x ∈ L(A) (or their negation) where x is a word variable and
A is an FA representing a regular language.

6.1. Length constraints

In order to extend our framework to solve word equations
with length constraints, we encode them as regular languages,
and we encode the effect of Nielsen transformations on the
lengths of variables as regular relations. Let us start with defining
atomic length constraints:

ϕlen ::= a1x1 + · · · + anxn ≤ c

for string variables x1, . . . , xn ∈ X and integers a1, . . . , an, c ∈ Z
(we will also use formulae in a less restricted form, which can
always be translated to the defined one using standard arithmetic
rules). Given a variable assignment I : X → Σ∗, it holds that I
is a model of ϕlen, written as I |H ϕlen, iff a1 · |I(x1)| + · · · +

an · |I(xn)| ≤ c . We note that the satisfiability of a string con-
straint with only atomic length constraints connected via Boolean
connectives (i.e., no word equations) corresponds to the satisfi-
ability of a Boolean combination of constraints in integer linear
programming, which is an NP-complete problem (Karp, 1972).

We will show that length constraints can be encoded into
our framework using standard automata-based techniques for
dealing with constraints in Presburger arithmetic (Presburger,
1929; Wolper and Boigelot, 2000, 2002). First, let us define how
a first-order variable ranging over N is represented in MSO(Str).
Let LSBF :N → 2N be a function representing the least-significant
bit first binary encoding of a number such that for n ∈ N, we
define LSBF (n) to be the finite set S ⊆ N for which n =

∑
i∈S 2

i.
For instance, LSBF (42) = {1, 3, 5} because 42 = 21

+ 23
+ 25.

Moreover, we define the positional least-significant bit first binary
encoding of a number n ∈ N as LSBF p(n) = {ℓ+ 1 | ℓ ∈ LSBF (n)}.

Proposition 14. Let ϕlen(x1, . . . , xn) be an atomic length con-
straint. Then there exists an MSO(Str) formula ψlen(X1, . . . , Xn)
with free position variables X1, . . . , Xn such that an assignment
σ : {x1, . . . , xn} → N is a model of ϕlen iff the assignment σ ′

=

{Xi ↦→ LSBF p(vi) | σ (xi) = vi} is a model of ψlen.

Proof. A possible encoding of ϕlen into ψlen is given, e.g., in Glenn
and Gasarch (1996). □

Recall that in automata-based approaches to Presburger arith-
metic (such as Glenn and Gasarch (1996), Wolper and Boigelot
(2000) and Wolper and Boigelot (2002)), a formula ϕ with k free
variables is translated into an automaton Aϕ over the alphabet Bk

for B = {0, 1}. A model of ϕ is represented as a word w ∈
(
Bk

)∗
in the language of Aϕ such that projecting the track for variable xi
from w gives us the LSBF encoding of the value of xi in the
model. For instance, if x :

y :

[1 0 0 1
1 0 1 0

]
∈ L(Aϕ), then the assignment

{x ↦→ 9, y ↦→ 5} is a model of ϕ because 1001 is a LSBF binary
encoding of the number 9 and 1010 encodes the number 5.

In order to encode dealing with length constraints into our
framework, Proposition 14 is not sufficient: we also need to be
able to represent how the transformations modify those con-
straints and how the constraints restrict the space of possible
solutions. In the following paragraphs, we provide the details
about our approach.

Consider a word wσ encoding an assignment σ :X → N. The
transformation x↣ yx for x, y ∈ X applied to wσ produces a word
wσ ′ encoding the assignment σ ′

= σ ◁ {x ↦→ σ (x) − σ (y)} if
σ (x) ≥ σ (y), where σ ′

= σ ◁ {x ↦→ n} is defined as σ ′(x) = n and
σ ′(y) = σ (y) for all y ̸= x. The transformation x↣ ax, for a ∈ Σ

produces a word wσ ′ encoding the assignment σ ′
= σ ◁ {x ↦→

σ (x) − 1} if σ (x) ≥ 1. Finally, the transformation x↣ ϵ does
not change the word wσ , but imposes the restriction σ (x) = 0.
Formally, the transformations are described using the following
formulae:
ϕlen
x↣ yx(x, y, x

′) ≜ x ≥ y ∧ x′
= x − y,

ϕlen
x↣ ax(x, x

′) ≜ x ≥ 1 ∧ x′
= x − 1, and

ϕlen
x↣ ϵ(x) ≜ x = 0.

(26)

From Propositions 14 and 2, it follows that the relations de-
noted by the formulae are regular. We will denote the transducers
encoding those relations as T len

x↣ yx, T
len
x↣ ax, and T len

x↣ ϵ respectively.
Let us now focus on how to adjust the initial and destination

sets for an equation with a length constraint ϕi(X) with free
variables X. The initial set is extended by all encoded models of ϕi.
Formally, the part of the initial set related to the length constraint
is given as Iϕi = L(ϕi) (which is a subset of

(
B|X|

)∗) and the part
of the destination set as Dlen =

(
B|X|

)∗.
Satisfiability of a quadratic equation eq : tℓ = tr with the

length constraint ϕi can then be expressed as the RMC problem
(I len
ϕi
, T len

x↣αx ∪ T len
x↣ ϵ,Dlen

ϕi
) instantiating Algorithm 1 with items

given as follows (note the use of a fresh delimiter #len for length
constraints):

I len
ϕi

= Ieq.{#len}.Iϕi Dlen
ϕi

= Deq.{#len}.
(
B|X|

)∗
T len
x↣αx =

⋃
y∈X,z∈X

T≤2
y↣ zy.{#len ↦→ #len}.T len

y↣ zy ∪⋃
y∈X,a∈Σ

T≤2
y↣ ay.{#len ↦→ #len}.T len

y↣ ay

T len
x↣ ϵ =

⋃
y∈X

T≤2
y↣ ϵ .{#len ↦→ #len}.T len

y↣ ϵ

Extensions to a system of equations and (more generally) a
Boolean combination of constraints can be done in the same
manner as in Sections 4 and 5.

Rationality of T len
x↣αx and T len

x↣ ϵ follows directly from Propo-
sition 1. The soundness and completeness of our algorithm is
summarized by Lemma 15. Termination is an open problem even
for quadratic equations (cf. Büchi and Senger (1990)).

Lemma 15. Given a quadratic word equation eq : tℓ = tr with the
length constraint ϕi, Algorithm 1 instantiated with (I len

ϕi
, T len

x↣αx ∪

T len
x↣ ϵ,Dlen

ϕi
) is sound and complete.

Proof. We can generalize nodes of the Nielsen proof graph to
pairs of the form (t′ℓ = t′r , f) where f is a mapping assign-
ing lengths to variables from X. The transformation rules can
be straightforwardly generalized to take into account also the
lengths. The initial nodes are pairs (tℓ = tr , f) where f is a model
of ϕi. The final nodes are nodes (ϵ = ϵ, g) where g is arbitrary.
Note that the generalized graph is not necessarily finite even for
quadratic equations. Nevertheless, if the equation is satisfiable
then there is a finite path from an initial node to a final node.

13

183

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Directly from the definition of I len
ϕi

we have that the initial
nodes of the generalized proof graph are encoded strings from
I len
ϕi

and the final nodes correspond to Dlen
ϕi

. We can also see
that the transformation rules correspond to the encoded relations
T len
x↣αx and T len

x↣ ϵ . Since the search in Algorithm 1 implements
a BFS strategy, we get that our (semi-)algorithm is sound and
complete in proving satisfiability. □

For the general (non-quadratic) case and the case of a Boolean
combination of constraints, we can obtain a sound and complete
(though non-terminating) procedure by using the transducers
T i,∧eq⋆ in the same way as in Section 4.2 and modifying the proof
of Lemma 15 accordingly.

6.2. Regular constraints

Our second extension of the framework is the support of
regular constraints as a conjunction of atoms of the form x ∈ L(A)
for an FA A over Σ (note that the negation of an atom x /∈ L(A)
can be converted to the positive atom x ∈ L(A∁) where A∁ is
a complement of the FA A). In particular, we assume that regular
constraints are represented by a conjunction ϕr of ℓ atoms of the
form

ϕr ≜
ℓ⋀

i=1

(xi ∈ L(Ai)), (27)

where Ai is an FA for each 1 ≤ i ≤ ℓ. Without loss of generality,
we assume that the automata occurring in ϕr have pairwise
disjoint sets of states and, further, we use Ar = (Qr ,Σ, δr , Ir , Fr)
to denote the automaton constructed as the disjoint union of all
automata occurring in formula ϕr . Note that the disjoint union of
two FAs A1 = (Q1,Σ,∆1,Q 1

i ,Q
1
f) and A1 = (Q2,Σ,∆2,Q 2

i ,Q
2
f)

is the FA A1 ⊎ A2 = (Q1 ⊎ Q2,Σ,∆1 ⊎∆2,Q 1
i ⊎ Q 2

i ,Q
1
f ⊎ Q 2

f).
The approach we developed here is inspired by the approach

in Norn (cf. (Abdulla et al., 2015)), but the idea needed to be sig-
nificantly modified to fit in our (more proof-based) framework. In
particular, we encode regular constraints as words over symbols
of the form ⟨x, p, q⟩ where x ∈ X and p, q ∈ Qr . We denote the
set of all such symbols as ΓX,Ar . Moreover, we treat the words
as sets of symbols and hence we assume a fixed linear order ≼
over symbols to allow a unique representation. In particular, for
a word w ∈ Γ ∗

X,Ar
we use w≼ to denote the string containing

symbols sorted by ≼with no repetitions of symbols. A single atom
x ∈ L(Ai) for A = (Qi,Σ, δi, Ii, Fi) can be encoded as a set of
words encode(x ∈ L(Ai)) = {⟨x, p, q⟩ | p ∈ Ii, q ∈ Fi}. The
set represents all possible combinations of initial and final states
in Ai. The initial set Iϕr is then defined as

Iϕr = {w≼ ∈ Γ ∗

X,Ar
| w ∈ encode(x1 ∈ L(A1)) . . .

encode(xℓ ∈ L(Aℓ))}. (28)

Note that Iϕr is finite for a finite X, therefore it is a regular
language.

Let us now describe the effect of the Nielsen transformation on
the regular constraint part. Consider a word w encoding a set of
symbols from ΓX,Ar . Then, the transformation x↣ yx for x, y ∈

X applied to w produces words w′ encoding sets where each
occurrence of a symbol ⟨x, p, q⟩ is replaced with all possible pairs
of symbols ⟨y, p, s⟩ and ⟨x, s, q⟩ where p ⇝ s and s ⇝ q in Ar
(we use q ⇝ q′ to denote that there is a path from q to q′ in
the transition diagram of Ar). Similarly, the transformation x↣ ax
for x ∈ X, a ∈ Σ applied to w produces words w′ encoding
sets where each occurrence of a symbol ⟨x, p, q⟩ is replaced with
all possible symbols ⟨x, r, q⟩ where p−{a}→r in Ar . Finally, by the
transformation x↣ ϵ we obtain a string w′

= w only if all

symbols of w related to the variable x are of the form ⟨x, q, q⟩ for
q ∈ Q . Formally, we first define the function expanding a single
symbol for variables x and y as

expx,y(σ) =

{
{ ⟨y, p, r⟩.⟨x, r, q⟩ | p ⇝ r ⇝ q in Ar } if σ = ⟨x, p, q⟩,
{σ } otherwise.

(29)

Similarly, we define the expansion

expx,a(σ) =

{
{ ⟨x, r, q⟩ | p−{a}→r ⇝ q in Ar } if σ = ⟨x, p, q⟩,
{σ } otherwise.

(30)

Then, the transformations x↣ yx, x↣ ax, and x↣ ϵ can be de-
scribed by the following relations:
T reg
x↣ yx = { (w, u≼) | u ∈ expx,y(w[1]) . . . expx,y(w[|w|]) },

T reg
x↣ ax = { (w, u≼) | u ∈ expx,a(w[1]) . . . expx,a(w[|w|]) }, and

T reg
x↣ ϵ =

{
(w,w) | ∀1 ≤ i ≤ |w| :

∀p, q ∈ Q :w[i] = ⟨x, p, q⟩ ⇒ p = q
}
.

(31)

Example 7. Consider the regular constraint x ∈ L(Ax) with Ax
given below.

1start 2

a

b

Then, the corresponding values will be as follows:

encode(x ∈ L(Ax)) = {⟨x, 1, 1⟩}
expx,y(⟨x, 1, 1⟩) = {⟨y, 1, 1⟩.⟨x, 1, 1⟩, ⟨y, 1, 2⟩.⟨x, 2, 1⟩}
expx,a(⟨x, 1, 1⟩) = {⟨x, 2, 1⟩}

Moreover, T reg
x↣ yx will, e.g., contain pairs (⟨x, 1, 1⟩.⟨y, 1, 2⟩, u≼)

with

u≼ ∈ {⟨x, 1, 1⟩.⟨y, 1, 1⟩.⟨y, 1, 2⟩, ⟨x, 2, 1⟩.⟨y, 1, 2⟩}

(we assume that ≼ is a lexicographic ordering on the compo-
nents). Note that symbols in the words are sorted by ≼ with
duplicates removed. Similarly, T reg

x↣ ax will, e.g., contain the pair
(⟨x, 1, 1⟩.⟨y, 1, 2⟩, ⟨x, 2, 1⟩.⟨y, 1, 2⟩), and T reg

x↣ ϵ will contain
(⟨x, 1, 1⟩.⟨y, 1, 2⟩, ⟨x, 1, 1⟩.⟨y, 1, 2⟩). □

The following lemma shows that the transformations are ra-
tional. In the proof, we first construct MSO(Str) formulae real-
izing necessary set operations on strings and the effect of the
expanding function. Based on them, we construct formulae re-
alizing the transformations, by means of the relation pad□(T)
appending to w and w′ with (w,w′) ∈ T an arbitrary number
of symbols □ (cf. Section 3.4).

Lemma 16. The relations pad□(T
reg
x↣ yx), pad□(T

reg
x↣ ax), and pad□

(T reg
x↣ ϵ) are rational.

Proof. In this proof, we extend the total order ≼ on ΓX,Ar to
a total order on ΓX,Ar ∪ {□} such that ∀σ ∈ ΓX,Ar : σ ≼ □.
(We note that encoding ≼ in MSO(Str) is simple.) We define the
relations T reg

x↣ yx and T reg
x↣ ϵ using MSO(Str). The relation T reg

x↣ ax can
be defined analogously to T reg

x↣ yx.

ψ
reg
x↣ yx(w,w′) ≜ ∃

Wu1, u2, u3

(
filterx(u1, u2, w) ∧

expandyx(u1, u3) ∧

union(u2, u3, w
′) ∧ ordSet(w′)

)
(32)

14

184

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

ψ reg
x↣ ϵ(w,w

′) ≜ ∀
Pi

(
w[i] = w′

[i] ∧

⋁
ξ∈ΓX\{x},Ar ∪

{(x,q,q)|q∈Qr }

w′
[i] = ξ

)
(33)

where filterx(u, v, w) partitions the symbols of w to u and v

such that u contains symbols that are of the form ⟨x,−,−⟩,
i.e., of the form ⟨x, q, s⟩ for arbitrary q and s, and v contains the
remaining ones; expandyx(u, v) replaces each symbol ⟨x, p, q⟩ in u
with ⟨y, p, s⟩ and ⟨x, s, q⟩ in v; and union is a set-like union. These
predicates (including auxiliary predicates) are defined as follows:

σ ∈ w ≜ ∃
Pi(w[i] = σ) (34)

set(u) ≜¬∃
Pi, j(i ̸= j ∧ u[i] = u[j]) (35)

ordSet(u) ≜ set(u) ∧ ∀
Pi, j(i < j → u[i] ≼ u[j]) (36)

filterx(u, v, w) ≜

∀
Pi

(⋀
q,s∈Qr

(w[i] = ⟨x, q, s⟩ → (u[i] = ⟨x, q, s⟩ ∧ v[i] = □))

∧

⋀
z∈X\{x}
q,s∈Qr

(w[i] = ⟨z, q, s⟩ → (u[i] = □ ∧ v[i] = ⟨z, q, s⟩))
)
(37)

expandyx(u, v) ≜ (38)⋀
s,q∈Qr ,s⇝q
ξ ′

=⟨x,s,q⟩

(
ξ ′

∈ v →

⋁
p∈Qr ,p⇝s
ξ=⟨x,p,q⟩
ξ ′′

=⟨y,p,s⟩

ξ ∈ u ∧ ξ ′′
∈ v

)
∧ (39)

⋀
p,s∈Qr ,p⇝s
ξ ′′

=⟨y,p,s⟩

(
ξ ′′

∈ v →

⋁
q∈Qr ,s⇝q
ξ=⟨x,p,q⟩
ξ ′

=⟨x,s,q⟩

ξ ∈ u ∧ ξ ′
∈ v

)
∧ (40)

⋀
p,q∈Qr
ξ=⟨x,p,q⟩

(
ξ ∈ u →

⋁
s∈Qr ,p⇝s⇝q
ξ ′′

=⟨y,p,s⟩
ξ ′

=⟨x,s,q⟩

ξ ′′
∈ u ∧ ξ ′

∈ v

)
(41)

union(u, v, w) ≜
⋀

ξ∈ΓX,Ar

ξ ∈ w ↔ (ξ ∈ u ∨ ξ ∈ v) (42)

Intuitively, in the definition of filterx(u, v, w), the first part picks
fromw symbols containing x and adds them into u and the second
part picks from w the other symbols and adds them into v. On the
other hand, in the definition of expandyx(u, v), we use s to denote
the splitting state on the path from state p to state q. Then, the
first and the second parts of the formula denote that ⟨y, p, s⟩ and
⟨x, s, q⟩ are in v while the last part denotes that ⟨x, p, q⟩ is in u.

We further consider the relations τ+pad = {(w,w′) | w ∈

(ΓX,Ar ∪ {□})∗, w′
∈ w.{□}∗} and τ−pad = {(w,w′) | w′

∈

(ΓX,Ar ∪ {□})∗, w ∈ w′.{□}∗} appending and removing padding,
respectively. These relations are rational. Then, observe that pad□
(T reg

x↣ yx) = τ+pad ◦ τ−pad ◦ L(ψ reg
x↣ yx) ◦ τ+pad. Recall the relation

pad□(T) appends to w′ in (w,w′) ∈ T an arbitrary number of
symbols □ (cf. Section 3.4). From Propositions 1 and 2, we have
that pad□(T

reg
x↣ yx) is rational (the same for pad□(T

reg
x↣ ϵ)). □

The last missing piece is a definition of the destination set
containing all satisfiable regular constraints. For a variable x ∈ X,
we define the set of satisfiable x-constraints as Lx = {w≼ | w =

⟨x, q1, r1⟩ · · · ⟨x, qn, rn⟩ ∈ Γ ∗
X,Ar

,
⋂n

i=1 LAr (qi, ri) ̸= ∅ }. Then, the
destination set for a set of variables X = {x1, . . . , xk} is given as
Dreg = {w≼ | w ∈ Lx1 · · · Lxk }. As in the case of Iϕr , the set Dreg is
finite and hence regular as well.

Satisfiability of a quadratic word equation eq : tℓ = tr with
a regular constraint ϕr can be expressed in the RMC framework

Table 1
Summary of the proposed approach on various types of string constraints with
extensions. S stands for sound, C stands for complete, and T stands for terminating.

Quadratic system General system Boolean combination

Pure SCT (Section 4.1) SC (Section 4.2) SC (Section 5)
Length SC (Section 6.1) SC (Section 6.1) SC (Section 6.1)
Regular SCT (Section 6.2) SC (Section 6.2) SC (Section 6.2)

as (Ireg
ϕr
, T reg

x↣αx ∪T reg
x↣ ϵ,Dreg

ϕr
) instantiating Algorithm 1 with items

given in as follows (note that we use a fresh delimiter #reg):

Ireg
ϕr

= Ieq.{#reg }.pad□(Iϕr) Dreg
ϕr

= Deq.{#reg }.pad□(Dreg)

T reg
x↣αx =

⋃
y∈X,z∈X

T≤2
y↣ zy.{#reg ↦→ #reg }.pad□(T

reg
y↣ zy) ∪⋃

y∈X,a∈Σ

T≤2
y↣ ay.{#reg ↦→ #reg }.pad□(T

reg
y↣ ay)

T reg
x↣ ϵ =

⋃
y∈X

T≤2
y↣ ϵ .{#reg ↦→ #reg }.pad□(T

reg
y↣ ϵ)

The rationality of T reg
x↣αx and T reg

x↣ ϵ follows directly from Propo-
sition 1. The soundness and completeness of our procedure is
summarized by the following lemma.

Lemma 17. Given a quadratic word equation eq : tℓ = tr with
a regular constraint ϕr , Algorithm 1 instantiated with (Ireg

ϕr
, T reg

x↣αx∪

T reg
x↣ ϵ,Dreg

ϕr
) is sound, complete, and terminating.

Proof. Similarly to proof of Lemma 15, we can generalize nodes
of the Nielsen proof graph to pairs of the form (t′ℓ = t′r , S) where
S ⊆ ΓX,Ar . The transformation rules can be straightforwardly
generalized to take into account also the regular constraints rep-
resented by a subset of ΓX,Ar . Since ΓX,Ar is finite and eq is
quadratic, the generalized proof graph is finite. The initial nodes
of the generalized proof graph are exactly encoded strings from
Ireg
ϕr

, the final nodes correspond to Dreg
ϕr

, and the transforma-
tion rules correspond to the encoded relations T reg

x↣αx and T reg
x↣ ϵ .

Since our RMC framework implements the BFS strategy, from
the previous we get that our procedure is sound, complete, and
terminating in proving satisfiability. □

As in the case of length constraints, the satisfiability of a
word equation eq with regular constraints can be generalized
to a system of equations Φ with regular constraints. The lan-
guages/relations corresponding to eq are replaced by languages/
relations corresponding to Φ . For a system of word equations
with regular constraints our algorithm is still sound (and com-
plete if we consider the transducers T i,∧eq⋆ for Φ).

Discussion. In the previous sections, we elaborated the proposed
RMC framework for various kinds of string constraints including
length and regular extensions. In Table 1, we give a summary of
the achieved results. If the system of equations is quadratic (and
even enriched with regular extensions), then our RMC approach
is sound, complete, and terminating. It is basically due to the fact
that the language processed in Algorithm 1 for the transformations
tailored for quadratic equations becomes saturated after a finite
number of steps. In all other cases, our RMC approach is sound
and complete (but not generally terminating). For suitable en-
coded transformations, we are able to reach a solution after a
finite number of steps (if the system is satisfiable). But in general,
the language processed in Algorithm 3 for these transformations
is not guaranteed to eventually become saturated (see Fig. 11).

15

185

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 11. FRT (a) implementing the relation T≤1
x↦→ϵ for an arbitrary set of variables X and alphabet Σ . The register r is used to store a shifted symbol. FRT (b)

implementing the relation
⋃

x∈X T≤1
x↦→ϵ for an arbitrary set of variables X and alphabet Σ . The register r1 is used to store a shifted symbol and the register r2 is used

to store a variable that should be removed. In the figures, α and β are variables representing the input symbol, r, r1 , and r2 are registers, and the transitions are of
the form action;condition;register update.

7. Implementation

We created a prototype Python tool called Retro,1 where we
implemented the symbolic procedure for solving systems of word
equations. Retro implements a modification of the RMC loop
from Algorithm 1. In particular, instead of standard transducers
defined in Section 2, it uses the so-called finite-alphabet register
transducers (FRTs), which allow a more concise representation of
a rational relation.

Informally, an FRT is a register automaton (in the sense of
Kaminski and Francez (1994) and Demri and Lazic (2009)) where
the alphabet is finite. The finiteness of the alphabet implies that
the expressive power of FRTs coincides with the class of rational
languages, but the advantage of using FRTs is that they allow
a more concise representation than ordinary transducers. One can
consider FRTs to be the restriction of symbolic transducers with
registers of Veanes et al. (2012) to finite alphabets. Operations for
dealing with these transducers are then straightforward restric-
tions of the operations considered by Veanes et al. (2012) and
therefore do not elaborate on it here.

In particular, transducers (without registers) corresponding
to the transformers Tx↣αx and Tx↣ ϵ contain branching at the
beginning for each choice of x and α. Especially in the case of huge
alphabets, this yields huge transducers (consider for instance the
Unicode alphabet with over 1 million symbols). The use of FRTs
yields much smaller automata because the choice of x and α is
stored into registers and then processed symbolically. To illus-
trate the effect of using registers, consider the transducer shown
in Fig. 8 implementing the encoded relation T≤1

x↦→ϵ for X = {x} and
Σ = {a}. The full transducer for large alphabets would require a
branching for each

[u
v

]
, with u, v ∈ ΣX, and a lot of states to store

the concrete shifted symbols. In particular, it requires at least one
pair of states ⟨v⟩↑ and ⟨v⟩↓ for each v ∈ ΣX, which is unfeasible
for very large ΣX. On the other hand, the FRT in Fig. 11(a) stores
the shifted symbols in the register r , the branching is replaced by
a symbolic transition, and hence it requires just a couple of states
and transitions. Moreover, using an additional register r2 to store
the variable to replace, we are able to efficiently represent the
relation

⋃
x∈X T≤1

x↦→ϵ , as shown in Fig. 11(b).
Concretely, Retro implements the decision procedure for a

system of general word equations and length constraints (i.e., the
procedures covered in Sections 3, 4 and 6.1). It does not imple-
ment (i) Boolean combinations of constraints (Section 5) and (ii)

1 available at https://github.com/VeriFIT/retro.

Fig. 12. A cactus plot comparing Retro, CVC4, CVC5, Z3, and Z3Str3RE on
Kepler22 .

regular constraints (Section 6.2), which are quite inefficient and
are provided in order for our approach to have a more robust
theoretical formal basis for a large fragment of input constraints
(cf. the discussion at the beginning of Section 5).

As another feature, Retro uses deterministic finite automata
to represent configurations in Algorithm 1. It also uses eager
automata minimization, since it has a big impact on the per-
formance, especially on checking the termination condition of
the RMC algorithm, which is done by testing language inclu-
sion between the current configuration and all so-far processed
configurations.

8. Experimental evaluation

We compared the performance of our approach (implemented
in Retro) with four current state-of-the-art SMT solvers that
support the string theory: Z3 4.8.14 (de Moura and Bjørner, 2008),
Z3Str3RE (Berzish et al., 2021), CVC4 1.8 (Barrett et al., 2011), and
CVC5 1.0.1 (Barbosa et al., 2022). Regarding other solvers that we
are aware of, the performance of Norn from Abdulla et al. (2015)
and Ostrich from Chen et al. (2019b) was much worse than the
considered tools, the performance of Z3str4 (Mora et al., 2021)
was similar to that of Z3Str3RE, and Sloth of Holík et al. (2018)
was unsound on the considered fragment (it supports only the
so-called straight-line fragment) (see Fig. 13)

The first set of benchmarks is Kepler22, obtained from Le and
He (2018). Kepler22 contains 600 hand-crafted string constraints
composed of quadratic word equations with length constraints.
In Fig. 12, we give a cactus plot of the results of the solvers

16

186

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 13. Comparison of Retro with CVC4 and Z3 on PyEx-Hard. We show difficult instances that took more than 1 s to finish. Times are given in seconds, axes are
logarithmic.

on the Kepler22 benchmark set with the timeout of 20 s. In
cactus plots, the closer a solver’s plot is to the right and bottom
borders, the better is the corresponding solver. The total numbers
of solved benchmarks within the timeout were: 243 for Z3, 282
for Z3Str3RE, 259 for CVC4, 352 for CVC5, and 443 for Retro. We
can refine these numbers by comparing the cases solved by each
pair of tools, as shown in Table 2. From the table we can see
that Retro solves significantly more benchmarks than all other
state-of-the-art tools, from 92 when compared with CVC5 to 201
with Z3. Only in one case Retro failed (as did Z3Str3RE) while
CVC4, CVC5, and Z3 succeeded. Except for CVC4 vs. CVC5, the
comparison between the other tools is inconclusive, as the entries
(X, Y) and (Y , X) of the table both contain large values.

