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1 INTRODUCTION 
It has been quite a long time since the first Biometric System was introduced. 
However, until now, they have not become widely used. This is usual in case of a 
new, not well-tested, and unverified technology, among which could be the 
biometric systems included. Scepticism, of course, has its place in our live and is 
necessary to improve our work. Such scepticism is doubled in case of the security 
systems. However, even if the popularity of the biometric systems is not high yet, 
they are supposed to be very important soon. 

1.1 State of Art 
Nowadays, there are various applications based on the speech technology. The 
speech technology can be divided into three main parts: speech recognition, speaker 
recognition, and other recognition. Emphasis is laid on the speech recognition more 
than on the other ones. The most widely used techniques in the speech technology 
are the hidden Markov models, or neural networks experiencing their renaissance. 

In the speech recognition, there is a machine trying to answer the question “What 
was said by a speaker?”. Thus, the content of the speech is recognised. Result of this 
process should be a transcription of a text said by the speaker, accomplishment of a 
speech command, or another action. There are many ways of usage of the speech 
recognition technology [9][17][21][23][24][30]. Before all, phone banking, device 
controlling, or just “simple” speech-to-text transcription can be mentioned. 

The speaker recognition can be divided into two main groups: speaker 
identification and speaker verification. The process of the speaker identification 
answers a question “Who is speaking?” On the other hand, the speaker verification 
answers a question “Is the one, who is speaking, really the one, who he is claiming 
to be?”. I.e. in case of the identification, we are trying to identify an unknown voice 
among other voices, and in case of the verification, we would like to determine a 
similarity of two voices, one of which is known and the other one unknown. 

The other recognition includes everything other that is not a speech or speaker 
recognition. Among the other recognition may be included stress recognition or 
alcohol detection. These sorts of recognition are based on a fact that some features 
of the voice change under the influence of stress. Likewise, the alcohol changes 
voice characteristics even when there are only few thousandths per mille in blood. 
There are many other sorts of the recognition using voice. Among them may be 
named e.g. mental condition recognition, gender recognition, or age recognition. 

The range of use of the speech technology in the biometry is wide. The most 
common one is the speaker authentication using his/her voice. In some cases, 
another speech technology is applicable, e.g. in case of the phone banking can be the 
system fully automatic, which is realised by combination of the speech recognition, 
speaker recognition, and speech synthesis. 

The speaker recognition is becoming very important in the biometry. Nowadays, 
only the fingerprint technology is fully accepted so that many real applications have 
been created on the base of this technology. The speech technology is in the frame to 
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be as successful as the fingerprint technology, but there are some limiting factors, 
which make this technology not as popular as it could be. There are only few 
commercial speaker verification based security systems now, e.g. Apple’s voice 
login for its iMac, Sprint’s Voice FONCARD, or the BioID by HumanScan [47], 
etc. However, more systems are supposed to come soon. 

1.2 Goals of the Dissertation 
The main goal of the dissertation is to research some new ways of the speech signal 
processing and its application in the field of the Biometric Security Systems (BSS). 
The speech recognition process consists of speech signal processing, feature 
extraction, and classification. The last task is integration of the speech technology to 
the BSS. The goals of the dissertation can be divided into three main topics 
described in the following chapters. 

1.2.1 Speech Signal Processing 
Speech signal processing focused on the speaker recognition is the first topic of the 
dissertation. The speech signal processing consists of some elementary steps 
(Chapter 2.1): a recording, voice activity detection, a pre-emphasis, a framing, and a 
windowing. The first goal is to improve a quality of the processing with respect to 
the speaker recognition. In this stage of the speaker recognition, the aim became 
improvement of the Voice Activity Detection (VAD). 

1.2.2 Speaker Dependent Feature Extraction 
Definition of speaker dependent features suitable for the speaker recognition is the 
next topic. There are many possible usable features – LPC coefficients, MFCC, and 
many others [17][18][20][21][23][24][30]. The second goal is to extract some new 
speaker dependent features from the speech signal so that it was possible to use them 
for the speaker recognition. A new group of speaker dependent features (Chapter 3) 
based upon a speaker dependent frequency filter bank was introduced. The new 
features are the Speaker Dependent Frequency Cepstrum Coefficients. 

1.2.3 Design of Biometric Security System (BSS) 
Design of Biometric Security System (BSS) including the speaker recognition 
technology is the last goal of the dissertation. The speaker recognition may be 
integrated in many ways. The BSS will be formed from the following security 
elements: common password, fingerprint authentication, and a voice-based 
authentication. The designed BSS should be able to accept the basic security 
elements. Besides, it should provide tools for generating a cryptographic key 
applicable to the cryptographic services. The BSS is designed only theoretically. 

The biometric security systems have their advantages and disadvantages 
[3][4][5][6]. The advantages are universality, uniqueness, low circumvention, 
scalability and, in some cases, permanence. The disadvantages are exactingness, 
difficult implementation, cooperation unwillingness, and, in some cases, 
inconstancy, which is a counterpart to the permanence of some of them. 
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2 SPEECH SIGNAL PROCESSING 
In this chapter, there is some theory of the speech signal processing. In the first part, 
the digitising, the recording, and the pre-processing are described. Then, some 
common features are described. The last part of this chapter engages in the process 
of the voice activity detection. 

2.1 Recording, Digitising and Pre-processing 
Recording of a signal is the first stage in the whole process of the speaker 
recognition. Recording and digitising is important and can influence the speaker 
recognition very much [19][34][39]. The analogue speech signal is recorded using a 
microphone. Subsequently to the recording, the analogue signal is sampled and 
quantised. 

Framing is next important step in the signal processing process. The recorded 
discrete signal ( )ns  is always of a finite length totalN , but is usually not processed as 
a whole. The signal is framed. Length of a frame is totalNN <<  samples. Total count 
of the frames is defined as integer part of the quotient of the total signal length and 
the frame length. Usually, an overlapping of the individual frames is defined. The 
overlapping is used to increase precision of the recognition process. 

Before a further processing, the individual frames are windowed. The frame itself 
is implicitly windowed by a rectangular window. However, spectral characteristic of 
the rectangular window is unsuitable. This is why other windows are applied. There 
are many types of windows using for this purpose. The most frequently used one is a 
Hamming window [19][36]. 

Pre-emphasis [14][17][23] is a processing of the input signal by a low order 
digital FIR filter. It is used to flatten spectrally the input signal in favour of vocal 
tract parameters. It makes the signal less susceptible to later finite precision effects 
[31]. Given a signal ( )ns , the pre-emphasised signal is 

( ) ( ) ( )1−−= nsnsns p λ  (2.1) 
where λ  is a pre-emphasis coefficient from the interval 1;9.0 . 

