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Introduction

This thesis is based on author’s research during the years 2012-2024. It describes statistical

methods that can be used for analyzes of the so-called Type I left-censored data that follow

the Weibull distribution and the exponential distribution as its special case.

Chapter 1 describes various types of censoring. A special attention is paid to the

Type I left-censored data. Chapter 2 is based on Fusek and Michálek (2019) and describes

the Type I multiply left-censored Weibull distribution. The maximum likelihood method

is used for estimation of the unknown parameters. In order to describe variability of

the parameters’ estimates, the expected Fisher information matrix is derived. Behavior

of the estimators is analyzed using simulations in Section 2.1. Section 2.2 is based on

Fusek and Michálek (2016) and describes confidence intervals for the expected value of

the censored Weibull distribution. Confidence intervals based on the maximum likelihood

method and the bootstrap are compared using simulations. There are situations when

the Weibull distribution is unnecessarily complicated for modelling of real data and the

exponential distribution would be a suitable model. Section 2.3 is based on Fusek (2017)

and describes statistical tests for testing reduction of the censored Weibull distribution to

the exponential submodel. When dealing with real data, there are often situations when

we have two independent samples and want to compare, for example, expected values or

even distributions of the samples. On that account, we can extend the so-called one-sample

model of Chapter 2 to the two-sample model. Chapter 3 is focused on comparison of two

independent and identically distributed Type I left-censored Weibull samples. Section 3.1

is based on Fusek and Michálek (2014) and describes statistical tests for testing equality

of two left-censored Weibull distributions. Section 3.2 is based on Fusek and Michálek

(2015a) and describes statistical tests for testing equality of expectations of two left-

censored Weibull distributions. When we want to use the above-mentioned methods for

analyzing real data, we need to assume, that our data follow the Weibull distribution. In

order to verify such an assumption, we can use a goodness-of-fit test. Chapter 4 is based on

Fusek (2023) and describes goodness-of-fit tests for the Type I left-censored Weibull, log-

normal and gamma distributions, which are among the most frequently used distributions

for modelling of environmental data. Chapter 5 is focused on two applications of the Type

I left-censored Weibull distribution. Section 5.1 is based on Fusek and Michálek (2013)

and Fusek et al. (2015) and describes the modelling of musk compounds concentrations

iii



iv INTRODUCTION

in fish caught upstream and downstream the wastewater treatment plant. Section 5.2 is

based on Fusek et al. (2020) and describes the modelling of biogenic amines concentrations

in various fish species. Another application of the left-censored Weibull distribution can

be found in Mbengue et al. (2018) where it was used for modelling of elemental carbon

concentrations. In addition, Type I left-censored distributions were also applied in the

extreme value theory for estimation of the extremal index (Holešovský and Fusek, 2020,

2022). Brief details can be found in Appendix B.



Chapter 1

Censored Data

Censored data occur frequently in many application areas. When performing an exper-

iment, we can sometimes run into a situation that some of the measured values can be

reported only as less than some value, greater than some value, or as an interval. In such

cases we talk about left-censored, right-censored and interval-censored data. There are two

basic types of censoring, specifically the Type I and the Type II censoring.

The Type I censoring (time censoring) typically occurs in experiments that stop at

a prespecified time. The censoring level is known in advance and the number of censored

values is a random variable. For example, we have a certain number of light bulbs and

study if they fail before a prespecified time. The light bulbs that have not failed are

Type I right-censored. Another frequently used application of the Type I censoring is

as follows. We measure concentrations of a chemical compound in a sample and our

instrument (determination method, respectively) is not able to measure the concentrations

below a specified (detection) limit with a stated accuracy and precision. Such observations

are called Type I left-censored.

The Type II censoring (failure censoring) typically occurs in experiments that stop

when a prespecified number of failures are observed. The number of censored values is

known in advance and the censoring level is a random variable. As an example, we can

modify our light bulb experiment. Now we have a certain number of light bulbs and study

at what time a prespecified number of them fails. The light bulbs that have not failed are

Type II right-censored. Another application of the Type II censoring is as follows. We

conduct a study where the event of interest, e.g. infection with a sexually transmitted

disease, has already taken place at the time when the study starts, but the exact time of

occurrence of the event is not known. The exact time when the sickness started is Type II

left-censored.

The combination of Type I and Type II censoring is called the hybrid censoring and

it is often used in reliability analysis in life testing studies. In the Type I hybrid censoring

the experiment is terminated at a random time, specifically it stops either a) when a

prespecified number r out of n items fails (r < n), or b) when a prespecified time T is

1



2 CHAPTER 1. CENSORED DATA

reached. The disadvantage of the Type I hybrid censoring is that there may be very few

failures observed up to the prespecified time T , which can have negative influence on the

effectiveness of the statistical inference. The Type II hybrid censoring overcomes this issue

as it guarantees that at least r failures occurs by the end of the experiment. Specifically, if

r out of n items fails before time T , the experiment continues up to time T , which means

that there could be more than r failures in total. In case that r failures does not occur

before time T , the experiment continues until the time of the r-th failure. The disadvantage

of the Type II hybrid censoring is that it may take a long time to observe the required r

failures. To overcome disadvantages of both Type I and Type II hybrid censoring schemes,

the generalized hybrid censoring schemes can be used.

In case of the generalized Type I hybrid censoring, there is a prespecified time T and

two numbers of failures k, r such that k < r < n, where k is the minimal number and r is

the optimal number of failures required by the experimenter. It means that we would like

to observe r failures but k failures are good enough. If the k-th failure occurs before the

prespecified time T , the experiment ends either a) when r items fails, or b) when time T

is reached. If the k-th failure occurs after time T , the experiment continues until the time

of the k-th failure. In other words, the generalized Type I hybrid censoring allows us to

continue with the experiment in case very few failures are observed up to time T .

In case of the generalized Type II hybrid censoring, there is a prespecified number

of failures r and times T1, T2 such that T1 < T2. If the r-th failure is observed before

time T1, the experiment stops at time T1. If the r-th failure occurs between times T1 and

T2, the experiment stops at time of the r-th failure. If the r-th failure is observed after

time T2, the experiment stops at time T2. In other words, the generalized Type II hybrid

censoring guarantees that the experiment stops at time T2 at the latest. The generalized

hybrid censoring also has some drawbacks. For example, in case of the generalized Type I

hybrid censoring, there is no guarantee that r failures occur before time T . In case of the

generalized Type II hybrid censoring, there is a chance that no failures at all are observed

up to the time T2. To overcome these issues, the unified hybrid censoring, which combines

the generalized Type I and Type II hybrid censoring schemes and guarantees that the

experiment ends at most in time T2 with at least k failures, can be used. For more details

and additional information about other types of hybrid censoring (e.g., progressive hybrid

censoring, adaptive progressive censoring), see Balakrishnan and Kundu (2013).

1.1 Type I Left-Censored Data

When analyzing real data, it is often necessary to work with more than one censor-

ing level. In such case we talk about singly, doubly, or even multiply censored data.

This thesis is focused on Type I multiply left-censored data. Standard statistical meth-

ods for analyzing such data are usually based on an assumption that the measured
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variable has some probability distribution. The log-normal, the Weibull, the exponen-

tial, the generalized exponential, and the gamma distribution are usually used as model

distributions (Fusek and Michálek, 2015b, 2019; Gupta and Kundu, 1999; Helsel, 2012;

Mitra and Kundu, 2008; Schmoyeri et al., 1996; Singh et al., 2002). In order to esti-

mate unknown parameters of the distribution, the maximum likelihood (ML) method

(Barndorff-Nielsen and Cox, 1994; Lehmann and Casella, 1998), and the approach based

on regression on order statistics (Helsel, 2012; Shoari et al., 2015) are often used. In some

cases, it is also possible to convert left-censored data to right-censored, and use nonparamet-

ric methods for right-censored samples like the Kaplan-Meier estimator (Shumway et al.,

2002). In this thesis, attention is paid to the censored Weibull distribution, which is very

flexible and can be used for modelling of various engineering problems. With regards to

the terminology that is usually used in applications of these methods, censoring levels will

be called detection limits (DLs).

In general, it is necessary to be cautious when dealing with censored data. As pointed

out by Helsel (2012), an unsuitable approach can influence the results significantly. When

the censored values are ignored, a certain amount of information that can be obtained

from the data is lost. Moreover, such an approach yields biased estimates of parameters

in the model. For example, when censored values are omitted, the mean concentration of

a chemical compound is going to be overestimated. A common practice to circumvent this

issue is to replace censored values under the detection limits with a constant (e.g., 0, DL/2,

DL/
√
2,

√
DL, DL), and to analyze data with traditional methods such that the substituted

values are assumed to be observed (Guérin et al., 2011; Hoelzer et al., 2014; Munoz et al.,

2015; Struciński et al., 2015; Wu et al., 2011). Sometimes, censored values below DLs

are replaced by zero in the so-called lower bound scenario, and by the DLs, respectively,

in the upper bound scenario (Inthavong et al., 2017; Pardo et al., 2014). Performance of

methods based on replacement of censored observations for normally and log-normally

distributed data has previously been examined in El-Shaarawi and Esterby (1992), and it

was shown that it is not particularly good. Problems can be expected especially in case

of skewed data with small sample sizes (Shoari et al., 2015). More information about how

substituting values for censored observations can affect the results can be found in Helsel

(2006). Other studies (Hewett and Ganser, 2007; Hornung and Reed, 1990) claim that the

substitution-based method can perform reasonably well under certain circumstances. For

example, when the number of censored values is small (e.g., < 15%), the substitution

method can give results similar to other statistical methods for censored data.
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Chapter 2

Multiply Left-Censored Weibull

Distribution

Let X1, . . . , Xn be a random sample from the Weibull distribution with scale parameter

λ > 0, shape parameter τ > 0, cumulative distribution function (cdf)

F (x, λ, τ) =





1− exp
[
−
(
x
λ

)τ]
for x ≥ 0,

0 for x < 0,
(2.1)

and probability density function (pdf)

f(x, λ, τ) =





τ
λτ x

τ−1 exp
[
−
(
x
λ

)τ]
for x ≥ 0,

0 for x < 0.
(2.2)

The expected value µ, the variance σ2 and the skewness γ are

µ(λ, τ) = λΓ

(
1 +

1

τ

)
, (2.3)

σ2(λ, τ) = λ2Γ

(
1 +

2

τ

)
− µ2,

γ(λ, τ) =
λ3Γ

(
1 + 3

τ

)
− 3µσ2 − µ3

σ3
, (2.4)

where Γ is the gamma function.

Let X(1) ≤ · · · ≤ X(n) be the ordered sample of X1, . . . , Xn which is Type I multiply

left-censored with detection limits d1, . . . , dk and we put d0 = 0. Moreover, Ni is the number

of observations in the interval (di−1, di], i = 1, . . . , k, and N0 is the number of uncensored

observationsX(n−N0+1), . . . , X(n). In order to simplify notation in some formulas, we replace

log(x) by zero in case the natural logarithm is undefined.

Using results from Cohen (1991), the likelihood function of the Type I multiply left-

5



6 CHAPTER 2. MULTIPLY LEFT-CENSORED WEIBULL DISTRIBUTION

censored sample can be written as

L(λ, τ,N0, N1, . . . , Nk, X(n−N0+1), . . . , X(n))

=
n!

N1! · · ·Nk!

k∏

i=1

[F (di, λ, τ)− F (di−1, λ, τ)]
Ni

n∏

i=n−N0+1

f(X(i)),

where we put
∏n

i=n−N0+1 f(X(i)) = 1 for N0 = 0. The log-likelihood function is

l(λ, τ,N0, . . . , Nk, X(n−N0+1), . . . , X(n))

= log

(
n!

N1! · · ·Nk!

)
+

k∑

i=1

Ni log [F (di, λ, τ)− F (di−1, λ, τ)] +
n∑

i=n−N0+1

log
[
f(X(i))

]
,

(2.5)

and we put
∑n

i=n−N0+1 log
[
f(X(i))

]
= 0 for N0 = 0. After the substitution of cdf (2.1)

and pdf (2.2) into (2.5) we get the log-likelihood function

l(λ, τ,N0, . . . , Nk, X(n−N0+1), . . . , X(n))

= log

(
n!

N1! · · ·Nk!

)
+

k∑

i=1

Ni log

{
exp

[
−
(
di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

+N0 log
( τ

λτ

)
+ (τ − 1)

n∑

i=n−N0+1

log
(
X(i)

)
− 1

λτ

n∑

i=n−N0+1

Xτ
(i). (2.6)

The usual approach to estimation of parameters λ, τ is to derive and solve the likelihood

equations

∂l

∂λ
=

k∑

i=1

Ni

τ
{
dτi−1 exp

[
−
(

di−1

λ

)τ]
− dτi exp

[
−
(
di
λ

)τ]}

λτ+1
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]} −N0
τ

λ
+

τ

λτ+1

n∑

i=n−N0+1

Xτ
(i) = 0,

∂l

∂τ
=

k∑

i=1

Ni

dτi log
(
di
λ

)
exp

[
−
(
di
λ

)τ]− dτi−1 log
(

di−1

λ

)
exp

[
−
(

di−1

λ

)τ]

λτ
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]} +N0
1− τ log(λ)

τ

+
n∑

i=n−N0+1

log
(
X(i)

)
+

log(λ)

λτ

n∑

i=n−N0+1

Xτ
(i) −

1

λτ

n∑

i=n−N0+1

Xτ
(i) log

(
X(i)

)
= 0.

In this case, the system of equations is very complicated and has to be solved numer-

ically using, for example, the Newton-Raphson method. On that account, we decided

to maximize the log-likelihood function (2.6) using the Nelder-Mead simplex algorithm

(Lagarias et al., 1998) in Matlab (version R2022b), and in that way obtain the ML esti-
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mates λ̂ and τ̂ . When using this type of algorithm, it is necessary to select initial values of

the parameters that need to be estimated. Starting values of the algorithm were selected

using the moment estimator of parameters of the Weibull distribution based on samples in

which the censored values were replaced by constants lying between the detection limits.

In order to calculate variability of the ML estimates λ̂ and τ̂ , the Fisher information

matrix (FIM) can be used. According to Barndorff-Nielsen and Cox (1994), the sample

FIM can be defined (under certain regularity conditions) using formula

J̃n(λ, τ) =

[
− ∂2l

∂λ2 − ∂2l
∂λ∂τ

− ∂2l
∂τ∂λ

− ∂2l
∂τ2

]
,

which can be rewritten as

J̃n(λ, τ) = nJ̃(λ, τ) = n

[
J̃11 J̃12

J̃21 J̃22

]
, (2.7)

where

nJ̃11 = −
k∑

i=1

Ni





(dτi λ
ττ 2 + dτi λ

ττ − d2τi τ 2) exp
[
−
(
di
λ

)τ]

λ2τ+2
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

−
(
dτi−1λ

ττ 2 + dτi−1λ
ττ − d2τi−1τ

2
)
exp

[
−
(

di−1

λ

)τ]

λ2τ+2
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

−
τ 2
{
dτi−1 exp

[
−
(

di−1

λ

)τ]
− dτi exp

[
−
(
di
λ

)τ]}2

λ2τ+2
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}2





− N0τ

λ2
+

τ 2 + τ

λτ+2

n∑

i=n−N0+1

Xτ
(i),

nJ̃22 = −
k∑

i=1

Ni





(dτi λ
τ − d2τi )

[
log
(
di
λ

)]2
exp

[
−
(
di
λ

)τ]

λ2τ
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

−
(
dτi−1λ

τ − d2τi−1

) [
log
(

di−1

λ

)]2
exp

[
−
(

di−1

λ

)τ]

λ2τ
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

−

{
dτi−1 log

(
di−1

λ

)
exp

[
−
(

di−1

λ

)τ]
− dτi log

(
di
λ

)
exp

[
−
(
di
λ

)τ]}2

λ2τ
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}2





+
N0

τ 2
+

[log(λ)]2

λτ

n∑

i=n−N0+1

Xτ
(i) −

2 log(λ)

λτ

n∑

i=n−N0+1

Xτ
(i) log

(
X(i)

)



8 CHAPTER 2. MULTIPLY LEFT-CENSORED WEIBULL DISTRIBUTION

+
1

λτ

n∑

i=n−N0+1

Xτ
(i)

[
log
(
X(i)

)]2
,

nJ̃12 = nJ̃21 = −
k∑

i=1

Ni





[
d2τi τ log

(
di
λ

)
− dτi λ

ττ log
(
di
λ

)
− dτi λ

τ
]
exp

[
−
(
di
λ

)τ]

λ2τ+1
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

−

[
d2τi−1τ log

(
di−1

λ

)
− dτi−1λ

ττ log
(

di−1

λ

)
− dτi−1λ

τ
]
exp

[
−
(

di−1

λ

)τ]

λ2τ+1
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

+
τ
{
dτi−1 exp

[
−
(

di−1

λ

)τ]
− dτi exp

[
−
(
di
λ

)τ]}

λ2τ+1
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}2

×

{
dτi−1 log

(
di−1

λ

)
exp

[
−
(

di−1

λ

)τ]
− dτi log

(
di
λ

)
exp

[
−
(
di
λ

)τ]}

λ2τ+1
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}2





+
N0

λ
+

τ log(λ)− 1

λτ+1

n∑

i=n−N0+1

Xτ
(i) −

τ

λτ+1

n∑

i=n−N0+1

Xτ
(i) log

(
X(i)

)
.