The other set of benchmarks that we tried is PyEx-Hard. Here
we wanted to see the potential of integrating Retrowith DPLL(T)-
based string solvers, like Z3 or CVC4, as a specific string theory
solver. The input of this component is a conjunction of atomic
string formulae (e.g., xy = zb ∧ z = ax) that is a model of
the Boolean structure of the top-level formula. The conjunction
of atomic string formulae is then, in several layers, processed
by various string theory solvers, which either add more conflict
clauses or return a model. To evaluate whether Retro is suitable
to be used as ‘‘one of the layers’’ of Z3 or CVC4’s string solver, we
analyzed the PyEx benchmarks from Reynolds et al. (2017) and
extracted from it 967 difficult instances that neither CVC4 nor
Z3 could solve in 10 s. From those instances, we obtained 20,020
conjunctions of word equations that Z3’s DPLL(T) algorithm sent
to its string theory solver when trying to solve them. We call
those 20,020 conjunctions of word equations PyEx-Hard. We
then evaluated the other solvers on PyEx-Hard with the timeout
of 20 s. Out of these, Z3 could not solve 3001, Z3Str3RE 814, CVC4
152, CVC5 171, and Retro could not solve 3079 instances.

Let us now look closely at the hard instances in the PyEx-Hard
benchmark set, in particular, on the instances that the other tools
could not solve. These benchmarks cannot be handled by the (sev-
eral layers of) fast heuristics implemented in these tools, which
are sufficient to solve many benchmarks without the need to start
applying the case-split rule.2 In Fig. 13 we give a comparison of

2 For instance, when Z3 receives the word equation xy = yax, it infers the
length constraint |x| + |y| = |y| + 1 + |x|, which implies unsatisfiability of the
word equation without the need to start applying the case-split rule at all.

Table 2
A break-down of solved cases on the Kepler22 benchmark. A number on row X
in column Y denotes the number of cases that solver X could solve and solver Y
could not solve.

Retro CVC4 CVC5 Z3 Z3Str3RE

Retro — 185 92 201 161
CVC4 1 — 2 104 63
CVC5 1 95 — 197 145
Z3 1 88 88 — 23
Z3Str3RE 0 86 75 62 —

the running times of Retro with CVC4 and Z3 with a particular
focus on the difficult instances (running time above 1 s). The
plots about CVC5 and Z3Str3RE show similar trends. From the
figure we can see that on many hard instances Retro can provide
the answer much faster than the other tool, in particular for Z3.
When we compare the solvers on the examples that the other
tools failed to solve, we have that Retro could solve 86 examples
(56.2%) out of those where CVC4 failed, 130 examples (76.02%)
where CVC5 failed, 2484 examples (82.7%) where Z3 failed, and
519 examples (63.75%) where Z3Str3RE failed. Moreover, Retro
solved 28 instances as the only tool. Lastly, we consider how
Retro affects the Virtual Best Solver: given a set of solvers S, we
use VBS(S) to denote the solver that would be obtained by taking,
for each benchmark, the fastest solver on the given benchmark.
In Fig. 14, we provide cactus plots showing the impact of Retro
on two instances of Virtual Best Solvers; the plots for Z3Str3RE,
CVC4, and CVC5 are similar, with the one for Z3Str3RE being
closer to Fig. 14(a) while the ones for CVC4/5 being closer to
Fig. 14(b). As we can see, the plots show that our approach can
significantly help solvers deal with hard equations.

Discussion. From the obtained results, we see that our approach
works well in difficult cases, where the fast heuristics imple-
mented in state-of-the-art solvers are not sufficient to quickly
discharge a formula, which happens in particular when the
(un)satisfiability proof is complex. Our approach can exploit the
symbolic representation of the proof tree and use it to reduce the
redundancy of performing transformations. Note that we can still
beat the heavily optimized Z3, Z3Str3RE, CVC4, and CVC5 written
in C++ by a Python prototype in those cases. We believe that

17

187

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Fig. 14. A cactus plot comparing the Virtual Best Solver of (a) Z3 with and without Retro and (b) all tools with and without Retro on the PyEx-Hard benchmark.
We show only the most difficult benchmarks (out of 20,020).

implementing our symbolic algorithm as a part of a state-of-the-
art SMT solver would push the applicability of string solving even
further, especially for cases of string constraints with a complex
structure, which need to solve multiple DPLL(T) queries in order
to establish the (un)satisfiability of a string formula.

9. Related work

The study of solving string constraint traces back to 1946,
when (Quine, 1946) showed that the first-order theory of word
equations is undecidable. Makanin (1977) achieved a milestone
result by showing that the class of quantifier-free word equation
is decidable. Since then, several works, e.g., Plandowski (1999,
2006), Matiyasevich (2008), Robson and Diekert (1999), Schulz
(1990), Ganesh et al. (2012), Ganesh and Berzish (2016), Ab-
dulla et al. (2014), Barceló et al. (2013), Lin and Barceló (2016),
Chen et al. (2018, 2019b) and Abdulla et al. (2019), consider the
decidability and complexity of different classes of string con-
straints. Efficient solving of satisfiability of string constraints is
a challenging problem. Moreover, decidability of the problem
of satisfiability of word equations combined with length con-
straints of the form |x| = |y| has already been open for over
20 years (Büchi and Senger, 1990).

The strong practical motivation led to the rise of several string
constraint solvers that concentrate on solving practical problem
instances. The typical procedure implemented within DPLL(T)-
based string solvers is to split the constraints into simpler sub-
cases based on how the solutions are aligned, combining with
powerful techniques for Boolean reasoning to efficiently explore
the resulting exponentially-sized search space. The case-split rule
is usually performed explicitly. Examples of solvers implementing
this approach are Norn (Abdulla et al., 2014, 2015), Trau (Ab-
dulla et al., 2018), Ostrich (Chen et al., 2019b), Sloth (Holík
et al., 2018), CVC4 (Barrett et al., 2011), CVC5 (Barbosa et al.,
2022), Z3str2 (Zheng et al., 2017), Z3str3 (Berzish et al., 2017),
Z3str4 (Mora et al., 2021), Z3Str3RE (Berzish et al., 2021), S3
(Trinh et al., 2014), S3P (Trinh et al., 2016). In contrast, our
approach performs case-splits symbolically.

Automata and transducers have been used in many
approaches and tools for string solving, such as in Norn (Abdulla
et al., 2014, 2015), Trau (Abdulla et al., 2018), Ostrich (Chen
et al., 2019b), Sloth (Holík et al., 2018), Slog (Wang et al., 2016),
Slent (Wang et al., 2018), or Z3Str3RE (Berzish et al., 2021), and
also in string solvers for analyzing string-manipulating programs,
such as ABC (Aydin et al., 2018) and Stranger (Yu et al., 2010),
which soundly over-approximate string constraints using trans-
ducers (Yu et al., 2016). The main difference of these approaches
to ours is that they use transducers to encode possible models

(solutions) to the string constraints, while we use automata
and transducers to encode the string constraint transformations.
Other approaches for solving string constraints include reducing
the constraints to the SMT theory of bit vectors (e.g., Zheng et al.,
2017; Berzish et al., 2017; Mora et al., 2021; Kiezun et al., 2012),
the theory of arrays (e.g., Li and Ghosh (2013)), or SAT-solving
(e.g., Day et al., 2019; Amadini et al., 2017; Scott et al., 2017). Not
so many approaches are based on algebraic approaches, such as
the Nielsen transformation. In addition to our approach, it is also
used as the basis of the work of Le and He (2018). On the other
hand, the Nielsen transformation (Nielsen, 1917) is used by some
tools that implement different approaches to discharge quadratic
equations (e.g., Ostrich of Chen et al. (2019b)). Complex rewrit-
ing rules are used, e.g., when dealing with regular constraints in
CVC5 (Nötzli et al., 2022).

CRediT authorship contribution statement

Yu-Fang Chen: Conceptualization, Methodology, Writing. Vo-
jtěch Havlena: Conceptualization, Methodology, Writing, Soft-
ware. Ondřej Lengál: Conceptualization, Methodology, Writing.
Andrea Turrini: Conceptualization, Methodology, Writing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We thank Mohamed Faouzi Atig for discussing the topic.
This work has been partially supported by the National Natu-
ral Science Foundation of China (grant no. 61836005), the Chi-
nese Academy of Sciences Project for Young Scientists in Ba-
sic Research (grant no. YSBR-040), the Czech Science Founda-
tion project 19-24397S, the FIT BUT internal project FIT-S-20-
6427, the Czech Ministry of Education, Youth and Sports project
LL1908 of the ERC.CZ programme, and the project of Ministry
of Science and Technology, Taiwan (grant no. MOST-109-2628-
E-001-001-MY3). This work is part of the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant no. 101008233.

18

188

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

References

Abdulla, P.A., 2012. Regular model checking. STTT 14 (2), 109–118. http://dx.doi.
org/10.1007/s10009-011-0216-8.

Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Holík, L., Rezine, A., Rümmer, P.,
2017. Flatten and conquer: a framework for efficient analysis of string
constraints. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017. ACM, pp.
602–617. http://dx.doi.org/10.1145/3062341.3062384.

Abdulla, P.A., Atig, M.F., Chen, Y.-F., Diep, B.P., Holík, L., Rezine, A., Rümmer, P.,
2018. Trau: SMT solver for string constraints. In: 2018 Formal Methods in
Computer Aided Design. FMCAD, IEEE, pp. 1–5.

Abdulla, P.A., Atig, M.F., Chen, Y.-F., Holík, L., Rezine, A., Rümmer, P., Stenman, J.,
2014. String constraints for verification. In: International Conference on
Computer Aided Verification. Springer, pp. 150–166.

Abdulla, P.A., Atig, M.F., Chen, Y.-F., Holík, L., Rezine, A., Rümmer, P., Stenman, J.,
2015. Norn: An SMT solver for string constraints. In: International Conference
on Computer Aided Verification. Springer, pp. 462–469.

Abdulla, P.A., Atig, M.F., Diep, B.P., Holík, L., Janků, P., 2019. Chain-free string
constraints. In: ATVA. Springer, pp. 277–293.

Amadini, R., Gange, G., Stuckey, P.J., Tack, G., 2017. A novel approach to string
constraint solving. In: Beck, J.C. (Ed.), Principles and Practice of Constraint
Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings. In: Lecture Notes in
Computer Science, vol. 10416, Springer, pp. 3–20. http://dx.doi.org/10.1007/
978-3-319-66158-2_1.

Aydin, A., Eiers, W., Bang, L., Brennan, T., Gavrilov, M., Bultan, T., Yu, F.,
2018. Parameterized model counting for string and numeric constraints. In:
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, pp. 400–410.

Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y., 2022. CVC5: A versatile and
industrial-strength SMT solver. In: Fisman, D., Rosu, G. (Eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer International
Publishing, Cham, pp. 415–442.

Barceló, P., Figueira, D., Libkin, L., 2013. Graph logics with rational relations.
arXiv preprint arXiv:1304.4150.

Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C., 2011. CVC4. In: Gopalakrishnan, G., Qadeer, S. (Eds.),
Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings. In: Lecture Notes in
Computer Science, vol. 6806, Springer, pp. 171–177. http://dx.doi.org/10.
1007/978-3-642-22110-1_14.

Berstel, J., 1979. Transductions and Context-Free Languages. In: Teubner Studi-
enbücher : Informatik, vol. 38, Teubner, URL: http://www.worldcat.org/oclc/
06364613.

Berzish, M., Ganesh, V., Zheng, Y., 2017. Z3str3: A string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017.
pp. 55–59. http://dx.doi.org/10.23919/FMCAD.2017.8102241.

Berzish, M., Kulczynski, M., Mora, F., Manea, F., Day, J.D., Nowotka, D., Ganesh, V.,
2021. An SMT solver for regular expressions and linear arithmetic over
string length. In: International Conference on Computer Aided Verification.
Springer, pp. 289–312.

Bjørner, N., Tillmann, N., Voronkov, A., 2009. Path feasibility analysis for string-
manipulating programs. In: Tools and Algorithms for the Construction and
Analysis of Systems, 15th International Conference, TACAS 2009. In: Lecture
Notes in Computer Science, vol. 5505, Springer, pp. 307–321. http://dx.doi.
org/10.1007/978-3-642-00768-2_27.

Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V., 2018. Stringfuzz:
A fuzzer for string solvers. In: International Conference on Computer Aided
Verification. Springer, pp. 45–51.

Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T., 2012. Abstract regular
(tree) model checking. STTT 14 (2), 167–191. http://dx.doi.org/10.1007/
s10009-011-0205-y.

Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T., 2000. Regular model checking.
In: Emerson, E.A., Sistla, A.P. (Eds.), Computer Aided Verification. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 403–418.

Büchi, J.R., 1960. Weak second-order arithmetic and finite automata. Math. Log.
Q. 6 (1–6), 66–92. http://dx.doi.org/10.1002/malq.19600060105.

Büchi, J.R., Senger, S., 1990. Definability in the existential theory of concatenation
and undecidable extensions of this theory. In: The Collected Works of J.
Richard Büchi. Springer, pp. 671–683.

Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R., 2006. EXE:
Automatically generating inputs of death. In: Proceedings of the 13th ACM
Conference on Computer and Communications Security. CCS ’06, Association
for Computing Machinery, pp. 322–335. http://dx.doi.org/10.1145/1180405.
1180445.

Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z., 2018. What is decidable about
string constraints with the ReplaceAll function. PACMPL 2 (POPL), 3:1–3:29.
http://dx.doi.org/10.1145/3158091.

Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z., 2019a. Decision procedures for
path feasibility of string-manipulating programs with complex operations.
PACMPL 3 (POPL), 49:1–49:30. http://dx.doi.org/10.1145/3290362.

Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z., 2019b. Decision procedures for
path feasibility of string-manipulating programs with complex operations.
Proc. ACM Program. Lang. 3 (POPL), 1–30.

Chen, Y., Havlena, V., Lengál, O., Turrini, A., 2020. A symbolic algorithm for
the case-split rule in string constraint solving. In: Oliveira, B.C.d.S. (Ed.),
Programming Languages and Systems - 18th Asian Symposium, APLAS 2020,
Fukuoka, Japan, November 30 - December 2, 2020, Proceedings. In: Lecture
Notes in Computer Science, vol. 12470, Springer, pp. 343–363. http://dx.doi.
org/10.1007/978-3-030-64437-6_18.

Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B., 2019.
On solving word equations using SAT. In: Filiot, E., Jungers, R.M., Potapov, I.
(Eds.), Reachability Problems - 13th International Conference, RP 2019,
Brussels, Belgium, September 11-13, 2019, Proceedings. In: Lecture Notes
in Computer Science, vol. 11674, Springer, pp. 93–106. http://dx.doi.org/10.
1007/978-3-030-30806-3_8.

Demri, S., Lazic, R., 2009. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Log. 10 (3), 16:1–16:30. http://dx.doi.org/10.1145/
1507244.1507246.

Diekert, V., 2002. Makanin’s algorithm. In: Algebraic Combinatorics on Words.
In: Encyclopedia of Mathematics and its Applications, Cambridge University
Press, pp. 387–442. http://dx.doi.org/10.1017/CBO9781107326019.013.

Durnev, V.G., Zetkina, O.V., 2009. On equations in free semigroups with certain
constraints on their solutions. J. Math. Sci. 158 (5), 671–676. http://dx.doi.
org/10.1007/s10958-009-9409-z.

Ganesh, V., Berzish, M., 2016. Undecidability of a theory of strings, linear
arithmetic over length, and string-number conversion. arXiv preprint arXiv:
1605.09442.

Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M., 2012. Word equations
with length constraints: what’s decidable? In: Haifa Verification Conference.
Springer, pp. 209–226.

Glenn, J., Gasarch, W.I., 1996. Implementing WS1S via finite automata. In:
Raymond, D.R., Wood, D., Yu, S. (Eds.), Automata Implementation, First In-
ternational Workshop on Implementing Automata, WIA ’96, London, Ontario,
Canada, August 29-31, 1996, Revised Papers. In: Lecture Notes in Computer
Science, vol. 1260, Springer, pp. 50–63. http://dx.doi.org/10.1007/3-540-
63174-7_5.

Godefroid, P., Klarlund, N., Sen, K., 2005. DART: Directed automated random
testing. SIGPLAN Not. 40 (6), 213–223. http://dx.doi.org/10.1145/1064978.
1065036.

Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R., 2011. Synthesis of loop-free
programs. SIGPLAN Not. 46 (6), 62–73. http://dx.doi.org/10.1145/1993316.
1993506.

Gulwani, S., Srivastava, S., Venkatesan, R., 2008. Program analysis as constraint
solving. In: PLDI’08.

Holík, L., Janků, P., Lin, A.W., Rümmer, P., Vojnar, T., 2018. String constraints
with concatenation and transducers solved efficiently. Proc. ACM Program.
Lang. 2 (POPL), 4:1–4:32. http://dx.doi.org/10.1145/3158092.

Kaminski, M., Francez, N., 1994. Finite-memory automata. Theoret. Comput. Sci.
134 (2), 329–363. http://dx.doi.org/10.1016/0304-3975(94)90242-9.

Karp, R.M., 1972. Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (Eds.), Proceedings of a Symposium on the Complexity of
Computer Computations, Held March 20-22, 1972, at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, USA. In: The IBM
Research Symposia Series, Plenum Press, New York, pp. 85–103. http://dx.
doi.org/10.1007/978-1-4684-2001-2_9.

Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E., 2001. Symbolic model
checking with rich assertional languages. Theoret. Comput. Sci. 256 (1–2),
93–112. http://dx.doi.org/10.1016/S0304-3975(00)00103-1.

Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D., 2012.
HAMPI: a solver for word equations over strings, regular expressions, and
context-free grammars. ACM Trans. Softw. Eng. Methodol. 21 (4), 25:1–25:28.
http://dx.doi.org/10.1145/2377656.2377662.

King, J.C., 1976. Symbolic execution and program testing. Commun. ACM 19 (7),
385–394. http://dx.doi.org/10.1145/360248.360252.

Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J., 2019. Resource-guided
program synthesis. In: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. In: PLDI 2019,
Association for Computing Machinery, New York, NY, USA, pp. 253–268.
http://dx.doi.org/10.1145/3314221.3314602.

Kosovskii, N.K., 1976. Properties of the solutions of equations in a free
semigroup. J. Math. Sci. 6 (4), http://dx.doi.org/10.1007/BF01084074.

19

189

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Le, Q.L., He, M., 2018. A decision procedure for string logic with quadratic
equations, regular expressions and length constraints. In: Ryu, S. (Ed.),
Programming Languages and Systems - 16th Asian Symposium, APLAS 2018,
Wellington, New Zealand, December 2-6, 2018, Proceedings. In: Lecture
Notes in Computer Science, vol. 11275, Springer, pp. 350–372. http://dx.doi.
org/10.1007/978-3-030-02768-1_19.

Levi, F.W., 1944. On semigroups. Bull. Calcutta Math. Soc. 36, 141–146.
Li, G., Ghosh, I., 2013. PASS: String solving with parameterized array and

interval automaton. In: Bertacco, V., Legay, A. (Eds.), Hardware and Software:
Verification and Testing - 9th International Haifa Verification Conference,
HVC 2013, Haifa, Israel, November 5-7, 2013, Proceedings. In: Lecture Notes
in Computer Science, vol. 8244, Springer, pp. 15–31. http://dx.doi.org/10.
1007/978-3-319-03077-7_2.

Liang, T., Reynolds, A., Tinelli, C., Barrett, C.W., Deters, M., 2014. A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Computer Aided
Verification - 26th International Conference, CAV 2014. In: Lecture Notes
in Computer Science, vol. 8559, Springer, pp. 646–662. http://dx.doi.org/10.
1007/978-3-319-08867-9_43.

Lin, A.W., Barceló, P., 2016. String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: ACM SIGPLAN Notices, Vol.
51. ACM, pp. 123–136.

Lin, A.W., Majumdar, R., 2018. Quadratic word equations with length constraints,
counter systems, and Presburger arithmetic with divisibility. In: Automated
Technology for Verification and Analysis - 16th International Symposium,
ATVA 2018. In: Lecture Notes in Computer Science, vol. 11138, Springer, pp.
352–369. http://dx.doi.org/10.1007/978-3-030-01090-4_21.

Loring, B., Mitchell, D., Kinder, J., 2019. Sound regular expression semantics for
dynamic symbolic execution of JavaScript. In: Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
pp. 425–438.

Makanin, G.S., 1977. The problem of solvability of equations in a free semigroup.
Mat. Sb. 145 (2), 147–236.

Matiyasevich, Y.V., 1968. A connection between systems of word and length
equations and Hilbert’s tenth problem. Zap. Nauchnykh Semin. POMI 8,
132–144.

Matiyasevich, Y., 2008. Computation paradigms in light of Hilbert’s tenth
problem. In: New Computational Paradigms. Springer, pp. 59–85.

Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V., 2021. Z3str4:
A multi-armed string solver. In: Huisman, M., Pasareanu, C.S., Zhan, N.
(Eds.), Formal Methods - 24th International Symposium, FM 2021, Virtual
Event, November 20-26, 2021, Proceedings. In: Lecture Notes in Computer
Science, vol. 13047, Springer, pp. 389–406. http://dx.doi.org/10.1007/978-3-
030-90870-6_21.

de Moura, L.M., Bjørner, N., 2008. Z3: an efficient SMT solver. In: Ramakrish-
nan, C.R., Rehof, J. (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. In:
Lecture Notes in Computer Science, vol. 4963, Springer, pp. 337–340. http:
//dx.doi.org/10.1007/978-3-540-78800-3_24.

Neider, D., Jansen, N., 2013. Regular model checking using solver technologies
and automata learning. In: Brat, G., Rungta, N., Venet, A. (Eds.), NASA Formal
Methods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA,
May 14-16, 2013. Proceedings. In: Lecture Notes in Computer Science, vol.
7871, Springer, pp. 16–31. http://dx.doi.org/10.1007/978-3-642-38088-4_2.

Nielsen, J., 1917. Die isomorphismen der allgemeinen, unendlichen Gruppe mit
zwei Erzeugenden. Math. Ann. 78 (1), 385–397. http://dx.doi.org/10.1007/
BF01457113.

Nötzli, A., Reynolds, A., Barbosa, H., Barrett, C.W., Tinelli, C., 2022. Even faster
conflicts and lazier reductions for string solvers. In: Shoham, S., Vizel, Y.
(Eds.), Computer Aided Verification - 34th International Conference, CAV
2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part II. In: Lecture Notes
in Computer Science, vol. 13372, Springer, pp. 205–226. http://dx.doi.org/10.
1007/978-3-031-13188-2_11.

Osera, P.-M., 2019. Constraint-based type-directed program synthesis. In: Pro-
ceedings of the 4th ACM SIGPLAN International Workshop on Type-Driven
Development. In: TyDe 2019, Association for Computing Machinery, New
York, NY, USA, pp. 64–76. http://dx.doi.org/10.1145/3331554.3342608.

Pin, J. (Ed.), 2021. Handbook of Automata Theory. European Mathematical Society
Publishing House, Zürich, Switzerland, http://dx.doi.org/10.4171/Automata.

Plandowski, W., 1999. Satisfiability of word equations with constants is in
PSPACE. In: 40th Annual Symposium on Foundations of Computer Science
(Cat. No. 99CB37039). IEEE, pp. 495–500.

Plandowski, W., 2006. An efficient algorithm for solving word equations. In:
Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of
Computing. ACM, pp. 467–476.

Presburger, M., 1929. About the completeness of a certain system of inte-
ger arithmetic in which addition is the only operation. In: I Congrès de
Mathématiciens des Pays Slaves. pp. 92–101.

Quine, W.V., 1946. Concatenation as a basis for arithmetic. J. Symb. Log. 11 (4),
105–114.

Reynolds, A., Nötzli, A., Barrett, C., Tinelli, C., 2019. High-level abstractions for
simplifying extended string constraints in SMT. In: International Conference
on Computer Aided Verification. Springer, pp. 23–42.

Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C., 2017.
Scaling up DPLL (T) string solvers using context-dependent simplification.
In: International Conference on Computer Aided Verification. Springer, pp.
453–474.

Robson, J.M., Diekert, V., 1999. On quadratic word equations. In: Annual
Symposium on Theoretical Aspects of Computer Science. Springer, pp.
217–226.

Schulz, K.U., 1990. Makanin’s algorithm for word equations-two improvements
and a generalization. In: International Workshop on Word Equations and
Related Topics. Springer, pp. 85–150.

Scott, J.D., Flener, P., Pearson, J., Schulte, C., 2017. Design and implementation
of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (Eds.),
Integration of AI and OR Techniques in Constraint Programming - 14th Inter-
national Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings.
In: Lecture Notes in Computer Science, vol. 10335, Springer, pp. 51–67.
http://dx.doi.org/10.1007/978-3-319-59776-8_5.

Sen, K., Kalasapur, S., Brutch, T., Gibbs, S., 2013. Jalangi: A selective record-
replay and dynamic analysis framework for JavaScript. In: Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering. In:
ESEC/FSE 2013, Association for Computing Machinery, pp. 488–498. http:
//dx.doi.org/10.1145/2491411.2491447.

Stanford, C., Veanes, M., Bjørner, N., 2021. Symbolic boolean derivatives for
efficiently solving extended regular expression constraints. In: Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. pp. 620–635.

Thatcher, J.W., Wright, J.B., 1968. Generalized finite automata theory with an
application to a decision problem of second-order logic. Math. Syst. Theory
2 (1), 57–81. http://dx.doi.org/10.1007/BF01691346.

Trinh, M.-T., Chu, D.-H., Jaffar, J., 2014. S3: A symbolic string solver for
vulnerability detection in web applications. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, pp.
1232–1243.

Trinh, M.-T., Chu, D.-H., Jaffar, J., 2016. Progressive reasoning over recursively-
defined strings. In: International Conference on Computer Aided Verification.
Springer, pp. 218–240.

Trinh, M.-T., Chu, D.-H., Jaffar, J., 2020. Inter-theory dependency analysis for SMT
string solvers. Proc. ACM Program. Lang. 4 (OOPSLA), 1–27.

Tseitin, G.S., 1983. On the complexity of derivation in propositional calculus. In:
Automation of Reasoning. Springer, pp. 466–483.

Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.S., 2012. Symbolic
finite state transducers: algorithms and applications. In: Field, J., Hicks, M.
(Eds.), Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,
January 22-28, 2012. ACM, pp. 137–150. http://dx.doi.org/10.1145/2103656.
2103674.

Wang, H., Chen, S., Yu, F., Jiang, J.R., 2018. A symbolic model checking approach
to the analysis of string and length constraints. In: Huchard, M., Kästner, C.,
Fraser, G. (Eds.), Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018. ACM, pp. 623–633. http://dx.doi.org/10.1145/3238147.
3238189.

Wang, H., Tsai, T., Lin, C., Yu, F., Jiang, J.R., 2016. String analysis via automata ma-
nipulation with logic circuit representation. In: Computer Aided Verification
- 28th International Conference, CAV 2016. In: Lecture Notes in Computer
Science, vol. 9779, Springer, pp. 241–260. http://dx.doi.org/10.1007/978-3-
319-41528-4_13.

Wang, Y., Zhou, M., Jiang, Y., Song, X., Gu, M., Sun, J., 2017. A static analy-
sis tool with optimizations for reachability determination. In: 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering. ASE,
pp. 925–930. http://dx.doi.org/10.1109/ASE.2017.8115706.

Wolper, P., Boigelot, B., 1998. Verifying systems with infinite but regular state
spaces. In: Hu, A.J., Vardi, M.Y. (Eds.), Computer Aided Verification, 10th
International Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July
2, 1998, Proceedings. In: Lecture Notes in Computer Science, vol. 1427,
Springer, pp. 88–97. http://dx.doi.org/10.1007/BFb0028736.

Wolper, P., Boigelot, B., 2000. On the construction of automata from linear
arithmetic constraints. In: Graf, S., Schwartzbach, M.I. (Eds.), Tools and
Algorithms for Construction and Analysis of Systems, 6th International
Conference, TACAS 2000, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March
25 - April 2, 2000, Proceedings. In: Lecture Notes in Computer Science, vol.
1785, Springer, pp. 1–19. http://dx.doi.org/10.1007/3-540-46419-0_1.

Wolper, P., Boigelot, B., 2002. Representing arithmetic constraints with finite
automata: An overview. In: Stuckey, P.J. (Ed.), Logic Programming, 18th
International Conference, ICLP 2002, Copenhagen, Denmark, July 29 - August
1, 2002, Proceedings. In: Lecture Notes in Computer Science, vol. 2401,
Springer, pp. 1–19. http://dx.doi.org/10.1007/3-540-45619-8_1.

20

190

Y.-F. Chen, V. Havlena, O. Lengál et al. The Journal of Systems & Software 201 (2023) 111673

Yu, F., Alkhalaf, M., Bultan, T., 2010. Stranger: An automata-based string analysis
tool for php. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, pp. 154–157.

Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H., 2014. Automata-based symbolic string
analysis for vulnerability detection. Form. Methods Syst. Des. 44 (1), 44–70.
http://dx.doi.org/10.1007/s10703-013-0189-1.

Yu, F., Shueh, C.-Y., Lin, C.-H., Chen, Y.-F., Wang, B.-Y., Bultan, T., 2016. Optimal
sanitization synthesis for web application vulnerability repair. In: Proceed-
ings of the 25th International Symposium on Software Testing and Analysis.
ACM, pp. 189–200.

Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang, X.,
2017. Z3str2: an efficient solver for strings, regular expressions, and length
constraints. Form. Methods Syst. Des. 50 (2–3), 249–288.

Yu-Fang Chen is a research fellow at the Institute of Information Science,
Academia Sinica. He has more than ten years of experience in the field of formal
methods and verification, and has contributed to developing methods such as
automata-based verification, algorithmic learning, and various types of decision
procedures.

Vojtěch Havlena is a researcher at Faculty of Information Technology, Brno
University of Technology, Czech Republic. His research interests include formal
methods, automata theory, and logics. He particularly focuses on the develop-
ment of automata-based techniques for the use in decision procedures of various
theories and in security applications.

Ondřej Lengál is an assistant professor at Faculty of Information Technology,
Brno University of Technology. His main interests lie in automata theory, logics,
and their uses in developing efficient, safe, and secure computer systems. In
particular, he works on analysis and verification of programs and techniques for
efficient work with automata and their applications

Andrea Turrini received his Master and Ph.D. degree in computer science from
University of Verona, Italy, in 2005 and 2009, respectively. He is currently an
associate research professor at the Institute of Software, Chinese Academy of
Sciences, Beijing. His research interests include the formal analysis of processes
involving probability and nondeterminism, the development of efficient oper-
ations and transformations on omega regular automata, and the extension of
automata-based frameworks to new scenarios.

21

191

156

An Automata-Based Framework for Verification and Bug
Hunting in �antum Circuits

YU-FANG CHEN, Academia Sinica, Taiwan
KAI-MIN CHUNG, Academia Sinica, Taiwan
ONDŘEJ LENGÁL, Brno University of Technology, Czech Republic
JYUN-AO LIN, Academia Sinica, Taiwan
WEI-LUN TSAI, Academia Sinica, Taiwan and National Taiwan University, Taiwan
DI-DE YEN,Max Planck Institute for Software Systems, Germany

We introduce a new paradigm for analysing and finding bugs in quantum circuits. In our approach, the problem
is given by a triple {%}� {&} and the question is whether, given a set % of quantum states on the input of
a circuit � , the set of quantum states on the output is equal to (or included in) a set & . While this is not
suitable to specify, e.g., functional correctness of a quantum circuit, it is sufficient to detect many bugs in
quantum circuits. We propose a technique based on tree automata to compactly represent sets of quantum
states and develop transformers to implement the semantics of quantum gates over this representation. Our
technique computes with an algebraic representation of quantum states, avoiding the inaccuracy of working
with floating-point numbers. We implemented the proposed approach in a prototype tool and evaluated its
performance against various benchmarks from the literature. The evaluation shows that our approach is quite
scalable, e.g., we managed to verify a large circuit with 40 qubits and 141,527 gates, or catch bugs injected
into a circuit with 320 qubits and 1,758 gates, where all tools we compared with failed. In addition, our work
establishes a connection between quantum program verification and automata, opening new possibilities to
exploit the richness of automata theory and automata-based verification in the world of quantum computing.

CCS Concepts: • Hardware → Quantum computation; • Theory of computation → Tree languages; •
Software and its engineering→ Formal software verification.

Additional Key Words and Phrases: quantum circuits, tree automata, verification

ACM Reference Format:
Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen. 2023. An Automata-
Based Framework for Verification and Bug Hunting in Quantum Circuits. Proc. ACM Program. Lang. 7, PLDI,
Article 156 (June 2023), 26 pages. https://doi.org/10.1145/3591270

1 INTRODUCTION
The concept of quantum computing appeared around 1980 with the promise to solve many problems
challenging for classical computers. Quantum algorithms for such problems started appearing
later, such as Shor’s factoring algorithm [Shor 1994], a solution to the hidden subgroup problem by
Ettinger et al. [Ettinger et al. 2004], Bernstein-Vazirani’s algorithm [Bernstein and Vazirani 1993],
Authors’ addresses: Yu-Fang Chen, Academia Sinica, Institute of Information Science, Taiwan, yfc@iis.sinica.edu.tw;
Kai-Min Chung, Academia Sinica, Institute of Information Science, Taiwan, kmchung@iis.sinica.edu.tw; Ondřej Lengál,
Faculty of Information Technology, Brno University of Technology, Czech Republic, lengal@fit.vutbr.cz; Jyun-Ao Lin,
Academia Sinica, Taiwan, jyalin@gmail.com; Wei-Lun Tsai, Academia Sinica, Institute of Information Science, Taiwan,
alan23273850@gmail.com and National Taiwan University, Graduate Institute of Electronics Engineering, Taiwan; Di-De
Yen, Max Planck Institute for Software Systems, Germany, bottlebottle13@gmail.com.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART156
https://doi.org/10.1145/3591270

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

192

156:2 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

or Grover’s search [Grover 1996]. For a long time, no practical implementation of these algorithms
has been available due to the missing hardware. Recent years have, however, seen the advent of
quantum chips claiming to achieve quantum supremacy [Arute et al. 2019], i.e., the ability to solve
a problem that a state-of-the-art supercomputer would take thousands of years to solve. As it seems
that quantum computers will occupy a prominent role in the future, systems and languages for
their programming are in active development (e.g., [Altenkirch and Grattage 2005; Green et al. 2013;
Wille et al. 2019]), and efficient quantum algorithms for solutions of real-world problems, such as
machine learning [Biamonte et al. 2017; Ciliberto et al. 2018], optimization [Moll et al. 2018], or
quantum chemistry [Cao et al. 2019], have started appearing.

The exponential size of the underlying computational space and the probabilistic nature makes
it, however, extremely challenging to reason about quantum programs—both for human users and
automated analysis tools. Currently, existing automated analysis approaches are mostly unable to
handle large-scale circuits [Feng et al. 2017, 2015; Ying 2021; Ying and Feng 2021; Ying et al. 2014],
inflexible in checking user-specified properties [Amy 2018; Burgholzer and Wille 2020; Coecke and
Duncan 2011; Fagan and Duncan 2019; Green et al. 2013; Niemann et al. 2016; Pednault et al. 2017;
Samoladas 2008; Tsai et al. 2021; Viamontes et al. 2009; Wecker and Svore 2014; Zulehner et al. 2019;
Zulehner and Wille 2019], or imprecise and unable to catch bugs [Perdrix 2008; Yu and Palsberg
2021]. Scalable and flexible automated analysis tools for quantum circuits are indeed missing.

In this paper, we propose a new paradigm for analysing and finding bugs in quantum circuits. In
our approach, the problem is given by a triple {%}� {&}, where� is a quantum circuit and % and&
are sets of quantum states. The verification question that we address is whether the set of output
quantum states obtained by running � on all states from % is equal to (or included in) the set & .
While this kind of property is not suitable to specify, e.g., functional correctness of a quantum
circuit, it is sufficient to obtain a lot of useful information about a quantum circuit, such as finding
constants (will a circuit evaluate to the same quantum state for all inputs in %) or detecting bugs.
We create a framework for analysing the considered class of properties based on (finite) tree

automata (TAs) [Comon et al. 2008]. Languages of TAs are set of trees; in our case, we consider TAs
whose languages contain full binary trees with the height being the number of qubits in the circuit.
Each branch (a path from a root to a leaf) in such a tree corresponds to one computational basis state
(e.g., |0000⟩ or |0101⟩ for a four-qubit circuit), and the corresponding leaf represents the complex
amplitude of the state (we use an algebraic encoding of complex numbers by tuples of integers to
have a precise representation and avoid possible inaccuracies when dealing with floating-point
numbers1; this encoding is sufficient for a wide variety of quantum gates, including the Clifford+T
universal set [Boykin et al. 2000]). Sets of such trees can be in many cases encoded compactly using
TAs, e.g., storing the output of Bernstein-Vazirani’s algorithm [Bernstein and Vazirani 1993] over
= qubits requires a vector of 2= complex numbers, but can be encoded by a linear-sized TA. For each
quantum gate, we construct a transformation that converts the input states TA to a TA representing
the gate’s output states, in a similar way as classical program transformations are represented
in [D’Antoni et al. 2015]. Testing equivalence and inclusion between the TA representing the set of
outputs of a circuit and the postcondition & (from {%}� {&}) can then be done by standard TA
language inclusion/equivalence testing algorithms [Abdulla et al. 2008, 2007; Comon et al. 2008;
Lengál et al. 2012]. If the test fails, the framework generates a witness for diagnosis.
One application of our framework is as a quick underapproximation of a quantum circuit non-

equivalence test. Our approach can switch to a lightweight specification when equivalence checkers
fail due to insufficient resources and still find bugs in the design. Quantum circuit (non-)equivalence
testing is an essential part of the quantum computing toolkit. Its prominent use is in verifying

1Integer numbers of an arbitrary precision can be handled, e.g., by the popular GMP [GMP 2022] package.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

193

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:3

results of circuit optimization, which is a necessary part of quantum circuit compilation in order to
achieve the expected fidelity of quantum algorithms running on real-world quantum computers,
which are heavily affected by noise and decoherence [Amy 2019; Hattori and Yamashita 2018;
Hietala et al. 2019; Itoko et al. 2020; Moll et al. 2018; Nam et al. 2018; Peham et al. 2022; Soeken et al.
2010; Xu et al. 2022b]. Already in the world of classical programs, optimizer bugs are being found
on a regular basis in compilers used daily by tens of thousands of programmers (see, e.g., [Livinskii
et al. 2020]). In the world of quantum, optimization is much harder than in the classical setting, with
many opportunities to introduce subtle and hard-to-discover bugs into the optimized circuits. It is
therefore essential to be able to check that an output of an optimizer is functionally equivalent to
its input. Moreover, global optimization techniques, such as genetic algorithms [Massey et al. 2005;
Spector 2006], may use (somehow quantified) circuit (non-)equivalence as the fitness function.

Testing quantum circuit (non-)equivalence is, however, a challenging task (QMA-complete [Janz-
ing et al. 2005]). Due to its complexity, approaches that can quickly establish circuit non-equivalence
are highly desirable to be used, e.g., as a preliminary check before a more heavy-weight procedure,
such as [Burgholzer and Wille 2020; Peham et al. 2022; Viamontes et al. 2007; Wei et al. 2022; Ya-
mashita andMarkov 2010], is used. One currently employed fast non-equivalence check is to use ran-
dom stimuli generation [Burgholzer et al. 2021]. Finding subtle bugs by random testing is, however,
challengingwith no guarantees due to the immense (in general uncountable) underlying state space.

Our approach can be used as follows: we start with a TA encoding the set of possible input states
(created by the user or automatically) and run our analysis of the circuit over it, obtaining a TA A
representing the set of all outputs. Then, we take the optimized circuit, run it over the same TA
with inputs and obtain a TA A′. Finally, we check whether L(A) = L(A′). If the equality does
not hold, we can conclude that the circuits are not functionally equivalent (if the equality holds,
there can, however, still be some bug that does not manifest in the set of output states).

We implemented our technique in a prototype called AutoQ and evaluated it over a wide range
of quantum circuits, including some prominent quantum algorithms, randomly generated circuits,
reversible circuits from RevLib [Wille et al. 2008], and benchmarks from the tool Feynman [Amy
2018]. The results show that our approach is quite scalable. We did not find any tool with the
same functionality with ours and hence pick the closest state-of-the art tools: a circuit simulator
SliQSim [Tsai et al. 2021] and circuit equivalence checkers Feynman [Amy 2018] (based on path-
sum) and Qcec [Burgholzer and Wille 2020] (combining ZX-calculus, decision diagrams, and
random stimuli generation), as the baseline tools to compare with. In the first experiments, we
evaluated AutoQ’s capability in verification against pre- and post-conditions. We managed to
verify the functional correctness (w.r.t. one input state) of a circuit implementing Grover’s search
algorithm with 40 qubits and 141,527 gates. We then evaluated AutoQ on circuits with injected
bugs. The results confirm our claim—AutoQ was able to find injected bugs in various huge-scale
circuits, including one with 320 qubits and 1,758 gates, which the other tools failed to find.

In addition to the practical utility, our work also bridges the gap between quantum and classical
verification, particularly automata-based approaches such as regular (tree) model checking [Bouajjani
et al. 2012, 2000; Neider and Jansen 2013] or string manipulation verification [Yu et al. 2008, 2011].
As far as we know, our approach to verification of quantum circuits is the first based on automata.
The enabling techniques and concepts involved in this work are, e.g., the use of TAs to represent sets
of quantum states and express the pre- and post-conditions, the compactness of the TA structure
enabling efficient gate operations, and our TA transformation algorithms enabling the execution of
quantum gates over TAs. We believe that the connection of automata theory with the quantum
world we establish can start new fruitful collaborations between the two rich fields.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

194

156:4 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

@ G1 (@1, @0)
@0 G2 (@2, @2) @2 0 ()
@1 G2 (@3, @2) @3 1 ()

(a) The TA of |00⟩.

@ G1 (@0, @1)
@1 G2 (@2, @3) @2 0 ()
@0 G2 (@3, @2) @3 1/

√
2 ()

(b) The TA of 1√
2
(|00⟩ + |11⟩).

|G1⟩ �

|G2⟩
(c) The EPR circuit

Fig. 1. Constructing the Bell state

Overview: We use a concrete example to demonstrate how to use our approach. Assume that we
want to design a circuit constructing the Bell state, i.e., a 2-qubit circuit converting a basis state
|00⟩ to a maximally entangled state 1√

2 (|00⟩ + |11⟩). We first prepare TAs corresponding to the
precondition (Fig. 1a) and postcondition (Fig. 1b). Both TAs use @ as the root state and accept only
one tree. One can see the correspondence between quantum states and TAs by traversing their
structure. The precise definition will be given in Section 2 and Section 3. Our approach will then
use the transformers from Sections 4 to 6 to construct a TA A recognizing the quantum states after
executing the EPR circuit (Fig. 1c) from the precondition TA (Fig. 1a). We will then use TA language
inclusion/equivalence tool VATA [Lengál et al. 2012] to check A against the postcondition TA. If
the circuit is buggy, our approach will return a witness quantum state that is reachable from the
precondition, but not allowed by the postcondition. From our experience of preparing benchmark
examples, in many cases, this approach helps us finding out bugs from incorrect designs.

2 PRELIMINARIES
We assume basic knowledge of linear algebra and quantum circuits. Below, we only give a short
overview and fix notation; see, e.g., the textbook [Nielsen and Chuang 2011] for more details.
By default, we work with vectors and matrices over complex numbers C. In particular, we use

C<×= to denote the set of all< × = complex matrices. Given a : × ℓ matrix (0G~), its transpose
is the ℓ × : matrix (0G~)) = (0~G) obtained by flipping (0G~) over its diagonal. A 1 × : matrix is
called a row vector and a : × 1 matrix is called a column vector. To save vertical space, we often
write a column vector E using its row transpose E) . We use � to denote the identity matrix of any
dimension (which should be clear from the context). The conjugate of a complex number 0+18 is the
complex number 0 − 18 , and the conjugate transpose of a matrix � = (0G~) is the matrix �† = (2~G)

where 2~G is the conjugate of 0~G . For instance,
(
1 + 8 2 − 28 3
4 − 78 0 0

)†
= ©
«
1 − 8 4 + 78
2 + 28 0
3 0

ª®
¬
. The inverse

of a matrix � is denoted as �−1. A square matrix � is unitary if �† = �−1. The Kronecker product of
� = (0G~) ∈ C:×ℓ and � ∈ C<×= is the :< × ℓ= matrix � ⊗ � = (0G~�), for instance,

(
1 + 8 3
4 − 78 0

)
⊗
(1

2 1
− 1
2 0

)
=

©«

(1 + 8) ·
(1

2 1
− 1
2 0

)
3 ·

(1
2 1
− 1
2 0

)

(4 − 78) ·
(1

2 1
− 1
2 0

)
0 ·

(1
2 1
− 1
2 0

)
ª®®®®¬
=

©«

1
2 + 1

2 8 1 + 8 3
2 3

− 1
2 − 1

2 8 0 − 3
2 0

2 − 7
2 8 4 − 78 0 0

−2 + 7
2 8 0 0 0

ª®®®®¬
. (1)

2.1 �antum Circuits
Quantum states. In a quantum system with = qubits, the qubits can be entangled, and its quantum
state can be a quantum superposition of computational basis states {| 9⟩ | 9 ∈ {0, 1}=}. For instance,
given a system with three qubits G1, G2, and G3, the computational basis state |011⟩ denotes a state
where qubit G1 is set to 0 and qubits G2 and G3 are set to 1. The superposition is then denoted in the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

195

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:5

Dirac notation as a formal sum
∑

9∈{0,1}= 0 9 · | 9⟩, where 00, 01, . . . , 02=−1 ∈ C are complex amplitudes2

satisfying the property that
∑

9∈{0,1}= |0 9 |2 = 1. Intuitively, |0 9 |2 is the probability that when we
measure the state in the computational basis, we obtain the state | 9⟩; these probabilities need to
sum up to 1 for all computational basis states. We note that the quantum state can alternatively be
represented by a 2=-dimensional column vector3 (00, . . . , 02=−1)) or by a function) : {0, 1}= → C,
where) (9) = 0 9 for all 9 ∈ {0, 1}= . In the following, we will work mainly with the function
representation, which we will see as a mapping from the domain of assignments to Boolean
variables (corresponding to qubits) to C. For instance, the quantum state 1√

2 · |00⟩ +
1√
2 · |01⟩ can be

represented by the vector (1√
2 ,

1√
2 , 0, 0)

) or the function) = {00 ↦→ 1√
2 , 01 ↦→

1√
2 , 10 ↦→ 0, 11 ↦→ 0}.

Quantum gates. Operations in quantum circuits are represented using quantum gates. A :-qubit
quantum gate (i.e., a quantum gate with : inputs and : outputs) can be described using a 2: × 2:
unitary matrix. When computing the effect of a :-qubit quantum gate* on the qubits Gℓ , . . . , Gℓ+:−1
of an =-qubit quantum state represented using a 2=-dimensional vector E , we proceed as follows.
First, we compute an auxiliary matrix* ′ = �=−(ℓ+:−1) ⊗* ⊗�ℓ−1 where � 9 denotes the 29 -dimensional
identity matrix. Note that if* is unitary, then* ′ is also unitary. Then, the new quantum state is
computed as E ′ = * ′ × E . For instance, let = = 2 and* be the Pauli-- gate applied to the qubit G1.

- ′ = - ⊗ � =

(
0 1
1 0

)
⊗
(
1 0
0 1

)
=

©«

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®®¬
, E ′ = - ′ × E =

©«

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®®¬
×
©«

200
201
210
211

ª®®®®¬
=

©«

210
211
200
201

ª®®®®¬
(2)

Representation of complex numbers. In order to achieve accuracy with no loss of precision, in this
paper, when working with C, we consider only a subset of complex numbers that can be expressed
by the following algebraic encoding proposed in [Zulehner and Wille 2019] (and also used in [Tsai
et al. 2021]): (1√

2

)
: (0 + 1l + 2l2 + 3l3), (3)

where 0, 1, 2, 3, : ∈ Z and l = 4
8c
4 , the unit vector that makes an angle of 45◦ with the positive

real axis in the complex plane). A complex number is then represented by a five-tuple (0, 1, 2, 3, :).
Although the considered set of complex numbers is only a small subset of C (it is countable, while
the set C is uncountable), the subset is already sufficient to describe a set of quantum gates that
can implement universal quantum computation (cf. Section 4 for more details). The algebraic
representation also allows efficient encoding of some operations. For example, because l4 = −1,
the multiplication of (0, 1, 2, 3, :) by l can be carried out by a simple right circular shift of the first
four entries and then taking the opposite number for the first entry, namely (−3, 0, 1, 2, :), which
represents the complex number

(1√
2

)
: (−3 + 0l + 1l2 + 2l3). In the rest of the paper, we use 0

and 1 to denote the tuples for zero and one, i.e., (0, 0, 0, 0, 0) and (1, 0, 0, 0, 0), respectively. Using
such an encoding, we represent quantum states by functions of the form) : {0, 1}= → Z5.
Qubit Measurement. After executing a quantum circuit, one can measure the final quantum

state in the computational basis. The probability that the qubit G 9 of a quantum state
∑

8∈{0,1}= 08 ·
|8⟩ is measured as the basis state |0⟩ can be computed from the amplitude: Prob[G 9 = |0⟩] =∑

8∈{0,1}=− 9×{0}×{0,1} 9−1 |08 |2 . When G 9 collapses to |0⟩ after the measurement, amplitudes of states
with G 9 = |1⟩ become 0 and amplitudes of states with G 9 = |0⟩ are normalized using 1√

Prob[G 9= |0⟩]
.

2We abuse notation and sometimes identify a binary string with its (unsigned) integer value in the most significant bit first
(MSBF) encoding, e.g., the string 0101 with the number 5.
3Observe that in order to satisfy the requirement for the amplitudes of quantum states, it must be a unit vector.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

196

156:6 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

2.2 Tree Automata
5

5 6

21 22 5 21

22 23

Binary Trees. We use a ranked alphabet Σ with binary symbols 5 , 6, . . . and
constant symbols 21, 22, A binary tree is a ground term over Σ. For instance,
) = 5 (5 (21, 22), 6(5 (22, 23), 21)), shown in the right, represents a binary tree.
The set of nodes of a binary tree) , denoted as #) , is defined inductively as
a set of words over {0, 1} such that for every constant symbol 2 , we define
#2 = {n}, and for every binary symbol 5 , we define #5 ()0,)1) = {n} ∪ {0.F |
0 ∈ {0, 1} ∧F ∈ #)0 }, where n is the empty word and ‘.’ is concatenation. Each binary tree) is
associated with a labeling function !) : {0, 1}∗ → Σ, which maps a node in) to its label in Σ. A tree
is single-valued if it contains only one constant symbol.

Tree Automata. We focus on tree automata on binary trees and refer the interested reader
to [Comon et al. 2008] for a general definition. A (nondeterministic finite) tree automaton (TA)
is a tuple A = ⟨&, Σ,Δ,R⟩ where & is a finite set of states, Σ is a ranked alphabet, R ⊆ & is
the set of root states, and Δ = Δ8 ∪ Δ; is a set of tree transitions consisting of the set Δ8 of
internal transitions of the form @ 5 (@0, @1) (for a binary symbol 5) and the set Δ; of leaf tran-
sitions of the form @ 2 () (for a constant symbol 2), for @, @0, @1 ∈ & . W.l.o.g., to simplify our
correctness proof, we assume every leaf transition of TAs has a unique parent state, namely,
for any two leaf transitions @ 2 (), @′ 2′ () ∈ Δ, it holds that 2 ≠ 2′ =⇒ @ ≠ @′. We
can conveniently describe TAs by providing only the set of root states R and the set of tran-
sitions Δ. The alphabet and states are implicitly defined as those that appear in Δ. For exam-
ple, Δ = {@ G1 (@1, @0), @ G1 (@0, @1), @0 0 (), @1 1 ()} implies that Σ = {G1, 0, 1} and
& = {@, @0, @1}.

Run and Language. A run of A on a tree) is another tree d labeled with & such that (i)) and d
have the same set of nodes, i.e., #) = #d , (ii) for all leaf nodesD ∈ #) , we have !d (D) !) (D) () ∈
Δ, and (iii) for all non-leaf nodes E ∈ #) , we have !d (D) !) (D) (!d (0.D), !d (1.D)) ∈ Δ. The
run d is accepting if !d (n) ∈ R. The language L(A) of A is the set of trees accepted by A, i.e.,
L(A) = {) | there exists an accepting run of A over) }. A TA is (top-down) deterministic if it has
at most one root state and for any of its transitions @ G (@; , @A) and @ G (@′

;
, @′A) it holds that

@; = @′
;
and @A = @′A . Any tree from the language of a deterministic TA has a unique run in the TA.

Example 2.1 (Accepted tree and its run). Assume a TA A3 with @ as its single root state and the
following transitions:

@ G1 (@10, @11) @11 G2 (@20, @21) @21 G3 (@0, @1) @0 0 ()
@ G1 (@11, @10) @11 G2 (@21, @20) @21 G3 (@1, @0) @1 1 ()

@10 G2 (@20, @20) @20 G3 (@0, @0)
G1

G2 G2

G3 G3 G3 G3

1 0 0 0 0 0 0 0

@

@11 @10

@21 @20 @20 @20

@1 @0 @0 @0 @0 @0 @0 @0

Among others, A3 accepts the above tree (in the left) with the run (in the right). Observe that all
tree nodes satisfy the requirement of a valid run. E.g., the node 111 corresponds to the transition
@0 0 (), 01 to @20 G3 (@0, @0), and n to @ G1 (@11, @10), etc.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

197

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:7

In A3, we use states named @=0 to denote only subtrees with all zeros (0) in leaves that can be
generated from here, and states named @=1 to denote only subtrees with a single 1 in the leaves that
can be generated from it. Intuitively, the TA accepts all trees of the height three with exactly one 1
leaf and all other leaves 0 (in our encoding of quantum states, this might correspond to saying
that A3 encodes an arbitrary computational basis state of a three-qubit system). □

3 ENCODING SETS OF QUANTUM STATES WITH TREE AUTOMATA
Observe that we can use (full) binary trees to encode functions {0, 1}= → Z5, i.e., the function
representation of quantum states. For instance, the tree

G1 (G2 (G3 (1, 0), G3 (0, 0)), G2 (G3 (0, 0), G3 (0, 0))) (4)
encodes the function) where) (000) = 1 and) (8) = 0 for all 8 ∈ {0, 1}3 \ {000}. Since TAs can
concisely represent sets of binary trees, they can be used to encode sets of quantum states.

Example 3.1 (Concise representation of sets of quantum states by TAs). Here we consider the
set of =-qubit quantum states &= = {|8⟩ | 8 ∈ {0, 1}=}, i.e., the set of all basis states. Note that
|&= | = 2= , which is exponential. Representing all possible basis states naively would require storing
22= complex numbers. TAs can, however, represent such a set much more efficiently.
For the case when = = 3, the set &3 can be represented by the TA A3 from Example 2.1 with

3= + 1 transitions (i.e., linear-sized). The TA A3 can be generalized to encode the set of all =-qubit
states &= = {|8⟩ | 8 ∈ {0, 1}=} for each = ∈ N by setting the transitions to

@ G1 (@10, @11) @11 G2 (@20, @21) . . . @=−11 G= (@0, @1) @0 0 ()
@ G1 (@11, @10) @11 G2 (@21, @20) . . . @=−11 G= (@1, @0) @1 1 ()

@10 G2 (@20, @20) . . . @=−10 G= (@0, @0)
We denote the resulting TA by A= . Notice that although &= has 2= quantum states, A= has only
2= + 1 states and 3= + 1 transitions. □

Formally a TA A recognizing a set of quantum states is a tuple ⟨&, Σ,Δ,R⟩, whose alphabet Σ
can be partitioned into two classes of symbols: binary symbols G1, . . . , G= and a finite set of leaf
symbols Σ2 ⊆ Z5 representing all possible amplitudes of quantum states in terms of computational
bases. By slightly abusing the notation, for a full binary tree) ∈ L(A), we also use) to denote
the function {0, 1}= → Z5 that maps a computational basis to the corresponding amplitude of) ’s
quantum state. The two meanings of) are used interchangeably throughout the paper.

Remark. Note that TAs allow representation of infinite languages, yet we only use them for
finite sets, which might seem like the model is overly expressive. We, however, stick to TAs for the
following two reasons: (i) there is an existing rich toolbox for TA manipulation and minimization,
e.g., [Abdulla et al. 2008, 2007; Comon et al. 2008; Lengál et al. 2012], and (ii) we want to have
a robust formal model for extending our framework to parameterized verification, i.e., proving that
an =-qubit algorithm is correct for any =, which will require us to deal with infinite languages (c.f.,
the framework of regular tree model checking [Abdulla et al. 2002; Bouajjani et al. 2012]).