2.2 Common Features 
Feature extraction is a crucial phase of the speaker verification process. Well-chosen 
feature set may result in quality recognition as well as wrongly chosen feature set 
may result in a poor recognition. 

2.2.1 Energy and Zero-Crossing Rate 
Energy of a signal [14][17][30] expresses strength of the signal. Its value is usable to 
voice activity detection, because the energy of a voice is higher than the energy of a 
noise (which is not valid in case of consonants – they are much more similar to the 
noise). The energy of the j-th frame ( )njs , , N samples long, is 

( ) ( ) JjnjsjE
N

n
,,2,1,,

1

2 K== ∑
=

 (2.2) 
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where J is total number of frames. Energy of the background noise depends on the 
quality of the microphone used to record the signal. 

Zero-crossing rate (ZCR) expresses how many times cross the signal value of 
zero. The ZCR of the noise and some consonants is usually much higher than the 
ZCR of the vowels. The ZCR of the j-th frame is mathematically formulate [14] as 

( ) ( )( ) ( )( ) JjnjsnjsjZ
N

n
,,2,1,1,sign,sign

2
1 1

1
K=+−= ∑

−

=
 (2.3) 

where N  is length of the j-th frame of a signal. The function ( )( )nssign  is defined as 

( )( ) ( ) ( ) ( )
( ) ( ) ( )




<−=<−
>−=>+

=
01and0or0when,1
01and0or0when,1

sign
nsnsns
nsnsns

ns  (2.4) 

2.2.2 Linear Predictive Coding (LPC) 
An approximation of a speech signal may be calculated by a linear combination of 
the Linear Prediction Coding (LPC) coefficients [17][22] and M  previous samples 
of the original signal. This approximation is called linear prediction of the signal. 
The LPC coefficients ( )ma  are solution of the set of the M Yule-Walker equations 

( ) ( ) ( ) Miimima
M

m
,,2,1,0,,

1
K==∑

=
φφ  (2.5) 

The Yule-Walker equations can be solved [17][19][20] by the covariance method or 
by the autocorrelation method using the Levinson-Durbin recursion. Signal 
calculated using the LPC coefficients is usually smoothed. Disruptive, speaker 
specific influence is suppressed. The LPC coefficients of can be used to calculate an 
LPC frequency spectrum, which is smoother than the FFT spectrum. In the 
smoothed spectrum, there are obvious resonance frequencies of the formants. The 
discrete LPC spectrum is defined as 

( ) NkemakS
M

m

N
kjm

LPC ,,1,0,1)(
2

1

2
K=⋅−=

−

=

−
∑

π
 (2.6) 

where M  is number of the LPC coefficients (prediction order), ma  are the LPC 
coefficients, N  is length of the signal ( )ns  and k  is the discrete frequency. 

2.2.3 Discrete Transforms 
Discrete transforms are widely used in the speech processing. The first one is the 
Fourier Transform. It is a very useful one, because it uses complex exponentials as 
its basis functions [19][20][34]. Given a periodic signal ( ) ( )NnSns +=  with a 
period N  we can define the Discrete Fourier Transform (DFT) as 

( ) ( ) 1,,1,0,
1

0

2
−== ∑

−

=

−
NkenskS

N

n

N
nkj

K
π

 (2.7) 

The second useful transform is the Discrete Cosine Transform (DCT) [20][38]. It is 
so often used because of its energy compaction, which results in its coefficients 
being more concentrated at low indices than the coefficients of the DFT. This allows 
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us to approximate a signal using fewer coefficients [39]. There are several 
definitions of the DCT. Coefficients ( )kC  of one of them, DCT-II, are defined as 

( ) ( ) 1,,1,0,
2

1cos
1

0
−=





 += ∑

−

=
Nk

N
nknskC

N

n
Kπ  (2.8) 

where ( )ns  is a real signal. Both the DFT and DCT have their inverses [19]. 
2.2.4 Mel-Frequency Cepstrum Coefficients (MFCC) 

Some psychoacoustic experiments were undertaken to derive scales attempting to 
model the natural response of the human perceptual system, since the cochlea of the 
inner ear act as a spectrum analyser [20]. Fletcher’s work [41] pointed to the 
existence of critical bands in the cochlear response, which results in a choice 
defining a frequency scale called mel-frequency scale [41], which is linear below 1 
kHz, and logarithmic above, with equal numbers of samples taken below and above 
1 kHz. The mel-scale is based on experiments with simple sinusoidal tones [20][41].   

The Mel-Frequency Cepstrum Coefficients (MFCC) are defined as the real 
cepstrum of a windowed short-term signal derived from the FFT of that signal. It 
differs from the real cepstrum in the nonlinear frequency scale used for 
approximation of the behaviour of the auditory system. For the windowing of the 
spectrum, a filter bank is used. The mel-frequency cepstrum is the DCT of the I  
filter outputs 

( ) ( ) ( )∑ ∑
−

=

−

=
=





 −⋅





 ⋅=

1

0

1

0

2 ,,1,0,
2

1cos,ln
I

i

N

k
Ij

I
inkSkiHjc Kπ  (2.9) 

where ( )kS  is the magnitude of the FFT of the signal ( )ns , which is N  samples 
long, and ( )kiH ,  is the i -th filter from total number of I  triangular filters in the 
filter bank. The count of the filters varies from 24 to 40 in different applications. In 
the speech recognition, only the first 13 MFCC are used together with the first 13 
delta-MFCC and the first 13 delta-delta-MFCC. 

2.2.5 Average Long-Term LPC Spectrum 
The long-term LPC spectrum [33] is calculated using the average autocorrelation 
coefficients [18]. These are estimated over all frames of the given signal ( )ns . The 
average autocorrelation coefficients can be used to derive the average LPC 
coefficients ( )ia  from Eq. (2.5) using the Durbin recursive procedure and 
corresponding LPC spectrum is calculated using the Eq. (2.6) substituting the LPC 
coefficients by the average LPC coefficients. 

The signal normalization by a long-term LPC spectrum is a tool useful for speech 
signal normalization and applicable to speaker-independent speech recognition [40]. 
A framed signal is given. The autocorrelation coefficients ( )kjR ,  of the j -th frame 
are of the order Mk ,,1,0 K= . Given the average LPC coefficients ( )ia  the 
normalized autocorrelation coefficients are defined as 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∑ ∑∑
=

−

==
+⋅++−+=

M

m

mM

i

M

i
n miaiamkjRmkjRiajRkjR

1 00

2 ,,0,,  (2.10) 
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2.3 Voice Activity Detection (VAD) 
Voice Activity Detection (VAD) is important topic in many speech-processing 
systems. The system has to distinguish noise from a voice. The systems processing 
single words have to locate beginning and end of the words [48]. In the real-world 
cases, the noise interferes with some phonemes too much to recognise the beginning 
and the end correctly. Such phonemes are [34]: unvoiced fricatives or voiced 
fricatives that become unvoiced at the end of a word, unvoiced stops – plosives, 
nasals at the end, and trailing vowels at the end. 