The sample FIM J̃n is an unbiased estimator of the expected FIM Jn and J̃n(λ, τ) →
Jn(λ, τ) in probability for n → ∞. On that account, in many applications when the ex-

act determination of the expected FIM is complicated, the sample FIM is used instead

(Aboueissa and Stoline, 2006; Fahrmeier and Tutz, 2001). One major disadvantage of this

approach is the rather extensive variability of the sample FIM. Many authors prefer an-

other approach like bootstrap or Bayesian methods (Joarder et al., 2011) for description of

variability of parameters estimates. The expected FIM can be used for statistical inference

and more precise description of the asymptotic variability of obtained estimates. On that

account, our attention will now be paid to determination of the expected FIM. Similar prob-

lems were solved, for example, in Fusek and Michálek (2015b) for exponential distribution,

in Mitra and Kundu (2008) for GE distribution or in Zheng (2002) and Gupta and Kundu

(2006) using the hazard function according to Efron and Johnstone (1990).

The expected FIM can be calculated using formula

Jn(λ, τ) = EJ̃n(λ, τ),

which can be rewritten as

Jn(λ, τ) = nJ(λ, τ) = n

[
J11 J12

J21 J22

]
, (2.8)
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where

J11 =
k∑

i=1

τ 2
{
dτi−1 exp

[
−
(

di−1

λ

)τ]
− dτi exp

[
−
(
di
λ

)τ]}2

λ2τ+2
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

− (dτkλ
ττ 2 + dτkλ

ττ − d2τk τ 2) exp
[
−
(
dk
λ

)τ]

λ2τ+2
− τ

λ2
exp

[
−
(
dk
λ

)τ]

+
τ 2 + τ

λ2

n∑

n0=0

n∑

i=n−n0+1

(
n− 1

i− 1

) i−1∑

j=0

(−1)j
(
i− 1

j

)
(n− i+ j + 1)−2

×
(
n

n0

)
exp

[
−n0

(
dk
λ

)τ]{
1− exp

[
−
(
dk
λ

)τ]}n−n0

,

J22 =
k∑

i=1

{
dτi−1 log

(
di−1

λ

)
exp

[
−
(

di−1

λ

)τ]
− dτi−1 log

(
di
λ

)
exp

[
−
(
di
λ

)τ]}2

λ2τ
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

− (dτkλ
τ − d2τk )

[
log
(
dk
λ

)]2
exp

[
−
(
dk
λ

)τ]

λ2τ
+

1

τ 2
exp

[
−
(
dk
λ

)τ]

+ [log(λ)]2
n∑

n0=0

n∑

i=n−n0+1

(
n− 1

i− 1

) i−1∑

j=0

(−1)j
(
i− 1

j

)
(n− i+ j + 1)−2

×
(
n

n0

)
exp

[
−n0

(
dk
λ

)τ]{
1− exp

[
−
(
dk
λ

)τ]}n−n0

− 2 log(λ)

τ

n∑

n0=0

n∑

i=n−n0+1

(
n− 1

i− 1

) i−1∑

j=0

(−1)j
(
i− 1

j

)
(n− i+ j + 1)−2

×
[
log

(
λτ

n− i+ j + 1

)
+ 1− γe

]

×
(
n

n0

)
exp

[
−n0

(
dk
λ

)τ]{
1− exp

[
−
(
dk
λ

)τ]}n−n0

+
1

τ 2

n∑

n0=0

n∑

i=n−n0+1

(
n− 1

i− 1

) i−1∑

j=0

(−1)j
(
i− 1

j

)
(n− i+ j + 1)−2

×
{[

log

(
λτ

n− i+ j + 1

)]2
+ 2 log

(
λτ

n− i+ j + 1

)
(1− γe)

+
π2

6
− 2γe + γ2

e

}(
n

n0

)
exp

[
−n0

(
dk
λ

)τ]{
1− exp

[
−
(
dk
λ

)τ]}n−n0

,
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J12 = J21 = −
k∑

i=1

τ
{
dτi−1 exp

[
−
(

di−1

λ

)τ]
− dτi exp

[
−
(
di
λ

)τ]}

λ2τ+1
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

×
{
dτi−1 log

(
di−1

λ

)
exp

[
−
(
di−1

λ

)τ]
− dτi log

(
di
λ

)
exp

[
−
(
di
λ

)τ]}

+

[
dτkτλ

τ log
(
dk
λ

)
+ dτkλ

τ − d2τk τ log
(
dk
λ

)]
exp

[
−
(
dk
λ

)τ]

λ2τ+1
+

1

λ
exp

[
−
(
dk
λ

)τ]

+
τ log(λ)− 1

λ

n∑

n0=0

n∑

i=n−n0+1

(
n− 1

i− 1

) i−1∑

j=0

(−1)j
(
i− 1

j

)
(n− i+ j + 1)−2

×
(
n

n0

)
exp

[
−n0

(
dk
λ

)τ]{
1− exp

[
−
(
dk
λ

)τ]}n−n0

− 1

λ

n∑

n0=0

n∑

i=n−n0+1

(
n− 1

i− 1

) i−1∑

j=0

(−1)j
(
i− 1

j

)
(n− i+ j + 1)−2

×
[
log

(
λτ

n− i+ j + 1

)
+ 1− γe

]

×
(
n

n0

)
exp

[
−n0

(
dk
λ

)τ]{
1− exp

[
−
(
dk
λ

)τ]}n−n0

.

Details of the derivation can be found in Appendix A. Considering the asymptotic prop-

erties of ML estimator λ̂ (τ̂ respectively), according to Lehmann and Casella (1998),
√
n(λ̂ − λ) (

√
n(τ̂ − τ) respectively) has asymptotically normal distribution N(0, J11)

(N(0, J22) respectively), where J11, J22 are diagonal elements of the variance matrix

J
−1(λ, τ) =

[
J11 J12

J21 J22

]
.

A similar notation can be used in case of the sample FIM, i.e.

J̃
−1(λ, τ) =

[
J̃11 J̃12

J̃21 J̃22

]
.

The properties of estimators λ̂, τ̂ considering various sample sizes n, various number of

detection limits k and various censoring schemes will be analyzed using simulations in the

next section.

2.1 Estimators Behavior Based on Simulations

In order to analyze the estimates of parameters and parametric functions, 20,000 Type

I singly, doubly and triply left-censored random samples with size n = 10, 20, 30, 50, 100
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Table 2.1: Quantiles for determination of detection limits considering single, double and

triple censoring and various censoring schemes.

Single Double Triple

Censoring q1 q1 q2 q1 q2 q3

c1 0.10 0.05 0.10 0.03 0.07 0.10

c2 0.20 0.10 0.20 0.07 0.13 0.20

c3 0.30 0.15 0.30 0.10 0.20 0.30

c4 0.40 0.20 0.40 0.13 0.27 0.40

c5 0.50 0.25 0.50 0.17 0.33 0.50

c6 0.60 0.30 0.60 0.20 0.40 0.60

c7 0.70 0.35 0.70 0.23 0.47 0.70

c8 0.80 0.40 0.80 0.27 0.53 0.80

c9 0.90 0.45 0.90 0.30 0.60 0.90

from the Weibull distribution were generated. Since λ is the scale parameter, and the ML

estimators are scale invariant, we take λ = 1 without the loss of generality. In order to de-

scribe various shapes of the Weibull distribution, we take τ = 0.5, 1.5, 3, which corresponds

to skewnesses γ = 6.62, 1.07, 0.17. Limits of detection di, i = 1, . . . , k, k = 1, 2, 3, were

selected as quantiles of the Weibull distribution using equations qi = F (di, λ, τ), where qi

are given in Table 2.1. The individual censoring schemes are denoted as c1, . . . , c9, and

correspond to various quantiles which determine detection limits for k = 1, 2, 3. For exam-

ple, q1 given in column ”Double” in Table 2.1 denotes the proportion of doubly censored

values, and describes the given censoring scheme. The censoring scheme c1 represents the

smallest proportion (10%) of censored data, and the censoring scheme c9 represents the

largest proportion (90%) of censored data.
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Figure 2.1: The average ML estimates of parameter λ considering various values of τ and

single (index S), double (index D), triple (index T) censoring; sample size n = 30.

The ML estimates of parameters λ, τ from 20,000 samples were calculated and their
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Table 2.2: The average ML estimates λ̂, τ̂ and their average MSE (in the parenthesis) considering single (S), double (D) and triple (T)

censoring and sample size n.

λ = 1

n = 10 n = 30 n = 100

Censoring S D T S D T S D T

c1 1.00 (0.050) 1.00 (0.050) 1.00 (0.049) 1.00 (0.017) 1.00 (0.017) 1.00 (0.017) 1.00 (0.005) 1.00 (0.005) 1.00 (0.005)

c2 0.99 (0.051) 1.00 (0.050) 1.00 (0.050) 1.00 (0.017) 1.00 (0.016) 1.00 (0.016) 1.00 (0.005) 1.00 (0.005) 1.00 (0.005)

c3 0.99 (0.052) 1.00 (0.050) 1.00 (0.049) 1.00 (0.017) 1.00 (0.017) 1.00 (0.016) 1.00 (0.005) 1.00 (0.005) 1.00 (0.005)

c4 0.99 (0.054) 0.99 (0.050) 1.00 (0.049) 1.00 (0.019) 1.00 (0.017) 1.00 (0.017) 1.00 (0.005) 1.00 (0.005) 1.00 (0.005)

c5 0.99 (0.058) 0.99 (0.051) 1.00 (0.050) 1.00 (0.020) 1.00 (0.017) 1.00 (0.017) 1.00 (0.006) 1.00 (0.005) 1.00 (0.005)

c6 1.01 (0.063) 1.00 (0.051) 1.00 (0.049) 1.00 (0.023) 1.00 (0.018) 1.00 (0.017) 1.00 (0.007) 1.00 (0.005) 1.00 (0.005)

c7 1.03 (0.071) 1.00 (0.053) 1.00 (0.049) 1.00 (0.029) 1.00 (0.018) 1.00 (0.017) 1.00 (0.009) 1.00 (0.005) 1.00 (0.005)

c8 1.11 (0.095) 1.02 (0.055) 1.02 (0.050) 1.02 (0.046) 1.00 (0.019) 1.00 (0.018) 1.00 (0.014) 1.00 (0.006) 1.00 (0.005)

c9 1.33 (0.214) 1.07 (0.066) 1.07 (0.055) 1.10 (0.112) 1.00 (0.020) 1.00 (0.018) 1.02 (0.038) 1.00 (0.006) 1.00 (0.005)

τ = 1.5

n = 10 n = 30 n = 100

S D T S D T S D T

c1 1.75 (0.355) 1.75 (0.350) 1.75 (0.349) 1.57 (0.067) 1.57 (0.065) 1.57 (0.064) 1.52 (0.016) 1.52 (0.016) 1.52 (0.016)

c2 1.76 (0.384) 1.75 (0.359) 1.75 (0.354) 1.57 (0.071) 1.57 (0.066) 1.57 (0.064) 1.52 (0.018) 1.52 (0.016) 1.52 (0.016)

c3 1.78 (0.446) 1.76 (0.382) 1.76 (0.371) 1.58 (0.081) 1.57 (0.069) 1.57 (0.066) 1.52 (0.019) 1.52 (0.016) 1.52 (0.016)

c4 1.82 (0.607) 1.77 (0.395) 1.76 (0.369) 1.59 (0.096) 1.58 (0.073) 1.57 (0.068) 1.52 (0.023) 1.52 (0.018) 1.52 (0.016)

c5 1.96 (58.58) 1.77 (0.408) 1.76 (0.370) 1.60 (0.119) 1.58 (0.076) 1.57 (0.069) 1.53 (0.028) 1.52 (0.019) 1.52 (0.017)

c6 2.29 (252.0) 1.78 (0.442) 1.76 (0.377) 1.63 (0.162) 1.58 (0.083) 1.58 (0.074) 1.54 (0.036) 1.52 (0.020) 1.52 (0.018)

c7 2.76 (161.9) 1.77 (0.442) 1.75 (0.365) 1.67 (0.273) 1.59 (0.091) 1.58 (0.076) 1.54 (0.051) 1.52 (0.022) 1.52 (0.018)

c8 3.85 (259.8) 1.74 (0.477) 1.71 (0.362) 1.84 (4.263) 1.59 (0.097) 1.58 (0.080) 1.57 (0.089) 1.52 (0.024) 1.52 (0.020)

c9 6.59 (558.9) 1.62 (0.418) 1.60 (0.237) 2.84 (80.11) 1.58 (0.095) 1.57 (0.076) 1.66 (0.278) 1.53 (0.026) 1.53 (0.021)
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mean values λ̂, τ̂ were determined. It was found out (see Figure 2.1) that the estimates of

parameter λ have lower bias for higher values of parameter τ (i.e. for a lower skewness of the

sample distribution) considering various censoring schemes. The estimates of parameter τ

are similar bias-wise for various values of τ (not shown in figures). Table 2.2 shows the

average ML estimates λ̂, τ̂ and their mean squared errors (MSE). It can be seen that the

ML estimate λ̂ is rather satisfying until the censoring scheme c7 even when the sample size

is small (n = 10). For n > 10, the bias of λ̂ is very small, and from the practical point of

view negligible for the censoring scheme c7 and lower. The effect of multiplicity of censoring

on the estimation of parameter λ is noticeable only for higher detection limits depending on

the sample size. For n ≥ 30, the differences among the single, double and triple censoring

are almost negligible until scheme c8 when, in accordance with expectations, the highest

bias of the estimate is present in case of single censoring. The ML estimate τ̂ is significantly

biased even when the censoring is low, and sample size n = 100.
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Figure 2.2: Comparison of the estimates of variance S2(λ̂), σ2(λ̂), σ̃2(λ̂) and the asymptotic

variance σ2(λ) considering double censoring and sample size n = 30; logarithmic scale on

the y-axis.

Variances of the ML estimators λ̂, τ̂ of parameters λ, τ were estimated by means

of sample variances s2(λ̂), s2(τ̂) from the simulated values. Furthermore, the asymp-

totic variances σ2(λ) = J11(λ, τ), σ2(τ) = J22(λ, τ) were compared with their esti-

mates σ2(λ̂) = J11(λ̂, τ̂), σ2(τ̂) = J22(λ̂, τ̂) based on the expected FIM (2.8) and

σ̃2(λ̂) = J̃11(λ̂, τ̂), σ̃2(τ̂) = J̃22(λ̂, τ̂) based on the sample FIM (2.7) using simulations. The

estimates σ2(λ̂), σ2(τ̂) and σ̃2(λ̂), σ̃2(τ̂) were averaged over 20,000 repetitions, and from

now on when speaking about the estimates σ2(λ̂), σ2(τ̂), σ̃2(λ̂), σ̃2(τ̂) of the asymptotic

variances σ2(λ), σ2(τ), we have in mind the estimates averaged over 20,000 repetitions,

i.e. σ2(λ̂) = J11(λ̂, τ̂), σ2(τ̂) = J22(λ̂, τ̂), σ̃2(λ̂) = J̃11(λ̂, τ̂), σ̃2(τ̂) = J̃22(λ̂, τ̂). These
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Table 2.3: Comparison of the estimates of variance S2(λ̂), σ2(λ̂), σ̃2(λ̂) and the asymptotic

variance σ2(λ) considering double censoring and sample size n.

τ = 0.5

n = 10 n = 100

Censoring S2(λ̂) σ2(λ) σ2(λ̂) σ̃2(λ̂) S2(λ̂) σ2(λ) σ2(λ̂) σ̃2(λ̂)

c1 6.270 4.602 6.804 6.623 4.494 4.468 4.657 4.642

c2 6.159 4.756 6.880 6.561 4.667 4.507 4.706 4.679

c3 6.083 4.915 6.929 6.481 4.599 4.556 4.749 4.712

c4 5.992 5.086 7.128 6.548 4.737 4.620 4.807 4.761

c5 6.037 5.279 7.298 6.586 4.826 4.707 4.937 4.883

c6 6.328 5.504 7.829 6.955 4.863 4.827 4.986 4.928

c7 6.303 5.780 8.204 7.178 5.109 4.998 5.165 5.101

c8 6.878 6.137 9.493 8.192 5.397 5.249 5.431 5.362

c9 8.764 6.600 13.072 11.098 5.789 5.653 5.859 5.775

τ = 1.5

n = 10 n = 100

S2(λ̂) σ2(λ) σ2(λ̂) σ̃2(λ̂) S2(λ̂) σ2(λ) σ2(λ̂) σ̃2(λ̂)

c1 0.495 0.504 0.456 0.447 0.500 0.496 0.490 0.489

c2 0.504 0.512 0.463 0.450 0.498 0.499 0.495 0.493

c3 0.498 0.521 0.471 0.455 0.496 0.504 0.499 0.497

c4 0.503 0.529 0.476 0.460 0.505 0.510 0.506 0.504

c5 0.509 0.539 0.488 0.472 0.519 0.519 0.514 0.512

c6 0.511 0.551 0.504 0.491 0.532 0.531 0.526 0.525

c7 0.526 0.566 0.524 0.514 0.548 0.549 0.543 0.543

c8 0.547 0.589 0.581 0.577 0.585 0.575 0.570 0.571

c9 0.606 0.627 0.725 0.723 0.616 0.618 0.610 0.612

estimates together with the corresponding empirical sample variances S2(λ̂) = ns2(λ̂),

S2(τ̂) = ns2(τ̂) were compared with the asymptotic variances considering various sample

sizes n. Due to a rather large number of samples, the estimators S2(λ̂), S2(τ̂) allow us to

assess the bias of estimators σ2(λ̂), σ2(τ̂), σ̃2(λ̂), σ̃2(τ̂), and the bias of asymptotic variances

σ2(λ), σ2(τ) from the true (simulation-based) variances S2(λ̂), S2(τ̂) of the estimates.