Moreover, we chose full binary trees as the representation of quantum states. We thought about
using a more compact structure, e.g., allowing jump over a transition with common left and right
children (similar to ROBDD’s elimination of a node with isomorphic subtrees [Bryant 1986]). We
decided against that because TAs already allow an efficient representation of common children
via a transition to the same left and right states, e.g., @ G (@′, @′). The benefit of using a more
compact tree representation is thus limited. Using a more efficient data structure would also make

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

198

156:8 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

|G1⟩ -

|G2⟩

(a) - gate applied
to qubit G1

- =

(
0 1
1 0

)

(b) Matrix of
the - gate

|G1⟩
|G2⟩

(c) CNOT2
1 gate with target

qubit G1 and control qubit G2

CNOT =
©
«

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬
(d) Matrix of the CNOT
gate

Fig. 2. Applications of - and CNOT gates and their matrices

the algorithms in the following sections harder to understand. We therefore leave the investigation
of designing a more efficient data structure to our future work.

4 SYMBOLIC REPRESENTATION OF QUANTUM GATES
With TAs used to concisely represent sets of quantum states, the next task is to capture the effects
of applying quantum gates on this representation. When quantum states are represented as vectors,
gates are represented as matrices and gate operations are matrix multiplications. When states are
represented as binary trees, we need a new representation for quantum gates and their operations.
Inspired by the work of [Tsai et al. 2021], we introduce symbolic update formulae, which are formulae
that describe how a gate transforms a tree representing a quantum state. Later, we will lift the tree
update operation to a set of trees encoded in a TA.
We use the algebraic representation of quantum states from Eq. (3) also for their symbolic

handling. For instance, consider a system with qubits G1, G2 and its state

) = 200 · |00⟩ + 201 · |01⟩ + 210 · |10⟩ + 211 · |11⟩ (5)

for 200, 201, 210, 211 ∈ Z5, four complex numbers represented in the algebraic way. The result of ap-
plying the- gate (the quantum version of the NOT gate) on qubit G1 (cf. Fig. 2a) is (210, 211, 200, 201))
(cf. Eq. (2)). Intuitively, we observe that the effect of the gate is a permutation of the computational
basis states that swaps the amplitudes of states where the G1’s value is 1 with states where the G1’s
value is 0 (and the values of qubits other than G1 stay the same). Concretely, it swaps the amplitudes
of the pairs (|00⟩ , |10⟩) and (|01⟩ , |11⟩) to obtain the quantum state

- ()) = 210 · |00⟩ + 211 · |01⟩ + 200 · |10⟩ + 201 · |11⟩ . (6)

Instead of executing the quantum gate by performing a matrix-vector multiplication, we will
capture its semantics symbolically by directly manipulating the tree function) : {0, 1}= → Z5. For
this, we will use the following operators on) , parameterized by a qubit GC (C for “target”):

)GC (1= . . . 1C . . . 11) =) (1= . . . 1 . . . 11) �GC (1= . . . 1C . . . 11) = 1C

)GC (1= . . . 1C . . . 11) =) (1= . . . 0 . . . 11) �GC (1= . . . 1C . . . 11) = 1C .

(Projection) (Restriction)

In the previous, 1C denotes the complement of the bit 1C (i.e., 0 = 1 and 1 = 0). Intuitively,)GC and
)GC fix the value of qubit GC to be 1 and 0 respectively. On the other hand, �GC and �GC just take the
value of qubit GC (or its negation) in the computational basis state.

Equipped with the operators, we can now proceed to express the semantics of - symbolically.
Let us first look at the first two summands on the right-hand side of Eq. (6):) 0 = 210 · |00⟩ +211 · |01⟩.
These summands can be obtained by manipulating the input function) in the following way:

) 0 = �G1 ·)G1 . (7)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

199

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:9

Table 1. Symbolic update formulae for the considered quantum gates; G2 and G ′2 denote control bits (if they
exist), and GC denotes the target bit.

Gate Update
XC �GC ·)GC + �GC ·)GC
YC l2 · (�GC ·)GC − �GC ·)GC)
ZC �GC ·) − �GC ·)
HC ()GC + �GC ·)GC − �GC ·))/

√
2

SC �GC ·) + l2 · �GC ·)
TC �GC ·) + l · �GC ·)

Rx(c2)C () − l2 · (�GC ·)GC + �GC ·)GC))/
√
2

Ry(c2)C ()GC + �GC ·) − �GC ·)GC)/
√
2

CNOT2C �G2 ·) + �G2 · (�GC ·)GC + �GC ·)GC)
CZ2C �G2 ·) + �G2 · (�GC ·) − �GC ·))

Toffoli2,2
′

C �G2 ·) + �G2 · (�G2′ ·) + �G2′ · (�GC ·)GC + �GC ·)GC))

Here,) 0 = �G1 ·)G1 is a shorthand for) 0 (11 . . . 1=) = �G1 (11 . . . 1=) ·)G1 (11 . . . 1=). When we view)
as a tree, the operation)G1 essentially copies the right subtree of every G1-node to its left subtree,
and �G1 ·)G1 makes all leaves in every right subtree of)G1 ’s G1-node zero. This would give us

) 0 = 210 · |00⟩ + 211 · |01⟩ + 0 · |10⟩ + 0 · |11⟩ = 210 · |00⟩ + 211 · |01⟩ . (8)
On the other hand, the last two summands in the right-hand side of Eq. (6), i.e.,) 1 = 200·|10⟩+201·|11⟩,
could be obtained by manipulating) as follows:

) 1 = �G1 ·)G1 . (9)
The tree view of �G1 ·)G1 is symmetric to �G1 ·)G1 , which would give us the following state:

) 1 = 0 · |00⟩ + 0 · |01⟩ + 200 · |10⟩ + 201 · |11⟩ = 200 · |10⟩ + 201 · |11⟩ . (10)
Finally, by summing) 0 and) 1, we obtain Eq. (6):) 0+) 1 = 210 · |00⟩+211 · |01⟩+200 · |10⟩+201 · |11⟩ .

That is, the semantics of the - gate could be expressed using the following symbolic formula:
-1 ()) = �G1 ·)G1 + �G1 ·)G1 . (11)

Observe that the sum effectively swaps the left and right subtrees of each G1-node.
For multi-qubit gates, the update formulae get more complicated, since they involve more

than one qubit. Consider, e.g., the “controlled-NOT” gate CNOT2
C (see Fig. 2c for the graphical

representation and Fig. 2d for its semantics). The CNOT2
C gate uses GC and G2 as the target and

control qubit respectively. Intuitively, it “flips” the target qubit’s value when the control qubit’s
value is 1 and keeps the original value if it is 0. Similarly, as for the- gate, we can deduce a symbolic
formula for the update done by a CNOT gate:

CNOT2
C ()) = �G2 ·) + �G2 · (�GC ·)GC + �GC ·)GC). (12)

The sum consists of the following two summands:
• The summand �G2 ·) says that when the control qubit is 0, GC and G2 stay the same.
• The summand �G2 · (�GC ·)GC + �GC ·)GC) handles the case when G2 is 1. In such a case, we
apply the - gate on GC (observe that the inner term is the update formula of -C in Eq. (11)).

One can obtain symbolic update formulae for other quantum gates in a similar way. In Table 1
we give the formulae for the gates supported by our framework (see [Chen et al. 2023b] for their
usual definition using matrices).
For a gate G, we use the superscripts 2 and 2′ to denote that G2 and G ′2 are the gate’s control

qubits (if they exist) and the subscript C to denote that GC is the target bit (e.g., G2,2′
C). We note

that the supported set of gates is much larger than is required to achieve (approximate) universal

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

200

156:10 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

quantum computation (for which it suffices to have, e.g., (i) Clifford gates (� , (, and CNOT) and)
(see [Boykin et al. 2000]) or (ii) Toffoli and � (see [Aharonov 2003])).

Theorem 4.1. The symbolic update formulae in Table 1 are correct (w.r.t. the standard semantics of
quantum gates, cf. [Nielsen and Chuang 2011]).

A note on expressivity. The expressivity of our framework is affected by the following factors:
(1) Algebraic complex number representation (0, 1, 2, 3, :): This representation can arbitrarily

closely approximate any complex number: First, note that l = cos 45◦ + 8 sin 45◦ = 1√
2 + 8

1√
2

and when 1 = 3 = 0, we have (0, 0, 2, 0, :) = 1√
2:
(0 + 2l2) = 0√

2:
+ 28√

2:
. Then any complex

number can be approximated arbitrarily closely by picking suitable 0, 2 , and : .
(2) Supported quantum gates: We covered all standard quantum gates supported in modern quan-

tum computers except parameterized rotation gate. From Solovay-Kitaev theorem [Dawson
and Nielsen 2006], gates performing rotations by c

2: can be approximated with an error rate
n with O(log3.97 (1n))-many gates that we support.

(3) Tree automata structure: We use non-deterministic transitions of tree automata to represent
a set of trees compactly. Nevertheless, we can currently encode only a finite set of states, so
encoding, e.g., all quantum states that satisfy | |10⟩ | = | |01⟩ | is future work.

In the next two sections, we discuss how to lift the tree update operation to a set of trees encoded
in a TA. Our framework allows different instantiations. We will introduce two in this paper, namely
the (i) permutation-based (Section 5) and (ii) composition-based (Section 6) approach. The former
is simple, efficient, and works for all but the HC , Rx(c2)C , and Ry(c2)C gates from Table 1 (those
whose effect is a permutation of tree leaves, i.e., for gates whose matrix contains only one non-zero
element in each row, potentially with a constant scaling of amplitude), while the latter supports all
gates in the table but is less efficient. The two approaches are compatible with each other, so one
can, e.g., choose to use the permutation-based approach by default and for unsupported gates fall
back on the composition-based approach.

5 PERMUTATION-BASED ENCODING OF QUANTUM GATES
Let us first look at the simplest gate XC ()) = �GC ·)GC +�GC ·)GC . Recall that in Section 4, we showed
that the formula essentially swaps the left and right subtrees of each GC -labeled node. For a TA A,
we can capture the effect of applying XC to all states in L(A) by swapping the left and the right
children of all GC -labeled transitions @ GC (@0, @1), i.e., update them to @ GC (@1, @0). We use
XC (A) to denote the TA constructed following this procedure.

Theorem 5.1. L(XC (A)) = {XC ()) |) ∈ L(A)}.
The update formulae of gates ZC , SC , and TC are all in the form 01 ·�GC ·) +00 ·�GC ·) for 01, 00 ∈ C.

Intuitively, the formulae scale the left and right subtrees of) with scalars 00 and 01, respectively.
Their construction (Algorithm 1) can be done by (1) making one primed copy of A whose leaf
labels are multiplied with 01 (Line 3), (2) multiplying all leaf labels of A with 00 (Line 4), and
(3) updating all GC -labeled transitions @ GC (@0, @1) to @ GC (@0, @′1), i.e., for the right child,
jump to the primed version (Line 4). In the algorithms, we define & ′ = {@′ | @ ∈ &} for any set of
state & and Δ′ = {@′ G (@′

;
, @′A) | @ G (@; , @A) ∈ Δ} for any set of transitions Δ. The case of

YC is similar, but we need both constant scaling (Lines 1-4) and swapping (Lines 7-9) (the left-hand
side and right-hand side scalars being l2 and −l2, respectively).

Theorem 5.2. L(U(A)) = {U()) |) ∈ L(A)}, for U ∈ {YC ,ZC , SC ,TC }.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

201

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:11

Algorithm 1: Algorithm for constructing U(A), for U ∈ {-C , .C , /C , (C ,)C }
Input: A TA A = ⟨&, Σ,Δ,R⟩ and a gate U
Output: The TA U(A)

1 if U ∈ {.C , /C , (C ,)C } then // need constant scaling
2 Let 01 and 00 be the left and right scalar in U()) = 01 · �GC ·)1 + 00 · �GC ·)0;
3 A1 := ⟨& ′, Σ,Δ1,R′⟩, where Δ1 = Δ′

8 ∪ {@′ 01 · 2 () | @ 2 () ∈ Δ; };
4 A' := ⟨& ∪& ′, Σ,Δ' ∪ Δ1,R⟩, where

Δ' = {@ 00 · 2 () | @ 2 () ∈ Δ; } ∪
{@ G: (@0, @1) | @ G: (@0, @1) ∈ Δ8 ∧ : ≠ C} ∪
{@ G: (@0, @′1) | @ G: (@0, @1) ∈ Δ8 ∧ : = C}

5 else
6 A' := A; // when U = XC

7 if U ∈ {-C , .C } then // need swapping
8 Assume A' = ⟨&', Σ,Δ',R⟩;
9 A' := ⟨&', Σ,Δ'

1 ,R⟩, where
Δ'
1 = {@ G: (@0, @1) | @ G: (@0, @1) ∈ Δ'

8 ∧ : ≠ C} ∪
{@ G: (@1, @0) | @ G: (@0, @1) ∈ Δ'

8 ∧ : = C} ∪ {C | C ∈ Δ'
; }

10 return A' ;

The cases of multi-qubit gates CNOT2C , CZ2C , and Toffoli
2,2′
C can be handled when C is the lowest of

the three qubits, i.e., 2 < C ∧ 2′ < C . We can assume w.l.o.g. that 2 < 2′. Output of these gates can be
constructed recursively following Algorithm 2. Let us look at the corresponding update formulae:

CNOT2C ()) = �G2 ·) + �G2 · (�GC ·)GC + �GC ·)GC)
CZ2C ()) = �G2 ·) + �G2 · (�GC ·) − �GC ·))

Toffoli2,2
′

C ()) = �G2 ·) + �G2 · (�G2′ ·) + �G2′ · (�GC ·)GC + �GC ·)GC))

Wefirst construct the TA of the inner term, the shaded area , which are TAs for XC , ZC , or CNOT2′C .
We call it the primed version here (cf. A′

1 at Line 4). We then update all G2-labeled transitions
@ G2 (@0, @1) to @ G2 (@0, @′1), i.e., jump to the primed version in the right subtree.

Theorem 5.3. L(U(A)) = {U()) |) ∈ L(A)}, for U ∈ {CNOT2C ,CZ2C ,Toffoli2,2
′

C }.

6 COMPOSITION-BASED ENCODING OF QUANTUM GATES
We introduce the composition-based approach in this section. The task is to develop TA operations
that handle the update formulae in Table 1 compositionally. The idea is to lift the basic tree
operations, such as projection)G: , restriction � ·) , and binary operation ± to operations over
TAs and then compose them to have the desired gate semantics. The update formulae in Table 1
are always in the form of term1 ± term2. For example, for the -C gate, term1 = �GC ·)GC and
term2 = �GC ·)GC . Our idea is to first construct TAs Aterm1 and Aterm2 , recognizing quantum states
of term1 and term2, and then combine them using binary operation ± to produce a TA recognizing

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

202

156:12 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Algorithm 2: Algorithm for constructing U(A), for U ∈ {CNOT2C ,CZ2C ,Toffoli2,2
′

C }
Input: A TA A = ⟨&, Σ,Δ,R⟩ and a gate U
Output: The TA U(A)

1 if U = CNOT2C then A1 := XC (A);
2 if U = CZ2C then A1 := ZC (A);
3 if U = Toffoli2,2

′
C then A1 := CNOT2′C (A);

4 Let A′
1 = ⟨& ′

1, Σ,Δ
′
1,R′⟩ be obtained from A1 by priming all occurrences of states;

5 A' := ⟨& ∪& ′
1, Σ,Δ

' ∪ Δ′
1,R⟩, where

Δ' ={@ G: (@0, @1) | @ G: (@0, @1) ∈ Δ8 ∧ : ≠ 2} ∪
{@ G: (@0, @′1) | @ G: (@0, @1) ∈ Δ8 ∧ : = 2} ∪ {C | C ∈ Δ; }

return A' ;

the quantum states of term1 ± term2. The TAs Aterm1 , Aterm2 would be constructed using TA
versions of basic operations introduced later in this section.

For a TA accepting the trees {)1,)2}, a correct construction would produce a TA with the
language {) ′

1 ±) ′′
1 ,)

′
2 ±) ′′

2 }, for) ′
8 = term1 [) ↦→)8] and) ′′

8 = term2 [) ↦→)8], where [) ↦→)8] is
a substitution defined in the standard way. Obtaining this result is, however, not straightforward. If
we just performed the ± operation pairwise between all elements of) ′

8 and) ′′
8 , we would obtain the

language {) ′
1 ±) ′′

1 ,)
′
2 ±) ′′

2 ,)
′
1 ±) ′′

2 ,)
′
2 ±) ′′

1 }, which is wrong, since we are losing the information
that) ′

1 and) ′′
1 are related (and so are) ′

2 and) ′′
2).

In the rest of the section, we will describe implementation of the necessary operations for the
composition-based approach.

6.1 Tree Tag
We introduce the concept of tree tags to keep track of the origins of trees. For any tree) , its
tag Tag()) is the tree obtained from) by replacing all leaf symbols with a special symbol □. E.g.,
for the tree)1 = G1 (G2 (1, 0), G2 (0, 0)), its tag is Tag()1) = G1 (G2 (□,□), G2 (□,□)). Our construction
needs to maintain the following invariants: (1) each tree in a TA has a unique tag, (2) all derived
trees should have the same tag, and (3) binary operations over two sets of trees represented by TAs
only combine trees with the same tag. When we say) ′ is derived from) , it means) ′ is obtained
by applying basic tree operations on) . E.g., the tree �G1 ·)G1 is derived from) .

Example 6.1. Let A be a TA with root states R = {@} and transitions
@ G1 (@; , @A) @; G2 (@1, @0) @0 0 ()

@; G2 (@0, @1) @1 1 ()
@A G2 (@0, @0)

Observe that L(A) = {G1 (G2 (1, 0), G2 (0, 0)), G1 (G2 (0, 1), G2 (0, 0))}. In Dirac notation, this is the set
{|00⟩ , |01⟩}. The tag of both trees is G1 (G2 (□,□), G2 (□,□)), which violates invariant (1) above. □

In general, invariant (1) does not hold, as we can see from Example 6.1. Our solution to this
is introducing the tagging procedure (cf. Algorithm 3). The idea of tagging is simple: for each
transition, we assign to its function symbol a unique number. After tagging a TA, every transition
has a different symbol. Let Untag()) be a function that removes the number 9 (added by the tagging
procedure) from each symbol G 9

:
in) ’s labels.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

203

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:13

Algorithm 3: The tagging procedure Tag(A).
Input: A TA A = ⟨&, Σ,Δ,R⟩
Output: A tagged TA ⟨&, Σ′,Δ′,R⟩

1 Δ1 := {@ 2 () | @ 2 () ∈ Δ};
2 Δ2 := {@ G

9
:

(@1, @2) | X = (@ G: (@1, @2)) ∈ Δ, ord (X) = 9}, where ord : Δ → N is an
arbitrary injection (e.g., an ordering of the transitions);

3 Δ′ := Δ1 ∪ Δ2;
4 Σ′ is the set of all symbols appearing in Δ′;
5 return ⟨&, Σ′,Δ′,R⟩;

Example 6.2. After tagging A from Example 6.1, we obtain the TA ATag with the root state @
and the following transitions:

@ G11 (@; , @A) @; G22 (@1, @0) @0 0 ()
@; G32 (@0, @1) @1 1 ()
@A G42 (@0, @0)

Here L(ATag) = {)1,)2}, where)1 = G11 (G22 (1, 0), G42 (0, 0)) and)2 = G11 (G32 (0, 1), G42 (0, 0)). The two
trees)1 and)2 have different tags now. □

Lemma 6.3. All non-single-valued trees in a tagged TA have different tags.

Definition 6.4 (Tag preservation). Given a tagged TA ATag and an operation* over binary trees,
a TA construction procedure $ transforming ATag to $ (ATag) is called tag-preserving if there is
a bijection (: L(ATag) → L($ (ATag)) such that Tag()) = Tag((())) for all) ∈ L(ATag). In such
a case, we write ATag ≃Tag $ (ATag). Further, if the above correspondence satisfies* (Untag())) =
Untag((())) for each) , we say that the TA construction procedure $ is tag-preserving over * .

6.2 The Complete Picture of the�antum Gate Application Procedure
Tagging a TA is the first step in applying a quantum gate. In the second step, for each term in the
update formulae (cf. Table 1), we make a copy of the tagged TA and apply the operations that we are
going to introduce (projection, restriction, and multiplication) to construct the corresponding TA.
Notice that the operations are tag-preserving, i.e., they will keep the tag of all accepted trees. Then
we use the binary operation to merge trees with the same tag and complete the update formula
compositionally. In the end, we remove the TA’s tag to finish the quantum gate application4.
4This is a design choice. Another possibility is to keep the tag until finishing all gate operations. Untagging after finishing
a gate has the advantage that it allows a more aggressive state space reduction.

Tagging:
AT

Projection:
A)G1

Projection:
A)G1

Restriction:
A�G1 ·)G1

Restriction:
A�G1 ·)G1

Multiplication:
Al2 ·�G1 ·)G1

Multiplication:
Al2 ·�G1 ·)G1

Binary Operation:
Al2 ·�G1 ·)G1−l2 ·�G1 ·)G1

Untagging:
Al2 ·�G1 ·)G1−l2 ·�G1 ·)G1

duplicate

duplicate

Fig. 3. Constructions performed when applying the gate .1 to ATag

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

204

156:14 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Algorithm 4: Restriction operation on GC , Res(A, GC , 1)
Input: A tagged TA A = {&, Σ,Δ,R},
Output: A tagged TA A′ such that L(A′) = {1 ? �GC ·) : �GC ·) |) ∈ L(A)}

1 Δ′
8 := {@′0 G89 (@′1, @′2) | @0 G89 (@1, @2) ∈ Δ};

2 Δ′
;
:= {@′0 0 () | @0 (0, 1, 2, 3, :) () ∈ Δ};

3 Δ′ := Δ′
8 ∪ Δ′

;
;

4 Δadd := Δrm := ∅;
5 foreach @ G8C (@; , @A) ∈ Δ do
6 if 1 then Δadd := Δadd ∪ {@ G8C (@′

;
, @A)} else Δadd := Δadd ∪ {@ G8C (@; , @′A)};

7 Δrm := Δrm ∪ {@ G8C (@; , @A)};
8 return {& ∪& ′, Σ ∪ {0}, ((Δ ∪ Δ′) \ Δrm) ∪ Δadd,R};

Example 6.5. From Table 1, we have

.1 ()) = l2 · �G1 ·)G1 − l2 · �G1 ·)G1 .
For applying the gate .1 to a tagged TA AT, we perform the constructions shown in Fig. 3. □

6.2.1 Restriction Operation: ConstructingA�GC ·) andA�GC ·) fromA) . Observe that the tree �GC ·)
can be obtained by changing all leaf labels of the GC -subtrees in) to (0, 0, 0, 0, 0). In Algorithm 4
we show the procedure for constructing the restriction operation based on this observation. Here
1 ? B1 : B2 is a shorthand for “if 1 is true then B1 else B2.” Intuitively, when encountering a transition
with variants of GC as its label, in case 1 = true, we reconnect its zero (left) child to the primed
version (Line 6 of Algorithm 4), so the leaves of this subtree would be all zero. The case when
1 = false is symmetric. Note that the structure of the original and the primed versions are identical,
so this modification will not change the tags of accepted trees.
Theorem 6.6. Let A be a tagged TA. Then it holds that Res(A, GC , 1) ≃Tag A and, moreover,

L(Res(A, GC , 1)) = {1 ? �GC ·) : �GC ·) |) ∈ L(A)}.
6.2.2 Multiplication Operation: Constructing AE ·) from A) . Algorithm 5 gives the multiplication
operation that works on both tagged and non-tagged version.

Algorithm 5:Multiplication operation, Mult(A, E)
Input: A tagged TA A = {&, Σ,Δ,R} and a constant value E (either l or 1√

2)
Output: A tagged TA A′ such that L(A′) = {E ·) |) ∈ L(A)}

1 Δadd := Δrm := ∅;
2 foreach @ (0, 1, 2, 3, :) () ∈ Δ do
3 if E = l then
4 Δadd := Δadd ∪ {@ (−3, 0, 1, 2, :) ()};
5 else // E = 1√

2
6 Δadd := Δadd ∪ {@ (0, 1, 2, 3, : + 1) ()};
7 Δrm := Δrm ∪ {@ (0, 1, 2, 3, :) ()};
8 return {&, Σ, (Δ \ Δrm) ∪ Δadd,R};

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

205

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:15

Algorithm 6: Subtree copying procedure on GC , s.copy(A, GC , 1).
Input: A tagged TA A = ⟨&, Σ,Δ,R⟩, variable GC to copy, and a Boolean value 1 to indicate

which branch to copy
Output: The tagged TA ⟨&, Σ,Δ′,R⟩

1 Δrm := Δadd := ∅;
2 foreach @ G8C (@; , @A) ∈ Δ do
3 if 1 then @2 := @A else @2 := @; ;
4 Δadd := Δadd ∪ {@ G8C (@2 , @2)};
5 Δrm := Δrm ∪ {@ G8C (@; , @A)};
6 return ⟨&, Σ, (Δ \ Δrm) ∪ Δadd,R⟩;

Theorem 6.7. Let A be a tagged TA. Then it holds that Mult(A, E) ≃Tag A and, moreover,
L(Mult(A, E)) = {E ·) |) ∈ L(A)}.

6.2.3 Projection Operation: Constructing A)GC
and A)GC

from A) . Recall that)GC is obtained from
) by fixing the C-th input bit to be 1, i.e.,)GC (11 . . . 1C . . . 1=) =) (11 . . . 1 . . . 1=) . Intuitively, the
construction of A)GC

from A) can be done by copying all right subtrees of G8C (i.e., corresponding
to G8C = 1) to replace its left (G8C = 0) subtrees. A seemingly correct construction can be found
in Algorithm 6. For short, we use s.copyt (A) to denote s.copy(A, GC , true) and s.copyt (A) to
denote s.copy(A, GC , false).
However, this construction has two issues (1) it would change the tag of accepting trees and

(2) when there are more than one possible subtrees below @A (or @;), say, for example,)1 and)2, it
might happen that the resulting TA accepts a tree such that one subtree below the symbol G8C is)1
while another subtree is)2, i.e., they are still not equal and hence not the result after copying.

Although the procedure is incorrect in general, it is correct when C = =, i.e., the layer just above
the leaf. Notice that constant symbols are irrelevant to a tree’s tag (all constant symbols will be
replaced with □ in a tag). So copying one subtree to the other will not affect the tag at the leaf
transition. Moreover, recall that from TA’s definition, all leaf transitions have unique starting states.
So it will not encounter the issue (2) mentioned above.

Lemma 6.8. Subtree copying s.copyt is tag-preserving over the tree projection operation) →)GC
and s.copyt is tag-preserving over) →)GC when C = =.

From the lemma above, we get the hint that the copy subtree procedure works only at the layer
directly above leaf transitions, i.e., when applied to G= . However, if we can reorder the variable
without changing the set of quantum states encoded in a TA, then the projection procedure can be
applied to any qubit. Below we will demonstrate a procedure for variable reordering (it is similar
to a BDD variable reordering procedure [Felt et al. 1993]), but with an additional effort to preserve
tree tags.

Example 6.9. Consider the following tree with the variable order G1 > G2

G1 (G2 (200, c01), G2 (c10, 211)),
here 28 9 is the amplitude of |8 9⟩, which intuitively means G1 takes value 8 and G2 takes 9 . If we
swap the variable order of the two variables, one can construct the tree below to capture the same
quantum state

G2 (G1 (200, c10), G1 (c01, 211)) .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

206

156:16 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Algorithm 7: Forward variable order swapping procedure on GC , f .swapC (A)
Input: A tagged TA A = ⟨&, Σ,Δ,R⟩
Output: The tagged TA ⟨& ′, Σ′,Δ′,R⟩

1 Δrm := Δadd := ∅, & ′ := &, Σ′ := Σ;
2 foreach @ GℎC (@0, @1), @0 G8

;
(@00, @01), @1 G

9
;

(@10, @11) ∈ Δ do
3 Δadd := Δadd ∪ {@ G

8, 9
;

(@′0, @′1), @′0 GℎC (@00, q10), @′1 GℎC (q01, @11)};
4 Δrm := Δrm ∪ {@ GℎC (@0, @1), @0 G8

;
(@00, q01), @1 G

9
;

(q10, @11)};
5 & ′ := & ′ ∪ {@′0, @′1};
6 Σ′ := Σ′ ∪ {G8, 9

;
};

7 return ⟨& ′, Σ′, (Δ \ Δrm) ∪ Δadd,R⟩;

Notice the main difference of the two trees is that the two leaf labels 210 and 201 are swapped. This is
because the second tree first picks the value of G2 and then G1, so the 01 node should be labeled 210,
which denotes G1 takes value 1 and G2 takes value 0. □

Inspired by the example, we can swap the order of two consecutive variables by modifying the
transitions of a TA. One difficulty is that we want to keep trees’ tags, so we introduce two procedures
forward variable order swapping (Algorithm 7) and backward variable order swapping (Algorithm 8)
to modify a variable’s order while maintaining the trees’ tag.