2.3.1 Common VAD Methods 
The first VAD method is determination of the noise threshold. In this case, the 
threshold is determined from the noise. This method is disadvantageous, since in 
noisy environment with low-class signal source is it difficult to determine the 
threshold. It is because the unvoiced phonemes are much like noise, which makes 
their recognition more difficult. This method is using because of its simplicity. In 
fact, it is usable in case there is good signal source with a high signal-to-noise ratio. 

Another widely used method is a method based on a comparison of the energy 
and the zero-crossing rate of all frames. The zero-crossing rate is higher in case a 
frame represents an unvoiced region or in case it does not belong to the voice at all. 
The value of the energy is high in case a frame is in a voiced region of the speech 
signal. Knowing this it is possible to find approximate endpoints of a word. This 
method is based on searching of thresholds of the ZCR and energy [14]. 

The envelope tracking method is based on the tracking and comparing of the 
envelope of the speech signal with an adaptive threshold determined as a mean of 
the envelope of the background noise. Two independent signals are needed to 
estimate the threshold – a noise and speech signal, which is limiting. Advantage of 
this method is simplicity and possibility of use of an analogue device to the VAD. 

2.3.2 VAD Using Neural Network 
Neural Networks (NN) are well known for their ability to separate vectors and to 
classify them. This was the main reason for their application in the task of the VAD 
[7]. From a large amount of NN, the forward feed network was chosen as the best 
one for this task. The NN suitable for this task contains either one or two hidden 
layers, one output neuron and input neuron count same as length of the input vector. 

There are many feature sets usable for the separation of the noise and the voice, 
but in the tasks like this, it holds true that a simple feature set is better than a 
complex one. One unusual choice is a combination of the ZCR together with a Sum 
of the Magnitudes of the Fourier Spectrum (SMFS). The SMFS is defined as 

JjkjSjSMFS
N

k
,,2,1,),()(

2/

1
K== ∑

=
 (2.11) 

where N  is the length of the j -th frame, J  is the total number of the frames, and 
( )kjS ,  is given by the Eq. (2.7). 
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3 SPEAKER DEPENDENT FEATURE EXTRACTION 
Speaker dependent features are speaker recognition oriented features. These features 
emphasise speaker individuality and are not usable for other purposes than the 
speaker recognition. 

3.1 Speaker Dependent Frequency Filter Bank (SDFFB) 
Three filter shapes were chosen: a triangular shape, a Gaussian curve shape and a 
shape of the Tukey window [36]. Let’s assume A an amplitude, N denotes length, 

NFFF highcentrelow <<<≤0  denote basic discrete frequencies of the filters, and 
1,,1,0 −= Nk K  is a discrete frequency. 

The triangular filter is defined in the discrete frequency domain as 















++=









−

+−⋅

+=
−

−⋅

=

otherwise,0

,,2,11

,,1,,

),,,( highcentrecentre
centrehigh

centre

centrelowlow
lowcentre

low

highcentrelowTriang FFFk
FF

FkA

FFFk
FF

FkA

FFFkH K

K

 (3.1) 

The Gaussian curve filter is based on the Gaussian (normal) probability density 
function and is defined as 

( ) ( ) 





















−

−−⋅=
2

25.0
exp,,,

lowhigh

centre
highcentrelowGauss FF

FkAFFFkH  (3.2) 

The Tukey filter is a combination of a rectangular window and a Hann window, 
i.e. it is a cosine-tapered window. The original equation [36] was slightly modified 
for the filtering purposes. The final equation is 

( )
















−=










 −
⋅−⋅

−−++=

++=










 −
⋅−⋅

=

otherwise,0

,,
2

,2cos1
2

1
2

,,1
2

,

2
,,1,,2cos1

2

,,,

high
Hann

high
Hann

Rect

Hann
high

Hann
low

Hann
lowlowlow

Hann

low

highcentrelowTukey

F
N

Fk
N

NkA

NFNFkA

N
FFFk

N
FkA

FFFkH

K

K

K

π

π

(3.3) 

In this case play a role some other variables. HannN  is defined as 
( ) ( )11 +−⋅−= lowhighHann FFN α  (3.4) 

where α  is a ratio of taper to constant section and 10 ≤≤ α . When 0=α , the filter 
corresponds to a rectangular filter. When 1=α , the filter corresponds to a Hann 
window (filter). ctNRe  in the Eq. (3.3) is complement to the HannN  and is defined as 

( ).1Re +−⋅= lowhighct FFN α  (3.5) 
Now, we can describe Speaker Dependent Frequency Filter Bank (SDFFB), which is 
a new approach to a filter bank definition. It is based on an average long-term LPC 
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spectrum. The SDFFB differs from the mel-frequency based bank in a distribution 
of filter centres, in amplitude of the filters, and in the shape of the filters. 

Basic idea results from the fact of dissimilarity of human vocal tracts. Shape of 
the vocal tract differs obviously in some important details. The positions of the 
maxima and minima in a long-term LPC spectrum become central frequencies Fcentre 
of the individual filters. The positions are members of two sorted sets 

( ) { } { } LlffffflF Ll ,,1,0,,,,, maxmax
2

max
1

max
0

max
max KK ===  (3.6) 

( ) { } { } 1,,,2,1,,,,, min
1

minmin
2

min
1

min
min +=== + LLiffffflF LIl KK   (3.7) 

where max
lf  is the position of the l -th maximum and min

lf  is the position of the  l -
th minimum. The frequencies should satisfy 

min
1

maxmin
2

max
1

min
1

max
0 +<<<<<< LL ffffff L  (3.8) 

Now, we can merge the sets ( )lFmax  and ( )lFmin  into one ordered set 
( ) { } 1,,1,0,,,,, min

1
maxmin

1
max

0 +== + IiffffiF LL KK  (3.9) 
where I = 2L is total number of the filters in the filter bank. As L = 8, the filter bank 
consists of 16=I  filters. Thus, we need at least eight extremes plus one more 
maximum and one more minimum. It was experimentally proved, that the number of 
the extremes is even higher than eight. Generally, the filter bank is defined as 

( ) ( ) ( ) ( )( ) IiiFiFiFkHkiH SDFSDFB ,,2,1,1,,1,, K=+−=  (3.10) 
where there are I  Speaker Dependent Filters ( )highcentrelowSDF FFFkH ,,,  – one of the 
filters defined in the previous chapter. The discrete frequency is 1,,1,0 −= Nk K  
and N  is length of the signal or frame. 