Figure 2.2 shows that behavior of estimates σ2(λ̂), σ̃2(λ̂) is significantly influenced by

values of parameter τ . In case τ < 1, i.e. the skewness of the sample distribution is high

(> 2), both estimates are higher than the asymptotic variance σ2(λ). When τ > 1, i.e.

the skewness of the sample distribution is low (< 2), both estimates are lower than the

asymptotic variance σ2(λ). The comparison of above mentioned characteristics of variance

(see Table 2.3 in case of double censoring) shows that the anticipated bias of estimator

σ2(λ̂) is substantial for small sample sizes. Furthermore, the estimator S2(λ̂) is of lower
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Table 2.4: The asymptotic variance σ2(λ) considering single (S), double (D) and triple (T)

censoring and sample size n.

τ = 0.5

n = 10 n = 30 n = 100

Censoring S D T S D T S D T

c1 4.625 4.602 4.750 4.527 4.504 4.647 4.491 4.468 4.609

c2 4.832 4.756 4.874 4.643 4.570 4.682 4.579 4.507 4.616

c3 5.088 4.915 4.937 4.814 4.645 4.665 4.723 4.556 4.575

c4 5.437 5.086 5.001 5.081 4.732 4.647 4.969 4.620 4.536

c5 5.963 5.279 5.103 5.532 4.840 4.665 5.404 4.707 4.532

c6 6.854 5.504 5.237 6.362 4.979 4.711 6.231 4.827 4.559

c7 8.626 5.780 5.434 8.103 5.166 4.821 7.997 4.998 4.652

c8 13.234 6.137 5.696 12.667 5.438 5.018 12.653 5.249 4.835

c9 36.457 6.600 5.976 33.361 5.877 5.338 32.729 5.653 5.138

τ = 1.5

n = 10 n = 30 n = 100

S D T S D T S D T

c1 0.506 0.504 0.520 0.500 0.498 0.514 0.498 0.496 0.511

c2 0.520 0.512 0.525 0.511 0.503 0.515 0.507 0.499 0.511

c3 0.538 0.521 0.523 0.526 0.508 0.510 0.522 0.504 0.506

c4 0.563 0.529 0.521 0.552 0.515 0.506 0.548 0.510 0.501

c5 0.603 0.539 0.523 0.596 0.524 0.505 0.595 0.519 0.500

c6 0.670 0.551 0.527 0.678 0.535 0.507 0.684 0.531 0.502

c7 0.799 0.566 0.536 0.847 0.552 0.516 0.872 0.549 0.511

c8 1.096 0.589 0.552 1.265 0.576 0.534 1.360 0.575 0.530

c9 2.093 0.627 0.576 2.786 0.617 0.563 3.311 0.618 0.562
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Table 2.5: Comparison of the estimates of variance S2(τ̂), σ2(τ̂), σ̃2(τ̂) and the asymptotic

variance σ2(τ) considering double censoring and sample size n; τ = 1.5.

n = 10 n = 100

Censoring S2(τ̂) σ2(τ) σ2(τ̂) σ̃2(τ̂) S2(τ̂) σ2(τ) σ2(τ̂) σ̃2(τ̂)

c1 2.884 1.420 2.084 2.199 1.524 1.419 1.467 1.476

c2 2.951 1.462 2.152 2.310 1.574 1.478 1.524 1.539

c3 3.144 1.511 2.240 2.452 1.600 1.549 1.598 1.617

c4 3.237 1.572 2.347 2.627 1.725 1.632 1.685 1.710

c5 3.359 1.651 2.482 2.828 1.840 1.732 1.790 1.821

c6 3.632 1.757 2.711 3.105 1.949 1.848 1.913 1.950

c7 3.667 1.900 2.920 3.297 2.114 1.983 2.057 2.098

c8 4.213 2.108 3.166 3.571 2.302 2.139 2.224 2.265

c9 4.030 2.456 3.186 3.611 2.554 2.338 2.462 2.488

(higher respectively) values than asymptotic variance σ2(λ) for τ > 1 (τ < 1 respectively).

All estimators of the variance almost coincide for τ > 1 and the sample size n ≥ 100. In

addition, the asymptotic variance σ2(λ) (obtained from the expected FIM) was analyzed

considering various sample sizes and censoring schemes (see Table 2.4). With the exception

of schemes c1–c3, variability of the estimators is, as expected, the lowest for triple censoring

for an arbitrary sample size.

In case of τ̂ , behavior of the variance estimators is similar for various values of τ .

The comparison of the characteristics of variance (see Table 2.5 in case of double cen-

soring) shows that the anticipated bias of estimator σ2(τ̂) is substantial for small sample

sizes. Moreover, the estimator S2(τ̂) is of higher values than asymptotic variance σ2(τ)

for all sample sizes and censoring schemes. Furthermore, the asymptotic variance σ2(τ)

(obtained from the expected FIM) was analyzed considering various sample sizes and cen-

soring schemes (see Table 2.6). With the exception of schemes c1–c2, the variability of the

estimators is, as expected, the lowest for triple censoring for arbitrary sample size.

Finally, using the variance estimators σ2(λ̂), σ2(τ̂), σ̃2(λ̂), σ̃2(τ̂), the lower and the

upper confidence limits of the estimate of parameters λ and τ can be obtained. The

coverage probability of 95% confidence interval, computed as the proportion of the number

of times, out of 20,000 replications, the estimated 95% confidence interval contains the true

parameter value, is calculated.

In general, the coverage probability of λ is better with higher values of τ , because the

estimator of parameter λ performs better for higher values of parameter τ . When τ < 1,

i.e. the skewness of the sample distribution is high (> 2), the estimator based on expected

FIM (2.8) performs better than the estimator based on sample FIM (2.7) for all censoring

schemes, especially for small sample sizes (see Figure 2.3 in case of double censoring). For

τ > 1, coverage probabilities of both estimators almost coincide. The results showed that
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Table 2.6: The asymptotic variance σ2(τ) considering single (S), double (D) and triple (T)

censoring and sample size n; τ = 1.5.

n = 10 n = 30 n = 100

Censoring S D T S D T S D T

c1 1.476 1.420 1.513 1.476 1.420 1.512 1.474 1.419 1.511

c2 1.602 1.462 1.500 1.616 1.474 1.513 1.621 1.478 1.517

c3 1.770 1.510 1.473 1.808 1.538 1.499 1.823 1.548 1.509

c4 2.004 1.572 1.478 2.078 1.615 1.514 2.109 1.632 1.530

c5 2.341 1.651 1.532 2.469 1.707 1.576 2.525 1.731 1.596

c6 2.848 1.756 1.629 3.067 1.818 1.671 3.171 1.848 1.693

c7 3.675 1.900 1.787 4.068 1.951 1.813 4.276 1.983 1.834

c8 5.202 2.108 2.022 6.017 2.116 2.001 6.520 2.139 2.013

c9 8.804 2.456 2.328 11.216 2.357 2.217 13.138 2.338 2.191
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Figure 2.3: Coverage probabilities for parameter λ̂ considering various estimates of variance

and double censoring.

the coverage probabilities of λ are very similar considering double and triple censoring

for all sample sizes and various values of τ (see Table 2.7 for τ = 1.5). The coverage

probability gets higher with a higher censoring scheme for small sample sizes (n < 50). In

case of single censoring, the behavior is similar until censoring scheme c7.

The coverage probability of τ is similar considering double and triple censoring for

all values of τ (see Table 2.8 for τ = 1.5), because all the estimates of τ are similar bias-

wise. The coverage probabilities are quite close to the prescribed significance level for

both estimators (based on the expected and the sample FIM) and practically coincide for

n > 50.
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Table 2.7: Coverage probabilities for parameter λ̂ based on expected FIM (2.8) considering

single (S), double (D) and triple (T) censoring and sample size n; τ = 1.5. The average

lower (LCL) and upper (UCL) confidence limits are included.

n = 10

S D T

Censoring LCL UCL CP LCL UCL CP LCL UCL CP

c1 0.593 1.398 0.888 0.596 1.398 0.887 0.592 1.403 0.890

c2 0.588 1.401 0.887 0.593 1.399 0.888 0.588 1.405 0.890

c3 0.580 1.406 0.896 0.589 1.402 0.894 0.588 1.406 0.898

c4 0.572 1.412 0.901 0.585 1.403 0.895 0.587 1.404 0.897

c5 0.562 1.428 0.909 0.580 1.408 0.898 0.584 1.407 0.901

c6 0.555 1.460 0.930 0.579 1.420 0.907 0.584 1.415 0.909

c7 0.549 1.515 0.912 0.572 1.432 0.918 0.581 1.425 0.923

c8 0.581 1.643 0.782 0.566 1.479 0.943 0.580 1.467 0.951

c9 0.729 1.926 0.599 0.554 1.588 0.942 0.576 1.565 0.955

n = 30

S D T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 0.754 1.245 0.930 0.755 1.245 0.931 0.752 1.249 0.935

c2 0.750 1.246 0.934 0.752 1.245 0.933 0.750 1.248 0.937

c3 0.745 1.248 0.935 0.750 1.245 0.932 0.750 1.246 0.934

c4 0.741 1.257 0.936 0.751 1.250 0.933 0.753 1.249 0.934

c5 0.730 1.266 0.939 0.747 1.250 0.933 0.751 1.246 0.933

c6 0.714 1.284 0.947 0.745 1.252 0.933 0.751 1.246 0.932

c7 0.685 1.322 0.940 0.741 1.257 0.935 0.749 1.250 0.934

c8 0.635 1.404 0.897 0.736 1.264 0.934 0.746 1.255 0.940

c9 0.570 1.631 0.791 0.725 1.278 0.949 0.739 1.266 0.947

n = 100

S D T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 0.863 1.137 0.944 0.863 1.137 0.944 0.861 1.139 0.947

c2 0.861 1.138 0.945 0.862 1.137 0.945 0.861 1.139 0.948

c3 0.859 1.140 0.947 0.862 1.137 0.945 0.861 1.138 0.947

c4 0.856 1.143 0.948 0.861 1.139 0.946 0.862 1.137 0.946

c5 0.850 1.149 0.947 0.860 1.140 0.943 0.862 1.137 0.942

c6 0.840 1.161 0.949 0.858 1.141 0.944 0.862 1.138 0.943

c7 0.819 1.182 0.948 0.856 1.143 0.946 0.860 1.139 0.944

c8 0.777 1.230 0.936 0.851 1.146 0.944 0.858 1.141 0.946

c9 0.671 1.371 0.899 0.846 1.151 0.944 0.854 1.145 0.949
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Table 2.8: Coverage probabilities for parameter τ̂ based on expected FIM (2.8) considering

single (S), double (D) and triple (T) censoring and sample size n; τ = 1.5. The average

lower (LCL) and upper (UCL) confidence limits are included.

n = 10

S D T

Censoring LCL UCL CP LCL UCL CP LCL UCL CP

c1 0.876 2.620 0.942 0.889 2.605 0.942 0.861 2.637 0.949

c2 0.848 2.673 0.944 0.881 2.626 0.942 0.855 2.648 0.953

c3 0.813 2.751 0.937 0.870 2.650 0.939 0.855 2.660 0.957

c4 0.764 2.882 0.937 0.855 2.679 0.943 0.851 2.666 0.962

c5 0.688 3.233 0.933 0.831 2.706 0.943 0.835 2.676 0.960

c6 0.564 4.018 0.935 0.804 2.756 0.943 0.813 2.703 0.961

c7 0.384 5.137 0.937 0.760 2.789 0.950 0.772 2.719 0.967

c8 0.081 7.616 0.945 0.698 2.776 0.955 0.714 2.705 0.968

c9 0.000 13.689 0.967 0.605 2.642 0.961 0.632 2.577 0.976

n = 30

S D T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 1.119 2.029 0.946 1.126 2.020 0.946 1.111 2.036 0.954

c2 1.097 2.048 0.946 1.117 2.025 0.947 1.107 2.033 0.957

c3 1.075 2.085 0.946 1.109 2.038 0.947 1.110 2.036 0.954

c4 1.044 2.131 0.941 1.099 2.052 0.943 1.108 2.038 0.953

c5 1.003 2.200 0.944 1.087 2.069 0.948 1.100 2.049 0.953

c6 0.949 2.308 0.944 1.075 2.092 0.946 1.090 2.067 0.952

c7 0.864 2.483 0.938 1.058 2.114 0.945 1.071 2.085 0.954

c8 0.724 2.959 0.934 1.038 2.144 0.947 1.051 2.115 0.960

c9 0.391 5.290 0.953 0.996 2.166 0.958 1.014 2.121 0.971

n = 100

S D T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 1.280 1.763 0.950 1.285 1.758 0.951 1.277 1.766 0.958

c2 1.268 1.773 0.949 1.279 1.761 0.948 1.275 1.765 0.954

c3 1.254 1.790 0.949 1.274 1.768 0.951 1.275 1.765 0.956

c4 1.236 1.813 0.949 1.267 1.775 0.950 1.274 1.767 0.955

c5 1.212 1.846 0.948 1.261 1.784 0.950 1.270 1.773 0.954

c6 1.179 1.893 0.948 1.253 1.794 0.952 1.263 1.781 0.954

c7 1.127 1.963 0.947 1.244 1.805 0.948 1.253 1.792 0.957

c8 1.043 2.096 0.946 1.233 1.816 0.948 1.241 1.805 0.961

c9 0.861 2.467 0.942 1.223 1.836 0.947 1.231 1.820 0.964
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2.2 Confidence Intervals for Expectation

In general, in order to estimate a statistic (e.g., mean, standard deviation) of a population,

a random sample from the population is taken, and the individual statistics are calculated.

In the field of environmental sciences or chemistry, it is often of interest to estimate the

expected concentration of a chemical compound. In case the concentration can be modeled

using the Weibull distribution, the expected value µ = µ(λ, τ) can be calculated using

formula (2.3). In order to calculate the estimate µ̂ of the expected value µ, we can replace

λ, τ in (2.3) by their ML estimates λ̂, τ̂ .

However, it is always an issue to assess how well the sample statistic estimates the

underlying population value. For this purpose, a confidence interval is used because it

provides a range of values which is likely to contain the population parameter of interest. In

this section, two methods of confidence interval construction are described and compared.

2.2.1 Maximum Likelihood Method

Considering the asymptotic normality of ML estimates, the expected value has the asymp-

totically normal distribution (Likeš and Machek, 1988), specifically

µ(λ, τ)
A∼ N(µ(λ, τ),Var (µ(λ, τ))) ,

where

Var (µ(λ, τ)) =

[
∂µ(λ, τ)

∂λ
,
∂µ(λ, τ)

∂τ

]
J

−1
n (λ, τ)

[
∂µ(λ, τ)

∂λ
,
∂µ(λ, τ)

∂τ

]T

=

[
Γ

(
1 +

1

τ

)
,−λΨ

(
1 + 1

τ

)
Γ
(
1 + 1

τ

)

τ 2

]
J

−1
n (λ, τ)

×
[
Γ

(
1 +

1

τ

)
,−λΨ

(
1 + 1

τ

)
Γ
(
1 + 1

τ

)

τ 2

]T

(2.9)

and Ψ(z) = Γ′(z)/Γ(z) is the digamma function.

Considering µ̂ = µ(λ̂, τ̂) and V̂ar (µ̂) = Var
(
µ(λ̂, τ̂)

)
, the asymptotic (1− α)% confi-

dence interval for µ can be calculated as

(
µ̂− z1−α

2

√
V̂ar (µ̂), µ̂+ z1−α

2

√
V̂ar (µ̂)

)
, (CIML)

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution N(0, 1).
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2.2.2 Bootstrap Methods

Bootstrap procedure was proposed by Efron (1979), and it is an alternative method for

obtaining unbiased nonparametric estimates of parameters and their confidence intervals.