Algorithm 7 swaps the variable order of GC and its succeeding symbol G; , assuming the variable
order is . . . > GC > G; > We assume that before running forward variable swapping, all symbols
corresponding to qubits GC and G; are assigned unique numbers by the tagging procedure. After
running the forward swapping procedure, we remember the unique numbers of both succeeding
symbols G8

;
and G 9

;
at the new upper layer’s symbol G8, 9

;
(Line 3). So the trees’ tag can be recovered

in the backward variable order swapping procedure (Line 3 of Algorithm 8).
Then, the projection is computed as follows:

Prj(A, GC , 1) = b.swap=−CC (s.copy(f .swap=−CC (A), GC , 1)), (13)
where a superscript 8 denotes repetition of the procedure 8 times. Each time when the forward
swapping procedure is triggered, we move GℎC one layer lower in all trees accepted by A. We
can move GℎC to the layer above the leaf by repeatedly applying the forward swapping procedure,
which fulfills the requirement for executing the subtree copying procedure. Then we use the
backward swap procedure to return the variables to the original order. This procedure is potentially

Algorithm 8: Backward variable order swapping procedure on GC , b.swapC (A)
Input: A tagged TA A = ⟨&, Σ,Δ,R⟩
Output: The tagged TA ⟨& ′, Σ′,Δ′,R⟩

1 Δrm := Δadd := ∅, & ′ := &, Σ′ := Σ;
2 foreach @ G

8, 9
;

(@′0, @′1), @′0 GℎC (@00, @10), @′1 GℎC (@01, @11) ∈ Δ do
3 Δadd := Δadd ∪ {@ GℎC (@′′0 , @′′1), @′′0 G8

;
(@00, q01), @′′1 G

9
;

(q10, @11)};
4 Δrm := Δrm ∪ {@ G

8, 9
;

(@′0, @′1), @′0 GℎC (@00, q10), @′1 GℎC (q01, @11)};
5 & ′ := & ′ ∪ {@′′0 , @′′1 };
6 Σ′ := Σ′ \ {G8, 9

;
};

7 return ⟨& ′, Σ′, (Δ \ Δrm) ∪ Δadd,R⟩;

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

207

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:17

expensive, but TA minimization algorithms [Abdulla et al. 2008, 2007; Comon et al. 2008] can help
to significantly reduce the cost.
Example 6.10. Here we demonstrate how the projection operations works with a concrete

example. We assume that A is a tagged TA with the root state @ and the following transitions:

@ G11 (@; , @A) @; G22 (@1, @0) @0 0 ()
@; G32 (@0, @1) @1 1 ()
@A G42 (@0, @0)

Observe that L(A) = {)1,)2}, where
)1 = G11 (G22 (1, 0), G42 (0, 0)) and)2 = G11 (G32 (0, 1), G42 (0, 0)).

Then f .swap: (A) produces a TA with a single root state @ and the following transitions
@ G2,42 (@2, @3) @2 G11 (@1, @0) @4 G11 (@0, @0) @0 0 ()
@ G3,42 (@4, @5) @3 G11 (@0, @0) @5 G11 (@1, @0) @1 1 ()

The language L(f .swap: (A)) is {) ′
1 ,)

′
2 }, where

) ′
1 = G2,42 (G11 (1, 0), G11 (0, 0)) and) ′

2 = G3,42 (G11 (0, 0), G11 (1, 0)).
Note that) ′

1 and) ′
2 represent the same quantum states as)1 and)2 above. Then s.copy1 (f .swap1 (A))

produces the following TA with the root state @:
@ G2,42 (@2, @3) @2 G11 (@0, @0) @4 G11 (@0, @0) @0 0 ()
@ G3,42 (@4, @5) @3 G11 (@0, @0) @5 G11 (@0, @0) @1 1 ()

Next we apply the backward swapping procedure to obtain A)G1
, the final result of applying

projection on A. More concretely, A)G1
= b.swap1 (s.copy1 (f .swap1 (A)) produces a TA with the

root state @ and the following transitions:
@ G11 (@′2, @′3) @′2 G22 (@0, @0) @′4 G32 (@0, @0) @0 0 ()
@ G11 (@′4, @′5) @′3 G42 (@0, @0) @′5 G42 (@0, @0) @1 1 ()

Observe that the language after projection is
L(A)G1

) = {G1 (G22 (0, 0), G42 (0, 0)), G1 (G32 (0, 0), G42 (0, 0))},
which is the expected result. □

Theorem 6.11. Let A be a tagged TA. Then it holds that Prj(A, GC , 1) ≃Tag A and, moreover,
L(Prj(A, GC , 1)) = {1 ?)GC :)GC |) ∈ L(A)}.
6.2.4 Binary Operation: A)1±)2 . Binary operation can be done by a modified product construction
(cf. Algorithm 9). Notice that since we apply binary operations only over TAs derived from the
same source TA, i.e., initially they have the same : at the leaf transitions, and the only possibility
of changing the : part of a leaf symbol is the multiplication with 1√

2 , which is done only after all
binary operations in Table 1, we can safely assume without loss of generality that :1 = :2.
Theorem 6.12. Let A)1 and A)2 be two tagged TAs. Then it holds that L(Bin(A1,A2,±)) =

{)1 ±)2 |)1 ∈ L(A)1) ∧)2 ∈ L(A)2) ∧ Tag()1) = Tag()2)}.
Corollary 6.13. The composition-based encoding of quantum gate operations is correct.

Proof. Follows by Theorems 6.6, 6.7, 6.11 and 6.12. □

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

208

156:18 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Algorithm 9: Binary operation, Bin(A1,A2,±)
Input: Two tagged TAs A1 = ⟨&1, Σ,Δ1, {@1}⟩ and A2 = ⟨&2, Σ,Δ2, {@2}⟩.
Output: The tagged TA A′ such that L(A′) = ⟨)1 ±)2 |)1 ∈ L(A1) ∧)2 ∈ L(A2⟩)

1 Δ′
8 := {(@1, @2) G89 ((@1

;
, @2

;
), (@1A , @2A)) | @1 G89 (@1

;
, @1A) ∈ Δ1 ∧ @2 G89 (@2

;
, @2A) ∈ Δ2};

2 Δ′
;
:= {(@1, @2) (01 ± 02, 11 ± 12, 21 ± 22, 31 ± 32, :1) () | @1 (01, 11, 21, 31, :1) () ∈

Δ1 ∧ @2 (02, 12, 22, 32, :2) () ∈ Δ2};
3 return ⟨&1 ×&2, Σ

′,Δ′, {(@1, @2)}⟩;

7 EXPERIMENTAL EVALUATION
We implemented the proposed TA-based algorithm as a prototype tool named AutoQ in C++.
We provide two settings: Hybrid, which uses the permutation-based approach (Section 5) to
handle supported gates and switches to the composition-based approach for the other gates, and
Composition, which handles all gates using the composition-based approach (Section 6). For
checking language equivalence between the TA representing the set of reachable configurations
and the TA for the post-condition, we use the Vata library [Lengál et al. 2012]. We use a lightweight
simulation-based reduction [Bustan and Grumberg 2003] after finishing the Y, Z, S, T, CNOT, CZ,
and Tofolli gate operations to keep the obtained TAs small.5 All experiments were conducted on
a server with an AMD EPYC 7742 64-core processor (1.5 GHz), 1,152GiB of RAM (24GiB for each
process), and a 1 TB SSD running Ubuntu 20.04.4 LTS. Further details (pre- and post-conditions,
circuits, etc.) can be found in [Chen et al. 2023b].

Data sets. We use the following set of benchmarks with quantum circuits:
• BV: Bernstein-Vazirani’s algorithm with one hidden string of length = [Bernstein and Vazirani
1993],

• MCToffoli: circuits implementing multi-controlled Toffoli gates of size = using a variation
of Nielsen and Chuang’s decomposition [Nielsen and Chuang 2011] with standard Toffoli
gates,

• Grover-Sing and Grover-All: implementation of Grover’s search [Grover 1996] for a single
oracle and for all possible oracles of length = (we encode the oracle’s answer to be taken from
the input; cf. [Chen et al. 2023b] for more details),

• FeynmanBench: 45 benchmarks from the tool suite Feynman [Amy 2018],
• RevLib: 80 benchmarks of reversible and quantum circuits [Wille et al. 2008], and
• Random: 20 randomly generated quantum circuits (10 circuits with 35 qubits and 105 gates
and 10 circuits with 70 qubits and 210 gates).

We note that the benchmarks did not contain any unsupported gates.

Other tools. Since no existing work follows the same approach as we do, we compared AutoQ
with representatives of the following approaches:

• Quantum circuit simulators: These compute the output of a quantum circuit for a given input
quantum state. As a representative, we selected SliQSim [Tsai et al. 2021], a state-of-the-art
quantum circuit simulator based on decision diagrams, which also works with a precise
algebraic representation of complex numbers. We also tried the simulator from Qiskit [ANIS

5Our technique computes a non-maximum simulation by only checking whether states have the same successors. The
results are in many cases the same as if the maximum simulation were computed, but the performance is much better.
Further evaluation of this optimization of simulation is a future work.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

209

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:19

Table 2. Verification of quantum algorithm. Here, = denotes the parameter value for the circuit, #q denotes the
number of qubits, #G denotes the number of gates in the circuit. For AutoQ , the columns before and a�er
have the format “states (transitions)” denoting the number of states and transitions in TA in the pre-condition
and the output of our analysis respectively. The column analysis contains the time it took AutoQ to derive
the TA for the output states and = denotes the time it took Vata to test equivalence. The timeout was 12min.
We use colours to distinguish the best result in each row and timeouts .

AutoQ-Hybrid AutoQ-Composition SliQSim Feynman
= #q #G before after analysis = before after analysis = time verdict time

BV

95 96 241 193 (193) 193 (193) 6.0s 0.0s 193 (193) 193 (193) 7.1s 0.0s 0.0s equal 0.5s
96 97 243 195 (195) 195 (195) 5.9s 0.0s 195 (195) 195 (195) 7.1s 0.0s 0.0s equal 0.5s
97 98 246 197 (197) 197 (197) 6.3s 0.0s 197 (197) 197 (197) 7.4s 0.0s 0.0s equal 0.6s
98 99 248 199 (199) 199 (199) 6.5s 0.0s 199 (199) 199 (199) 7.7s 0.0s 0.0s equal 0.6s
99 100 251 201 (201) 201 (201) 6.7s 0.0s 201 (201) 201 (201) 7.8s 0.0s 0.0s equal 0.6s

Gr
ov

er
-S
in
g 12 24 5,215 49 (49) 71 (71) 11s 0.0s 49 (49) 71 (71) 49s 0.0s 2.8s timeout

14 28 12,217 57 (57) 83 (83) 31s 0.0s 57 (57) 83 (83) 2m26s 0.0s 18s timeout
16 32 28,159 65 (65) 95 (95) 1m29s 0.0s 65 (65) 95 (95) 6m59s 0.0s 1m41s timeout
18 36 63,537 73 (73) 107 (107) 4m1s 0.0s timeout 9m27s timeout
20 40 141,527 81 (81) 119 (119) 10m56s 0.0s timeout timeout timeout

M
CT

of
fo

li 8 16 15 33 (42) 104 (149) 0.0s 0.0s 33 (42) 404 (915) 2.8s 0.0s 1.6s equal 0.0s
10 20 19 41 (52) 150 (216) 0.0s 0.0s 41 (52) 1,560 (3,607) 27s 0.0s 6.1s equal 0.1s
12 24 23 49 (62) 204 (295) 0.0s 0.0s 49 (62) 6,172 (14,363) 6m48s 0.1s 25s equal 0.1s
14 28 27 57 (72) 266 (386) 0.1s 0.0s timeout 1m40s equal 0.1s
16 32 31 65 (82) 336 (489) 0.2s 0.0s timeout timeout equal 0.2s

Gr
ov

er
-A

ll 6 18 357 37 (43) 252 (315) 3.3s 0.0s 37 (43) 510 (573) 12s 0.0s 1.7s timeout
7 21 552 43 (50) 481 (608) 10s 0.0s 43 (50) 1,123 (1,250) 42s 0.0s 5.4s timeout
8 24 939 49 (57) 934 (1,189) 39s 0.1s 49 (57) 2,472 (2,727) 2m40s 0.0s 26s timeout
9 27 1,492 55 (64) 1,835 (2,346) 2m17s 0.4s 55 (64) 5,421 (5,932) 10m13s 0.1s 2m5s timeout
10 30 2,433 61 (71) 3,632 (4,655) 9m48s 2.1s timeout 11m31s timeout

et al. 2021] (which does not provide a precise representation of numbers), but it was slower
than SliQSim so we do not include it in the results.

• Quantum circuit equivalence checkers: We selected the following equivalence checkers: the ver-
ifier from the Feynman6 tool suite [Amy 2018] (based on the path sum) andQcec7 [Burgholzer
and Wille 2020] (combining decision diagrams, the ZX-calculus [Coecke and Duncan 2011],
and random stimuli generation [Burgholzer et al. 2021]).

We evaluated AutoQ in two use cases, described in detail below.

7.1 Verification Against Pre- and Post-Conditions
In the first experiment, we compared how fast AutoQ computes the set of output quantum states
and checks whether the set satisfies a given post-condition. We compared against the simulator
SliQSim in the setting when we ran it over all states encoded in the pre-condition of the quantum
algorithm and accumulated the times. We note that we did not include the time for comparing the
result of SliQSim against a post-condition specification due to the following limitation of the tool:
it can produce the state after executing the circuit in the vector form, but this step is not optimized
and is quite time-consuming. Since the step of accumulating the obtained states could possibly be
done in a more efficient way, avoiding transforming them first into the vector form, we do not
include it in the runtime to not give SliQSim an unfair disadvantage. The timeout was 12min.
We also include the time taken by Feynman to check the equivalence of the circuits with

themselves. Although checking equivalence of quantum circuits is a harder problem than what we
are solving (so the results cannot be used for direct comparison with AutoQ), we include these
results in order to give an idea about hardness of the circuits for path-sum-based approaches.

6Git commit 56e5b771
7Version 2.0.0

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

210

156:20 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Table 3. Results for bug finding. The notation is the same as in Table 2. In addition, the column bug? indicates
if the tool caught the injected bug: T denotes that the bug was found, F denotes that the tool gave an
incorrect result, and — means unknown result (includes the tool reporting unknown, crash, or not enough
resources). AutoQ finds all bugs within the time limit, and we provide the number of iterations needed to
catch the bug (column iter). The timeout was 30min.

AutoQ Feynman Qcec AutoQ Feynman Qcec
circuit #q #G time iter time bug? time bug? circuit #q #G time iter time bug? time bug?

Fe
yn

ma
nB

en
ch csum_mux_9 30 141 0.8s 1 6.5s — 44.0s F hwb10 16 31,765 1m42s 1 timeout 30.2s T

gf2^10_mult 30 348 2.0s 1 0.6s — 42.7s F hwb11 15 87,790 4m23s 1 timeout 35.9s T
gf2^16_mult 48 876 11s 1 4.8s — 58.5s T hwb12 20 171,483 13m43s 1 timeout 1m3s T
gf2^32_mult 96 3,323 2m4s 1 48.1s — 1m58s T hwb8 12 6,447 15s 1 timeout 23.4s T
ham15-high 20 1,799 8.0s 1 3m51s — 30.2s T qcla_adder_10 36 182 2.8s 1 1.3s — 46.6s F
mod_adder_1024 28 1,436 10s 1 9.2s — 31.9s T qcla_mod_7 26 295 2.6s 1 1m24s — 38.4s F

Ra
nd

om

35a 35 106 3.2s 1 0.2s — 45.7s F 70a 70 211 16s 1 1.1s — 1m18s T
35b 35 106 1.4s 1 0.2s T 47.8s F 70b 70 211 14s 1 0.8s T 1m11s T
35c 35 106 1.3s 1 0.2s T 47.5s T 70c 70 211 12s 1 0.9s — 1m24s T
35d 35 106 1.3s 1 0.2s T 48.2s T 70d 70 211 29m29s 36 1.2s T 1m26s T
35e 35 106 1.3s 1 0.1s — 50.6s T 70e 70 211 17s 1 1.0s — 1m30s T
35f 35 106 2.4s 1 0.3s T 49.7s F 70f 70 211 33s 1 0.9s T 1m26s F
35g 35 106 4.0s 3 0.2s — 55.3s T 70g 70 211 14m42s 44 1.2s — 1m35s T
35h 35 106 1.0s 1 0.2s — 0.6s — 70h 70 211 13s 1 1.2s — 1m36s T
35i 35 106 1.3s 1 0.2s T 54.8s T 70i 70 211 23s 1 1.2s — 1m36s T
35j 35 106 1.8s 1 0.2s — 51.4s F 70j 70 211 2m5s 1 1.4s — 1m34s T

Re
vL

ib

add16_174 49 65 2.6s 1 timeout 1m8s T urf1_149 9 11,555 30s 1 timeout 35.8s T
add32_183 97 129 17s 1 timeout 2m4s T urf2_152 8 5,031 11s 1 21m33s T 32.5s T
add64_184 193 257 1m55s 1 timeout 0.6s — urf3_155 10 26,469 1m19s 1 timeout 33.0s T
avg8_325 320 1,758 21m18s 1 timeout 0.5s — urf4_187 11 32,005 1m57s 1 timeout 31.4s T
bw_291 87 308 10s 1 11.7s T 1m55s T urf5_158 9 10,277 27s 1 timeout 26.6s T
cycle10_293 39 79 0.5s 1 0.4s T 1m7s T urf6_160 15 10,741 1m6s 1 timeout 36.2s T
e64-bdd_295 195 388 36s 1 timeout 0.5s — hwb6_301 46 160 2.0s 1 2.7s T 1m7s T
ex5p_296 206 648 1m52s 1 1m29s T 0.4s — hwb7_302 73 282 8.3s 1 10.9s T 1m38s T
ham15_298 45 154 0.6s 1 0.6s T 1m14s T hwb8_303 112 450 27s 1 37.9s T 2m22s T
mod5adder_306 32 97 0.5s 1 0.7s T 1m1s T hwb9_304 170 700 1m33s 1 2m20s T 0.6s —
rd84_313 34 105 0.5s 1 1.1s T 1m2s T

We ran this experiment on the benchmarks where the semantics was known to us so that we
could construct TAs with pre- and post-conditions. These were the following: BV, MCToffoli,
Grover-Sing, and Grover-All. We give the results in Table 2. Both BV and Grover-Sing work
with only one input state, which should be most favourable for simulators. Surprisingly, for the
case of Grover-Sing, AutoQ outperforms SliQSim on large cases (out of curiosity, we tried to run
SliQSim on Grover-Sing (==20) without a timeout; the running time was 51m43s). We attribute
the good performance of AutoQ to the compactness of the TA representation of Grover’s state
space. On the other hand, bothMCToffoli and Grover-All consider 2= input states and we can
observe the exponential factor emerging; hence AutoQ outperforms SliQSim in large cases. All
tools perform pretty well on BV, even cases with 100 qubits can be easily handled. We can also see
that Hybrid is consistently faster than Composition.

7.2 Finding Bugs
In the following experiment, we compared AutoQ with the equivalence checkers Feynman and
Qcec and evaluated the ability of the tools to determine that two quantum circuits are non-
equivalent (this is to simulate the use case of verifying the output of an optimizer). We took circuits
from the benchmarks FeynmanBench, Random, and RevLib, and for each circuit, we created
a copy and injected an artificial bug (one additional randomly selected gate at a random location).
Then we ran the tools and let them check circuit equivalence; for AutoQ, we let it compute two
TAs representing sets of output states for both circuits for the given set of input states and then
checked their language equivalence with Vata.

Our strategy for finding bugs with AutoQ (we used the Hybrid setting) was the following: We
started with a TA representing a single basis state, i.e., a TA with no top-down nondeterminism,
and gradually added more non-deterministic transitions (in each iteration one randomly chosen

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

211

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:21

transition) into the TA, making it represent a larger set of states, running the analysis for each of
the TAs, until we found the bug. This proved to be a successful strategy, since running the analysis
with an input TA representing, e.g., all possible basis states, might be too challenging (generally
speaking, the larger is the TA representing the set of states, the slower is the analysis).
We present the results in Table 3. We exclude trivial cases (all tools can finish within 5 s) and

difficult cases that no tool can handle within the timeout period (30min). We can see that many
of the cases were so tricky that equivalence checkers failed to conclude anything, while AutoQ
succeeded in finding the bug with just the first few TAs. For two instances from Random (70d
and 70g), we found the bug after trying 36 TAs after 29m29s and 44 TAs after 14m42s, respectively.
For a few cases (e.g., csum_mux_9), Qcec did not find the bug and reported that the circuits were
equivalent (F)8, while AutoQ reported it (T). For these cases, we fed the witness produced by
AutoQ to SliQSim and confirmed the two circuits are different.

The results show that our approach to hunting for bugs in quantum circuits is beneficial, par-
ticularly for larger circuits where equivalence checkers do not scale. For such cases, AutoQ can
still find bugs using a weaker specification. For instance, AutoQ was able to find bugs in some
large-scale instances from RevLib with hundreds of qubits, e.g., add64_184 and avg_8_325, while
both Feynman and Qcec fail.
We note that the area of quantum circuit equivalence checking is rapidly advancing. When

preparing the final version, we became aware of SliQEC [Chen et al. 2022; Wei et al. 2022], a recent
tool that outperforms the other equivalence checkers that we tried on this benchmark.

8 RELATED WORK
Circuit equivalence checkers are often very efficient but less flexible in specifying the desired property
(only equivalence). Our approach can switch to a lightweight specification when verification fails
due to insufficient resources and still find bugs in the design. Often equivalence checking is done by
a reduction to normal form using a set of rewriting rules. Path-sum is a recent approach proposed
in [Amy 2018], whose rewrite rules can solve the equivalence problem of Clifford group circuits
in polynomial time. The ZX-calculus [Coecke and Duncan 2011] is a graphical language that is
particularly useful in circuit optimization and proving equivalence. The works of [Hietala et al.
2019] ensures correctness of the rewrite rules with a theorem prover. Quartz [Xu et al. 2022b] is
a circuit optimization framework consisting of an equivalence checker based on some precomputed
equivalence sets. We pick Feynman [Amy 2018], a state-of-the-art equivalence checker based on
path-sum, and Qcec [Burgholzer and Wille 2020], based on decision diagrams and ZX-calculus, as
the baseline tools for comparison. Quantum circuit simulators, e.g. SliQSim [Tsai et al. 2021], can be
used as equivalence checkers for a finite number of inputs by trying all basis states.

Quantum abstract interpretation [Perdrix 2008; Yu and Palsberg 2021] is particularly efficient in
processing large-scale circuits, but it over-approximates state space and cannot conclude anything
when verification fails. For instance, the work in [Yu and Palsberg 2021] can only distinguish
quantum states with zero and non-zero probability (and cannot derive exact boundary probabilities).
In contrast, our approach precisely represents reachable states and can reveal bugs. One can consider
our approach to be an instantiation of classical abstract interpretation [Cousot and Cousot 1977] that
is precise, and our approach to non-equivalence testing as comparing output abstract contexts of
two programs. Quantum model checking supports a rich specification language (flavors of temporal
logic [Feng et al. 2013; Mateus et al. 2009; Xu et al. 2022a]). It can be seen as an extension of
probabilistic model checking [Feng et al. 2017, 2015, 2013; Xu et al. 2022a; Ying 2021; Ying and
Feng 2021; Ying et al. 2014] and is more suitable for verifying high-level protocols due to the

8This bug has been confirmed by the Qcec team and fixed later, cf. [QCE 2022].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

212

156:22 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

limited scalability [Anticoli et al. 2016]. Techniques based on quantum simulation [Green et al.
2013; Niemann et al. 2016; Pednault et al. 2017; Samoladas 2008; Tsai et al. 2021; Viamontes et al.
2009; Wecker and Svore 2014; Zulehner et al. 2019; Zulehner and Wille 2019] allow only one input
quantum state and thus have limited analyzing power.
Quantum Hoare logic [Feng and Ying 2021; Liu et al. 2019; Unruh 2019; Ying 2012; Zhou et al.

2019]) allows verification against complex correctness properties and rich program constructs
such as branches and loops, but requires significant manual work. On the other hand, quantum
incorrectness logic [Yan et al. 2022] is a dual of quantum Hoare logic that allows showing the
existence of a bug, but cannot prove its absence. The Qbricks [Chareton et al. 2021] approach
alleviates the difficulty of proof search by combining state-of-the-art theorem provers with decision
procedures, but, according to their experiments, still requires a significant amount of human
intervention. For instance, their experiments show that it requires 125 times intervention during
verification of Grover’s search w.r.t. an arbitrary number of qubits.

9 CONCLUDING REMARKS
We have introduced a new paradigm for quantum circuit analysis that is exciting from both practical
and theoretical lenses. We demonstrated one of its potential applications—circuit non-equivalence
checking, but we believe there could be much more. In our own experience of using the method to
prepare the benchmarks, its role is similar to a static assertion checker (like software model checkers
for classical programs [Chen et al. 2016; Heizmann et al. 2018]); it helped us greatly to find several
problems while composing the circuits. The connection to automata-based verification is also quite
exciting. A series of approaches from the classical world should also be helpful in the quantum case.
For instance, the idea of regular tree model checking could be leveraged to verify parameterized
quantum circuits (w.r.t. an arbitrary number of qubits) [Abdulla et al. 2002; Bouajjani et al. 2012].
For this, one would need to deal with TAs with loops, where tagging cannot be done anymore to
impose relations among trees (one would need to use an unbounded number of tags)—new ideas
are needed. Automata-learning can be used for automatic loop invariant inference [Chen et al.
2017a]. Symbolic automata [D’Antoni and Veanes 2017] and register automata [Chen et al. 2017b]
would allow using variables to describe amplitude (instead of a fixed alphabet as we use now). We
believe there are many other techniques from the automata world that could be used to extend our
framework and be applied in the area of analysing quantum circuits.

ACKNOWLEDGMENTS
We thank the reviewers for their in-depth remarks that helped us improve the quality of the paper
and the artifact committee members for their helpful suggestions about the artifact. This material is
based on a work supported by the Czech Ministry of Education, Youth and Sports project LL1908 of
the ERC.CZ programme; the Czech Science Foundation project GA23-07565S; the FIT BUT internal
project FIT-S-23-8151; and the NSTC QC project under Grant no. NSTC 111-2119-M-001-004-.

DATA AVAILABILITY STATEMENT
An environment with the tools and data used for the experimental evaluation in the current study
is available at [Chen et al. 2023a].

REFERENCES
2022. GMP: The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
2022. The Qcec repository: Issue #200 (ZX-Checker produces invalid result). https://github.com/cda-tum/qcec/issues/200
Parosh Aziz Abdulla, Ahmed Bouajjani, Lukás Holík, Lisa Kaati, and Tomás Vojnar. 2008. Computing Simulations over Tree

Automata. In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

213

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:23

2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (LNCS, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.).
Springer, 93–108. https://doi.org/10.1007/978-3-540-78800-3_8

Parosh Aziz Abdulla, Johanna Högberg, and Lisa Kaati. 2007. Bisimulation Minimization of Tree Automata. Int. J. Found.
Comput. Sci. 18, 4 (2007), 699–713. https://doi.org/10.1142/S0129054107004929

Parosh Aziz Abdulla, Bengt Jonsson, Pritha Mahata, and Julien d’Orso. 2002. Regular Tree Model Checking. In Computer
Aided Verification, 14th International Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings (LNCS,
Vol. 2404). Springer, 555–568. https://doi.org/10.1007/3-540-45657-0_47

Dorit Aharonov. 2003. A Simple Proof that Toffoli and Hadamard are Quantum Universal. https://doi.org/10.48550/arxiv.
quant-ph/0301040

Thorsten Altenkirch and Jonathan Grattage. 2005. A Functional Quantum Programming Language. In 20th IEEE Symposium
on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings. IEEE Computer Society, 249–258.
https://doi.org/10.1109/LICS.2005.1

Matthew Amy. 2018. Towards Large-scale Functional Verification of Universal Quantum Circuits. In Proceedings 15th
International Conference on Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018 (EPTCS, Vol. 287),
Peter Selinger and Giulio Chiribella (Eds.). 1–21. https://doi.org/10.4204/EPTCS.287.1

Matthew Amy. 2019. Formal Methods in Quantum Circuit Design. Ph. D. Dissertation. University of Waterloo.
MD SAJID ANIS, Abby-Mitchell, Héctor Abraham, et al. 2021. Qiskit: An Open-source Framework for Quantum Computing.

https://doi.org/10.5281/zenodo.2573505
Linda Anticoli, Carla Piazza, Leonardo Taglialegne, and Paolo Zuliani. 2016. Towards Quantum Programs Verification: From

Quipper Circuits to QPMC. In Reversible Computation - 8th International Conference, RC 2016, Bologna, Italy, July 7-8, 2016,
Proceedings (LNCS, Vol. 9720), Simon J. Devitt and Ivan Lanese (Eds.). Springer, 213–219. https://doi.org/10.1007/978-3-
319-40578-0_16

Frank Arute et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (Oct.
2019), 505–510. https://doi.org/10.1038/s41586-019-1666-5 Number: 7779 Publisher: Nature Publishing Group.