The amplitude A  offers two types of the SDFFB – type I and type II. The type I 
(SDFFB-I) assumes the amplitude A = 1 ~ constant amplitude filter bank. The 
SDFFB of the type II (SDFFB-II) assumes the amplitudes equal to the values of the 
long-term LPC spectrum at the positions centreF  ~ variable amplitude filter bank. 

3.2 Speaker Dependent Frequency Cepstrum Coefficients 
The Speaker Dependent Frequency Cepstrum Coefficients (SDFCC) are much like 
the mel-frequency cepstrum coefficients in terms of the overall algorithm. It differs 
in the filter bank used for the computation of the coefficients. The SDFCC are 
computed using the SDFFB defined in the previous chapter. Instead of the triangular 
mel-frequency based filter bank, we use a SDFFB given by the Eq. (3.10). Then in 
the Eq. (2.9), the triangular filter H is replaced by other one HSDF defined in the 
previous chapters. Then, the SDFCC are 

( ) ( ) ( )∑ ∑
−

=

−

=
=





 −⋅





 ⋅=

1

0

1

0

2 ,,1,0,
2

1cos,ln
I

i

N

k
SDFSDFB Ij

I
inkSkiHjc Kπ  (3.11) 

where I is total number of the filters in the filter bank, S(k) is the FFT of a signal 
s(n), which is N samples long. Though the SDFCC are computed the same way as 
the MFCC, they are not same at all. The difference in the filter banks and filter 
shapes issues in very different results in case of the speaker recognition. 



4 Speaker Recognition 

  13

4 SPEAKER RECOGNITION 
The speaker recognition divides into two groups: speaker identification and speaker 
verification [17][18][30][31][43][45][46]. The speaker identification aims at 
answering the question “Who is speaking?”. On the other hand, the speaker 
verification tries to answer the question “Is the one, who is speaking, really the one, 
who he claims to be?”. Thus, in case of the speaker identification we try to identify 
an unknown voice among other voices, which may be e.g. stored in a database. In 
case of the speaker verification, we would like to determine a similarity of two 
speakers. One of them is known – his voice features are stored in a database. The 
other one is unknown and he/she claims to be the known one. 

For a BSS, the speaker verification is a reasonable choice, but the speaker 
identification can be used too in the way the verification is used. There are many 
ways of accomplishing the recognition, but the most popular is the method based on 
the Hidden Markov Models with the Gaussian Mixtures. Usually, the process of the 
speaker recognition consists of the recording and pre-processing, feature extraction, 
pattern matching, and decision making. 

The recording and the pre-processing of the input signal are described in 
Chapter 2.1. The feature extraction is described in Chapters 2.2 and 3. The last two 
steps should be explained more. 

4.1 Hidden Markov Models with Gaussian Mixtures 
After the feature extraction, it is possible to come to the next phase of the speaker 
recognition – the pattern matching. It can be accomplished in many ways, there are – 
nonparametric techniques, methods based on maximum-likelihood and Bayesian 
parameter, linear discriminant functions, neural networks, or stochastic methods 
[16][17][35]. For this task was chosen the Hidden Markov Models with the 
Gaussian Mixtures (HMM-GM).  

In the Markov processes generally, there are considered states, which correspond 
to an observable (physical) event. However, this model is too restrictive [48] to be 
applicable to many problems of interest, so that the HMM are defined. The HMM is 
defined by the following variables: total number N  of states, total number M  of 
distinct observation symbols per state, state transition probability distribution A , 
observation symbol probability distribution B , and initial state distribution π .  The 
observation sequence is noted as ToooO ,,, 21 K=   and the state sequence is referred 
to as TxxxX ,,, 21 K= . 

There are three main problems of the HMM. Given a HMM ( )πλ ,, BA=  how can 
be determined probability ( )λOP  of an observation sequence O in the model λ ? 
There is a direct solution to this calculating all combinations of the state sequences 
of the length T. However, there are TN  possible state sequences. For the large T, the 
direct solution to this problem is unusable. For this purposes, a Forward Procedure 
and a Backward Procedure were developed [17][28][49]. These procedures are 
induction procedures and both decrease total number of calculations.  
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The second problem is summarised as follows. Given a HMM ( )πλ ,, BA=  how 
can we choose a state sequence X so that the probability of the occurrence of the 
observation sequence O would be maximal? Possible solution to this can be the 
Viterbi algorithm [11][16][25]. Result of the algorithm is an optimal state sequence. 
The algorithm is similar in implementation to the forward procedure. 

The third and the most difficult problem of the HMM is to determine a method to 
adjust the model parameters A, B, and π. Given the model ( )πλ ,, BA=  how to 
choose the parameters to maximise the probability ( )λXOP , , given an observation 
sequence O and the state sequence X? There are some methods of adjustment of the 
HMM parameters [16][25][27][28][49]. One of the algorithms – segmental k-means 
algorithm – algorithm calculates parameters of the HMM ( )πλ ,, BA=  so that the 
probability ( )λXOP ,  was maximal and at the same time the state sequence X was 
optimal state sequence to the given observation sequence. Another solutions can be 
the Baum-Welch re-estimation algorithm or the maximum likelihood algorithm. 
These algorithms are general ones. They creates a general complete HMM based on 
the training observation sequences. Nevertheless, in the speech processing we do not 
need a complete model. The models are reduced to the left-to-right models, which 
models the forward behaviour of the speech. 

There are some practical issues in using the HMM and some limitations. Some of 
them are: problem of the initial estimation, model topology, training criteria, 
duration modelling etc [11][16][17][20][23][24][28][49]. 

In case the observations do not come from a finite set, but from a continuous 
space, the discrete output distribution discussed before needs to be modified [20]. 
The main difference lies in a different form of output probability functions. As the 
continuous output probability density functions ( )obj , where o  is an n-dimensional 
observation symbol, were chosen the multivariate Gaussian mixture density 
functions, which can approximate any continuous probability density function. 

4.2 Decision-Making 
Decision-making is the final step of the speaker recognition [43][45][46]. From the 
previous steps, we have the result of the pattern matching. Now, we have to decide, 
whether the result of the matching is positive or negative. The decision-making can 
be done in many ways, but every-time it finishes by a simple threshold based 
(linear) classification. 