Bootstrap estimates are produced by computing statistics on repeated random samples

taken with replacement from the observed data. The repeated samples have the same

number of observations as in the observed data set, and censored and uncensored obser-

vations are equally available for sampling. Let xT = (x1, . . . , xn) be a realization of the

random sample XT = (X1, . . . , Xn) with cdf F (x, λ, τ), see (2.1). Moreover, let B be

a number of bootstrap replications (resamples). There are two basic types of bootstrap—

parametric and non-parametric. In case of the non-parametric bootstrap, the resample x∗

is constructed by sampling with replacement from the data vector x. The non-parametric

bootstrap typically makes no assumptions concerning the distribution of the data. How-

ever, in our case, the assumption of Weibull distribution is applied, since we deal with

censored distribution and need to estimate unknown parameters of the distribution using

the ML method.

The algorithm for the non-parametric bootstrap is as follows:

1. Sample n observations randomly with replacement from x to obtain a bootstrap data

set x∗.

2. Calculate ML estimates λ̂∗, τ̂ ∗ from x∗.

3. Calculate the expected value estimate µ̂∗ = µ
(
λ̂∗, τ̂ ∗

)
.

4. Repeat steps 1–3 B times to obtain an estimate of the bootstrap distribution.

5. The (1 − α)% confidence interval for estimate µ̂ is calculated as α/2 and (1 − α/2)

quantile of µ̂∗
1, . . . , µ̂

∗
B.

We denote this confidence interval as CIboot. The bootstrap estimate of the expected value

is calculated as

µ̂ =
1

B

B∑

b=1

µ̂∗
b .

The parametric bootstrap makes an assumption that a parametric model for the data

is known up to the unknown parameters. Therefore, the resample x∗ is constructed by

sampling from the distribution with cdf F (x, λ̂, τ̂) where λ̂, τ̂ are estimated from x using

the ML method.

The algorithm for the parametric bootstrap is very similar to the non-parametric case.

However, instead of step 1 in the algorithm, the following 2 steps are used:

1a. Calculate ML estimates λ̂, τ̂ from x.
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1b. Sample n observations from distribution with cdf F (x, λ̂, τ̂) to obtain a bootstrap

data set x∗.

The obtained confidence interval is denoted as CIparboot. Davison and Hinkley (1997) dis-

cussed the theory behind bootstrap and showed that, under some general conditions, the

bootstrap confidence interval is asymptotically valid.

2.2.3 Simulation Study

The performance of the above mentioned methods was assessed using simulations (10, 000

repetitions and B = 500 bootstrap resamples) for expected values of the Weibull distri-

bution equal to 0.5, 1, 2, 3, 5, and samples with size n = 30 and n = 100. Since skewness

of the sample distribution can have significant influence on performance of the methods,

simulations were carried out for various skewnesses (2.4), specifically γ = 0, 1, 2, 3. Param-

eters of the Weibull distribution are uniquely determined by the expected value and the

skewness. Detection limits of the censored distribution were selected as quantiles of the

Weibull distribution, specifically d1 equals 5% (45% respectively) and d2 equals 10% (90%

respectively) quantile which corresponds to low (high respectively) censoring level. Since

the simulation results are similar for various expected values, attention is paid only to the

expected value equal to 1. All the estimates were averaged over 10,000 repetitions, and

from now on when speaking about the estimates, we have in mind the estimates averaged

over 10,000 repetitions.

It was found out that expected values estimated using the ML and the bootstrap

methods are very similar in almost all cases (see Fig. 2.4a). However, in case of a small

sample size, a high censoring level and γ > 0, the ML estimate of the expectation was the

best (see Fig. 2.4b).
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Figure 2.4: Expected value estimates; sample size n = 30.
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In general, range of confidence intervals gets wider as skewness of the sample goes

higher for all sample sizes, censoring levels, and estimation methods. In case of bigger

samples (n = 100), ranges of all confidence intervals CIML, CIboot and CIparboot are quite

similar. Analogous behavior was observed for small sample sizes (n = 30) and low censoring

level (see Fig. 2.5a). However, in case of a small sample size and a high censoring level,

confidence intervals CIML were much wider than CIboot and CIparboot for all skewnesses

(see Fig. 2.5b). It is caused by the fact that when the number of censored values is high,

numerical difficulties with estimation of the FIM can result in very wide confidence intervals

in some cases.
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Figure 2.5: Range of confidence interval estimates; sample size n = 30.
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Figure 2.6: Coverage probabilities of confidence interval estimates; sample size n = 30.

In order to assess quality of the confidence interval estimates, it is necessary to cal-
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culate coverage probabilities of the confidence intervals. The coverage probability of 95%

confidence interval is computed as the proportion of the number of times out of all repli-

cations the estimated 95% confidence interval contains the true parameter value. It was

found out that CIML has better coverage probability than CIboot and CIparboot in case of

high censoring. The difference is even bigger for a small sample size with n = 30 (see

Fig. 2.6b). In case of low censoring, coverage probabilities of all confidence intervals CIML,

CIboot and CIparboot are quite similar (see Fig. 2.6a).

We add one remark about the number of bootstrap resamples B. When estimating

95% confidence intervals, B ≥ 1000 is suggested (see e.g. Davison and Hinkley, 1997;

Efron and Tibshirani, 1993). Nevertheless, in our case it was found out that for B ≥ 500

the results were not substantially different.

2.3 Reduction of Weibull Distribution to Exponential

There are situations when the Weibull distribution is too complicated for modelling of given

data. In case τ = 1, the model of Weibull distribution can be reduced to the exponential

submodel where all the calculations are much easier. To assess suitability of replacement

of the censored Weibull distribution with the exponential distribution, asymptotic tests

with nuisance parameters can be used (see e.g. Lehmann and Romano, 2005), specifically

the Lagrange multiplier (LM) test, the Wald (W) test and the likelihood ratio (LR) test.

The null hypothesis H0 is expressed as a restriction on the shape parameter τ of

the censored Weibull distribution. Specifically, H0 : τ = 1 is set against the alternative

H1 : τ 6= 1, and λ is the nuisance parameter. In case the null hypothesis is not rejected at

a specified significance level, the censored exponential distribution can be used instead of

the Weibull distribution.

The test statistics are

LM =
U2
1 (λ̃, 1)

Jn,22.1(λ̃, 1)
,

W = (τ̂ − 1)2Jn,22.1(λ̂, τ̂),

LR = 2
[
l(λ̂, τ̂)− l(λ̃, 1)

]
,

(2.10)

where

U1(λ, τ) =
∂l

∂τ
=

k∑

i=1

Ni

dτi ln
(
di
λ

)
exp

[
−
(
di
λ

)τ]− dτi−1 ln
(

di−1

λ

)
exp

[
−
(

di−1

λ

)τ]

λτ
{
exp

[
−
(

di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

+N0
(1− τ lnλ)

τ
+

n∑

i=n−N0+1

lnX(i) +
lnλ

λτ

n∑

i=n−N0+1

Xτ
(i)
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− 1

λτ

n∑

i=n−N0+1

Xτ
(i) lnX(i)

is the score function and Jn,22.1(λ, τ) = n(J22 − J21J
11J12) is a transformation of the

expected FIM (2.8). The parameters estimated under the null hypothesis are denoted

by tilde, and those estimated under the alternative are denoted by hat. Under the null

hypothesis, the test statistics (2.10) have asymptotically χ2 distribution with one degree

of freedom (see e.g. Lehmann and Romano, 2005). The null hypothesis is rejected at

a prescribed significance level when the test statistics exceed the critical value of the χ2

distribution.

2.3.1 Power of the Tests

Performance of the tests using statistics (2.10) was assessed by means of simulated power

functions (10,000 repetitions). Since the majority of researchers deal with censored data

with one or two detection limits, two levels of censoring were considered. Specifically, single

censoring with one detection limit, and double censoring with two detection limits. The

detection limits d1, d2, were selected as quantiles of Weibull distribution using equations

qi = F (di, λ, τ), where qi are given in Table 2.9. For example, the q1 given in column

”Double” in Table 2.9 denotes the proportion of doubly censored values, and describes the

given censoring scheme. The censoring scheme ”Low” represents the smallest proportion

(10%) of censored data, and the censoring scheme ”High” represents the largest proportion

(90%) of censored data in case of singly and doubly censored samples. Since λ is the

scale parameter, and ML estimators are scale invariant, we take λ = 1 without the loss

of generality. This fact was also verified using simulations. The power functions were

calculated for singly and doubly left-censored samples with size n = 10, 20, 30, 50, 100.

Table 2.9: Quantiles for determination of detection limit values considering single and

double censoring and various censoring schemes.

Single Double

Censoring q1 q1 q2

Low 0.10 0.05 0.10

Medium 0.50 0.25 0.50

High 0.90 0.45 0.90

In case of double censoring, all the test statistics perform poorly for small sample sizes
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Figure 2.7: Power functions for test statistics (2.10), double censoring and medium number

of censored values.

(n < 30; not shown in figures). Furthermore, all the test statistics perform very similarly

(see Fig. 2.7) for sample size n = 100. Overall, LR test statistic has the highest and LM

test statistic the lowest power. When comparing the power functions considering various

censoring schemes, Fig. 2.8 shows what difference between power functions can be expected

in case of LR test statistic. Similar behavior was observed for test statistics LM and W

(not shown in figures).
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Figure 2.8: Power functions for test statistic LR, double censoring and a various number

of censored values.

In case of single censoring, all the test statistics perform poorly for small sample sizes

(n < 30; not shown in figures). Moreover, when the number of censored values is high, all

the tests are practically unusable even for sample size n = 100 (see Fig. 2.9). All the test
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Figure 2.9: Power functions for test statistic LR, single censoring and a various number of

censored values.
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Figure 2.10: Power functions for test statistics (2.10), single censoring and medium number

of censored values.

statistics perform very similarly (see Fig. 2.10) for sample size n = 100 and low/medium

number of censored values. Furthermore, LR test statistic has the highest and LM test

statistic the lowest power.
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Chapter 3

Comparison of Two Left-Censored

Weibull Samples

In order to compare two independent Type I multiply left-censored samples from the

Weibull distribution, we extend the one-sample model described in Chapter 2 to the two-

sample model. Let Xj,1, . . . , Xj,nj
, j = 1, 2, be two independent Type I multiply left-

censored samples from the Weibull distribution with cdf (2.1), pdf (2.2) and parameters

λ1 = λ, τ1 = τ in case of the first sample (j = 1), and λ2 = λ + α, τ2 = τ + β in

case of the second sample (j = 2). The ordered sample of Xj,1, . . . , Xj,nj
, j = 1, 2, is

denoted as Xj,(1) ≤ · · · ≤ Xj,(nj), and Nj,i are frequencies corresponding to frequencies Ni,

i = 0, 1, . . . , k, from Chapter 2, where j denotes the sample number.

The log-likelihood function of the two joint censored samples is

lR(α, β, λ, τ) = l(λ, τ,N1,0, . . . , N1,k, X1,(n1−N1,0+1), . . . , X1,(n1))

+ l(λ+ α, τ + β,N2,0, . . . , N2,k, X2,(n2−N2,0+1), . . . , X2,(n2)),

where l is the log-likelihood function (2.6) in the one-sample model, specifically

lR(α, β, λ, τ) = log

(
n1!

N1,1! · · ·N1,k!

)
+

k∑

i=1

N1,i log

{
exp

[
−
(
di−1

λ

)τ]
− exp

[
−
(
di
λ

)τ]}

+N1,0 log
( τ

λτ

)
+ (τ − 1)

n1∑

i=n1−N1,0+1

log
(
X1,(i)

)
− 1

λτ

n1∑

i=n1−N1,0+1

Xτ
1,(i)

+ log

(
n2!

N2,1! · · ·N2,k!

)
+

k∑

i=1

N2,i log

{
exp

[
−
(

di−1

λ+ α

)τ+β
]
− exp

[
−
(

di
λ+ α

)τ+β
]}

+N2,0 log

[
τ + β

(λ+ α)τ+β

]
+(τ+β−1)

n2∑

i=n2−N2,0+1

log
(
X2,(i)

)
− 1

(λ+ α)τ+β

n2∑

i=n2−N2,0+1

Xτ+β
2,(i) .

(3.1)

29
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As in the one-sample model, the ML estimates α̂, β̂, λ̂, τ̂ of parameters α, β, λ, τ can be

obtained by maximization of the log-likelihood function (3.1).

The variability of ML estimates α̂, β̂, λ̂, τ̂ can be calculated from the sample or the

expected FIM. The expected FIM is

J
R
n (α, β, λ, τ) =




JR
11 JR

12 JR
13 JR

14

JR
21 JR

22 JR
23 JR

24

JR
31 JR

32 JR
33 JR

34

JR
41 JR

42 JR
43 JR

44



=




−E∂2lR
∂α2 −E ∂2lR

∂α∂β
−E ∂2lR

∂α∂λ
−E ∂2lR

∂α∂τ

−E ∂2lR
∂β∂α

−E∂2lR
∂β2 −E ∂2lR

∂β∂λ
−E ∂2lR

∂β∂τ

−E ∂2lR
∂λ∂α

−E ∂2lR
∂λ∂β

−E∂2lR
∂λ2 −E ∂2lR

∂λ∂τ

−E ∂2lR
∂τ∂α

−E ∂2lR
∂τ∂β

−E ∂2lR
∂τ∂λ

−E∂2lR
∂τ2



, (3.2)

where

JR
11 = JR

13 = JR
31 = n2J11(λ+ α, τ + β,N2,0, . . . , N2,k, X2,(n2−N2,0+1), . . . , X2,(n2)),

JR
12 = JR

21 = JR
14 = JR

41 = JR
23 = JR

32

= n2J12(λ+ α, τ + β,N2,0, . . . , N2,k, X2,(n2−N2,0+1), . . . , X2,(n2)),

JR
22 = JR

24 = JR
42 = n2J22(λ+ α, τ + β,N2,0, . . . , N2,k, X2,(n2−N2,0+1), . . . , X2,(n2)),

JR
33 = n1J11(λ, τ,N1,0, . . . , N1,k, X1,(n1−N1,0+1), . . . , X1,(n1))

+ n2J11(λ+ α, τ + β,N2,0, . . . , N2,k, X2,(n2−N2,0+1), . . . , X2,(n2)),

JR
44 = n1J22(λ, τ,N1,0, . . . , N1,k, X1,(n1−N1,0+1), . . . , X1,(n1))

+ n2J22(λ+ α, τ + β,N2,0, . . . , N2,k, X2,(n2−N2,0+1), . . . , X2,(n2)),

JR
34 = JR

43 = n1J12(λ, τ,N1,0, . . . , N1,k, X1,(n1−N1,0+1), . . . , X1,(n1))

+ n2J12(λ+ α, τ + β,N2,0, . . . , N2,k, X2,(n2−N2,0+1), . . . , X2,(n2)),

(3.3)

and J11, J12, J22 are elements of the expected FIM (2.8) in the one-sample model. The

sample FIM J̃
R
n (α, β, λ, τ) can be obtained in a similar way by replacing of njJ11, njJ12,

njJ22, j = 1, 2, in (3.3) by corresponding elements of the sample FIM (2.7) for each

individual sample j.

3.1 Comparison of Distributions

For comparison of two independent censored samples from Weibull distribution, asymp-

totic tests with nuisance parameters can be used (see e.g. Lehmann and Casella, 1998),

specifically the Lagrange multiplier (LM) test, the Wald (W) test and the likelihood ratio

(LR) test. The null hypothesis H0 is that distributions of both samples are equal. As it was

stated at the beginning of this chapter, parameters α and β describe the difference between

distributions of the first and the second sample. In case α = 0 and β = 0, distributions of

the two samples are identical. The null hypothesis H0 : (α, β)
T = (0, 0)T is set against the

alternative H1 : (α, β)
T 6= (0, 0)T, where λ and τ are nuisance parameters.
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The test statistics are

LM = U1(0, 0, λ̃, τ̃)
[
J

R
n,11.2(0, 0, λ̃, τ̃)

]−1

U
T
1 (0, 0, λ̃, τ̃),

W = (α̂, β̂)
[
J

R
n,11.2(α̂, β̂, λ̂, τ̂)

]
(α̂, β̂)T,

LR = 2
[
lR(α̂, β̂, λ̂, τ̂)− lR(0, 0, λ̃, τ̃)

]
,

(3.4)

where

U1(α, β, λ, τ) =

(
∂lR
∂α

,
∂lR
∂β

)
= (u1, u2) ,

u1 =
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k∑
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i log

(
di
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exp
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(

di
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i−1 log
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exp
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(
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(λ+ α)τ+β

{
exp
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(
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λ+α
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− exp

[
−
(

di
λ+α

)τ+β
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+N0
[1− (τ + β) log(λ+ α)]

τ + β
+

n∑

i=n−N0+1

logX(i) +
log(λ+ α)

(λ+ α)τ+β
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i=n−N0+1

Xτ+β
(i)

− 1

(λ+ α)τ+β

n∑
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Xτ+β
(i) logX(i),

is the score function and

J
R
n,11.2(α, β, λ, τ) =

[
JR
11 JR

12

JR
21 JR

22

]
−
[
JR
13 JR

14

JR
23 JR

24

][
JR
33 JR

34

JR
43 JR

44

]−1 [
JR
31 JR

32

JR
41 JR

42

]

is a transformation of the expected FIM (3.2). The parameters estimated under the null

hypothesis are denoted by tilde and those estimated under the alternative are denoted by

hat. Under the null hypothesis, the test statistics (3.4) have asymptotically χ2 distribution

with two degrees of freedom (see e.g. Lehmann and Romano, 2005). The null hypothesis is

rejected at a prescribed significance level when the test statistics exceed the critical value

of the χ2 distribution.
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3.1.1 Power of the Tests

Performance of the tests using statistics (3.4) was studied using simulated power functions

(10,000 repetitions) and the significance level was 0.05. The power functions were calcu-

lated in case of comparing doubly left-censored samples (n = 30 and n = 100) from the

Weibull distribution with various values of parameters λ, τ considering detection limit d1

equals 5% (45% respectively) and d2 equals 10% (90% respectively) quantile of Weibull

distribution, i.e. low (high respectively) censoring level. Since the power functions of all

the test statistics practically coincide for n ≥ 100, results are visualized only for n = 30 and

high censoring level, which was observed when dealing with real data (Fusek and Michálek,

2013).