Ethan Bernstein and Umesh V. Vazirani. 1993. Quantum complexity theory. In Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, S. Rao Kosaraju, David S. Johnson, and Alok
Aggarwal (Eds.). ACM, 11–20. https://doi.org/10.1145/167088.167097

Jacob D. Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum
machine learning. Nature 549, 7671 (2017), 195–202. https://doi.org/10.1038/nature23474

Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomáš Vojnar. 2012. Abstract regular (tree) model checking.
International Journal on Software Tools for Technology Transfer 14, 2 (2012), 167–191. https://doi.org/10.1007/s10009-011-
0205-y

Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. 2000. Regular Model Checking. In Computer Aided
Verification, 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings (LNCS, Vol. 1855),
E. Allen Emerson and A. Prasad Sistla (Eds.). Springer, 403–418. https://doi.org/10.1007/10722167_31

P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani P. Roychowdhury, and Farrokh Vatan. 2000. A new universal and
fault-tolerant quantum basis. Inf. Process. Lett. 75, 3 (2000), 101–107. https://doi.org/10.1016/S0020-0190(00)00084-3

Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Computers 35, 8 (1986),
677–691. https://doi.org/10.1109/TC.1986.1676819

Lukas Burgholzer, Richard Kueng, and Robert Wille. 2021. Random Stimuli Generation for the Verification of Quantum
Circuits. In ASPDAC ’21: 26th Asia and South Pacific Design Automation Conference, Tokyo, Japan, January 18-21, 2021.
ACM, 767–772. https://doi.org/10.1145/3394885.3431590

Lukas Burgholzer and Robert Wille. 2020. Advanced equivalence checking for quantum circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 40, 9 (2020), 1810–1824. https://doi.org/10.1109/TCAD.2020.
3032630

Doron Bustan and Orna Grumberg. 2003. Simulation-based minimazation. ACM Trans. Comput. Log. 4, 2 (2003), 181–206.
https://doi.org/10.1145/635499.635502

Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan,
Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. 2019. Quantum
Chemistry in the Age of Quantum Computing. Chemical Reviews 119, 19 (2019), 10856–10915. https://doi.org/10.1021/
acs.chemrev.8b00803 arXiv:https://doi.org/10.1021/acs.chemrev.8b00803 PMID: 31469277.

Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron. 2021. An Automated Deductive
Verification Framework for Circuit-Building Quantum Programs. In ESOP (LNCS, Vol. 12648), Nobuko Yoshida (Ed.).
Springer International Publishing, Cham, 148–177. https://doi.org/10.1007/978-3-030-72019-3_6

Tian-Fu Chen, Jie-Hong R. Jiang, and Min-Hsiu Hsieh. 2022. Partial Equivalence Checking of Quantum Circuits. In 2022 IEEE
International Conference on Quantum Computing and Engineering (QCE). 594–604. https://doi.org/10.1109/QCE53715.
2022.00082

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

214

156:24 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen. 2023a. An Automata-based
Framework for Verification and Bug Hunting in Quantum Circuits. https://doi.org/10.5281/zenodo.7811406

Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen. 2023b. An Automata-based
Framework for Verification and Bug Hunting in Quantum Circuits (Technical Report). (2023). arXiv:2301.07747 [cs.LO]

Yu-Fang Chen, Chih-Duo Hong, Anthony W Lin, and Philipp Rümmer. 2017a. Learning to prove safety over parameterised
concurrent systems. In 2017 Formal Methods in Computer Aided Design (FMCAD). IEEE, 76–83. https://doi.org/10.23919/
FMCAD.2017.8102244

Yu-Fang Chen, Chiao Hsieh, Ondřej Lengál, Tsung-Ju Lii, Ming-Hsien Tsai, Bow-Yaw Wang, and Farn Wang. 2016. PAC
learning-based verification andmodel synthesis. In Proceedings of the 38th International Conference on Software Engineering.
714–724. https://doi.org/10.1145/2884781.2884860

Yu-Fang Chen, Ondřej Lengál, Tony Tan, and Zhilin Wu. 2017b. Register automata with linear arithmetic. In 2017 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 1–12. https://doi.org/10.1109/LICS.2017.8005111

Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini, and
Leonard Wossnig. 2018. Quantum Machine Learning: A Classical Perspective. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 474, 2209 (January 2018). https://doi.org/10.1098/rspa.2017.0551

Bob Coecke and Ross Duncan. 2011. Interacting quantum observables: categorical algebra and diagrammatics. New Journal
of Physics 13, 4 (apr 2011), 043016. https://doi.org/10.1088/1367-2630/13/4/043016

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Löding, Sophie Tison, and Marc
Tommasi. 2008. Tree automata techniques and applications.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, Robert M. Graham, Michael A. Harrison, and Ravi
Sethi (Eds.). ACM, 238–252. https://doi.org/10.1145/512950.512973

Loris D’Antoni, Margus Veanes, Benjamin Livshits, and David Molnar. 2015. Fast: A Transducer-Based Language for Tree
Manipulation. ACM Trans. Program. Lang. Syst. 38, 1 (2015), 1:1–1:32. https://doi.org/10.1145/2791292

Christopher M. Dawson and Michael A. Nielsen. 2006. The Solovay-Kitaev algorithm. Quantum Inf. Comput. 6, 1 (2006),
81–95. https://doi.org/10.26421/QIC6.1-6

Loris D’Antoni and Margus Veanes. 2017. The power of symbolic automata and transducers. In International Conference on
Computer Aided Verification. Springer, 47–67. https://doi.org/10.1007/978-3-319-63387-9_3

Mark Ettinger, Peter Høyer, and Emanuel Knill. 2004. The quantum query complexity of the hidden subgroup problem is
polynomial. Inf. Process. Lett. 91, 1 (2004), 43–48. https://doi.org/10.1016/j.ipl.2004.01.024

Andrew Fagan and Ross Duncan. 2019. Optimising Clifford Circuits with Quantomatic. Electronic Proceedings in Theoretical
Computer Science 287 (jan 2019), 85–105. https://doi.org/10.4204/eptcs.287.5

Eric Felt, Gary York, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. 1993. Dynamic variable reordering for BDD
minimization. In Proceedings of the European Design Automation Conference 1993, EURO-DAC ’93 with EURO-VHDL’93,
Hamburg, Germany, September 20-24, 1993. IEEE Computer Society, 130–135. https://doi.org/10.1109/EURDAC.1993.410627

Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Shenggang Ying. 2017. Model checking omega-regular properties for
quantum Markov chains. In 28th International Conference on Concurrency Theory (CONCUR 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2017.35

Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Lijun Zhang. 2015. QPMC: A Model Checker for Quantum Programs and
Protocols. In International Symposium on Formal Methods, Nikolaj Bjørner and Frank de Boer (Eds.). Springer International
Publishing, 265–272. https://doi.org/10.1007/978-3-319-19249-9_17

Yuan Feng and Mingsheng Ying. 2021. Quantum Hoare logic with classical variables. ACM Transactions on Quantum
Computing 2, 4 (2021), 1–43. https://doi.org/10.1145/3456877

Yuan Feng, Nengkun Yu, and Mingsheng Ying. 2013. Model checking quantum Markov chains. J. Comput. Syst. Sci. 79, 7
(2013), 1181–1198. https://doi.org/10.1016/j.jcss.2013.04.002

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: a scalable
quantum programming language. In ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 333–342. https:
//doi.org/10.1145/2491956.2462177

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, Gary L. Miller
(Ed.). ACM, 212–219. https://doi.org/10.1145/237814.237866

Wakaki Hattori and Shigeru Yamashita. 2018. Quantum Circuit Optimization by Changing the Gate Order for 2D Nearest
Neighbor Architectures. In Reversible Computation - 10th International Conference, RC 2018, Leicester, UK, September 12-14,
2018, Proceedings (LNCS, Vol. 11106), Jarkko Kari and Irek Ulidowski (Eds.). Springer, 228–243. https://doi.org/10.1007/978-
3-319-99498-7_16

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

215

An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:25

Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen Hoenicke, Yong Li, Alexander Nutz, Betim
Musa, Christian Schilling, Tanja Schindler, et al. 2018. Ultimate Automizer and the search for perfect interpolants.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 447–451.
https://doi.org/10.1007/978-3-319-89963-3_30

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2019. Verified optimization in a quantum
intermediate representation. arXiv preprint arXiv:1904.06319 (2019).

Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. 2020. Optimization of quantum circuit mapping
using gate transformation and commutation. Integr. 70 (2020), 43–50. https://doi.org/10.1016/j.vlsi.2019.10.004

Dominik Janzing, Pawel Wocjan, and Thomas Beth. 2005. "Non-Identity-Check" Is QMA-complete. International Journal of
Quantum Information 03, 03 (2005), 463–473. https://doi.org/10.1142/S0219749905001067

Ondřej Lengál, Jiří Šimáček, and Tomáš Vojnar. 2012. VATA: A library for efficient manipulation of non-deterministic tree
automata. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
79–94. https://doi.org/10.1007/978-3-642-28756-5_7

Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and Naijun Zhan. 2019. Formal
verification of quantum algorithms using quantum Hoare logic. In International conference on computer aided verification.
Springer, 187–207. https://doi.org/10.1007/978-3-030-25543-5_12

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 196:1–196:25. https://doi.org/10.1145/3428264

Paul Massey, John A. Clark, and Susan Stepney. 2005. Evolution of a human-competitive quantum fourier transform
algorithm using genetic programming. In Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings,
Washington DC, USA, June 25-29, 2005, Hans-Georg Beyer and Una-May O’Reilly (Eds.). ACM, 1657–1663. https:
//doi.org/10.1145/1068009.1068288

Paulo Mateus, Jaime Ramos, Amílcar Sernadas, and Cristina Sernadas. 2009. Temporal Logics for Reasoning about Quantum
Systems. Cambridge University Press, 389–413. https://doi.org/10.1017/CBO9781139193313.011

Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, JerryMChow, AndrewCross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer,
Jay M Gambetta, Marc Ganzhorn, Abhinav Kandala, Antonio Mezzacapo, Peter Müller, Walter Riess, Gian Salis, John
Smolin, Ivano Tavernelli, and Kristan Temme. 2018. Quantum optimization using variational algorithms on near-term
quantum devices. Quantum Science and Technology 3, 3 (jun 2018), 030503. https://doi.org/10.1088/2058-9565/aab822

Yunseong Nam, Neil J. Ross, Yuan Su, AndrewM. Childs, and Dmitri Maslov. 2018. Automated optimization of large quantum
circuits with continuous parameters. npj Quantum Information 4 (2018). Issue 23. https://doi.org/10.1038/s41534-018-
0072-4

Daniel Neider and Nils Jansen. 2013. Regular Model Checking Using Solver Technologies and Automata Learning. In NASA
Formal Methods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings (LNCS,
Vol. 7871), Guillaume Brat, Neha Rungta, and Arnaud Venet (Eds.). Springer, 16–31. https://doi.org/10.1007/978-3-642-
38088-4_2

Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information: 10th Anniversary Edition
(10th ed.). Cambridge University Press, USA.

Philipp Niemann, Robert Wille, D. Michael Miller, Mitchell A. Thornton, and Rolf Drechsler. 2016. QMDDs: Efficient
Quantum Function Representation and Manipulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 1 (2016),
86–99. https://doi.org/10.1109/TCAD.2015.2459034

Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Magerlein, Edgar Solomonik, Erik W. Draeger,
Eric T. Holland, and Robert Wisnieff. 2017. Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction
Deferral. CoRR abs/1710.05867 (2017). http://arxiv.org/abs/1710.05867

Tom Peham, Lukas Burgholzer, and Robert Wille. 2022. Equivalence checking paradigms in quantum circuit design: a case
study. In DAC ’22: 59th ACM/IEEE Design Automation Conference, San Francisco, California, USA, July 10 - 14, 2022, Rob
Oshana (Ed.). ACM, 517–522. https://doi.org/10.1145/3489517.3530480

Simon Perdrix. 2008. Quantum entanglement analysis based on abstract interpretation. In International Static Analysis
Symposium. Springer, 270–282. https://doi.org/10.1007/978-3-540-69166-2_18

Vasilis Samoladas. 2008. Improved BDD Algorithms for the Simulation of Quantum Circuits. In Algorithms - ESA 2008, 16th
Annual European Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings (LNCS, Vol. 5193), Dan Halperin
and Kurt Mehlhorn (Eds.). Springer, 720–731. https://doi.org/10.1007/978-3-540-87744-8_60

Peter W. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994. IEEE Computer Society, 124–134.
https://doi.org/10.1109/SFCS.1994.365700

Mathias Soeken, Robert Wille, Gerhard W. Dueck, and Rolf Drechsler. 2010. Window optimization of reversible and quantum
circuits. In 13th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS 2010,
Vienna, Austria, April 14-16, 2010. IEEE Computer Society, 341–345. https://doi.org/10.1109/DDECS.2010.5491754

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

216

156:26 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Lee Spector. 2006. Automatic Quantum Computer Programming: A Genetic Programming Approach. (2006).
Yuan-Hung Tsai, Jie-Hong R. Jiang, and Chiao-Shan Jhang. 2021. Bit-Slicing the Hilbert Space: Scaling Up Accurate Quantum

Circuit Simulation. In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA, December 5-9,
2021. IEEE, 439–444. https://doi.org/10.1109/DAC18074.2021.9586191

Dominique Unruh. 2019. Quantum Hoare logic with ghost variables. In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785779

George F. Viamontes, Igor L. Markov, and John P. Hayes. 2007. Checking equivalence of quantum circuits and states. In
2007 International Conference on Computer-Aided Design, ICCAD 2007, San Jose, CA, USA, November 5-8, 2007, Georges
G. E. Gielen (Ed.). IEEE Computer Society, 69–74. https://doi.org/10.1109/ICCAD.2007.4397246

George F. Viamontes, Igor L. Markov, and John P. Hayes. 2009. Quantum Circuit Simulation. Springer. https://doi.org/10.
1007/978-90-481-3065-8

Dave Wecker and Krysta M. Svore. 2014. LIQUi |>: A Software Design Architecture and Domain-Specific Language for
Quantum Computing. CoRR abs/1402.4467 (2014). arXiv:1402.4467 http://arxiv.org/abs/1402.4467

Chun-Yu Wei, Yuan-Hung Tsai, Chiao-Shan Jhang, and Jie-Hong R. Jiang. 2022. Accurate BDD-based unitary operator
manipulation for scalable and robust quantum circuit verification. In DAC ’22: 59th ACM/IEEE Design Automation
Conference, San Francisco, California, USA, July 10 - 14, 2022, Rob Oshana (Ed.). ACM, 523–528. https://doi.org/10.1145/
3489517.3530481

R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. 2008. RevLib: An Online Resource for Reversible Functions
and Reversible Circuits. In Int’l Symp. on Multi-Valued Logic. 220–225. https://doi.org/10.1109/ISMVL.2008.43 RevLib is
available at http://www.revlib.org.

Robert Wille, Rod Van Meter, and Yehuda Naveh. 2019. IBM’s Qiskit Tool Chain: Working with and Developing for Real
Quantum Computers. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March
25-29, 2019, Jürgen Teich and Franco Fummi (Eds.). IEEE, 1234–1240. https://doi.org/10.23919/DATE.2019.8715261

Ming Xu, Jianling Fu, Jingyi Mei, and Yuxin Deng. 2022a. Model checking QCTL plus on quantum Markov chains. Theor.
Comput. Sci. 913 (2022), 43–72. https://doi.org/10.1016/j.tcs.2022.01.044

Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth, Henry Ma, Jens Palsberg, Alex Aiken, Umut A
Acar, et al. 2022b. Quartz: superoptimization of Quantum circuits. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 625–640. https://doi.org/10.1145/3519939.3523433

Shigeru Yamashita and Igor L. Markov. 2010. Fast equivalence-checking for quantum circuits. Quantum Inf. Comput. 10,
9&10 (2010), 721–734. https://doi.org/10.26421/QIC10.9-10-1

Peng Yan, Hanru Jiang, and Nengkun Yu. 2022. On incorrectness logic for Quantum programs. Proceedings of the ACM on
Programming Languages 6, OOPSLA1 (2022), 1–28. https://doi.org/10.1145/3527316

Mingsheng Ying. 2012. Floyd-Hoare logic for quantum programs. ACM Transactions on Programming Languages and Systems
(TOPLAS) 33, 6 (2012), 1–49. https://doi.org/10.1145/2049706.2049708

Mingsheng Ying. 2021. Model Checking for Verification of Quantum Circuits. In International Symposium on Formal Methods.
Springer, 23–39. https://doi.org/10.1007/978-3-030-90870-6_2

Mingsheng Ying and Yuan Feng. 2021. Model Checking Quantum Systems: Principles and Algorithms. Cambridge University
Press.

Mingsheng Ying, Yangjia Li, Nengkun Yu, and Yuan Feng. 2014. Model-checking linear-time properties of quantum systems.
ACM Transactions on Computational Logic (TOCL) 15, 3 (2014), 1–31. https://doi.org/10.1145/2629680

Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H Ibarra. 2008. Symbolic string verification: An automata-based approach.
In International SPIN Workshop on Model Checking of Software. Springer, 306–324. https://doi.org/10.1007/978-3-540-
85114-1_21

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. 2011. Relational String Verification Using Multi-Track Automata. Int. J. Found.
Comput. Sci. 22, 8 (2011), 1909–1924. https://doi.org/10.1142/S0129054111009112

Nengkun Yu and Jens Palsberg. 2021. Quantum abstract interpretation. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 542–558. https://doi.org/10.1145/3453483.3454061

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An applied quantum Hoare logic. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 1149–1162. https://doi.org/10.1145/3314221.3314584

Alwin Zulehner, Stefan Hillmich, and Robert Wille. 2019. How to Efficiently Handle Complex Values? Implementing Decision
Diagrams for Quantum Computing. In Proceedings of the International Conference on Computer-Aided Design, ICCAD
2019, Westminster, CO, USA, November 4-7, 2019, David Z. Pan (Ed.). ACM, 1–7. https://doi.org/10.1109/ICCAD45719.
2019.8942057

Alwin Zulehner and Robert Wille. 2019. Advanced Simulation of Quantum Computations. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 38, 5 (2019), 848–859. https://doi.org/10.1109/TCAD.2018.2834427

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.

217

AcceleratingQuantum Circuit Simulation with
Symbolic Execution and Loop Summarization

Tian-Fu Chen
d11k42001@ntu.edu.tw

Grad. School of Advanced Technology
National Taiwan University

Taipei, Taiwan

Yu-Fang Chen
gulu0724@gmail.com

Institute of Information Science
Academia Sinica
Taipei, Taiwan

Jie-Hong Roland Jiang
jhjiang@ntu.edu.tw

Grad. Inst. of Electronics Engineering
National Taiwan University

Taipei, Taiwan

Sára Jobranová
xjobra01@stud.fit.vutbr.cz

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Ondřej Lengál
lengal@fit.vutbr.cz

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

ABSTRACT
Quantum circuit simulation is the basic tool for reasoning over
quantum programs. Despite the tremendous advance in the simula-
tor technology in the recent years, the performance of simulators
is still unsatisfactory on non-trivial circuits, which slows down the
development of new quantum systems. In this work, we develop
a loop summarizing simulator based on multi-terminal binary deci-
sion diagrams (MTBDDs) with efficiently customized quantum gate
operations. The simulator is capable of automatic loop summariza-
tion using symbolic execution, which saves repetitive computation
for circuits with iterative structures. Experimental results show the
simulator outperforms state-of-the-art simulators on some standard
circuits, such as Grover’s algorithm, by several orders of magnitude.

ACM Reference Format:
Tian-FuChen, Yu-FangChen, Jie-Hong Roland Jiang, Sára Jobranová, andOndřej
Lengál. 2024. Accelerating Quantum Circuit Simulation with Symbolic Ex-
ecution and Loop Summarization . In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’24), October 27–31, 2024, New York, NY, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3676536.3676711

1 INTRODUCTION
The development of quantum computers started in 1980s with
the promise to solve problems challenging for classical computers.
Later, quantum algorithms more efficient than their best classi-
cal counterparts for certain problems started appearing, such as
Shor’s algorithm for integer factoring [27] or Grover’s algorithm for
search in an unstructured database [19]. With multiple major play-
ers investing into quantum and the consistent improvement of the
hardware, it seems that quantum computers will occupy a promi-
nent role in the future. The development of quantum algorithms is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3676711

an extremely challenging task so adequate computer-aided support
is needed for debugging and reasoning over quantum programs.

Debugging quantum programs is primarily done through simula-
tion, which is considerably more challenging in the quantum world
as compared to the classical world. This is because, in the quantum
world, we need to keep track of a potentially exponentially sized
quantum state that assigns every classical state a complex amplitude
instead of keeping track of a single evolving classical program state.

Simulators of quantum programs have advanced tremendously
in recent years, moving from the basic vector- and matrix-based
representation [26] into representations based on decision dia-
grams [25, 28, 30, 32, 33, 36], graphical languages [14], or model
counting [24]. Despite this advance, simulating quantum circuits
of a moderate size is still considered infeasible. Therefore, faster
simulators are needed to provide quantum developers with basic
means to observe behaviour of quantum programs.

In this paper, we focus on accelerating the simulation of quan-
tum circuits that contain repetition of some sub-structure. Some
notable examples of such circuits include Grover’s search [19], pe-
riod finding [23], and quantum counting [8]. Current standards
for describing quantum circuits, such as the OpenQASM 3.0 for-
mat [15], allow describing such repeated sub-structures compactly
using loops or hierarchical gate definitions.

Our method for accelerating simulation involves computing
a symbolic summary of a sequence of quantum gates that occur
repeatedly, such as a loop body or the definition of a hierarchical
gate. This summary is computed with respect to a particular quan-
tum state and can be reused to execute the sequence of quantum
gates from any state that shares the same high-level structure, i.e.,
computational bases with the same amplitudes in the first state will
also have the same amplitudes in the second state, though these
amplitude values may differ from those in the first state. We de-
rive these summaries using symbolic execution, which is similar to
standard quantum simulation but instead computes symbolic terms
that remember the arithmetic operations to be performed, rather
than computing the results of arithmetic operations over numbers.

Moreover, similarly to [30], we represent quantum states alge-
braically for exact simulation without numerical precision loss,
which is crucial in tasks such as equivalence checking [34]. Un-
like [30], which works only for concrete value simulation, ours

218

ICCAD ’24, October 27–31, 2024, New York, NY, USA Tian-Fu Chen, Yu-Fang Chen, Jie-Hong Roland Jiang, Sára Jobranová, and Ondřej Lengál

𝑢 : 𝑥1

𝑣 : 𝑥2

𝑏𝑎

(a) MTBDD𝑀𝑞 for 𝑞

𝑢′ : 𝑥1

𝑣 ′ : 𝑥2

𝑏𝑎

(b) Applying 𝑋2 to 𝑞

𝑥1

𝑥2

𝑏𝜔2 𝑎𝜔2𝑎

(c) Applying 𝑆1 to 𝑞

𝑥1

𝑥2 𝑥2

𝑎+𝑏√
2

2𝑎√
2

𝑎−𝑏√
2 0

(d) Applying 𝐻1 to 𝑞

𝑥1

𝑥2

𝑏𝑎

(e) Applying CNOT12 to 𝑞

Figure 1: Examples of applying quantum gates on MTBDD-based representation of the state 𝑞 = 𝑎 |00⟩ + 𝑎 |01⟩ + 𝑏 |10⟩ + 𝑎 |11⟩.
allows symbolic simulation thanks to the use of multi-terminal bi-
nary decision diagrams (MTBDDs) [4, 9, 16]. We customize MTBDD
procedures for efficient quantum gate execution instead of using
only standard MTBDD functions Apply and Restrict as usual.

Our experimental evaluation shows that our proposed approach
can significantly speed up simulation for some well-established
quantum circuits. This allows us to tackle circuits of sizes that were
previously considered infeasible.

2 PRELIMINARIES
B = {0, 1} denotes the Booleans. We fix a set X = {𝑥1, . . . , 𝑥𝑛} of
Boolean variables with an order 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 ; we use ®𝑥 to
denote (𝑥1, . . . , 𝑥𝑛). Given an arbitrary set 𝑆 ≠ ∅, a pseudo-Boolean
function is a function 𝑓 : B𝑛 → 𝑆 ; 𝑓 is a Boolean function if 𝑆 = B.
𝜔 denotes the complex number 𝑒

𝑖𝜋
4 , i.e., the unit vector that makes

an angle of 45◦ with the positive real axis in the complex plane.

2.1 Decision diagrams
Given an arbitrary nonempty set 𝑆 with finitely representable ele-
ments, amulti-terminal binary decision diagram (MTBDD) [4, 9, 16]
is a graph 𝐺 = (𝑁,𝑇 , low, high, root, var) where 𝑁 is the set of in-
ternal nodes, 𝑇 ⊆ 𝑆 is the set of leaf nodes (𝑇 ∩ 𝑁 = ∅, 𝑇 ≠ ∅),
low, high : 𝑁 → (𝑁 ∪ 𝑇) are the low- and high-successor edges,
root ∈ 𝑁 ∪𝑇 is the root node, and var : 𝑁 → X is the node-variable
mapping, with the following three restrictions:
(i) (connectivity) every node from 𝑁 ∪𝑇 is reachable from root

over some sequence of low and high edges,
(ii) (order) for every 𝑢, 𝑣 ∈ 𝑁 , if low(𝑢) = 𝑣 or high(𝑢) = 𝑣 , then

var (𝑢) < var (𝑣), and
(iii) (reducedness) there is no node 𝑢 ∈ 𝑁 s.t. low(𝑢) = high(𝑢).
Each node 𝑣 ∈ 𝑁 ∪ 𝑇 represents a pseudo-Boolean function J𝑣K
defined inductively as follows: (1) if 𝑣 ∈ 𝑇 , then J𝑣K(®𝑥) = 𝑣 , and
(2) if 𝑣 ∈ 𝑁 and var (𝑣) = 𝑥𝑖 , then

J𝑣K(®𝑥) =
{
Jlow(𝑣)K(®𝑥) if 𝑥𝑖 = 0 and
Jhigh(𝑣)K(®𝑥) if 𝑥𝑖 = 1.

Moreover, we impose the following additional restriction on 𝐺 :
(iv) (canonicity) there are no two nodes 𝑢 ≠ 𝑣 such that J𝑢K = J𝑣K.
𝐺 then represents the function J𝐺K defined as JrootK. We abuse
notation and confuse a function with the MTBDD representing it
and use a node 𝑟 to denote the MTBDD rooted in 𝑟 and vice versa.

We will use the following standard MTBDD operations. The
apply(𝑓1, 𝑓2, op2) operation is used to combine two MTBDDs 𝑓1
and 𝑓2 through a binary operation op2 : 𝑆×𝑆 → 𝑆 performed on the
corresponding leaf notes, obtaining the MTBDD representing the

pseudo-Boolean function {®𝑥 ↦→ op2 (𝑓1 (®𝑥), 𝑓2 (®𝑥)) | ®𝑥 ∈ B𝑛}. The
monadic_apply(𝑓 , op) operation updates the leaves of theMTBDD
𝑓 with a unary operation op1 : 𝑆 → 𝑆 , obtaining the MTBDD rep-
resenting the pseudo-Boolean function {®𝑥 ↦→ op1 (𝑓 (®𝑥)) | ®𝑥 ∈ B𝑛}.
We often use lambda expression for defining op1/2. Additionally,
MTBDDs provide the spawn(𝑙, ℎ, 𝑥) function that works as follows:
(i) if 𝑙 = ℎ, then the result is 𝑙 ,otherwise (ii) the result is the unique
node 𝑛 such that low(𝑛) = 𝑙 , high(𝑛) = ℎ, and var (𝑛) = 𝑥 .
2.2 Quantum Computing Fundamentals
Quantum computers are programmed through quantum gates, which
update the global quantum state. A quantum circuit is a sequence of
gates, combined with programming constructs like loops or hierar-
chical gate definitions that allow a more concise presentation [15].