Accuracy of the speaker recognition process is an important aspect of the security 
systems. There is a pair of measures used to determine accuracy of the BSS – the 
False Acceptance Rate (FAR) and the False Recognition Rate (FRR) [43]. The FAR 
is also known as a False Match Rate or Type II error. It expresses how many times 
someone is inaccurately positively matched. Hence, the higher the FAR, the more 
intruders may be positively matched. The FRR is also known as a False Non-Match 
Rate or Type I error. It denotes the number of times someone is inaccurately 
rejected. It means, the higher the FRR, the more times must someone who should be 
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accepted complete the enrolment procedure. The combination of these two measures 
helps to determine quality or accuracy of the biometric security system. 

Threshold estimation is a serious problem too. First, we must know the purpose of 
the designed BSS. Then, we must decide, how strong should be the protection. The 
FRR and FAR can help us to choose proper threshold value. If we want all 
authorised users to be accepted without problems, we have to choose a threshold 
according to the low values of the FRR. However, when we choose such threshold, 
then some unauthorised users may be accepted as well. On the other hand, if we 
choose a higher threshold value, then more authorised users may be rejected. Thus, 
choice of the threshold is a compromise between the FAR and the FRR. 

The balanced threshold is the one lying on the crossing of the FAR and FRR 
curves. The value of the crossing is called Equal Error Rate (EER), i.e. at this point 
the FAR and the FRR should be of the same value. The algorithm searching for the 
EER gets an absolute value of the subtraction of the values of the FAR and the FRR 
for each given threshold and searches for the minimum. It returns the approximate 
value of the threshold. 

Another usable threshold can be searched by calculating the Optimal Error Rate 
(OER). This algorithm finds minimum of the sum of the FAR and the FRR. When 
the OER is chosen for threshold estimation, then the overall recognition error rate is 
the lowest possible. The OER cannot be performance measure, since it is a special 
case optimisation and is incomparable due to dissimilarities of the models. 

4.3 Approaches to the Speaker Recognition 
There are two different approaches to the speaker recognition. The first one is based 
on the speaker verification and the second one is based on the speaker identification. 
When verifying a speaker, there are two possible results – the speaker is (‘yes’) or is 
not (‘no’) the one, who he/she claims to be. When identifying a speaker, there are 
other two possible results. If the unknown speaker were found in the voice database, 
the answer would be an identification number of the speaker. Hence, the answer 
would be ‘yes’, since the user was found in the database. If the unknown speaker 
were not found in the voice database, the answer would be unknown (unauthorised) 
user, i.e. the answer would be ‘no’. 

Main difference between the two approaches is that in case of the speaker 
verification the user has to tell the system, who he/she claims to be. Then, the 
system compares the stored pattern of the claimed user with the new pattern of the 
unknown user. Hence, a one-to-one comparison is performed. In case of the speaker 
identification, the system itself determines the user. Thus, a one-to-many 
comparison is performed. If the user’s voice were not found in the database, the 
answer would be ‘no’, otherwise the answer would be ‘yes’.  
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5 DESIGN OF BIOMETRIC SECURITY SYSTEMS 
The third goal of the dissertation is to design a Biometric Security System (BSS) 
utilising at least two biometric technologies. The theory presented in this chapter is 
supported by the experimental results of the speaker recognition as presented in 
Chapter 6.3, and the overall concept of the BSS is supported by results of testing of 
the unique vector presented in Chapter 6.4. Our concepts of the BSS were accepted 
by many experts when presenting in conferences [3][4][5][6][8] and workshops [2]. 

5.1 Single- and Multi-Biometric Security System 
Usually, a one-level biometric security system [3][4][5] is applied to provide the 
security services. The one-level biometric system or Single-Biometric Security 
System (SBBS) consists typically of an input device and a processing unit. Among 
the input devices belong: scanners, microphone, and many other devices. These 
devices serve the acquisition of the physical biometric features. Data acquired from 
the input devices are processed by be a built-in or an external device. Both the 
external and the built-in solution have their pros and contras. The external solution is 
cheaper but it provides weaker protection. The built-in solution is more expensive 
but the protection is better. 

Multi-Biometric Security System (MBSS) is a biometric system based on a 
combination of more than one biometric technology [3][4][5]. Main advantage over 
the SBSS is complexity that makes the system more robust to the FAR. Generally, 
authorisation using multiple biometrics reduces to a fusion problem, which utilises 
results of multiple biometric technologies to increase the fault-tolerance capability, 
to reduce uncertainty, to reduce noise, and to overcome the limitations of the SBBS. 

As each of the individual biometric subsystems in a MBSS has very different 
characteristics and pattern matching scheme, it is useful to integrate them at the 
decision level. A decision fusion of all partial decisions must be estimated. One 
partial decision can be based on the result of the speaker verification as described in 
Chapter 4.3. The overall decision is based on a fusion of the decisions made by the 
individual biometric modules and can be based on theory of probability, on a neural 
network, or on a fuzzy classification. 

5.2 Task of the BSS 
Biometric security system is a security system, which protection is based on the 

biometric features. The BSS can be applied in many ways and situations. Usually, 
we want to protect an object or a service – we want to enable the authorised users to 
access to some network resources (a biometric login). Another typical task can be a 
protection of the objects like buildings or other facilities (a biometric doorkeeper). 
These applications require a reliable protection method, since in these cases the price 
of the protected object is higher than in case of the network resources. 

There is a dependency between the price of the protected object and the strength 
of the protection. In case the protected object is not too valuable, can the common 
solutions fulfil requirements of the protected object owner. 
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There are many possibilities of strengthening of the security. One of them lies in 
the BSS, which are not widely used, because people do not trust them yet. Since 
present, only the SBSS have been used [43][45][46]. The MBSS are rare, but some 
commercial solutions [47] and some books on this topic [10] are on hand. 

5.3 Biometry in Cryptography 
The biometric features can be used in cryptography to generate a symmetric key [3]. 
The key is given as a combination of vectors acquired using the individual biometric 
technologies. Each of the biometric technologies should be able to generate at least 
one unique vector, which will be then considered as a part of the biometric 
cryptographic key. 

Two preconditions must be fulfilled. The first one is the uniqueness. The vector 
used as the cryptographic key must be unique. If the vector were not unique, there 
would be possibility of false acceptance of the biometric features of someone other 
(possibly unauthorised) user. The second precondition is the ability of re-
estimableness of the unique vector, e.g. the speech technology can provide only one 
unique vector difficult to re-gain. 

However, the uniqueness is not such a big trouble. When using more than one 
biometric technology, we can supply ambiguity of the vectors given by one 
technology by the other biometric technology. Both of them can supply each other.  