In case there is a difference in scale parameter of the distributions and β = 0, all test

statistics perform rather well (see Figs. 3.1a, c, e). However, when a value of τ is low

(τ = 0.5), the test statistics perform poorly for small sample size (n = 30; not shown in

figures). This can be caused by high skewness of the Weibull distribution in case τ < 1.

The LR test statistic outperforms the LM and W statistics in all cases. Moreover, the

LM statistic performs the worst. If there is a difference in shape of the distributions and

α = 0, performance of test statistics (3.4) for small sample size (n = 30) and β > 0 is not

particularly good (see Figs. 3.1b, d, f). This can be caused by a small difference between

expected values of the two Weibull samples for β > 0 in comparison to β < 0 (see the

differences between expected values on the top x-axis in Figs. 3.1b, d, f). The LR test

statistic outperforms the LM and W statistics in all cases. Both LM and W statistics

perform rather similar. However, the disadvantage of the LR test statistic is that it works

at a higher significance level than the declared 0.05.

3.2 Comparison of Expected Values

For comparison of means µ1, µ2 of two independent censored samples from Weibull distri-

bution, the test based on Wald’s test statistic (see e.g. Lehmann and Romano, 2005) can

be used. The null hypothesis H0 : µ1−µ2 = 0 is set against the alternative H1 : µ1−µ2 6= 0.

The test statistic is

W =
µ̂1 − µ̂2√

V̂ar (µ̂1) + V̂ar (µ̂2)

, (3.5)

where µ̂i = µ(λ̂i, τ̂i) can be calculated from (2.3) and V̂ar (µ̂i) = Var
(
µ(λ̂i, τ̂i)

)
can be

calculated from (2.9) for i = 1, 2. Under the null hypothesis, the test statistic (3.5) is

considered to be asymptotically normal N(0, 1).

In order to compare means of two independent censored samples, there is another

option. We can use the asymptotic t-test. Nevertheless, since we deal with censored
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(a) Parameter α; β = 0, λ = 0.5, τ = 2

-0.25 -0.2 -0.15 -0.1 -0.05 0    0.05 0.1  0.15 0.2  0.25 

Parameter 

-22.000 -7.261 -3.029 -1.323 -0.479 0 0.298 0.495 0.634 0.734 0.809

Difference between expected values

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

R
ej

ec
tio

n 
P

ro
ba

bi
lit

y

LR
LM
W

(b) Parameter β; α = 0, λ = 1, τ = 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0   0.1 0.2 0.3 0.4 0.5 

Parameter 

0.44 0.35 0.27 0.18 0.09 0 -0.09 -0.18 -0.27 -0.35 -0.44

Difference between expected values

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

R
ej

ec
tio

n 
P

ro
ba

bi
lit

y

LR
LM
W

(c) Parameter α; β = 0, λ = 1, τ = 2
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(d) Parameter β; α = 0, λ = 1, τ = 1
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(e) Parameter α; β = 0, λ = 2, τ = 2
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(f) Parameter β; α = 0, λ = 1, τ = 2

Figure 3.1: Power functions for test statistics (3.4), high censoring level and sample size

n = 30; differences between expected values on the top x-axis.
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observations, certain adjustments have to be done. The usual approach in such a situation

is based on replacing values between detection limits di−1 and di, i = 1, . . . , k, by constants

lying between the individual detection limits, often by the midpoint of such an interval

(see e.g. El-Shaarawi and Esterby, 1992). The null and the alternative hypotheses remain

the same as above and the test statistic is

T =
X1 −X2√

S2
1

n
+

S2
2

n

, (3.6)

where X1 (X2 respectively) is the sample mean and S2
1 (S2

2 respectively) is the sample

variance of the first (second respectively) sample. Under the null hypothesis of equal

means, the statistic (3.6) is considered to be asymptotically normal N(0, 1).

Clearly, an advantage of the T statistic is that it can be used for samples with various

distributions as long as assumptions of the central limit theorem are fulfilled. However,

performance of methods based on replacement of censored values by constants has previ-

ously been examined (El-Shaarawi and Esterby, 1992; Helsel and Cohn, 1988; Lubin et al.,

2004; Singh and Nocerino, 2002), and it was shown that it is not particularly good. More

information about how substituting values for censored observations can ruin results can

be found in Helsel (1990, 2006) and Hornung and Reed (1990).

3.2.1 Power of the Tests

Performance of tests based on statistics (3.5), (3.6) was verified by means of simulated

power functions (10,000 repetitions) for expected values of Weibull distribution equal to

0.5, 1, 2, 3, 5. Simulations were focused on doubly left-censored samples (n = 30 and n =

100) because they are often present when analyzing real data. Since the skewness of the

sample distribution can have significant influence on performance of both tests, simulations

were carried out for various skewnesses γi of samples i = 1, 2, specifically γi = −1, 0, 1, 2, 3.

Parameters of the Weibull distribution are uniquely determined by the expected value and

the skewness. Detection limits of the censored distribution were selected as quantiles of

the Weibull distribution, specifically d1 equals 5% (45% respectively) and d2 equals 10%

(90% respectively) quantile which corresponds to low (high respectively) censoring level.

In case of statistic (3.6), all censored values are replaced by midpoints of intervals (d0, d1]

and (d1, d2]. Since the power functions of all the test statistics have similar behavior for

various expected values and sample sizes, they are illustrated in Fig. 3.2 only for expected

value equal to 0.5 and sample size n = 100.

In case of low censoring, performances of both tests are rather similar (see Fig. 3.2a),

especially when skewnesses of both samples are similar (see Fig. 3.2b). However, if there is

a big difference between skewnesses of the samples, power functions of both test statistics

are slightly biased (see Fig. 3.2c). In case of high censoring, test statistic (3.5) performs
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(a) Low censoring; γ1 = 1, γ2 = 2
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(b) Low censoring; γ1 = 1, γ2 = 1
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(c) Low censoring; γ1 = 1, γ2 = 3
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(d) High censoring; γ1 = 0, γ2 = 0
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(e) High censoring; γ1 = 1, γ2 = 1
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(f) High censoring; γ1 = 0, γ2 = 1

Figure 3.2: Power functions for test statistics (3.5), (3.6); sample size n = 100.
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better in almost all cases (see Fig. 3.2d). The exception is situation when skewnesses of both

samples are equal and ≥ 1 (see Fig. 3.2e). Otherwise, test statistic (3.6) performs poorly

since its power function is biased. Specifically, Fig. 3.2f shows that in case both samples

have the same expected values, the rejection probability of the null hypothesis is higher

(close to 0.4) than the prescribed significance level 0.05. Moreover, the lowest rejection

probability is encountered if the difference between expected values of both samples is

about 0.05. Similar to low censoring, the power function of test statistic (3.5) is slightly

biased if skewnesses of the samples vary significantly.



Chapter 4

Goodness-of-Fit Tests

When analyzing real data using the parametric approach, it is assumed that data has a spe-

cific distribution with cdf F (x,θ), where θ = (θ1, . . . , θk) ∈ Θ ⊂ R
k is a vector of parame-

ters. In environmental studies, data are typically skewed and various distributions such as

the lognormal (Baccarelli et al., 2005; El-Shaarawi, 1989), the gamma (Hrdličková et al.,

2008; Singh et al., 2002) and the Weibull (Fusek et al., 2015, 2020; Mbengue et al., 2018)

distributions are often used. Since selecting an unsuitable probability distribution can

lead to biased estimates and potentially misleading inferences, goodness-of-fit tests are

of a great importance. There are several goodness-of-fit tests available in the literature

based on a complete sample and an excellent overview on this topic can be found in

d’Agostino and Stephens (1986). Nevertheless, there has been relatively little work done on

the problem of goodness-of-fit for Type I censored data and attention was usually paid only

to right-censoring (Bispo et al., 2011; Pakyari and Balakrishnan, 2013; Pakyari and Nia,

2017). In this chapter, three tests (Kolmogorov-Smirnov, Cramér-von Mises, Anderson-

Darling) based on the empirical distribution function (EDF) are considered, and their

power is investigated by varying the null and the alternative distributions, the sample size

and the degree of censoring. It can bring readers valuable information about the type II

error that can be expected when having a dataset with a specific size and a number of

censored values.

Following probability distributions are used:

1) The Weibull distribution with parameter θ = (λ, τ) ∈ (0,∞)× (0,∞), and cdf

F (x,θ) =





1− exp
[
−
(
x
λ

)τ]
for x ≥ 0,

0 for x < 0,
(4.1)

where λ is the scale parameter and τ is the shape parameter.
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2) The lognormal distribution with parameter θ = (µ, σ) ∈ (−∞,∞)× (0,∞), and cdf

F (x,θ) =





1
σ
√
2π

x∫
0

1
t
exp

[
− (log(t)−µ)2

2σ2

]
dt for x > 0,

0 for x ≤ 0,
(4.2)

where µ is the location parameter and σ is the scale parameter of the variable’s

natural logarithm.

3) The gamma distribution with parameter θ = (λ, κ) ∈ (0,∞)× (0,∞), and cdf

F (x,θ) =





1
λκΓ(κ)

x∫
0

tκ−1 exp
(
− t

λ

)
dt for x > 0,

0 for x ≤ 0,
(4.3)

where λ is the scale parameter and κ is the shape parameter.

4) The Gumbel distribution with parameter θ = (µ, σ) ∈ (−∞,∞)× (0,∞), and cdf

F (x,θ) = 1− exp

[
− exp

(
x− µ

σ

)]
for x ∈ R, (4.4)

where µ is the location parameter and σ is the scale parameter.

5) The normal distribution with parameter θ = (µ, σ) ∈ (−∞,∞)× (0,∞), and cdf

F (x,θ) =
1

σ
√
2π

x∫

−∞

exp

[
−(t− µ)2

2σ2

]
dt for x ∈ R, (4.5)

where µ is the location parameter and σ is the scale parameter.

4.1 Goodness-of-Fit Test Statistics

Let X1, . . . , Xn be a random sample from a distribution with cdf F (x). We consider

a problem of testing a composite hypothesis

H0 : F (x) ∈
{
F0(x,θ),θ ∈ Θ ⊂ R

k
}
,

where F0 is a cdf of a known parametric family. In case θ is fully specified, then H0 is

a simple hypothesis and the distribution theory of EDF statistics is well developed. When

θ is unknown, it can be replaced by its estimate θ̂, and distributions of EDF statistics

depend on the tested distribution, the estimated parameters and the sample size. It is well

known fact (d’Agostino and Stephens, 1986) that in case the unknown components in θ

are location or scale parameters, distributions of EDF statistics do not depend on the true

values of the unknown parameters, and depend only on the tested distribution and on the
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sample size. When the unknown component in θ is the shape parameter, distributions of

EDF statistics depend on the true value of this parameter. In our case, it was possible

to transform the distributions depending on the shape parameter to another distributions

depending on the location and scale parameters only. Specifically, if a random variable

X has the Weibull distribution, then log(X) has the Gumbel distribution. Therefore,

testing the null hypothesis that the data follow the Weibull distribution (4.1) is equivalent

to testing that the log-transformed data follow the Gumbel distribution with location

parameter µ = log(λ), scale parameter σ = 1/τ , and cdf (4.4). Moreover, a random

variable X has the lognormal distribution if log(X) has the normal distribution. For that

reason, testing the null hypothesis that the data follow the lognormal distribution (4.2)

is equivalent to testing that the log-transformed data follow the normal distribution with

mean µ, standard deviation σ, and cdf (4.5).

Critical values of the EDF statistics can be obtained by means of Monte Carlo simu-

lations using the following steps:

1) Generate a Type I doubly left-censored sample X1, . . . , Xn with a pre-chosen sample

size n and detection limits from the distribution being tested. Detection limits are

selected as quantiles of the tested distribution depending on the degree of censoring.

2) Calculate the ML estimates of the unknown parameters of the selected distribution.

3) Calculate the EDF statistic.

4) Repeat steps 1–3 a large number of times and determine the (1 − α)th quantile of

the test statistic as the required critical value of that goodness-of-fit statistic.

Three test statistics based on the EDF Fn(x) are applied (see d’Agostino and Stephens,

1986, for more details).

4.1.1 Kolmogorov-Smirnov Statistic

The Kolmogorov-Smirnov (KS) statistic is defined by

D = sup
d2≤x<∞

|Fn(x)− F0(x)|

with the useful alternative form for computational purposes

D = max
n−N0+1≤i≤n

{∣∣∣∣
i

n
− F0

(
x(i), θ̂

)∣∣∣∣ ,
∣∣∣∣F0

(
x(i), θ̂

)
− i− 1

n

∣∣∣∣ ,
∣∣∣∣F0

(
d2, θ̂

)
− n−N0

n

∣∣∣∣
}
.
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4.1.2 Cramér-von Mises Statistic

The Cramér-von Mises (CM) statistic is defined by

W 2 = n

∞∫

d2

[Fn(x)− F0(x)]
2 dF0(x)

with an alternative form for computational purposes

W 2 =

N0+1∑

i=1

(
Z(i) −

2i− 1

2n

)2

+
N0 + 1

12n2
+

n

3

(
Z(N0+1) −

N0 + 1

n

)3

,

where Z(i) = 1− F0(x(n−i+1), θ̂), i = 1, . . . , N0, and Z(N0+1) = 1− F0(d2, θ̂).

4.1.3 Anderson-Darling Statistic

The Anderson-Darling (AD) statistic is a modification of the CM statistic placing more

weight in the tails of the underlying distribution. It is defined by

A2 = n

∞∫

d2

[Fn(x)− F0(x)]
2

F0(x)[1− F0(x)]
dF0(x)

with an alternative form for computational purposes

A2 = − 1

n

N0+1∑

i=1

(2i− 1)
[
log(Z(i))− log(1− Z(i))

]
− 2

N0+1∑

i=1

log(1− Z(i))

− 1

n

[
(N0 + 1− n)2 log(1− Z(N0+1))− (N0 + 1)2 log(Z(N0+1)) + n2Z(N0+1)

]
,

where again Z(i) = 1− F0(x(n−i+1), θ̂), i = 1, . . . , N0, and Z(N0+1) = 1− F0(d2, θ̂).

4.2 Simulation Study

The empirical significance level as well as the power of the above mentioned tests was

studied by means of Monte Carlo simulations. Tested models included the Weibull (de-

noted by Wbl(λ, τ)), lognormal (denoted by LN(µ, σ)) and gamma (denoted by Gam(λ, κ))

distributions as these are among the most frequently used distributions when modelling

censored environmental data. In case of the Weibull (lognormal respectively) distribution,

the previously described transformation to the Gumbel (normal respectively) distribution

was applied. The power of the goodness-of-fit tests was estimated by the proportion of

the correct rejections of the null hypothesis at the significance level of α = 0.05. The

power of each statistic was simulated from 100,000 replications considering sample sizes
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Table 4.1: Estimated power for various alternatives and censoring schemes when testing

for the Weibull distribution; n = 30, 100.

n = 30 n = 100

Alt. model Stat. c1 c2 c3 c4 c1 c2 c3 c4

Wbl(1,0.5)

KS 0.0504 0.0493 0.0485 0.0499 0.0506 0.0505 0.0501 0.0500

CM 0.0508 0.0494 0.0500 0.0488 0.0502 0.0503 0.0506 0.0515

AD 0.0505 0.0493 0.0501 0.0490 0.0500 0.0496 0.0505 0.0506

Wbl(1,2)

KS 0.0493 0.0497 0.0496 0.0506 0.0501 0.0506 0.0511 0.0505

CM 0.0498 0.0498 0.0500 0.0496 0.0509 0.0499 0.0510 0.0503

AD 0.0496 0.0494 0.0498 0.0496 0.0507 0.0503 0.0514 0.0498

LN(0,0.5)

KS 0.2083 0.1679 0.1487 0.1324 0.5902 0.4462 0.3812 0.3503

CM 0.2396 0.1891 0.1751 0.1612 0.6835 0.5303 0.4731 0.4238

AD 0.2396 0.2044 0.1866 0.1631 0.6906 0.5607 0.4919 0.4130

LN(0,2)

KS 0.2073 0.1701 0.1481 0.1318 0.5854 0.4464 0.3858 0.3514

CM 0.2399 0.1901 0.1759 0.1605 0.6819 0.5328 0.4793 0.4249

AD 0.2388 0.2063 0.1860 0.1624 0.6892 0.5623 0.4970 0.4131

Gam(0.5,0.5)

KS 0.0696 0.0643 0.0628 0.0619 0.1278 0.1074 0.0992 0.0911

CM 0.0720 0.0639 0.0617 0.0545 0.1469 0.1181 0.1069 0.0842

AD 0.0726 0.0615 0.0597 0.0529 0.1546 0.1176 0.1053 0.0819

Gam(0.5,2)

KS 0.0627 0.0605 0.0588 0.0559 0.0952 0.0848 0.0768 0.0746

CM 0.0676 0.0637 0.0628 0.0611 0.1093 0.0921 0.0869 0.0841

AD 0.0683 0.0664 0.0653 0.0621 0.1141 0.0968 0.0913 0.0847

n = 10, 20, 30, 50, 100, 200 and censoring schemes c1, . . . , c4, which represent proportions

of censored observations between 10% and 70% (with a step of 20%). For example, c3

represents 50% of censored values. Detection limits d1, d2 were selected as quantiles of the

particular distribution using equations qi = F (di,θ), i = 1, 2, where q2 = 0.1, 0.3, 0.5, 0.7

and q1 = q2/2. Critical values of the test statistics were obtained by means of Monte Carlo

simulations using 2,000,000 repetitions. When the alternative model is the model from

which the data are simulated, the rejection probabilities give the power of the tests. In

case the null hypothesis is true, it is expected that the statistics maintain the type I error

rate. Overall, differences between the nominal level of 0.05 and the actual levels were very

small for various censoring schemes and sample sizes, which shows a reliable performance

of the goodness-of-fit statistics for left-censored data (see Tables 4.1–4.3).