Quantum states: In a traditional computer system with 𝑛 bits,
a state is represented by 𝑛 Booleans. In the quantum world, such
states are called computational basis states. E.g., in a system with
three bits labeled 𝑥1, 𝑥2, and 𝑥3, the computational basis state |011⟩
indicates that the value of 𝑥1 is 0 and the values of 𝑥2 and 𝑥3 are 1.

In a quantum system, an 𝑛-qubit quantum state is a probabilis-
tic distribution over 𝑛-bit basis states, denoted either as a column
vector (𝑎0, . . . , 𝑎2𝑛−1)𝑇 (given here as a transposed row vector) or
as a formal sum

∑
𝑗∈{0,1}𝑛 𝑎 𝑗 · | 𝑗⟩, where 𝑎0, 𝑎1, . . . , 𝑎2𝑛−1 ∈ C are

complex amplitudes satisfying the property that
∑

𝑗∈{0,1}𝑛 |𝑎 𝑗 |2 = 1.
Intuitively, |𝑎 𝑗 |2 is the probability that when we measure the quan-
tum state in the computational basis, we obtain the classical state | 𝑗⟩;
these probabilities must sum up to 1 for all basis states. We can
view a quantum state as a function mapping each basis state in B𝑛

to a complex amplitude and represent them using MTBDDs; cf. Fig-
ure 1a for an MTBDD𝑀𝑞 representing the state 𝑞 = 𝑎 |00⟩ +𝑎 |01⟩ +
𝑏 |10⟩ + 𝑎 |11⟩ (for some 𝑎, 𝑏 ∈ C s.t. 𝑎 ≠ 𝑏 and 3|𝑎 |2 + |𝑏 |2 = 1).

Quantum gates: Two main types of quantum gates are being
used: single-qubit gates and controlled gates. We support all com-
monly used gates except the arbitrary rotation single-qubit gate
due to the use a precise complex number representation (cf. Sec. 5).

Single-qubit gates. In general, a single-qubit gate is presented as
a unitary complex matrix. We directly support the following gates:

X =

(
0 1
1 0

)
, Y =

(
0 −𝑖
𝑖 0

)
, Z =

(
1 0
0 −1

)
,

S =

(
1 0
0 𝑖

)
, T =

(
1 0
0 𝜔

)
, H =

1√
2

(
1 1
1 −1

)
,

RX
(𝜋
2

)
=

1√
2

(
1 −𝑖
−𝑖 1

)
, RY

(𝜋
2

)
=

1√
2

(
1 −1
1 1

)
.

219

AcceleratingQuantum Circuit Simulation with Symbolic Execution and Loop Summarization ICCAD ’24, October 27–31, 2024, New York, NY, USA

Algorithm 1: Execution of a single-qubit gate U𝑡

Input:MTBDD𝑀𝑞 = (𝑁,𝑇 , low, high, root, var),
target qubit 𝑥𝑡 , single qubit gate U

Output:MTBDD representing U𝑡 (𝑀𝑞)
1 return recurse(root);

2 Function recurse(node)
3 𝑙 ← low(node);ℎ ← high(node);𝑥𝑖 ← var (node);
4 if 𝑖 < 𝑡 then
5 𝑙new ← recurse(l); ℎnew ← recurse(h);
6 return spawn(𝑙new , ℎnew , 𝑥𝑖);
7 else // 𝑖 ≥ 𝑡 or a leaf
8 if 𝑖 = 𝑡 then 𝑙 ′ ← 𝑙 ; ℎ′ ← ℎ ;
9 else 𝑙 ′ ← ℎ′ ← node;

10 if U = X then return spawn(ℎ′, 𝑙 ′, 𝑥𝑡) ;
11 if U ∈ {T, S,Z} then
12 if 𝑈 = 𝑇 then 𝑐 ← 𝜔 ;
13 if 𝑈 = 𝑆 then 𝑐 ← 𝜔2;
14 if 𝑈 = 𝑍 then 𝑐 ← −1;
15 ℎnew ←monadic_apply(ℎ′, 𝜆𝑥 (𝑐 · 𝑥));
16 return spawn(𝑙 ′, ℎnew , 𝑥𝑡);
17 if U = Y then
18 𝑙new ←monadic_apply(ℎ′, 𝜆𝑥 (−𝜔2 · 𝑥));
19 ℎnew ←monadic_apply(𝑙 ′, 𝜆𝑥 (𝜔2 · 𝑥));
20 return spawn(𝑙new , ℎnew , 𝑥𝑡);
21 if U = H then
22 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√

2
· (𝑥 + 𝑦)));

23 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 − 𝑦)));

24 return spawn(𝑙new , ℎnew , 𝑥𝑡);
25 if U = RX

(𝜋
2
)
then

26 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 − 𝜔2 · 𝑦)));

27 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑦 − 𝜔2 · 𝑥)));

28 return spawn(𝑙new , ℎnew , 𝑥𝑡);
29 if U = RY

(𝜋
2
)
then

30 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 − 𝑦)));

31 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 + 𝑦)));

32 return spawn(𝑙new , ℎnew , 𝑥𝑡);

For a single-qubit gate U, we often use a subscript to denote the
qubit that it is applied to, e.g., U𝑖 means we apply U to qubit 𝑥𝑖 .

The X gate is the quantum “negation” gate. Applying gate X to
a single-qubit state

(
𝑙
ℎ

)
produces the state X ·

(
𝑙
ℎ

)
=
(
ℎ
𝑙

)
. In the

case of an MTBDD-based representation of
(
𝑙
ℎ

)
, which would have

a root node with the low-successor 𝑙 ∈ 𝑇 and high-successor ℎ ∈ 𝑇 ,
this would effectively mean swapping the low and high successors
of the root. For the general case, applying X𝑖 to a quantum state’s
MTBDD swaps the high and low-successor edges of all nodes at
level 𝑖 . See Figure 1b for an example of applying X2 to the MTBDD
𝑀𝑞 introduced above (the edges leaving 𝑣 ′ got swapped).

Algorithm 2: Execution of a controlled gate CU𝑐𝑡
Input:MTBDD𝑀 = (𝑁,𝑇 , low, high, root, var),

control qubit 𝑥𝑐 , target qubit 𝑥𝑡 , single qubit gate U
Output:MTBDD representing CU𝑐𝑡 (𝑀𝑞)

1 𝑀𝑙 ← recurse(root, L);
2 𝑀ℎ ← recurse(U𝑡 (𝑀𝑞), H);
3 return apply(𝑀𝑙 , 𝑀ℎ, 𝜆𝑥,𝑦 (𝑥 + 𝑦));
4 Function recurse(node, dir)
5 𝑙 ← low(node);ℎ ← high(node);𝑥𝑖 ← var (node);
6 if 𝑖 < 𝑐 then
7 𝑙new ← recurse(l, dir); ℎnew ← recurse(h, dir);
8 return spawn(𝑙new , ℎnew , 𝑥𝑖);
9 else // 𝑖 ≥ 𝑐 or a leaf
10 if 𝑖 = 𝑐 then 𝑙 ′ ← 𝑙 ; ℎ′ ← ℎ ;
11 else 𝑙 ′ ← ℎ′ ← node;

12 if dir = L then return spawn(𝑙 ′, 0, 𝑥𝑐) ;
13 else return spawn(0, ℎ′, 𝑥𝑐) ;

Behaviours of Z, S, and T gates are similar to each other. In
particular, applying the gates to

(
𝑙
ℎ

)
produces the states Z ·

(
𝑙
ℎ

)
=(

𝑙
−ℎ

)
, S ·

(
𝑙
ℎ

)
=
(

𝑙
𝑖 ·ℎ

)
, and T ·

(
𝑙
ℎ

)
=
(

𝑙
𝜔 ·ℎ

)
, which multiply the

|1⟩-position with −1, 𝑖 , and 𝜔 , respectively. Similarly, applying Z,
S, and T to a quantum state’s MTBDD multiplies all leaves in the
high-subtrees of all nodes at level 𝑖 with −1, 𝑖 , and 𝜔 , respectively
(cf. Figure 1c for an example of applying S1 to𝑀𝑞).

The last group of single-qubit gates we mention includes H
(the Hadamard gate), RX

(𝜋
2
)
, and RY

(𝜋
2
)
. These gates are more

challening for implementation, since they fuse the amplitudes of
the two basis states to form a new state. Taking H as an example,
it updates the state

(
𝑙
ℎ

)
to the state 𝐻 ·

(
𝑙
ℎ

)
= 1√

2
·
(
𝑙+ℎ
𝑙−ℎ

)
. See

Figure 1d for the result of applying H1 to𝑀𝑞 . We refer the readers
to Sec. 3 for the corresponding MTBDD constructions.

Controlled gates. A controlled gate CU uses another quantum
gate U as its parameter. We often use CU𝑐𝑡 to denote applying the
controlled-gate with control qubit 𝑥𝑐 and target qubit 𝑥𝑡 . The effect
of the controlled-U gate is that the gate U𝑡 is applied only when
the control qubit 𝑥𝑐 has the value 1. For example, the controlled-X
gate CNOT12 has the control qubit 𝑥1 and would apply X2 when 𝑥1
is valued 1. See Figure 1e for an example of applying CNOT12 to𝑀𝑞 .

3 ALGORITHM FOR QUANTUM GATES
Single-qubit gates. In Algorithm 1, we present our procedure for

applying single-qubit gates to anMTBDD𝑀𝑞 = (𝑁,𝑇 , low, high, root,
var) at the target qubit 𝑥𝑡 . The procedure performs the operations
on𝑀𝑞 directly, as opposed to the standard approach (used, e.g., in
SliQSim [30]), which uses only the standard (MT)BDD interface
(in particular, functions Apply and Restrict).

The algorithm is as a modification of a standard monadic_apply.
In particular, it performs a depth-first search (Line 5) until it reaches
an 𝑥𝑡 node, then it performs the semantic of the gate on the succes-
sors. The semantic differs for the particular gate, and was already
briefly discussed in Sec. 2.2. We, however, need to be careful about
“don’t care” edges, i.e., edges that skip some variable in the MTBDD

220

ICCAD ’24, October 27–31, 2024, New York, NY, USA Tian-Fu Chen, Yu-Fang Chen, Jie-Hong Roland Jiang, Sára Jobranová, and Ondřej Lengál

(such as the low edge from 𝑢 in Figure 1a). In such a situation, we
need to stop the recursion and perform the gate operation bymateri-
alizing the missing node (with the same low and high, cf. Line 9. E.g.,
when applying X2 to the state 𝑞 in Figure 1a, we have 𝑙 ′ = ℎ′ = 𝑎
when handling the low-successor of 𝑢. Calling spawn(𝑎, 𝑎, 𝑥2) will
just return the 𝑎 leaf. On the other hand, high(𝑢′) will be set to
spawn(high(𝑣), low(𝑣), 𝑥2) = spawn(𝑎, 𝑏, 𝑥2) = 𝑣 ′.

To apply T, S, and Z gates, we use monadic_apply to multiply
the leaf nodes of high-successors of the nodes labelled by 𝑥𝑡 with
𝜔 , 𝜔2, and −1, respectively. When applying 𝑆1, one step would
be computing monadic_apply(𝑣, 𝜆𝑥 (𝜔2 · 𝑥)) and connecting the
result to high of the new root via the spawn function (Figure 1c).
Meanwhile, the Y gate does for each node at level 𝑖 the following:
(1) it multiplies the high with −𝜔2 and sets it as the new low, and
(2) it multiplies the low with 𝜔2 and sets it as the new high.

For each node at level 𝑖 , applying the H, RX
(𝜋
2
)
, or RY

(𝜋
2
)
gates

merges the high and low-successors using the apply function, creat-
ing new high and low-successors according to the gate’s behaviour.
In the case of the H gate, the new low-successor is apply(𝑙 ′, ℎ′,
𝜆𝑥,𝑦 (1√

2
· (𝑥 + 𝑦))) and the new high-successor is apply(𝑙 ′, ℎ′,

𝜆𝑥,𝑦 (1√
2
· (𝑥−𝑦))). When applying𝐻1 to the state 𝑞, we haveℎ′ = 𝑣

and 𝑙 ′ = 𝑎. Fusing the two via apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 +𝑦))) gives

us the low-successor of the root in Figure 1d and via apply(𝑙 ′, ℎ′,
𝜆𝑥,𝑦 (1√

2
· (𝑥 − 𝑦))) gives us the high-successor of the root.

Controlled gates. Our procedure for applying controlled-U gates
to𝑀𝑞 at the control qubit 𝑥𝑐 for some quantum gate U is presented
in Algorithm 2. The procedure involves three steps. First, in𝑀𝑙 , we
will store a copy of𝑀𝑞 modified such that every base with 𝑥𝑐 = 1
has amplitude 0 (Line 1). Second, we compute an MTBDD U𝑡 (𝑀)
using some of Algorithms 1 and 2 (depending on U, which can again
be a controlled gate) and modify it such that every base with 𝑥𝑐 = 0
has amplitude 0 (Line 2). Finally, both MTBDDs are summed up
using the apply function (Line 3), which will, effectively, combine
the two MTBDDs together (one operand of the + is always 0). Note
that the Toffoli gate can be obtained by using the CNOT gate for U.
A specialized more efficient version of the algorithm for phase gates
(e.g., Z, S, T) can be used (omitted here due to space constraints).

Memoization. In order to avoid redundant computation, calls to
the recurse functions in Algorithms 1 and 2 should be memoized.

Concrete execution and symbolic execution. Our gate operations
work for both concrete and symbolic amplitude values. When leaf
values are concrete, e.g., when 𝑥 = 1

2 and 𝑦 = 1
4 , the function

𝜆𝑥,𝑦 (1√
2
· (𝑥 + 𝑦))) will compute the value 1√

2
· (12 + 1

4) = 3
4
√
2
.

When leaf values are symbolic, e.g, , when 𝑥 = 𝑥0 and 𝑦 = 𝑦0, the
same function will compute the symbolic term 1√

2
· (𝑥0 + 𝑦0)).

4 LOOP SUMMARIZATION
Our main contribution is an optimization that targets algorithms
with loops1, such as various amplitude amplification algorithms [7],
with the most famous one being Grover’s unstructured search [19].
The optimization is particularly effective in the case that the number
of distinct amplitudes is small (which is the case for amplitude
1W.l.o.g., in the basic version of the optimization presented here, we assume the loop
bodies are unitaries, i.e., do not contain measurements, and that they are not nested.

Algorithm 3: Loop summarization
Input: An MTBDD𝑀𝑞 , a loop body 𝐶
Output: An MTBDD𝑀𝛼 over S and a mapping 𝜏 : S→ TS

1 𝛼 ← ∅ (type 𝛼 : C ⇀ S); // init abstraction

2 𝑀
refined
𝛼 ← monadic_apply(𝑀𝑞, abstract[𝛼]);

3 repeat
4 𝑀𝛼 ← 𝑀

refined
𝛼 ;

5 𝑀′𝛼 ← 𝐶𝑆 (𝑀𝛼);
6 𝜏 ← ∅ (type 𝜏 : S ⇀ TS); // update

7 𝜎 ← ∅ (type 𝜎 : S ⇀ S); // refinement subst

8 𝑀
refined
𝛼 ← apply(𝑀𝛼 , 𝑀

′
𝛼 , refine[𝜏, 𝜎, 𝛼]);

9 until𝑀𝛼 = 𝑀refined
𝛼 ;

10 return (𝑀𝛼 , 𝜏);
11 Function abstract(val)

Data: 𝛼 : C ⇀ S
12 if 𝛼 (val) = ⊥ then
13 let 𝑠new ∈ S \ rng(𝛼) be a fresh symbolic var.;
14 𝛼 ← 𝛼 ∪ {val ↦→ 𝑠new};
15 return 𝛼 (val);
16 Function refine(lhs, rhs)

Data: 𝜏 : S ⇀ TS, 𝜎 : S ⇀ S, 𝛼 : C ⇀ S
17 if 𝜏 (lhs) = ⊥ then
18 𝜏 ← 𝜏 ∪ {lhs ↦→ rhs};
19 else if ⊭ 𝜏 (lhs) = rhs then
20 if 𝜎 (lhs) = ⊥ then
21 let 𝑠new ∈ S \ rng(𝛼) be a fresh symbolic var.;
22 𝜎 ← 𝜎 ∪ {lhs ↦→ 𝑠new};
23 return 𝜎 (lhs);
24 return lhs;

amplification algorithms, where there are typically only a limited
number of different amplitudes at the beginning of a loop body, e.g.,
high amplitude, low amplitude, and zero).

Intuitively, the optimization works as follows. Consider a circuit
with the following loop (in the OpenQASM 3.0 format [15]):

for int i in [1:K] { C; }

where𝐶 is the unitary for the loop body composed of standard gates
and 𝐾 is a constant. When a simulation of the circuit arrives to the
loop with a quantum state 𝑞 represented by MTBDD𝑀𝑞 , it will first
create an MTBDD 𝑀𝛼 with leaves containing symbolic variables
(from a set S, an infinite set of symbolic names). Then, it will run
circuit 𝐶 of the loop body with 𝑀𝛼 as its input, with operations
being done symbolically, i.e., instead of numbers, the leaves of the
resulting MTBDD𝑀′𝛼 contain terms over S; we denote the set of
terms over S as TS.𝑀′𝛼 contains information about how each of the
computational bases needs to be updated. The information in 𝑀′𝛼
is, however, fine-tuned for𝑀𝑞 , which can make the representation
quite compact. This fine-tuning is done in the initial step called
abstraction, when symbolic variables are being introduced—we start
by introducing one symbolic variable for every distinct leaf value
in𝑀𝑞 . The assumption is that computational bases with the same
valuewill behave similarly. This does not need to hold, so after𝑀′𝛼 is

221

AcceleratingQuantum Circuit Simulation with Symbolic Execution and Loop Summarization ICCAD ’24, October 27–31, 2024, New York, NY, USA

𝑥

𝑦

10

(a) Concrete
state𝑀𝑞

𝑥

𝑦

𝑏𝑎

(b) Initial abstrac-
tion𝑀𝛼1 of𝑀𝑞

𝑥

𝑦

𝑏𝜔 𝑎𝜔𝑎

(c) After applying
T𝑥 to𝑀𝛼1

𝑥

𝑦

𝑎𝜔 𝑏𝜔𝑎

(d) End of first
iteration𝑀 ′𝛼1

𝑥

𝑦

𝑏 𝑐𝑎

(e) Refined abstrac-
tion𝑀𝛼2 of𝑀𝑞

𝑥

𝑦

𝑐𝜔 𝑏𝜔𝑎

(f) End of second
iteration𝑀 ′𝛼2

𝑥

𝑦

𝜔0

(g) Result of𝑀𝑞

after𝑀 ′𝛼2

Figure 2: An example run of Algorithm 3 on the circuit in Figure 3.

computed, we check it by observing whether bases mapping to the
same symbolic variable in𝑀𝛼 also map to the same update in𝑀′𝛼 . If
not, we introduce more symbolic variables (for the differing bases)
and run the algorithm again, until the condition holds.

The formal algorithm is given in Algorithm 3. In the algorithm,
we use the following formal notation: 𝑓 [𝑝1, . . . , 𝑝𝑘] denotes the
closure of function 𝑓 with parameters 𝑝1, . . . , 𝑝𝑘 assigned to the
variables in the Data declaration of 𝑓 (passed by reference). Given
a (partial) function 𝑓 of the type 𝑓 : 𝑋 ⇀ 𝑌 , we use rng(𝑓) to denote
the range of 𝑓 , i.e., the set {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑦}. Moreover,
given an 𝑥 ∈ 𝑋 , if there is no (𝑥,𝑦) ∈ 𝑓 , we write 𝑓 (𝑥) = ⊥.

Example 1. We first demonstrate a run of the algorithm on the
example circuit in Figure 3. The circuit starts in state 𝑞 with 𝑥 = 1
and 𝑦 = 0. Then, it performs 𝐾 executions of the loop body 𝐶 . In
each execution of the loop body, first, the T gate is applied to 𝑥 ,
performing the multiplication of its |1⟩ amplitude by 𝜔 and then
CNOT of 𝑦 controlled by 𝑥 is performed. Therefore, the resulting
state after 𝐾 executions is 𝐾𝜔 |11⟩ if 𝐾 is odd and 𝐾𝜔 |10⟩ if 𝐾 is
even. The run of Algorithm 3 on the circuit is shown in Figure 2.
𝑀𝑞 is in Figure 2a. In Figure 2b, we can see the initial abstrac-

tion 𝑀𝛼1 of 𝑀𝑞 after Line 2; in this case, 𝛼1 = {0 ↦→ 𝑎, 1 ↦→ 𝑏}
for symbolic variables 𝑎 and 𝑏. Then, we run (Line 5) the loop
body with𝑀𝛼1 , obtaining first the tree in Figure 2c (after 𝑇𝑥) and
then the tree𝑀′𝛼1 in Figure 2d (after CNOT𝑥𝑦). Then, when we call
apply(𝑀𝛼1 , 𝑀

′
𝛼1 , refine[𝜏1, 𝜎1, 𝛼1]) at Line 8, we realize that the

inital abstraction 𝛼1 was too coarse (going from left to right, we
will construct 𝜏1 = {𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑎𝜔} for bases |00⟩, |01⟩, and
|10⟩; then, when processing |11⟩, which would give us 𝑎 ↦→ 𝑏𝜔 ,
which is in conflict with 𝑎 ↦→ 𝑎, we will introduce a new sym-
bolic variable 𝑐 for the base |11⟩ and obtain a new abstraction𝑀𝛼2
(cf. Figure 2e). Then, in the second iteration of the refinement loop,
we will run the loop body on 𝑀𝛼2 (cf. Figure 2f), obtaining 𝑀′𝛼2 .
Running apply(𝑀𝛼2 , 𝑀

′
𝛼2 , refine[𝜏2, 𝜎2, 𝛼2]) will not find any in-

consistency this time (𝜏2 = {𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑐𝜔, 𝑐 ↦→ 𝑏𝜔}), so we can
terminate the refinement. Applying 𝑀′𝛼2 on 𝑀𝑞 with 𝜏2 once, we
obtain the tree in Figure 2g. □

𝐶1 𝐶2

𝑥 : |1⟩ T T

𝑦 : |0⟩
. . .

Figure 3: An example circuit for loop summarization

Formally, the algorithm computes a summary for a sequence of
gates𝐶 w.r.t. a quantum state𝑞 (represented by anMTBDD𝑀𝑞). The
summary is a pair (𝑀𝛼 , 𝜏) where𝑀𝛼 is a stable abstraction of𝑀𝑞

(w.r.t. 𝐶) and 𝜏 denotes how the symbolic variables should be up-
dated during one loop iteration, computed as follows. On Line 2, we
perform the initial abstraction of𝑀𝑞 , obtaining an MTBDD𝑀refined

𝛼
with one symbolic variable from S (the set of symbolic variables) for
every amplitude occurring in𝑀𝑞 (the mapping is remembered in 𝛼).
Then, we execute the sequence of gates 𝐶 over 𝑀𝑞 obtaining 𝑀′𝑞 ,
where the resulting amplitudes are represented by symbolic terms
over S (Line 5). On Line 8, we collect into 𝜏 the information about
how the symbolic variables were updated and check whether all
bases mapping to the same symbolic variable are updated in the
same way—if not (on Line 19, we emphasize that we do not just
check the identity of the two symbolic terms but, instead, check
their semantic equivalence), we refine the abstraction (by introduc-
ing new symbolic variables for bases that have a different update)
and try again. When we reach the fixpoint, we return the resulting
abstracted MTBDD𝑀𝛼 together with the updates 𝜏 .

5 IMPLEMENTATION
We implemented the proposed techniques in a prototype called
Medusa [22]. Medusa is written in C and uses Sylvan [31] for
handling MTBDDs and the GNU GMP library [1] for handling
integers of arbitrary length. We use two configurations of Medusa:
with (Medusaloop) and without (Medusabase) loop summarization.

To achieve accuracy, we represent complex numbers algebraically
as proposed in [37] and first realized in [30] (used also later in [11,
12]). The algebraic representation is given by the form

(1√
2

)
𝑘 (𝑎 + 𝑏𝜔 + 𝑐 𝜔2 + 𝑑 𝜔3), (1)

where 𝑎, 𝑏, 𝑐 , 𝑑 , and 𝑘 are integers. A complex number is then rep-
resented by a five-tuple (𝑎, 𝑏, 𝑐, 𝑑, 𝑘). Although it only represents
a countable subset of C, it can approximate any complex number
up to a specified precision and suffices to support a set of quantum
gates for universal quantum computation. The algebraic represen-
tation also allows for efficient encoding of some operations. For
example, because 𝜔4 = −1, the multiplication of (𝑎, 𝑏, 𝑐, 𝑑, 𝑘) by
𝜔 can be carried out by a simple right circular shift of the first
four entries and then taking the opposite number for the first en-
try, namely (−𝑑, 𝑎, 𝑏, 𝑐, 𝑘), which represents the complex number(1√

2
)𝑘 (−𝑑 + 𝑎𝜔 + 𝑏𝜔2 + 𝑐 𝜔3).

222

ICCAD ’24, October 27–31, 2024, New York, NY, USA Tian-Fu Chen, Yu-Fang Chen, Jie-Hong Roland Jiang, Sára Jobranová, and Ondřej Lengál

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of qubits

0

500

1000

1500

2000

2500

3000

3500

Ru
nt

im
e

[s
]

MEDUSA-loop
MEDUSA-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD
Quasimodo BDD

(a) Grover’s search

10 15 20 25 30 35 40 45
Number of qubits

0

500

1000

1500

2000

Ru
nt

im
e

[s
]

MEDUSA-loop
MEDUSA-base
SliQSim
DDSIM
Quasimodo WBDD

(b) Period finding

12 14 16 18 20
Number of qubits

0

200

400

600

800

Ru
nt

im
e

[s
]

MEDUSA-loop
MEDUSA-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD

(c) Quantum counting
Figure 4: Runtimes of the simulators on the Loops benchmark.

6 EXPERIMENTAL RESULTS
Simulators. We compared the performance of Medusa against

the following state-of-the-art quantum circuit simulators: SliQSim [30],
Quasimodo [28], DDSIM [38] (v1.21.0), and Quokka# [24]. For
Quasimodo, which contains 3 different backends (BDD, WBDD,
and CFLOBDD), we use Quas[𝐵] to denote the version that uses
backend 𝐵 (we note that its WBDD backend uses a decision diagram
package from DDSIM). To the best of our knowledge, onlyMedusa
and SliQSim perform accurate simulation (using algebraic encoding
of complex numbers) while the other tools use floating-point num-
bers (with possible numerical errors). The importance of accurate
simulation has been demonstrated in applications such as quantum
circuit equivalence checking [34]. All experiments were conducted
on a server with two Intel Xeon X5650 (2.67GHz) CPUs, 32GiB of
RAM running Debian GNU/Linux 12, with the timeout of 60min.

Benchmarks. We performed experiments on the following two
benchmark sets of quantum circuits in OpenQASM:
• Loops: This benchmark set contains circuits containing loops
with fixed numbers of iterations. The particular circuits are
implementations of Grover’s search algorithm [19] (with
a single solution), quantum counting [8], and period find-
ing [23], the last two without the final inverse quantum
Fourier transform (QFT)2. For quantum counting and period
finding, we created several families of circuits with increas-
ing size, denoted as ⟨𝐹𝑅⟩_⟨𝑆𝑅⟩_⟨𝑀𝑇 ⟩, where 𝐹𝑅 denotes the
number of qubits in the first register, 𝑆𝑅 denotes the number
of qubits in the second register (cf. [8]), and𝑀𝑇 denotes the
number of randomly generated multi-control Toffoli gates in
the oracle. We always set 𝑆𝑅 =

⌊
𝐹𝑅
2
⌋
and 𝑀𝑇 ∈ {5, 10, 15}.