5.4 Unique Vector Generating from the Speech Signal 
The process of unique vector generating from the speech signal is rather 
challenging. As the speech features are so unstable, the uniqueness and the re-
estimableness are not fulfilled. The speaker vocal tract characteristics change during 
whole life, which aggravates the process, since the system must be held up to date. 
To generate a unique vector, a special method must be designed, since the features 
possible to use to get a unique vector are not precisely re-estimable. A tolerance 
must be defined, within which the features may vary. This process is very similar to 
the quantisation. We define a quantisation step and then we sample the features 
along one dimension. 

Consider a long-term LPC spectrum derived from the LPC coefficients of the 22nd 
order. We can use the same spectrum as the one used in case of the SDFFB. There is 
a set of frequencies like in the Eq. (3.6) omitting just the first maximum. This set is a 
base for the unique vector. Like in the case of the SDFFB, we chose a group of 

8=L  maxima, which implies we can have 8 unique values. When we scale them to 
the range from 0 to 255, we can use them to create an array of 16 bytes. 

To define the quantisation steps ql for each group l = 1,2,...,L of maxima, we need 
more than 1 training sample. Having N training samples we get N sets of maxima. 
Upon these sets, we can base estimation of the quantisation step. Except from the 
quantisation step, there is a value of the initial shift. Prior to get the quantised value 
using the step ql, we have to subtract the initial shift sl to get proper results. 

As the training samples do not cover all frequencies, we have to define percentage 
tolerance, which enlarges the accepted range slightly whereby the quantisation step 
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increases as well. The more the training samples the lower the tolerance and the 
lower the final error can be. Thus, given a normalised tolerance factor t and the 
quantisation step ql, the quantisation step with the tolerance is defined as 

10,,2,1,ˆ ≤≤∧=⋅+= tLlqtqq lll K  (5.1) 
and, given the initial shift sl, the initial shift with tolerance is defined as 
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where max
,nlf  is l -th group of maxima from N  training samples. Given function 

int(x) returning integer part of x, the quantised value ( )xvlˆ  can be defined as 
( ) ( )( )1ˆˆintˆ −⋅−= lll qsxxv  (5.3) 

In case the quantised value exceeds the interval 255,0 , we have to correct it. The 
easiest way to do that is using the remainder of the division by 256 as the l -th value 

lv . Now, we can create a unique vector for each speaker in the database defined as 
( ) ( ) ( )( )maxmax
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whereby max

lf  is mean of the l -th group of  maxima consisting of N  frequencies, 
i.e. there are N  training samples. Given the unique vector V  it is possible to 
transform it to a hexadecimal string containing L2  hexadecimal digits. Upon that a 
measure, which expresses a distance between two unique vectors, can be defined. 

5.5 Robustness of the BSS 
When generating a biometric key, there must be enough information in the biometric 
features usable to the key generating [2]. In the speech technology, possibility of 
generating a key is limited. We must define a new method to generate a unique re-
construable vector. There are typical speech features usable for this purpose. Some 
of them are the formant frequencies corresponding approximately to the resonance 
frequencies of the vocal tract cavities. We suppose various speakers have various 
long-term characteristics of the formant frequencies.  

Given the unique vector generated as described in the previous chapter, we can 
compute the factors of the vector. The factor equals to the number of bits needed to 
store the vector. Thus, given 8=L  values transformed so that they range from 0 to 
255, we need 64 bits to store the vector, which results in a factor of 264, i.e. there are 
264 possible combinations. 

The length of 64 bits is however not enough to satisfy nowadays needs in the field 
of the cryptography. The factor may be even higher, because it strongly depends on 
the chosen features. Nevertheless, we can say that 64 bits are enough in a MBSS and 
the missing bits can be supplied by the other biometric technologies. For example, 
the fingerprint technology can offer even a factor of 2214 [2], which provides 
together with the speech technology a factor of  2278, which is enough. 
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6 EXPERIMENTAL RESULTS 
Some experiments had to be done to prove validity of the algorithms and to test 
quality of the proposed features. 

6.1 Voice Database and Feature Sets 
The voice database used for testing was built in the cooperation with a group of the 
first term students of BUT FIT. There were 125 students willing to cooperate; all of 
them in the age from 19 to 21 years and 2 of them females. This gives us a set of 
voices similar one to another. Such testing set is deadly for recognition algorithms. 

The voice database consists of 125 speakers, eleven samples for each speaker. Six 
samples were for training and the remaining five for testing. The utterances were 
recorded using a common microphone with low signal-to-noise ratio. The sampling 
frequency was 22050 Hz and precision was 16 bits per sample.  

For the test, some typical feature sets were provided. The first group of features 
consisted of the common features (see Chapter 2.2). The first feature set consisted of 
12 and 24 LPC coefficients noted as LPC12 and LPC24. The next sets consisted of 
the Mel-Frequency Cepstrum Coefficients. These sets were 13 MFCC, 13 MFCC 
with 13 first order delta coefficients, and 13 MFCC with 13 first order and 13 
second order delta coefficients. These ones were noted as MFCC, MFCC-D, and 
MFCC-DD. Last common coefficients were 12 and 24 cepstrum coefficients noted 
as CEPS12 and CEPS24. Next, there was a group of six Speaker Dependent 
Frequency Cepstrum Coefficients based sets (see Chapter 3.2). All the SDFCC-
based sets consisted of 16 coefficients. The first group of sets was calculated using 
the filter bank type I and the triangular filter noted as SDFCC-I-Triang, the Gaussian 
filter noted as SDFCC-I-Gauss, and the Tukey filter noted as SDFCC-I-Tukey. The 
second group of sets was calculated using the filter bank type II and the triangular 
filter noted as SDFCC-II-Triang, the Gaussian filter noted as SDFCC-II-Gauss, and 
the Tukey filter noted as SDFCC-II-Tukey. 

6.2 VAD Using Neural Network 
The VAD using neural network was experimentally tested [7]. Performance of the 
VAD was related to the manually found beginnings and ends of a group of 
utterances chosen from the voice database (Chapter 6.1). 

The first tested network contained two hidden layers, both of them with 10 
neurons. The second one was same with only five neurons in the hidden layer. Next 
three tested configurations consisted only of one hidden layer with 10, 5, and 2 
neurons. The NN was trained using the Levenberg-Marquardt back-propagation 
method, goal performance was set to 10-10, maximum number of epochs was set to 
500, and minimum gradient was 10-12. The tangential sigmoid function was chosen 
as the transfer function of all the neurons. 