Table 4.1 shows that power of all the test statistics is very low when data generated

from the gamma distribution are tested for the Weibull distribution. Similar behavior is

observed when data generated from Gam(0.5,2) are tested for the lognormal distribution

(Table 4.2), and data generated from LN(0,0.5) and Wbl(1,2) are tested for the gamma

distribution (Table 4.3). It is caused by the fact that it is very difficult to distinguish
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Table 4.2: Estimated power for various alternatives and censoring schemes when testing

for the lognormal distribution; n = 30, 100.

n = 30 n = 100

Alt. model Stat. c1 c2 c3 c4 c1 c2 c3 c4

LN(0,0.5)

KS 0.0491 0.0492 0.0507 0.0497 0.0507 0.0500 0.0497 0.0499

CM 0.0487 0.0500 0.0502 0.0484 0.0505 0.0495 0.0494 0.0494

AD 0.0485 0.0503 0.0508 0.0493 0.0509 0.0497 0.0497 0.0484

LN(0,2)

KS 0.0488 0.0496 0.0500 0.0508 0.0506 0.0496 0.0500 0.0492

CM 0.0490 0.0495 0.0501 0.0491 0.0515 0.0498 0.0498 0.0497

AD 0.0490 0.0495 0.0494 0.0493 0.0512 0.0500 0.0500 0.0499

Wbl(1,0.5)

KS 0.2188 0.1530 0.1219 0.0921 0.6180 0.4565 0.3461 0.2335

CM 0.2636 0.1757 0.1195 0.0731 0.7501 0.5660 0.3809 0.1962

AD 0.2673 0.1796 0.1227 0.0781 0.7870 0.6016 0.4099 0.2253

Wbl(1,2)

KS 0.2175 0.1543 0.1228 0.0919 0.6177 0.4552 0.3459 0.2320

CM 0.2635 0.1758 0.1198 0.0735 0.7493 0.5653 0.3820 0.1954

AD 0.2685 0.1792 0.1237 0.0786 0.7858 0.6003 0.4102 0.2235

Gam(0.5,0.5)

KS 0.3763 0.2675 0.2014 0.1336 0.8906 0.7563 0.6158 0.4062

CM 0.4778 0.3221 0.1965 0.1012 0.9664 0.8753 0.6633 0.3301

AD 0.5026 0.3394 0.2137 0.1169 0.9803 0.9077 0.7223 0.4100

Gam(0.5,2)

KS 0.1250 0.0970 0.0831 0.0696 0.3406 0.2421 0.1916 0.1414

CM 0.1432 0.1065 0.0814 0.0589 0.4249 0.2961 0.2079 0.1227

AD 0.1410 0.1052 0.0815 0.0600 0.4476 0.3110 0.2159 0.1314

between the gamma, lognormal and Weibull distributions in some cases (see Fig. 4.1).

As expected, the statistical power of the studied tests increases with increase in the

sample size, and decreases with the increasing proportion of censored values. The relation

between the power of the test and the sample size is visualized for several cases in Fig. 4.2.

Note that the AD test seems to have the best performance for most cases in comparison to

the CM and KS tests. In general, there is not much difference between the powers of the

AD and CM tests and the KS test usually performs the worst. Let us look more closely

at the tests’ performance with regards to the proportion of censored values in a sample.

If there is at most 50% of censored values (schemes c1-c3) in a sample, the AD test can

be used without much hesitation. Nevertheless, when the proportion of censored values

is high (70%; scheme c4), the KS and CM tests sometimes outperform the AD test. In

case of testing data with sample size n < 100 for the lognormal distribution, the KS

test has the highest power (i.e. the lowest type II error), see Fig. 4.3. When testing

lognormally distributed data with sample size n > 50 for the Weibull distribution and/or

data generated from LN(0,2) for the gamma distribution, the CM test has the highest

power. There are few other cases in which the KS test performs the best, specifically when
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Table 4.3: Estimated power for various alternatives and censoring schemes when testing

for the gamma distribution; n = 30, 100.

n = 30 n = 100

Alt. model Stat. c1 c2 c3 c4 c1 c2 c3 c4

Gam(0.5,0.5)

KS 0.0501 0.0507 0.0496 0.0505 0.0493 0.0506 0.0501 0.0505

CM 0.0497 0.0516 0.0515 0.0512 0.0499 0.0498 0.0510 0.0509

AD 0.0501 0.0514 0.0504 0.0509 0.0501 0.0494 0.0506 0.0507

Gam(0.5,2)

KS 0.0501 0.0505 0.0507 0.0501 0.0499 0.0497 0.0497 0.0512

CM 0.0502 0.0504 0.0499 0.0502 0.0507 0.0498 0.0501 0.0504

AD 0.0501 0.0502 0.0502 0.0498 0.0511 0.0503 0.0502 0.0509

LN(0,0.5)

KS 0.0963 0.0883 0.0829 0.0768 0.2097 0.1706 0.1521 0.1419

CM 0.1061 0.0967 0.0933 0.0904 0.2486 0.2033 0.1848 0.1709

AD 0.1152 0.1068 0.1019 0.0961 0.2640 0.2213 0.1956 0.1712

LN(0,2)

KS 0.5613 0.4790 0.4177 0.3751 0.9746 0.9395 0.8968 0.8565

CM 0.6307 0.5401 0.4826 0.4389 0.9893 0.9678 0.9395 0.9002

AD 0.6286 0.5504 0.4891 0.4293 0.9893 0.9701 0.9409 0.8901

Wbl(1,0.5)

KS 0.1385 0.1229 0.1133 0.1064 0.3723 0.3148 0.2817 0.2664

CM 0.1610 0.1424 0.1348 0.1324 0.4465 0.3814 0.3469 0.3266

AD 0.1648 0.1501 0.1396 0.1311 0.4568 0.4006 0.3612 0.3209

Wbl(1,2)

KS 0.0833 0.0722 0.0686 0.0645 0.1741 0.1391 0.1224 0.1011

CM 0.0887 0.0743 0.0674 0.0546 0.2068 0.1610 0.1300 0.0896

AD 0.0830 0.0693 0.0640 0.0516 0.2078 0.1611 0.1287 0.0892
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Figure 4.1: Densities of some alternative distributions (solid lines) compared with densities

of the fitted distributions (dashed lines) for n = 30 and 30% of censored values.

data generated from Gam(0.5,0.5) are tested for the Weibull distribution and/or when

data generated from Wbl(1,2) are tested for the gamma distribution. Similarly, when data

generated from Wbl(1,0.5) are tested for the gamma distribution, the CM test performs

the best. Nevertheless, in these three cases, the differences in tests’ powers are very small

and they can be considered negligible from the practical point of view.
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Figure 4.2: Estimated power for various alternatives as a function of the sample size and

the proportion of censored values c1 (10%), c2 (30%), c3 (50%), c4 (70%) when testing for

the Weibull (left), gamma (middle) and lognormal (right) distributions.
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Figure 4.3: Estimated power for Wbl(1,2) alternative as a function of the sample size n

and the proportion of censored values c1 (10%), c2 (30%), c3 (50%), c4 (70%) when testing

for lognormal distribution.



Chapter 5

Applications

When dealing with environmental or microbiological data, measured values are often found

below the detection limits of a measurement method, and only the number of values below

the detection limits can be determined. There are usually two detection limits. One of them

is called the limit of detection (LOD), which is the lowest quantity of a substance that can

be distinguished from the absence of that substance (a blank value) within a stated confi-

dence limit. The other one is called the limit of quantification (LOQ), which is the lowest

analyte concentration that can be quantitatively detected with a stated accuracy and preci-

sion. In such case, we are dealing with Type I doubly left-censored data (Busschaert et al.,

2010; Fusek et al., 2015; Pouillot et al., 2013; Shorten et al., 2006; Valero et al., 2017). In

this chapter, statistical methods described in previous chapters are used for analyses of

environmental data. Two approaches are used. The first one is based on the censored

exponential and Weibull distributions. The second one is based on the so-called ”replace-

ment method,” where all values under the detection limits are replaced by midpoints of

intervals (0,LOD] and (LOD,LOQ].

5.1 Musk Compounds

Synthetic aromatic substances or musk compounds are lipophilic contaminants able to ac-

cumulate in various components of the environment. They represent a group of persistent

pollutants, and may occur in environmental matrices and human tissues. Synthetic aro-

matic substances were launched on the market in the early 20th century and the volume of

their production has significantly increased in recent years (Luckenbach and Epel, 2005).

Since they have potential carcinogenic properties, efforts are currently being made to limit

or prohibit their use in many regions worldwide.

In general, musk compounds can be divided into four groups: linear, macrocyclic,

polycyclic and nitro musk compounds. The last two groups are used most frequently as

substitutes for natural musks in fragrances and personal hygiene products (OSPAR, 2004).

Galaxolide (HHCB) and tonalide (AHTN) are examples of the most important polycyclic

47
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musk compounds. Musk xylene, musk ketone and musk ambrette are well-known nitro

musk compounds (i.e. compounds containing one or more nitro groups in a molecule).

The production of nitro musk compounds, that are generally included in a group of sub-

stances posing a risk to the environment, has decreased over the last years (Bester, 2009;

Rimkus, 1999). By contrast, production of polycyclic synthetic aromatic substances, which

are less toxic, has increased because of their frequent use as additives in many personal care

products, e.g. soaps, shampoos, deodorants, body lotions, perfumes, cleaning and disin-

fecting agents, air fresheners and industrial cleaning agents (see e.g. Sumner et al., 2010).

Synthetic aromatic substances were also detected in samples of air and dust collected in

indoor environments (Regueiro et al., 2009). They often penetrate into the environment

through wastewater because of their ineffective removal in the wastewater treatment plant

(WWTP), see e.g. Gómez et al. (2006) and references inside. Accumulation of these sub-

stances in the environment (surface water, sediment) results in their occurrence in food

chain, especially in aquatic ecosystems. A number of studies revealed the presence of musk

compounds in tissues of aquatic animals. These compounds can also be found in human

body, for example in fat tissue, human milk and blood plasma (see e.g. Lignell et al., 2008;

Zlámalová Gargošová et al., 2013), as a consequence of fish consumption.

The goal is:

a) to model musk compound concentrations using methods for censored samples;

b) to evaluate the amount of musk compounds in fish caught upstream and downstream

the WWTP;

c) to compare mean concentrations and distributions of concentrations of musk com-

pounds in fish caught upstream and downstream the WWTP.

5.1.1 Data

The sample of aquatic biota consists of 60 fish from the carp family, specifically of the

European chub (Leuciscus cephalus), which were caught in the Svratka River, Czech Re-

public, near the WWTP Brno-Modřice by Morava River Basin Administration employees.

Fish were caught on 10th November 2009; half of them came from a watercourse upstream

(Group 1), and half of them from a watercourse downstream (Group 2) from the WWTP.

The fish were transported to the laboratory of the Institute of Veterinary Hygiene and

Ecology of Veterinary and Pharmaceutical University in Brno, and examined by a veteri-

narian. Relevant characteristics were noted and then muscle, skin and guts were separated.

Muscle tissue was selected for the musk compound analysis because it is considered to be

representative of all of the body. The muscle tissue was homogenized (using a blender),

subsequently frozen at -20 ◦C and kept frozen until the analysis. Fish of approximately

the same age were chosen for the analysis. As a result, four nitro (musk ambrette - AMB,
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Table 5.1: Musk compounds distribution in fish samples upstream and downstream the

WWTP.

Upstream Downstream LOD
[µg/kg]

LOQ
[µg/kg]

Na
1 N b

2 N c
0 N1 N2 N0

PH 18 12 0 23 6 1 0.55 1.82

AMB 28 2 0 28 2 0 1.46 4.88

TR 24 6 0 22 8 0 1.11 3.68

HHCB 3 23 4 0 22 8 8.95 29.83

AHTN 6 17 7 8 4 18 1.98 6.62

MX 22 4 4 23 6 1 0.75 2.50

TIB 27 1 2 28 2 0 0.15 0.51

MK 0 17 13 0 19 11 0.57 1.90

aN1 - the number of values below the LOD
bN2 - number of values in the interval (LOD,LOQ]
cN0 - number of uncensored values

musk xylene - MX, musk tibetene - TIB, musk ketone - MK), and four polycyclic musk

compounds (phantolide - PH, traseolide - TR, galaxolide - HHCB, tonalide - AHTN) were

detected. Details of the chemical analyses can be found in Fusek et al. (2015). The LOD

and the LOQ were calculated using calibration curves of particular analytes, see Kellner

(1998) for more information. Frequencies of censored and uncensored musk compound

concentrations are presented in Table 5.1 together with the specified detection limits.
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Figure 5.1: Histogram (normalized to the pdf) of a) PH concentrations downstream, b)

HHCB concentrations upstream the WWTP with exponential and Weibull densities.
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5.1.2 Results

The suitability of the exponential and the Weibull distributions for modelling of BA con-

centrations was tested using Pearson’s χ2 goodness-of-fit test and Cramér-von Mises test

for censored data that was implemented in Matlab (version R2022b). Moreover, graphical

analysis of the data was used in order to choose the model distribution. Specifically, Q-Q

plots and correspondence between the histogram (normalized to the pdf) and the exponen-

tial (Weibull respectively) density was assessed. It was found out that it is possible to use

the exponential distribution for modelling of PH, AMB, TR, TIB and MK (see Fig. 5.1a

for an example). In case of HHCB and MX, it was necessary to use the Weibull distribution

(see Fig. 5.1b for an example). In case of AHTN in fish caught downstream the WWTP,

neither the exponential nor the Weibull distribution was suitable and we applied the more

flexible Weibull distribution just for illustration purposes.

Mean musk compound concentrations were estimated together with their 95% confi-

dence limits using methods for censored exponential and Weibull distributions (see Table

5.2), and using the replacement method, where all censored values were replaced by mid-

points of intervals (0,LOD] and (LOD,LOQ] (see Table 5.3). It can be seen that both

estimates are quite similar. Mean musk compound concentration estimates based on cen-

sored distributions are of lower values than those estimated using the replacement method

in most cases. In order to assess the estimation quality, a simulation study was carried out

in Fusek et al. (2015). The authors showed that behavior of mean and variance estimates

based on the censored distribution and the replacement method (using the sample mean

and the sample variance) are rather similar in case of low censoring. On the other hand,

when the number of censored values is high, performance of the estimates based on the

replacement method is not particularly good.

Results of the comparison of mean musk compound concentrations in fish caught up-

stream and downstream the WWTP are presented in Table 5.4. There is no significant

difference between the two groups in most cases. In case of methods for censored distribu-

tions, there is a significant difference in mean concentrations of TIB between fish caught

upstream and downstream the WWTP at the significance level of 0.05. On the other hand,

the replacement method was not able to reveal the difference between mean concentrations

of TIB in fish caught upstream and downstream the WWTP. Another part of the analysis

was to compare distributions of musk compound concentrations in fish caught upstream

and downstream the WWTP. It was found out that all tests (the likelihood ratio test, the

Lagrange multiplier test, and the Wald test) give similar results. There is no significant

difference between the two groups at the significance level of 0.05 with the exception of

TIB.