We unfolded the loops for tools that did not support them.
• StraightLine: This benchmark set contains circuits with-
out loops implementing Bernstein-Vazirani’s algorithm [6]
(from 2 to 100 qubits { 99 circuits), multi-control Toffoli
gates (from 6 to 198 qubits with a step of 2{ 97 circuits),

2We did not include the inverse QFT because it requires rotations by 𝜋
2𝑛 for arbitrary𝑛,

which are not supported by our prototype, since it uses the algebraic encoding of
complex numbers from Sec. 5. Note that this is not a conceptual limitation; one could
solve it precisely by, e.g., dynamically refining the algebraic encoding to use finer base
rotation than 𝜋

4 , in particular 𝜋
2𝑛 , or, not preserving accuracy, one could convert the

algebraic encoding into floating-point numbers and continue with them. We wish to
develop such solutions in our future work.

benchmarks from the toolkit Feynman [3] (43 circuits), multi-
oracle version of Grover’s search (without loops; 9 circuits;
MOG) from [2], randomly generated circuits from [2] (97 cir-
cuits), RevLib benchmarks [35] (80 circuits), and modifica-
tions of certain RevLib benchmarks from [30] (16 circuits)
denoted as RevLib-H (these were obtained by inserting an
H gate at each unassigned input).

The experiments measured the time it took for the final quantum
state to be obtained in the given representation exceptQuokka#,
where we measured the time to obtain the probability of the first
qubit being zero (Quokka# does not compute representations of
quantum states). The benchmarks did not contain measurements.
A reproduction package for the experiments is available at [10].

Research questions. We were interested in the following two key
research questions related to the proposed approach.

RQ1 What is the impact of loop summarization on the perfor-
mance of quantum simulators?

RQ2 How does the MTBDD-based representation with custom
gate operations compare to other simulators?

RQ1: Loop Summarization
For answering the first research question, which is the main tar-
get of this paper, we ran the simulators on the Loops benchmark
set. The results can be seen in Figure 4 (for period finding and
quantum counting, we show results for the families of circuits with
oracle composed of 5 random multi-control Toffoli gates). More-
over, in Table 1, we give selected concrete results (we included for
every simulator the largest circuit in the family where it finished).
Quokka# is not included since it did not finish on any of the circuits.
We also encountered some issues when running Quas[CFLOBDD]
(internal error) andQuas[BDD] (incorrect implementation of the
multi-control Toffoli mcx gate), which are labelled as ERR .

We first focus on comparing the performance ofMedusaloop and
Medusabase , which differ only in loop summarization. The results
show that in all three algorithms,Medusaloop scales much better
thanMedusabase—it manages to simulate circuits of a size (the num-
ber of gates) one to three orders of magnitude larger. According to
the results, the amount of necessary computation is significantly
decreased, so we believe we can expect a similar behaviour if loop

223

AcceleratingQuantum Circuit Simulation with Symbolic Execution and Loop Summarization ICCAD ’24, October 27–31, 2024, New York, NY, USA

Table 1: Results for the Loops benchmark set (for every family, we include circuits which were the largest ones that some of the
simulators managed to simulate before timeout). The columns “#q” and “#G” denote the number of qubits and gates (after loop
unrolling) respectively. Times are given in seconds (“0” denotes a time <0.5 s), memory in MiB. TO denotes a timeout, ERR
denotes an error, num denotes the fastest time, and num denotes the fastest accurate simulator (Medusa or SliQSim).

Medusaloop Medusabase SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD]
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

Gr
ov
er

7 14 480 0 99 0 37 0 12 0 30 0 463 0 444 1 445
11 22 3,337 0 122 0 42 1 12 0 34 37 774 0 450 TO TO
14 28 12,115 0 145 1 56 17 13 1 50 3,530 9,532 0 470 TO TO
20 40 140,721 0 187 32 387 3,176 25 12 118 TO TO 73 769 TO TO
22 44 310,367 0 196 85 1,088 TO TO 32 254 TO TO 583 1,083 TO TO
23 46 461,646 0 200 136 1,735 TO TO TO TO TO TO 1,750 1,708 TO TO
29 58 4,676,916 2 214 2,190 10,032 TO TO TO TO TO TO TO TO TO TO
40 80 292,359,936 3,290 251 TO TO TO TO TO TO TO TO TO TO TO TO

Pe
rio

d
Fi
nd

in
g 16_08_05 24 1,507,322 83 600 8 24 23 130 4 1,235 ERR ERR 7 449 ERR ERR

19_09_15 28 39,321,545 109 2,154 247 32 587 3,002 178 31,144 ERR ERR 198 452 ERR ERR
22_11_05 33 146,800,628 125 922 1,830 38 2,046 10,293 TO TO ERR ERR 849 454 ERR ERR
22_11_15 33 448,790,444 128 1,662 3,020 27 TO TO TO TO ERR ERR 2,650 454 ERR ERR
31_15_15 46 277,025,390,495 673 1,973 TO TO TO TO TO TO ERR ERR TO TO ERR ERR

Co
un

tin
g 10_05_05 16 40,937 45 2,115 3 83 60 15 0 42 4 459 0 446 ERR ERR

11_05_05 17 81,898 52 2,116 5 109 TO TO 0 65 TO TO 0 447 ERR ERR
12_06_15 19 376,760 250 7,691 TO TO TO TO 1,280 294 TO TO TO TO ERR ERR
13_06_15 20 753,593 919 9,502 TO TO TO TO TO TO TO TO TO TO ERR ERR

summarization is implemented for other representations. There-
fore, the answer to RQ1 is that the impact of loop summarization is
profound for the performance of the simulator on circuits with loops.

Let us also compare the performance with the other simulators
in this benchmark set. We can see that in the case of Grover’s algo-
rithm (Figure 4a),Medusaloop managed to verify instances of a size
far beyond the capabilities of any other simulator, in particular
80 qubits. The second best-performing simulator was Medusabase ,
which scaled up to 58 qubits, followed byQuas[WBDD] (46 qubits),
DDSIM (44 qubits), and SliQSim (40 qubits). The situation is sim-
ilar for period finding (Figure 4b), where Medusaloop can scale
up to 46 qubits, while the second best ones, Quas[WBDD] and
Medusabase , can scale only to 33 qubits. Let us note the size of the
largest period finding circuit thatMedusaloop managed to simulate
in 12 minutes: over 277 billion gates. To the best of our knowledge,
no existing quantum simulator is able to scale up to circuits of this
size. Similar situation repeats for quantum counting,Medusaloop
can, again, scale up to circuits of complexities that no other simula-
tor could handle (although, due to the complexity of the circuits, it
does not perform so well on smaller-sized circuits).

RQ2: MTBDD-Based Simulator
To answer the second research question, in addition to the results
from the Loops benchmark set, we also evaluated the performance
of simulators on the StraightLine benchmark (these circuits did
not use loops, so we do not includeMedusaloop , since it would be
the same asMedusabase). Due to space limitations, we present only
selected results. We chose circuits that took over one second to
finish for three better-performing toolsMedusabase , SliQSim, and
DDSIM. However, RevLib-H circuits were challenging for most
tools, except for SliQSim which solved 13 cases. Both Medusabase
and DDSIM solved 5 cases in RevLib-H. SliQSim splits amplitude
values into bits and uses multiple BDDs to store a quantum state,
resulting in better compression in this benchmark. Instead of show-
ing a large table filled with TO , we show only the 5 solved cases

in RevLib-H and refer readers to [30] for a more extensive compar-
ison of SliQSim and DDSIM. Note that some tools had issues on
some of the benchmarks due to unsupported gates.

The results show thatMedusabase is competitive to other simula-
tors and in many cases, especially for the challenging benchmarks
from Feynman, is the best available accurate simulator. For the
Loops benchmark, as mentioned previously, Medusabase is per-
forming well also compared to other simulators: it is the best one
on Grover and performs well also on the other two (it beats SliQSim,
the only other accurate simulator). To conclude, the answer to RQ2
is that the MTBDD-based representation with custom gate operations
is competitive to other simulators, often complementary to SliQSim.

7 RELATEDWORK
DDSIM [38] is a quantum circuit simulator based on quantum
multiple-valued decision diagrams (QMDDs) [25], which support
representation and multiplication of state vectors and operator
matrices. In [21], a QMDD variant, called tensor decision diagrams
(TDDs), is proposed to allow tensor-network-like quantum circuit
simulation. The TDD performance is comparable to DDSIM [21].

SliQSim [30] exploits the standard reduced ordered binary deci-
sion diagrams (ROBDDs) [9] to represent quantum states exactly
with an algebraic number system and achieves precise quantum op-
erations through Boolean formula manipulation. Note that similarly
to Medusa, the supported quantum gate set of SliQSim, though
universal, is restricted to those algebraically representable.

The paper [12] proposes verification of quantum circuits using
tree automata to model their pre- and post-conditions. This method
helps create an automatic verification framework that checks the
correctness of the quantum circuit against a user-specified specifica-
tion. Tree automata, similarly to decision diagrams, can efficiently
represent identical subtrees using the same structure. Furthermore,
they can use non-deterministic choice to represent multiple states
in the same structure. We took inspiration from their extension to
symbolic amplitudes in [11] to develop our symbolic execution.

224

ICCAD ’24, October 27–31, 2024, New York, NY, USA Tian-Fu Chen, Yu-Fang Chen, Jie-Hong Roland Jiang, Sára Jobranová, and Ondřej Lengál

Table 2: Selection of results for the StraightLine benchmark. The columns “#q” and “#G” denote the number of qubits and
gates respectively. Times are given in seconds (“0.00” denotes a time <0.01 s), memory in MiB. TO denotes a timeout, ERR
denotes an error, num denotes the fastest time, and num denotes the fastest accurate simulator (Medusa or SliQSim). We
do not mark Quokka# as the fastest because it does not compute the quantum state representation.

Medusabase SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

Fe
yn

ma
n

gf232_mult 96 3,322 0.26 39 1.34 12 0.10 70 0.72 459 0.11 501 0.91 449 0.86 45
gf264_mult 192 12,731 1.82 65 17.11 19 0.74 126 2.76 463 0.68 600 4.35 461 3.56 148
gf2128_mult 384 50,043 20.40 231 264.81 37 5.28 234 10.70 477 4.76 1,158 27.40 498 15.39 570
gf2256_mult 768 198,395 163.00 1,634 TO TO 41.21 538 42.50 531 38.50 4,988 231.00 632 71.28 2,324
hwb8 12 6,446 0.16 38 3.69 12 0.03 33 1.04 460 0.03 443 1.09 443 TO TO
hwb10 16 31,764 0.79 50 84.20 15 0.21 38 4.74 465 0.22 447 1.70 445 TO TO
hwb11 15 87,789 2.64 103 660.92 22 0.49 70 12.70 474 0.51 448 1.59 448 TO TO
hwb12 20 171,482 5.80 204 2,568.02 34 1.13 132 26.90 509 1.35 455 6.48 457 3,193.78 1,069

M
O
G 10 30 2,433 0.20 41 1.25 12 0.07 34 9.50 594 0.05 456 TO TO 62.68 40

11 33 3,746 0.36 44 3.12 12 0.12 42 52.00 905 0.08 462 TO TO 167.00 56

Ra
nd

om

85 85 255 0.99 51 0.46 14 2.11 63 ERR ERR 0.10 485 ERR ERR 0.03 12
86 86 258 15.30 213 0.47 14 2.24 72 ERR ERR 3.25 553 ERR ERR 0.07 12
89 89 267 9.48 105 0.67 14 0.72 65 ERR ERR 0.59 491 ERR ERR 0.06 12
93 93 279 1.68 61 0.32 13 0.18 67 ERR ERR 0.10 493 ERR ERR 0.04 12
94 94 282 79.60 337 0.77 17 4.45 76 ERR ERR 74.30 521 ERR ERR 0.07 12
97 97 291 5.70 117 0.42 13 1.46 77 ERR ERR 0.42 524 ERR ERR 0.03 12
99 99 297 9.58 173 0.38 12 2.61 78 ERR ERR 0.67 525 ERR ERR 0.08 12

Re
vL

ib

apex5_290 1,025 2,909 1.75 61 0.37 43 1.02 535 0.30 466 1.33 1,214 4.16 516 2.10 72
cps_292 923 2,763 1.19 57 0.20 30 1.25 484 0.24 464 1.09 1,035 2.99 527 1.38 59
frg2_297 1,219 3,724 2.32 93 0.49 48 1.51 633 0.36 468 1.90 1,307 6.32 497 2.15 84
seq_314 1,617 5,990 4.96 97 1.35 108 4.11 834 0.62 476 3.71 1,775 13.90 536 3.65 124

Re
vL

ib
-H

add64_184 193 385 0.19 203 0.02 13 0.09 117 ERR ERR 0.07 545 ERR ERR ERR ERR
cpu_register_32_405 328 890 0.46 213 0.08 14 0.41 194 ERR ERR 0.70 668 ERR ERR ERR ERR
e64-bdd_295 195 452 1.98 238 2.48 13 2.00 126 0.65 476 0.54 613 ERR ERR ERR ERR
ex5p_296 206 655 7.61 283 12.02 21 3.56 132 ERR ERR 1.15 691 ERR ERR ERR ERR
hwb9_304 170 708 33.00 662 13.50 20 12.16 114 ERR ERR 4.90 1,105 ERR ERR ERR ERR

SymQV [5] encodes quantum circuit verification problems into
SMT with the theory of real numbers, using variables in trigono-
metric functions, which might lose precision in corner cases. Their
approach requires 2𝑛 variables to encode a 𝑛-qubit circuit in the
worst case. A polynomial SMT encoding of quantum circuits was
introduced in [13], where an extension of array theory, named the
theory of cartesian arrays (CaAL), was proposed and used to encode
quantum gates. Both methods are effective only for small circuits.

Quasimodo [28] is a simulation tool with multiple backends,
including BDDs, weighted BDDs (using the backend of DDSIM),
and context-free language ordered binary decision diagrams (CFLOB-
DDs) [29], which combine BDDs with pushdown automata.

Hong et al. [20] proposed symbolic TDDs (symTDDs) for symbol-
ically executing and representing quantum circuits and quantum
states. However, in quantum circuit simulation, parameters are
typically predetermined, making this approach useful mainly for
parameterized quantum circuit equivalence checking.

Quokka# [24] extended the standard stabilizer formalism [17]
to present a general pure state using its stabilizers. The representa-
tion circumvents complex numbers and only requires manipulating
weights in real (possibly negative) numbers for the supported quan-
tum gate operations. Thereby, quantum circuit simulation can be
encoded into a weighted model counting problem. Quokka# only
supports Clifford+T and rotation gates (which is, however, univer-
sal). Experimental results show the advantages of Quokka# on
certain benchmarks such as quantum Fourier transform (QFT).

Although Clifford circuits should be efficiently simulatable ac-
cording to the Gottesman–Knill theorem [18], simulating them in

decision diagrams may suffer from exponential growth in size. To
overcome this problem, Vinkhuijzen et al. [32, 33] proposed the local
invertible map decision diagrams (LIMDDs), a data structure based
on QMDDs that further merges nodes that are equivalent up to
a local invertible map (LIM). LIMDDs successfully combine decision
diagrams and the stabilizer formalism, and they efficiently over-
come the challenge of exponential growth in decision diagrams on
Clifford circuits. The authors of [32, 33] demonstrated that LIMDDs
are more scalable in simulating QFT circuits than QMDDs.
8 CONCLUSION
We presented a technique for accelerating the simulation of quan-
tum circuits with loops by computing the loops’ summaries using
symbolic execution. The experiments show that this technique en-
ables the simulation of quantum circuits previously believed to
be infeasible. In the future, we wish to further develop the loop
summarization by integrating it with other data structures. More-
over, we wish to look at the problem of automatically generalizing
a computed summary into a closed form (such as the description
“𝐾𝜔 |11⟩ if 𝐾 is odd and 𝐾𝜔 |10⟩ if 𝐾 is even” from Example 1), and
use the technique also in the verification framework of [12].

ACKNOWLEDGMENTS
This work was supported by the CzechMinistry of Education, Youth
and Sports ERC.CZ project LL1908, the Czech Science Foundation
project 23-07565S, the FIT BUT internal project FIT-S-23-8151, the
National Science and Technology Council of Taiwan under grant
113-2119-M-002-024, and the NTUCenter of Data Intelligence: Tech-
nologies, Applications, and Systems under grant NTU-113L900903.

225

AcceleratingQuantum Circuit Simulation with Symbolic Execution and Loop Summarization ICCAD ’24, October 27–31, 2024, New York, NY, USA

REFERENCES
[1] 2022. GMP: The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
[2] 2024. The AutoQ repository. https://github.com/alan23273850/AutoQ/
[3] Matthew Amy. 2018. Towards Large-scale Functional Verification of Universal

Quantum Circuits. In Proceedings 15th International Conference on Quantum
Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018 (EPTCS), Peter
Selinger and Giulio Chiribella (Eds.), Vol. 287. 1–21. https://doi.org/10.4204/
EPTCS.287.1

[4] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, et al. 1997. Algebraic Decision
Diagrams and Their Applications. FMSD 10, 2/3 (1997), 171–206. https://doi.org/
10.1023/A:1008699807402

[5] Fabian Bauer-Marquart, Stefan Leue, and Christian Schilling. 2023. symQV:
Automated Symbolic Verification of Quantum Programs. In Formal Methods - 25th
International Symposium, FM 2023, Lübeck, Germany, March 6-10, 2023, Proceedings
(Lecture Notes in Computer Science), Marsha Chechik, Joost-Pieter Katoen, and
Martin Leucker (Eds.), Vol. 14000. Springer, 181–198. https://doi.org/10.1007/978-
3-031-27481-7_12

[6] Ethan Bernstein and Umesh V. Vazirani. 1993. Quantum complexity theory. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
May 16-18, 1993, San Diego, CA, USA, S. Rao Kosaraju, David S. Johnson, and Alok
Aggarwal (Eds.). ACM, 11–20. https://doi.org/10.1145/167088.167097

[7] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. 2002. Quantum
amplitude amplification and estimation. InQuantum computation and information
(Washington, DC, 2000). Contemp. Math., Vol. 305. Amer. Math. Soc., Providence,
RI, 53–74. https://doi.org/10.1090/conm/305/05215

[8] Gilles Brassard, Peter Høyer, and Alain Tapp. 1998. Quantum Counting. In Au-
tomata, Languages and Programming, 25th International Colloquium, ICALP’98,
Aalborg, Denmark, July 13-17, 1998, Proceedings (Lecture Notes in Computer Sci-
ence), Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel (Eds.), Vol. 1443.
Springer, 820–831. https://doi.org/10.1007/BFB0055105

[9] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Computers 35, 8 (1986), 677–691. https://doi.org/10.1109/TC.
1986.1676819

[10] Tian-Fu Chen, Yu-Fang Chen, Jie-Hong Jiang, Sára Jobranová, and Ondřej Lengál.
2024. Artifact for the ICCAD’24 paper "Accelerating Quantum Circuit Simulation
with Symbolic Execution and Loop Summarization". https://doi.org/10.5281/
zenodo.13243595

[11] Yu-Fang Chen, Kai-Min Chung, Ondrej Lengál, Jyun-Ao Lin, and Wei-Lun Tsai.
2023. AutoQ: An Automata-Based Quantum Circuit Verifier. In Computer Aided
Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part III (Lecture Notes in Computer Science), Constantin Enea
and Akash Lal (Eds.), Vol. 13966. Springer, 139–153. https://doi.org/10.1007/978-
3-031-37709-9_7

[12] Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and
Di-De Yen. 2023. An Automata-Based Framework for Verification and Bug
Hunting in Quantum Circuits. Proc. ACM Program. Lang. 7, PLDI, Article 156
(jun 2023), 26 pages. https://doi.org/10.1145/3591270

[13] Yu-Fang Chen, Philipp Rümmer, and Wei-Lun Tsai. 2023. A Theory of Cartesian
Arrays (with Applications in Quantum Circuit Verification). In International
Conference on Automated Deduction. Springer, 170–189.

[14] Bob Coecke and Ross Duncan. 2008. Interacting Quantum Observables. In Au-
tomata, Languages and Programming, 35th International Colloquium, ICALP 2008,
Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foundations
(Lecture Notes in Computer Science), Luca Aceto, Ivan Damgård, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.),
Vol. 5126. Springer, 298–310. https://doi.org/10.1007/978-3-540-70583-3_25

[15] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S.
Bishop, Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M.
Gambetta, and Blake R. Johnson. 2022. OpenQASM 3: A Broader and Deeper
Quantum Assembly Language. ACM Transactions on Quantum Computing 3, 3,
Article 12 (sep 2022), 50 pages. https://doi.org/10.1145/3505636

[16] Masahiro Fujita, Patrick C. McGeer, and Jerry Chih-Yuan Yang. 1997. Multi-
Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix
Representation. Formal Methods Syst. Des. 10, 2/3 (1997), 149–169. https://doi.
org/10.1023/A:1008647823331

[17] Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. Ph.D.
Dissertation. California Institute of Technology.

[18] Daniel Gottesman. 1998. The Heisenberg representation of quantum computers.
arXiv preprint quant-ph/9807006 (1998).

[19] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, Gary L. Miller (Ed.).
ACM, 212–219. https://doi.org/10.1145/237814.237866

[20] X. Hong, W. Huang, W. Chien, Y. Feng, M. Hsieh, S. Li, C. Yeh, and M. Ying. 2023.
Decision Diagrams for Symbolic Verification of Quantum Circuits. In 2023 IEEE
International Conference on Quantum Computing and Engineering (QCE). IEEE

Computer Society, Los Alamitos, CA, USA, 970–977. https://doi.org/10.1109/
QCE57702.2023.00111

[21] Xin Hong, Xiangzhen Zhou, Sanjiang Li, Yuan Feng, and Mingsheng Ying. 2022.
A Tensor Network based Decision Diagram for Representation of Quantum
Circuits. ACM Trans. Des. Autom. Electron. Syst. 27, 6, Article 60 (jun 2022),
30 pages. https://doi.org/10.1145/3514355

[22] Sára Jobranová. 2024. The Medusa repository. https://github.com/s-jobra/
MEDUSA/

[23] Alexei Y. Kitaev. 1996. Quantum measurements and the Abelian Stabilizer Prob-
lem. Electron. Colloquium Comput. Complex. TR96-003 (1996). ECCC:TR96-003
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html

[24] Jingyi Mei, Marcello Bonsangue, and Alfons Laarman. 2024. Simulating Quantum
Circuits by Model Counting. In Computer Aided Verification - 36th International
Conference, CAV 2024, Montreal, Canada, July 22-27, 2024, Proceedings, Part III
(Lecture Notes in Computer Science), Arie Gurfinkel and Vijay Ganesh (Eds.),
Vol. 14683. Springer, 555–578.

[25] Philipp Niemann, Robert Wille, D. Michael Miller, Mitchell A. Thornton, and
Rolf Drechsler. 2016. QMDDs: Efficient Quantum Function Representation and
Manipulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 1 (2016),
86–99. https://doi.org/10.1109/TCAD.2015.2459034

[26] Hans De Raedt, Fengping Jin, Dennis Willsch, Madita Nocon, Naoki Yoshioka,
Nobuyasu Ito, Shengjun Yuan, and Kristel Michielsen. 2019. Massively parallel
quantum computer simulator, eleven years later. Comput. Phys. Commun. 237
(2019), 47–61. https://doi.org/10.1016/J.CPC.2018.11.005

[27] Peter W. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms
and Factoring. In 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, NewMexico, USA, 20-22 November 1994. IEEE Computer Society, 124–134.
https://doi.org/10.1109/SFCS.1994.365700

[28] Meghana Sistla, Swarat Chaudhuri, and Thomas W. Reps. 2023. Symbolic Quan-
tum Simulation with Quasimodo. In Computer Aided Verification - 35th Inter-
national Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
III (Lecture Notes in Computer Science), Constantin Enea and Akash Lal (Eds.),
Vol. 13966. Springer, 213–225. https://doi.org/10.1007/978-3-031-37709-9_11

[29] Meghana Aparna Sistla, Swarat Chaudhuri, and Thomas Reps. 2023. CFLOBDDs:
Context-free-language ordered binary decision diagrams. ACM Transactions on
Programming Languages and Systems (2023).

[30] Yuan-Hung Tsai, Jie-Hong R. Jiang, and Chiao-Shan Jhang. 2021. Bit-Slicing
the Hilbert Space: Scaling Up Accurate Quantum Circuit Simulation. In 58th
ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA,
December 5-9, 2021. IEEE, 439–444. https://doi.org/10.1109/DAC18074.2021.
9586191

[31] Tom van Dijk and Jaco van de Pol. 2017. Sylvan: multi-core framework for
decision diagrams. Int. J. Softw. Tools Technol. Transf. 19, 6 (2017), 675–696.
https://doi.org/10.1007/S10009-016-0433-2

[32] Lieuwe Vinkhuijzen, Tim Coopmans, David Elkouss, Vedran Dunjko, and Al-
fons Laarman. 2023. LIMDD: A Decision Diagram for Simulation of Quan-
tum Computing Including Stabilizer States. Quantum 7 (2023), 1108. https:
//doi.org/10.22331/Q-2023-09-11-1108

[33] Lieuwe Vinkhuijzen, Thomas Grurl, Stefan Hillmich, Sebastiaan Brand, Robert
Wille, and Alfons Laarman. 2023. Efficient Implementation of LIMDDs for Quan-
tum Circuit Simulation. In Model Checking Software - 29th International Sym-
posium, SPIN 2023, Paris, France, April 26-27, 2023, Proceedings (Lecture Notes in
Computer Science), Georgiana Caltais and Christian Schilling (Eds.), Vol. 13872.
Springer, 3–21. https://doi.org/10.1007/978-3-031-32157-3_1

[34] Chun-Yu Wei, Yuan-Hung Tsai, Chiao-Shan Jhang, and Jie-Hong R. Jiang. 2022.
Accurate BDD-based unitary operator manipulation for scalable and robust quan-
tum circuit verification. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC ’22). Association for Computing Machinery, New York, NY,
USA, 523–528. https://doi.org/10.1145/3489517.3530481

[35] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler.
2008. RevLib: An Online Resource for Reversible Functions and Reversible
Circuits. In 38th IEEE International Symposium on Multiple-Valued Logic (ISMVL
2008), 22-23 May 2008, Dallas, Texas, USA. IEEE Computer Society, 220–225.
https://doi.org/10.1109/ISMVL.2008.43

[36] Alwin Zulehner, Stefan Hillmich, and Robert Wille. 2019. How to Efficiently Han-
dle Complex Values? Implementing Decision Diagrams for Quantum Computing.
In Proceedings of the International Conference on Computer-Aided Design, ICCAD
2019, Westminster, CO, USA, November 4-7, 2019, David Z. Pan (Ed.). ACM, 1–7.
https://doi.org/10.1109/ICCAD45719.2019.8942057

[37] Alwin Zulehner, Philipp Niemann, Rolf Drechsler, and Robert Wille. 2019. Ac-
curacy and Compactness in Decision Diagrams for Quantum Computation.
In 2019 Design, Automation and Test in Europe Conference (DATE). 280–283.
https://doi.org/10.23919/DATE.2019.8715040

[38] Alwin Zulehner and Robert Wille. 2019. Advanced Simulation of Quantum
Computations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38, 5 (2019),
848–859. https://doi.org/10.1109/TCAD.2018.2834427

226

	Contents
	Introduction
	Büchi Automata Complementation
	Improving Rank-Based Büchi Complementation
	Complementation of Special Classes of BAs
	Complementation of BAs via SCC Decomposition

	Finite Automata in NIDS
	The Automata-Logic Connection
	Deciding Monadic Second-Order Logics
	Deciding Quantified Presburger Arithmetic

	Theory of Strings
	String Solving using Regular Model Checking
	Stabilization-based String Solving

	Analysis of Quantum Circuits
	Conclusion
	Bibliography
	Selected Papers
	Sky Is Not the Limit: Tighter Rank Bounds for Elevator Automata in Büchi Automata Complementation
	Modular Mix-and-Match Complementation of Büchi Automata
	Advanced Automata-Based Algorithms for Program Termination Checking
	Approximate Reduction of Finite Automata for High-Speed Network Intrusion Detection
	Automata Terms in a Lazy WSkS Decision Procedure
	A Symbolic Algorithm for the Case-Split Rule in Solving Word Constraints with Extensions
	An Automata-Based Framework for Verification and Bug Hunting in Quantum Circuits
	Accelerating Quantum Circuit Simulation with Symbolic Execution and Loop Summarization