Results of all tests are summarized in Table 6.1. The results show that it is not 
useful to enlarge the neural network, because, in many cases, performance of the 
smaller networks was better than performance of the larger ones. The smaller the 
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network is the better is the possibility of its usage in the real time applications 
(because of its speed). In addition, the features that are usually used in the speech 
processing proved to be improper for the task of the voice activity detection using 
neural network. As the best choice showed combination of the ZCR with the SMFS, 
and the MFSC. 

Table 6.1 
Error rate of the endpoints detection using a forward feed neural network. 

LPCC 
Features 

E 
ZCR 

SMFS 
ZCR 

4 8 16 24 

MFSC 
12 

MFCC 
12 

N = 1024 (i.e. 46 ms), O = 512 
10x10x1 6,7 1,1 1,7 4,2 7,6 11,2 3,4 16,0 
5x10x1 4,2 0,6 4,2 8,4 10,1 2,5 0,8 10,1 
10x1 1,7 0,8 2,5 3,4 9,2 9,2 1,7 33,6 
5x1 2,5 0,3 3,4 7,6 4,2 5,4 2,5 37,0 
2x1 7,6 0,3 8,4 7,6 9,2 3,3 2,9 3,4 

N = 512 (i.e. 23 ms), O = 256 
10x10x1 17,6 56,3 2,5 7,9 3,8 4,2 11,0 10,8 
5x10x1 5,8 1,3 2,1 8,3 6,3 3,4 2,5 7,1 
10x1 5,9 1,7 2,5 4,6 6,7 4,2 2,1 8,8 
5x1 6,7 0,8 4,6 6,3 5,8 2,5 3,5 12,5 
2x1 4,6 0,8 2,5 5,6 5,0 7,1 1,7 2,1 

N = 256 (i.e. 11 ms), O = 128 
10x10x1 2,0 1,7 2,3 4,2 8,9 6,0 2,3 11,2 
5x10x1 1,9 0,8 3,1 4,8 5,2 3,1 2,1 7,7 
10x1 1,5 1,6 4,6 7,3 6,4 9,1 3,1 15,8 
5x1 3,5 0,8 1,7 11,0 4,6 8,5 1,0 4,4 
2x1 1,2 0,6 2,9 9,2 4,0 5,4 2,1 10,8 

6.3 Speaker Recognition Experiments 
The speaker recognition experiments consist of two main groups of the speaker 
recognition – the speaker verification approach and the speaker identification 
approach. The experiments were done upon a HMM-GM classifier with 3, 5, and 7 
states. These numbers of states were chosen because of the given voice password. It 
consists of seven phones, so that seven should be enough. Often a HMM-GM with a 
lower number of states performs better than another one with a higher number of 
states, so that it was decided to test the HMM-GM even with 3 and 5 states. 

In the Figure 6.1, you can compare a relationship of the FAR and the FRR with 
the threshold when using the common features, the SDFCC-I-Gauss, and SDFCC-II-
Gauss features. You can see that the curves differ for each of the feature sets. 
Almost ideal seems to be the curves given by using the MFCC feature set, however 
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the EER is rather high in comparison with the LPC12. The FAR/FRR curves for the 
other numbers of HMM-GM states and other testing samples are similar. 

 
Figure 6.1 FRR (solid line) and the FAR (dotted line) as the functions of the threshold T, 

when using the HMM-GM with 3 states and combined set of samples (6 training 
samples + 5 unknown samples for every speaker). Here, the commonly used 
feature sets are compared – LPCC, MFCC and cepstrum coefficients. In case of 
the MFCC can you see a marking of the EER and corresponding threshold T. 
The values of the FAR and of the FRR are normalised. 
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In the table Table 6.1, there are summarised experimental results of the speaker 
verification and identification. There are the Equal Error Rates of the recognition in 
percents. Results of two types of samples are noted in the table, the first one 
containing six training samples and the second one containing unknown samples. 
The first group should be the best performer, but is not valid as a performance 
comparison. The results of the second group are the worst ones, but they are nearest 
the reality, since in the real world application there are only unknown samples. 

Table 6.1 
EER [%] of the speaker identification and verification 

 identification verification 
States 3 5 7 3 5 7 3 5 7 3 5 7 

Features 
unknown training unknown training 

LPC12 16.2 5.4 5.5 0.6 0.5 0.3   4.8   5.0   4.8 0.5 0.6 0.6 
LPC24 20.0 3.6 9.0 2.9 3.2 2.5   8.0   7.2   8.0 1.3 1.2 0.9 
MFCC 42.6 7.1 7.8 12.0 0.9 39.1  11.5  18.8  19.3 1.3 4.7 5.3 
MFCC+D 48.6 8.8 8.6 45.2 2.9 37.7  24.2  31.5  31.1 10.5 10.4 7.3 
MFCC+DD 49.1 48.9 49.0 44.6 39.9 27.4  83.9  85.1  87.0 22.9 15.3 7.7 
CEPS12 41.8 0.1 9.6 33.7 0.2 28.7  12.5  12.8  12.7 9.6 8.3 6.9 
CEPS24 47.9 7.8 7.8 48.5 8.5 48.6  29.9  30.2  29.5 72.3 72.5 72.2 

Gauss 5.0 6.8 6.6 0.0 0.0 0.0   4.1   4.0   4.9 0.0 0.0 0.0 
Triang 6.4 6.4 6.1 0.0 0.0 0.0   4.1   3.9   5.0 0.0 0.0 0.0 

SD
FC

C
-

I 

Tukey 6.3 6.7 7.2 0.0 0.0 0.0   4.1   4.8   5.1 0.0 0.0 0.0 
Gauss 5.8 5.9 6.2 0.0 0.0 0.0   3.9   4.5   5.1 0.0 0.0 0.0 
Triang 5.3 7.6 6.5 0.0 0.0 0.0   4.1   4.6   5.1 0.0 0.0 0.0 

SD
FC

C
 

-I
I 

Tukey 6.9 6.6 5.5 0.0 0.0 0.0   4.4   4.8   4.8 0.0 0.0 0.0 

The overall best verification solution seems to be the SDFCC-II-Gauss based 
feature set, with the ERR of 3.9 % in case of the HMM-GM with 3 states. The 
number of states has some influence on the recognition error. In case of the 
commonly used features increases the EER sometimes and sometimes it decreases. 
There seems not to be any dependency. In case of the SDFCC based feature sets, the 
EER increases with the increasing number of states. The number of three states 
proves to be enough to verify a speaker rather accurately.  