To summarize the results, it was found out that the WWTP has no significant influence

on concentrations of musk compounds in fish tissue at the significance level of 0.05 with

the exception of musk tibetene.
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Table 5.2: Mean musk compound concentrations (in µg/kg) with their standard deviations

(SD) and 95% lower (LCL) and upper (UCL) confidence limits estimated using the censored

exponential (PH, AMB, TR, TIB) and Weibull (HHCB, AHTN, MX, MK) distributions.

Upstream Downstream

Mean SD LCL UCL Mean SD LCL UCL

PH 0.512 0.107 0.303 0.721 0.411 0.088 0.239 0.583

AMB 0.540 0.136 0.274 0.806 0.540 0.136 0.274 0.806

TR 0.669 0.147 0.381 0.957 0.792 0.170 0.459 1.126

HHCB 21.482 2.676 16.238 26.726 26.008 2.593 20.926 31.091

AHTN 4.664 0.610 3.468 5.860 6.140 0.802 4.568 7.712

MX 0.934 0.405 0.141 1.727 0.544 0.151 0.249 0.839

TIB 0.201 0.040 0.122 0.280 0.057 0.014 0.029 0.085

MK 2.194 0.411 1.389 3.000 1.918 0.361 1.210 2.625

Table 5.3: Mean musk compound concentrations (in µg/kg) with their standard devia-

tions (SD) and 95% lower (LCL) and upper (UCL) confidence limits estimated using the

replacement method.

Upstream Downstream

Mean SD LCL UCL Mean SD LCL UCL

PH 0.636 0.083 0.474 0.798 0.513 0.085 0.346 0.680

AMB 0.895 0.113 0.673 1.116 0.895 0.113 0.673 1.116

TR 0.921 0.137 0.653 1.189 1.044 0.151 0.747 1.340

HHCB 21.923 2.516 16.991 26.855 25.606 2.347 21.006 30.205

AHTN 4.757 0.559 3.662 5.852 6.170 0.717 4.765 7.575

MX 1.064 0.253 0.568 1.559 0.716 0.124 0.472 0.959

TIB 0.211 0.094 0.027 0.395 0.094 0.012 0.071 0.118

MK 2.232 0.381 1.485 2.980 1.966 0.241 1.493 2.439
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Table 5.4: Comparison of mean musk compound concentrations between fish caught up-

stream and downstream the WWTP using methods for censored distributions with statistic

(3.5) (p-value pcen), and the replacement method with statistic (3.6) (p-value prep). Com-

parison of distributions of musk compound concentrations using the likelihood ratio test

(p-value pLR), the Lagrange multiplier test (p-value pLM), the Wald test (p-value pW) and

statistics (3.4).

Comparison of means Comparison of distributions

pcen prep pLR pLM pW

PH 0.47 0.30 0.45 0.44 0.47

AMB 1.00 1.00 1.00 1.00 1.00

TR 0.58 0.55 0.58 0.57 0.58

HHCB 0.22 0.28 0.36 0.33 0.38

AHTN 0.14 0.12 0.28 0.28 0.31

MX 0.37 0.22 0.37 0.42 0.47

TIB < 0.01∗ 0.22 < 0.01∗ < 0.01∗ < 0.01∗

MK 0.61 0.56 0.61 0.60 0.61

∗ - rejection of the hypothesis at the significance level of 0.05

5.2 Biogenic Amines

Biogenic amines (BAs; e.g. histamine, tyramine, fenyletylamine, tryptamine, putrescine,

kadaverine, spermine and spermidine) are biologically active organic bases with a low

molecular weight which are synthesized by living organisms for their own needs. They

pass into food and beverages through ingredients (usually a small amount) and are also

generated by microbial decarboxylation of amino acids. The intake of BAs into the body

is regulated by a detoxification system composed of monoamine oxidases, diamino oxidases

and histidine methyl-transferases. High intake of BAs (in general over 100 mg/kg of food)

or the presence of factors that reduce the effectiveness of the detoxification system can

lead to intoxication which may endanger health and, in some cases, life (Halász et al.,

1994; Shalaby, 1996; Silla Santos, 1996; Ten Brink et al., 1990). For example, in case of

histamine, there is a legislatively based concentration limit of 100 mg/kg (200 mg/kg,

respectively) in fish and fishery products (Commission Regulation EC 2073/2005). More-

over, lower limits for specific BAs have been proposed in literature, e.g. 10 mg/kg of

histamine, 80 mg/kg of tyramine, and 3 mg/kg of phenylethylamine (Halász et al., 1994;

Ten Brink et al., 1990).

Freshwater and saltwater fish are an important part of our diet owing to a high content

of polyunsaturated fatty acids, minerals and other biologically active substances. Never-

theless, fish meat represents a system with very short shelf-life due to very fast post-

mortem changes which are related to frequent occurrence of BAs. Frequent contaminants
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of fish include bacteria from the Enterobacteriaceae family and the genera Pseudomonas.

In addition, the lactic acid bacteria, e.g. representatives of the genera Lactobacillus

and Enterococcus, can also contribute to production of BAs (Apetrei and Apetrei, 2015;

Arnold and Brown, 1978; Jaw et al., 2012; Kaale et al., 2011; Prester, 2011; Rawles et al.,

1996; Zhang et al., 2010). The content of BAs in fish meat was previously studied

in Buňka et al. (2013). They found out that the BA content was higher than 100

mg/kg in approximately 15% of samples. Moreover, in 6 samples the concentrations

were so high that they failed to comply with legislative requirements established in

Commission Regulation EC 2073/2005. Such high concentrations have a significant im-

pact on food safety, and may endanger health or even life of sensitive individuals, which

emphasizes the importance of monitoring BAs in these commodities.

Since in the previous study by Buňka et al. (2013) the concentrations below detection

limits were not taken into account, the goal is:

a) to model concentration of BAs using methods for censored samples;

b) to evaluate the amount of BAs in various fish species (Atlantic salmon, Atlantic cod,

striped catfish);

c) to compare mean BA concentrations and distributions of concentrations among the

species;

d) to determine the risk of exceeding certain BA limits for various fish species.

5.2.1 Data

In total 54 samples of fish commonly consumed in Central Europe were analyzed. There

were 18 samples of Atlantic salmon (Salmo salar), 17 samples of Atlantic cod (Gadus

morhua), and 19 samples of striped catfish (Pangasius hypophthalmus). The fish were

bought in retail stores, stored on ice, and the samples were extracted from commonly

consumed parts of the fish. The same parts of the fish muscle tissue were used. The period

between buying the fish and start of lyophilization of the samples in the laboratory did

not exceed 6 hours, and the samples were stored in a fridge at 2± 1 ◦C. The samples were

extracted immediately after the lyophilization.

The extraction and determination of BAs (histamine - HIM, tyramine - TYM,

phenylethylamine - PHE, tryptamine - TRM, putrescine - PUT, cadaverine - CAD, sper-

midine - SPD, spermine - SPN) were carried out according to Buňka et al. (2013). The BA

content in samples was determined using high performance liquid chromatography (LabAl-

liance, State College, USA; Agilent Technologies, Agilent, Palo Alto, USA) after preceding

derivatization with dansyl chloride. Every sample was analyzed eight times (2 extracts of

each sample, times 2 derivatizations of each extract, times 2 analyses of each derivatized

extract). Results (in mg/kg) are expressed for the fresh matter before lyophilization. The
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Table 5.5: Biogenic amines distribution in fish samples.

Atlantic salmon Atlantic cod Striped catfish LOD
[mg/kg]

LOQ
[mg/kg]

Na
1 N b

2 N c
0 N1 N2 N0 N1 N2 N0

TRM 17 1 0 15 2 0 15 4 0 0.13 0.35

PHE 12 2 4 9 1 7 16 1 2 0.06 0.21

PUT 0 0 18 0 0 17 2 1 16 0.16 0.82

CAD 7 1 10 4 1 12 10 1 8 0.09 0.26

HIM 10 2 6 4 1 12 16 3 0 0.11 0.38

TYM 10 0 8 4 0 13 13 2 4 0.01 0.08

SPD 0 0 18 1 1 15 0 0 19 0.13 0.29

SPN 0 0 18 0 0 17 1 0 18 0.02 0.13

aN1 - the number of values below the LOD
bN2 - number of values in the interval (LOD,LOQ]
cN0 - number of uncensored values

LOD and the LOQ were determined according to standard chromatography procedures

(Lister, 2005; Wenzl et al., 2016) and in accordance with ISO 17025 (ISO, 2017). Frequen-

cies of censored and uncensored BA concentrations for various fish species are presented in

Table 5.5 together with the specified detection limits.

5.2.2 Results

The suitability of the exponential and the Weibull distributions for modelling of BA con-

centrations was tested using Pearson’s χ2 goodness-of-fit test and Cramér-von Mises test

for censored data that was implemented in Matlab (version R2022b). Moreover, graphi-

cal analysis of the data was used in order to choose the model distribution. Specifically,

Q-Q plots and correspondence between the histogram (normalized to the pdf) and the

exponential (Weibull respectively) density was assessed. It was found out that the Weibull

distribution is suitable (despite some anomalies caused by extreme values or missing values

in the interval (LOD,LOQ]) for modelling of all the BAs. In addition, it was possible to

use the exponential distribution for modelling of TRM, CAD, HIM and TYM (see Fig.

5.2a for an example). In case of PHE, PUT, SPD and SPN, it was necessary to use the

Weibull distribution (see Fig. 5.2b for an example).

Estimation of BA Concentrations

Mean BA concentrations were estimated together with their 95% confidence limits using

methods for censored exponential and Weibull distributions and the results are in Table

5.6. It can be seen that concentrations of TRM, PHE, TYM, SPD and SPN are relatively

low and do not pose a high risk to consumers’ health. Nevertheless, the amount of PUT was
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Figure 5.2: Histogram (normalized to the pdf) of a) TRM, b) SPN concentrations in

Atlantic salmon with exponential and Weibull densities.

relatively high and can have a negative impact on food safety, and ultimately on consumers’

health, especially in combination with alcohol consumption, which inhibits the detoxifica-

tion system in the human body (Shalaby, 1996; Silla Santos, 1996; Ten Brink et al., 1990).

Similar conclusions can be made in case of CAD in Atlantic cod and Atlantic salmon and

HIM in Atlantic salmon, where the concentrations of BAs are also high.

In Table 5.7, there are mean BA concentrations together with their 95% confidence

limits that were estimated using the replacement method, where all censored values were

replaced by midpoints of intervals (0,LOD] and (LOD,LOQ]. In a situation where there

are no uncensored values, the ability of estimating mean concentrations is very limited.

In case of TRM (and HIM for striped catfish), the replacement method overestimates the

mean concentration and underestimates its variability in comparison to the use of censored

distribution. When both censored and uncensored values are present, the estimates of

mean concentrations are quite similar with the exception of PHE, where the replacement

method underestimates the mean concentration.

Comparison of BA Concentrations

Results of the comparison of mean BA concentrations are presented in Table 5.8. First of

all, let us focus on the methods for censored distributions. There is a significant difference

in mean concentrations of HIM, TYM and SPD among all three species at the significance

level of 0.05. Moreover, in case of CAD, only Atlantic salmon and Atlantic cod have similar

mean concentrations. In case of SPN, only Atlantic cod and striped catfish have similar

mean concentrations. Furthermore, let us focus on the replacement method, where the

equality of mean concentrations was tested using the asymptotic t-test. Contradictory

results were obtained in case of comparison of a) Atlantic salmon and Atlantic cod for

HIM and SPD, and b) Atlantic salmon and striped catfish for SPD, where the replacement
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limits estimated using the censored exponential (TRM, CAD, HIM, TYM) and Weibull (PHE, PUT, SPD, SPN) distributions.

Atlantic salmon Atlantic cod Striped catfish

Mean SD LCL UCL Mean SD LCL UCL Mean SD LCL UCL

TRM 0.045 0.015 0.015 0.074 0.060 0.018 0.024 0.095 0.079 0.021 0.037 0.121

PHE 0.492 0.565 0.000 1.601 0.670 0.512 0.000 1.674 0.860 2.886 0.000 6.517

PUT 38.867 13.787 11.845 65.890 36.367 2.738 31.001 41.732 25.210 6.844 11.795 38.624

CAD 8.335 1.968 4.478 12.192 10.447 2.538 5.474 15.421 0.396 0.094 0.213 0.580

HIM 12.470 2.944 6.700 18.240 3.807 0.928 1.987 5.627 0.059 0.017 0.026 0.092

TYM 5.165 1.218 2.777 7.552 0.504 0.123 0.262 0.745 0.093 0.022 0.049 0.137

SPD 5.136 1.556 2.087 8.186 0.747 0.115 0.522 0.971 1.817 0.307 1.215 2.420

SPN 1.801 0.178 1.452 2.150 0.741 0.088 0.568 0.913 0.690 0.123 0.449 0.930

Table 5.7: Mean BA concentrations (in mg/kg) with their standard deviations (SD) and 95% lower (LCL) and upper (UCL) confidence

limits estimated using the replacement method.

Atlantic salmon Atlantic cod Striped catfish

Mean SD LCL UCL Mean SD LCL UCL Mean SD LCL UCL

TRM 0.075 0.010 0.056 0.094 0.086 0.014 0.058 0.113 0.102 0.017 0.069 0.135

PHE 0.334 0.147 0.046 0.621 0.491 0.152 0.193 0.790 0.298 0.227 0.000 0.743

PUT 38.988 13.065 13.380 64.596 36.479 2.676 31.234 41.724 24.481 4.607 15.451 33.511

CAD 8.335 3.223 2.018 14.652 10.447 3.366 3.850 17.044 0.397 0.142 0.118 0.677

HIM 12.470 5.625 1.446 23.494 3.807 0.979 1.889 5.725 0.085 0.016 0.053 0.117

TYM 5.165 1.860 1.518 8.811 0.504 0.105 0.299 0.709 0.094 0.044 0.008 0.180

SPD 5.515 2.929 0.000 11.257 0.745 0.119 0.511 0.979 1.793 0.364 1.081 2.506

SPN 1.798 0.179 1.447 2.149 0.737 0.092 0.557 0.917 0.693 0.121 0.457 0.930
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Table 5.8: Comparison of mean BA concentrations among various fish species using meth-

ods for censored distributions with statistic (3.5) (p-value pW), and the replacement method

with statistic (3.6) (p-value prep). Comparison of distributions of BA concentrations using

the likelihood ratio test (3.4) (p-value pLR).

Atlantic salmon
vs.

Atlantic cod

Atlantic salmon
vs.

Striped catfish

Atlantic cod
vs.

Striped catfish

pW prep pLR pW prep pLR pW prep pLR

TRM 0.53 0.53 0.52 0.20 0.16 0.18 0.50 0.46 0.49

PHE 0.82 0.46 0.57 0.90 0.89 0.40 0.95 0.48 0.06

PUT 0.86 0.85 < 0.01∗ 0.38 0.30 0.54 0.13 0.02∗ < 0.01∗

CAD 0.51 0.65 0.50 < 0.01∗ 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗

HIM < 0.01∗ 0.13 < 0.01∗ < 0.01∗ 0.03∗ < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗

TYM < 0.01∗ 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗

SPD < 0.01∗ 0.10 < 0.01∗ 0.04∗ 0.21 < 0.01∗ < 0.01∗ < 0.01∗ 0.01∗

SPN < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗ < 0.01∗ 0.74 0.77 0.17

∗ - rejection of the hypothesis at the significance level of 0.05

method was not able to reveal the difference between mean BA concentrations. One of the

reasons for that could be a low power of the asymptotic test caused by the small sample

sizes or a high skewness of the data. Moreover, there is a high variability of the estimate

of the mean HIM concentration in Atlantic salmon (see standard deviations in Table 5.7)

which can affect the test results. In case of Atlantic cod and striped catfish for PUT, the

high variability of mean concentration estimates (see standard deviations in Table 5.6) has

a significant influence on values of the test statistics (3.5) which results into non-significant

differences between the means.

Another part of the analysis was to compare distributions of BA concentrations among

various species. It was found out that all tests (the likelihood ratio test, the Lagrange

multiplier test, and the Wald test) give similar results. On that account, only results for

the likelihood ratio test are presented in Table 5.8. It can be seen that the results are

very similar to the comparison of mean BA concentrations with one exception. There is

a significant difference in distributions of PUT concentrations between Atlantic cod and

the other species, even though the mean concentrations among species are similar (see Fig.

5.3a). In case of SPN, there is a clear difference in distributions between Atlantic salmon

and the other species. Nevertheless, the difference in distributions between Atlantic cod

and striped catfish is not significant enough to warrant rejection of the null hypothesis at

the significance level of 0.05 (see Fig. 5.3b).
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Figure 5.3: Probability density functions of a) PUT, b) SPN concentrations with mean

values (circle) and their confidence intervals (horizontal line).

Risk Probabilities

Once the model distributions of BA concentrations are stated and the unknown parameters

in the model are estimated, probabilities of exceeding certain limit values of BA concen-

trations can be calculated. The risk probability R of exceeding the limit value LV can be

approximated using formula

R = P (X > LV )
.
= 1− F (x, λ̂, τ̂),

where F (x, λ, τ) is cdf (2.1).

In general, it is difficult to select a specific limit value of BA concentrations that could

seriously harm consumers’ health. In fact, every BA has its own physiological effect on

human body; additionally, each body reacts to exposure to BAs (and other biologically

active substances) in a slightly different way. Based on our opinion and also recommenda-

tions regarding the food safety in other studies, four limit values of BA concentrations were

selected, specifically 3, 10, 22 and 100 mg/kg. According to Halász et al. (1994), Shalaby

(1996) and Ten Brink et al. (1990), the limits of 3 and 10 mg/kg are very important es-

pecially for PHE and HIM. Higher concentrations can cause vasodilation effects (affect

blood pressure and heart activity), headache and/or breathing problems. More serious

problems can be expected with increased alcohol consumption and/or when antihistamins

are used. Table 5.9 shows that HIM concentration in Atlantic salmon exceeds the limit

value of 3, 10 and 22 mg/kg with probabilities 0.79, 0.45 and 0.17. Additionally, PUT

and CAD concentrations over 20 mg/kg can increase the effects of HIM, TYM and PHE

on the human body (Halász et al., 1994; Shalaby, 1996; Ten Brink et al., 1990). Table

5.9 shows that PUT concentration exceeds the limit value of 22 mg/kg with probabilities

0.38 for striped catfish, 0.44 for Atlantic salmon, and 0.89 in case of Atlantic cod. CAD
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Table 5.9: Probabilities of exceeding limit values (LV ) of BA concentrations for Atlantic salmon (AS), Atlantic cod (AC), and striped

catfish (SC).

LV [mg/kg] 3 10 22 100

AS AC SC AS AC SC AS AC SC AS AC SC

TRM < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

PHE 0.03 0.05 0.03 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

PUT 0.81 1.00 0.84 0.62 0.99 0.61 0.44 0.89 0.38 0.10 < 0.01 0.03

CAD 0.70 0.75 < 0.01 0.30 0.38 < 0.01 0.07 0.12 < 0.01 < 0.01 < 0.01 < 0.01

HIM 0.79 0.45 < 0.01 0.45 0.07 < 0.01 0.17 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

TYM 0.56 < 0.01 < 0.01 0.14 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

SPD 0.48 < 0.01 0.17 0.15 < 0.01 < 0.01 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

SPN 0.07 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
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concentration exceeds 22 mg/kg with probabilities 0.07 for Atlantic salmon, and 0.12 for

Atlantic cod. The limit of 100 mg/kg is the generally accepted limit for evaluation of food

safety not only for individual BAs, but also for the total amount of BA concentrations

(Benkerroum, 2016; EFSA, 2011; Halász et al., 1994; Kalač, 2014; Ten Brink et al., 1990).

The limit value of 100 mg/kg is exceeded only in case of PUT concentration in Atlantic

salmon with probability 0.1, and in striped catfish with probability 0.03.



Conclusion

This thesis described and analyzed statistical methods that can be used when dealing

with Type I multiply left-censored data with the Weibull distribution. The maximum

likelihood method was used for estimation of the unknown parameters. It was shown using

simulations that the estimates of parameter λ have lower bias for higher values of parameter

τ , i.e. for a lower skewness of the sample distribution. The estimates of parameter τ are

similar bias-wise for various values of τ . Moreover, in order to describe variability of

the parameters’ estimates, the expected Fisher information matrix should be preferred,

especially for small sample sizes. In addition, confidence intervals for the expected value of

the censored Weibull distribution were investigated. Despite the fact, that in case of high

number of censored values confidence intervals based on the maximum likelihood method

are much wider than confidence intervals obtained using the bootstrap, the maximum-

likelihood-based confidence intervals have better coverage probabilities. Moreover, there

were described statistical tests for comparison of expected values and/or distributions of

two independent censored samples from Weibull distribution. When we want to compare

more than two samples, Bonferroni correction (or other types of corrections like Holm-

Bonferroni or Šidák’s correction etc.) can be applied to control the family-wise error

rate, i.e. the probability of making at least one Type I error when performing multiple

hypotheses tests. In addition, statistical tests for testing reduction of the censored Weibull

distribution to the exponential submodel were proposed, because the Weibull distribution

can sometimes be unnecessarily complicated for modelling of real data. Since all methods

described in this thesis assume that the censored data have Weibull distribution, several

goodness-of-fit tests were assessed. It was shown using simulations that the Anderson-

Darling test has the best performance in most cases.

Statistical methods described in this thesis were applied in modelling of real data.

Specifically, for assessing the impact of the wastewater treatment plant on musk compounds

concentrations in fish, for the comparison of biogenic amines concentrations in various fish

species, and for modelling of elemental carbon concentrations in Mbengue et al. (2018).

Because of the flexibility of the Weibull distribution, more applications could be found

in other areas. In addition, Type I left-censored distributions were also applied in the

extreme value theory for estimation of the extremal index (Holešovský and Fusek, 2020),

see Appendix B for more details.
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All methods used in this thesis were implemented in Matlab (version R2022b) and are

available from the author upon request.
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Appendix A

Derivation of the Expected FIM

The expected FIM (2.8) is calculated using formula

Jn(λ, τ) = nJ(λ, τ) = n

[
J11 J12

J21 J22

]
=

[
−E ∂2l

∂λ2 −E ∂2l
∂λ∂τ

−E ∂2l
∂τ∂λ
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,
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Considering the Type I censoring, the random vector (N0, N1, . . . , Nk) has multinomial

distribution Muk+1(n, θ0, θ1, . . . , θk), where

θi =





F (di, λ, τ)− F (di−1, λ, τ) for i = 1, . . . , k,

1− F (dk, λ, τ) for i = 0,

and n = N0+N1+ · · ·+Nk. Since the marginal frequencies Ni, i = 0, . . . , k have binomial

distribution, their expectations are
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It remains to derive the expectations
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It follows from the law of total expectation that

E(X) = E [E(X|N0)] =
∑

n0
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for random variables X, N0. Since N0 ∼ Bi(n, θ0), it follows from (A.6) that
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and analogically
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Another step is to derive the expectations
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The pdf of variable X(i) is (see Hogg et al., 2005)

f(i)(x) = n
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Using (see Abramowitz and Stegun, 1964)

∫ ∞
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with Euler-Mascheroni constant γe
.
= 0.57722, the expectations (A.10) are
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Details of the derivation can be found in Fusek (2013). The substitution of (A.11)–(A.13)

into (A.7)–(A.9) leads to
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Moreover, substituting (A.4) and (A.14)–(A.16) into (A.1)–(A.3), the elements of the ex-

pected FIM (2.8) are obtained.
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Appendix B

Estimation of the Extremal Index

Using Censored Distributions

Traditional extreme value theory is based on independent and identically distributed vari-

ables. When dealing with extreme events in time series, this assumption is often vio-

lated, and the dependence in data is reflected in occurrence of extremes close to each

other, which is described by a clustering parameter. In order to create series that can

be considered independent, block or runs declustering is usually applied (see, for exam-

ple, Fawcett and Walshaw, 2012; Holešovský et al., 2016). Such a preprocessing usually

leads to a significant data reduction, which may result in higher variation of the estimates.

Consequently, it is more suitable to deal with the original time series and estimate the

clustering parameter, and thereby the dependence at extremal levels.

Let X1, X2, . . . be a strictly stationary sequence with marginal cumulative distri-

bution function (cdf) F , right end-point x∗ = sup{x : F (x) < 1}, and denote Mn =

max{X1, . . . , Xn}. Furthermore, let us have a sequence of independent variablesX∗
1 , X

∗
2 . . .

with the same marginal distribution F , and denote M∗
n = max{X∗

1 , . . . , X
∗
n}. The funda-

mental extreme value theorem states that given some constants an > 0, bn and under

appropriate regularity conditions, the variable (M∗
n − bn)/an converges in distribution to

generalized extreme value (GEV) distribution with cdf G∗. At the same time, if the se-

ries X1, X2, . . . satisfies the D(un) condition of Leadbetter et al. (1983) with a suitable

threshold un = anx + bn for all x > 0, the limiting distribution of (Mn − bn)/an is again

GEV with cdf G (see e.g. Beirlant et al., 2004). The D(un) condition limits the long-

range dependence at extreme levels, and hence provides asymptotic independence between

far apart extreme observations. The limiting distributions are related to each other by

G = [G∗]θ, where 0 < θ ≤ 1 is the extremal index. When θ < 1, the extremes tend to

cluster. If X1, . . . , Xn are independent, then θ = 1. Conversely, if θ = 1, the asymptotic

behaviour of M∗
n and Mn is identical, even though X1, . . . , Xn may be dependent. The

extremal index is the key measure of short-range dependence at extreme values, and gov-

erns clustering of extremes of a univariate series. Various papers discuss many extremal
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index estimators; for example, the cluster size (runs and blocks) estimators (Hsing, 1991;

Smith and Weissman, 1994); the maxima methods (Ancona-Navarrete and Tawn, 2000;

Gomes, 1993; Northrop, 2015); the two-threshold estimator (Laurini and Tawn, 2003);

the intervals estimator (Ferro and Segers, 2003); the iterative weighted least squares es-

timator (Süveges, 2007); the gap estimator (Süveges, 2007) and its generalization, the

K-gaps estimator (Süveges and Davison, 2010). Assessment of several estimators can be

found in Ancona-Navarrete and Tawn (2000); different blocks estimators are compared in

Holešovský et al. (2014), and Holešovský (2017). Here we propose a new approach to the

extremal index estimation based on the artificial censoring.

B.1 Preliminaries

Let T (un) denote a random variable corresponding to inter-exceedance times in the under-

lying series X1, X2, . . . , i.e.

T (un) = min{j ≥ 1 : Xj+1 > un|X1 > un}.

For threshold un increasing with n, and under the ∆∗(un) condition in Süveges (2007), it

holds for x > 0

P (F (un)T (un) ≤ x) → 1− θ exp(−θx) =: Fθ(x) (B.1)

as n → ∞ (see Theorem 1 in Ferro and Segers (2003)). It means that as un → x∗ for

n → ∞,

F (un)T (un)
d−→ Tθ,

where
d−→ denotes the convergence in distribution and Tθ follows the mixture distribution

(1− θ)ε0 + θµθ, (B.2)

where ε0 is the degenerate distribution at 0 and µθ is the exponential distribution with

expected value 1/θ.

Let us have a random sequenceX1, . . . , Xn, a sufficiently high threshold u, and let N =∑n
i=1 1[Xi>u] be the number of threshold exceedances observed at times j1, . . . , jN , where

1[·] is the indicator function. The i-th interexceedance time is denoted as Ti = ji+1 − ji,

i = 1, . . . , N − 1. With respect to (B.1), the variables F (u)Ti, i = 1, . . . , N − 1, can be

treated as random variables drawn from the distribution with cdf Fθ from (B.1). The value

F (u) is typically replaced by its estimator N/n; however, in general, it is possible to choose

a different one.
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As pointed out by Ferro and Segers (2003) and Süveges (2007), the interexceedance

times of a stationary process are not mutually independent, and the likelihood is con-

structed under the assumption of independence of all the times T1, . . . , TN−1. Nevertheless,

although the intra-cluster times are not independent, the different sets of intra-cluster times

are asymptotically independent. It was analysed in Süveges (2007), Süveges and Davison

(2010), and shown using simulations in Holešovský and Fusek (2020), that under an ad-

ditional restriction on the underlying process, the assumption of independence may be

disregarded. This restriction lies in requirement that the underlying sequence needs to

satisfy both the D(un) condition of Leadbetter et al. (1983) and the D(k)(un) condition of

Chernick et al. (1991).

The D(un) condition is a standard mixing condition limiting the long-range depen-

dence at extreme levels. It implies that any two rare events that are sufficiently separated

are asymptotically independent (for more details see Leadbetter et al. (1983)). Moreover,

we need to restrict the dependence in the sequence more locally; for this step, the following

D(k)(un) condition is required.

Condition. D(k)(un) is said to be satisfied if a stationary series X1, . . . , Xn under the

D(un) condition of Leadbetter et al. (1983) also satisfies

nP (X1 > un,M1,k ≤ un < Mk,rn) → 0

as n → ∞ with rn = o(n) and un as in D(un).

Clearly, if D(k0)(un) holds, then D(k)(un) also holds for all k ≥ k0. It means that within

a cluster, high-threshold exceedances are asymptotically almost surely separated by at

most k − 1 observations. The D(k)(un) condition plays a crucial role in estimation of the

extremal index θ. Most of available threshold-based estimators of θ are derived under the

assumption of validity of a particular D(k)(un) condition or, alternatively, the order of the

condition or some related quantity appear therein as auxiliary parameters.

In the following section, we discuss a new approach to the extremal index estimation

based on artificial censoring.

B.2 Censored Estimator

Let T(1) ≤ · · · ≤ T(N−1) be the ordered statistics of T1, . . . , TN−1. Considering type I

left-censoring, for a given time censor D ≥ 0, there are (N − 1 − N∗
C) censored times

T(1), . . . , T(N−1−N∗

C
) ≤ D and N∗

C uncensored (observed) times T(N−N∗

C
), . . . , T(N−1). Let us

recall from (B.2) that the limiting variable is Tθ = (1 − θ)ε0 + θµθ. Denote pθ(t) = 1 for

t = 0 the probability mass function (pmf) of Tθ conditioned by the event Tθ = 0, and

fθ(t) = θe−θt for t > 0 the probability density function (pdf) of Tθ conditioned by Tθ > 0.

Hence, pθ and fθ are the pmf and pdf of variables ε0 and µθ, respectively.
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Using results from Cohen (1991), the log-likelihood function of the censored sample

can be written in the form of

ℓ(θ,D,N∗
C , {T(i)}i≥N−N∗

C
) = (N − 1−N∗

C) logFθ(d) + log
(N − 1)!

(N − 1−N∗
C)!

+
N−1∑

N−N∗

C

log
{
[(1− θ)pθ(t(i))]

1[t(i)=0] · [θfθ(t(i))]1[t(i)>0]

}
,

where t(i) = F (u)T(i) is considered to be ordered statistic drawn from Fθ and d = F (u)D.

Hence

ℓ(θ,D,N∗
C , {T(i)}i≥N−N∗

C
) = (N − 1−N∗

C) log(1− θe−θd)

+ log
(N − 1)!

(N − 1−N∗
C)!

+ 2N∗
C log θ − θ

N−1∑

i=N−N∗

C

F (u)T(i).
(B.3)

The ML estimate θ̂C is obtained by maximizing the log-likelihood function (B.3).

We can estimate variability of the estimate θ̂C using the sample FIM

J̃N−1 = −d2ℓ

dθ2
= (N − 1−N∗

C)
e−θd(θd2 − 2d+ e−θd)

(1− θe−θd)2
+

2N∗
C

θ2
.

The sample FIM J̃N−1 is an unbiased estimator of the expected FIM JN−1 and J̃N−1(θ) →
JN−1(θ) in probability for N → ∞.

Considering the type I censoring, the random variable N∗
C has binomial distribution

Bi(N − 1, φ), where φ = 1− Fθ(d). Therefore, EN
∗
C = (N − 1)φ = (N − 1)θe−θd, and the

expected FIM is

JN−1 = EJ̃N−1 = (N − 1)e−θd

[
θd2 − 2d+ e−θd

1− θe−θd
+

2

θ

]
. (B.4)

Considering the asymptotic properties of the ML estimator θ̂C (Lehmann and Casella,

1998),
√
N − 1(θ̂C − θ) has asymptotically normal distribution N(0, σ2

θ), where σ2
θ =

(JN−1/(N − 1))−1.

An important point for the censored estimator θ̂C to work properly is the choice of

the censor D. If D is too low, larger intra-cluster times are assigned to the exponential

part of Fθ, and θ̂C is biased towards independence. The independence assumption in log-

likelihood (B.3) may also be violated in this case. On the other hand, if D is too high, it

leads to a higher level of uncertainty in the model, and to higher variability of the estimate.

A proper choice of D is related to validity of the D(k)(un) condition with D = k − 1, see

Holešovský and Fusek (2020) for more details. Note that it can be difficult to prove validity

of theD(k)(un) condition when analyzing real data. Several approaches have been proposed,
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for example, the graphical diagnostics of anti-D(k)(un) events (Ferreira and Ferreira, 2018;

Süveges, 2007). Nevertheless, the graphical approach generally leads to subjective conclu-

sions. Other two methods are the information matrix test and its extensions (Ferreira,

2018b; Fukutome et al., 2015, 2019; Süveges and Davison, 2010), and the stability analysis

of the runs estimator (Cai, 2022). Both of them are, however, based on estimators that are

rather sensitive to the selection of the auxiliary parameters, including the threshold itself.

Additional methods are proposed in Holešovský and Fusek (2024).

Properties of the censored estimator together with the intervals estimator of

Ferro and Segers (2003) and the K-gaps estimator of Süveges and Davison (2010) were

assessed using simulations in Holešovský and Fusek (2020). It was shown that, in compar-

ison to the other two estimators, the censored estimator has better stability with respect

to the threshold selection, and it is not much sensitive to the choice of the parameter D.

In addition, the censored estimator was used for the extremal index estimation for July

daily maximum temperatures at Uccle, Belgium (see Holešovský and Fusek (2020) for more

details).
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