The FAR/FRR dependency on the threshold is similar to the shapes presented in 
Figure 6.1 with one important difference in the shape of the FAR curve, which is 
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nearly constant for the low values of the threshold. This is because of the properties 
of the identification process. When T = 0, FAR should equal to 1. This is true in case 
of the verification, but it is not true, when identifying a user. When recognised, the 
changes of the threshold cannot influence the FAR, only the FRR changes. In other 
words, we check the unknown sample against all models stored in the database. 
Then, if the maximal likelihood exceeds the threshold, we declare the unknown 
sample belongs to the model with the maximal likelihood. When, in the event, the 
sample does not belong to the winning model, the FAR increases. When correctly 
found, the FAR cannot further increase, because the change of the threshold does 
not influence falseness of the recognition, since there is only one winner every time. 

The EER of the speaker identification depends on the number of the HMM-GM 
states. The identification approach winner when using the common features is the 
LPC12 based set with no exception. The situation is not as clear when using the 
SDFCC based features. The number of the states influences the accuracy much 
(relatively to the results of the other SDFCC based features). When using the HMM-
GM with 3 states, the best is the SDFCC-I-Gauss feature set, in case of the 5 states 
is the best one the SDFCC-II-Gauss and, in case of the 7 states, is the winner the 
SDFCC-I-Triang. 

 
Figure 6.2 Comparison of the EER when using the speaker verification approach (dotted 

line) and the speaker identification approach (solid line). 

The Figure 6.2 and the Figure 6.3 illustrates influence of the number of the 
HMM-GM states on the EER. Generally, the speaker verification approach is better 
than the identification approach. Reason for these results is given by the used 
algorithm. The features suitable for both, the identification and the verification, are 
the SDFCC based one. The overall EER of the identification and the verification lies 
in between 3.5 % and 8 %, which is, in comparison to the common features, very 
good result. As the common features are not primarily designed for such task, their 
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results are not so impressive. Generally, the HMM-GM with lower number of 
features and lower number of states perform better than the others do. 

 
Figure 6.3 Comparison of the EER when using the speaker verification approach (dotted 

line) and the speaker identification approach (solid line). 

6.4 Unique Vector Generating 
In Chapter 5.4, there is proposed a method of unique vector generating from the 
speech signal using the long-term LPC spectrum. The quantisation performed on the 
groups of frequencies influences the final unique vector. The higher the value of the 
tolerance as used in the Eqs. (5.1) and (5.2), the worse is the quality of the vector. 

In the Figure 6.4, you can see influence of the size of the tolerance to the FAR 
and the FRR when testing using (a) the training samples, and (b) the unknown 
samples. As expected, the FRR equals zero when using the training samples, since 
the vector is constructed so that it is not possible to reject a training vector. 
Increasing tolerance increases the FAR, which is not desired. However, even when 
the tolerance is high, the FAR does not exceed 4%, which is good result. When 
testing the unknown samples, the FRR ranges from 35% to 85%, which is bad result. 
The FAR lie below 4%, which is good result. 

In Table 6.2, you can compare unique vectors of the training sample of a valid 
user to the corresponding unique vectors of another sample of the same user and of a 
sample of an unauthorised user. It is clear that some tolerance is necessary, since 
even the sample of the same user do not generate the same vector when the tolerance 
is low. 

The experimental results prove this way as a possible one. The results are not as 
good as necessary for a real application. However, some principles proposed here 
can be improved so that our voice could be used as a biometric key. 
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Figure 6.4 Comparison of the FAR and the FRR as functions of the tolerance, 

(a) training samples results, and (b) unknown samples results. 

Table 6.2 
Comparison of the unique vectors 

to
le

ra
nc

e unique vector of the 
training sample of an 

authorised user 

unique vector of the 
unknown sample of 
the authorised user di

st
an

ce
 unique vector of the 

unknown sample  of 
an unauthorised user di

st
an

ce
 

0.00 0F0D07160E2C1E68 0F0D07160E2B1D68 2 0E0D07150D2D1E68 4 
0.10 0D0B06140D281B5E 0D0B06140D271B5E 1 0C0B06130C291B5E 4 
0.20 0C0A06130C251957 0C0A06130C241957 1 0B0A06120B261957 4 
0.30 0B0A05110B221750 0B0A05110B211750 1 0A0A05110A231750 3 
0.40 0A0905100A20154A 0A0905100A1F154A 1 090905100921154A 3 
0.50 0A08040F091D1445 0A08040F091D1445 0 0908040F081E1445 3 
0.60 0908040E091C1241 0908040E091C1241 0 0808040E081D1241 3 
0.70 0907040D081A113D 0907040D081A113D 0 0807040D071B113D 3 
0.80 0807040C0819103A 0807040C0819103A 0 0707040C0719103A 2 
0.90 0807030C07171037 0807030C07171037 0 0707030C06171037 2 
1.00 0706030B07160F34 0706030B07160F34 0 0606030B06160F34 2 
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7 CONCLUSIONS 
The three goals of the dissertation were accomplished. The first goal aimed at the 
speech signal processing focused on the speaker recognition was accomplished by 
the proposal of the voice activity detection using a neural network. Experimental 
results noted in Chapter 6.2 show that the NN is very usable for this purpose. The 
VAD with an error lower than 1% is good result. 

The second goal – definition of speaker dependent features suitable for the 
speaker recognition – was accomplished by defining a new set of speaker dependent 
features – the Speaker Dependent Frequency Cepstrum Coefficients (SDFCC). 
These coefficients aim at the speaker recognition and are not usable for the speech 
recognition. The experimental results noted in Chapter 6.3 show their qualities. The 
Equal Error Rate (EER) of the speaker verification lower than 5% in nearly all cases 
with the minimum at 3.9%, is excellent taking the conditions given by voice 
database into account. The EER of the speaker identification lower than 8% with the 
best EER of 5.04% is good as well. The SDFCC outperformed the common features, 
which aim mainly at the speech recognition. The good performance of the speaker 
recognition is result of the dependence of the new features on the speaker, because it 
strengthens speaker’s individual voice characteristics. Generally, the verification 
approach transpired to perform better than the identification approach. 

The third goal of design of BSS including speaker recognition technology was 
accomplished by proposing a design of a multi-biometric security system based on 
the speech and fingerprint technologies and proposing an algorithm of unique vector 
generating. The vectors generated using the introduced algorithm are unique in the 
given set of voice samples. The distance of the nearest pair of the unique vectors 
was 23 (respectively 74) using different distance measures. There are some 
problems when generating the unique vectors. Though unique, they are not easily 
well re-estimable. This topic showed there is a way of solution of this problem. 

This work offers many suggestions for the further research. The SDFC 
coefficients are not the only solution to the speaker dependent features. The SDFCC 
can be created in many ways, which gives many possible solutions. When talking of 
the new speaker dependent features we cannot forget shape of the human’s vocal 
tract, which is supposed to be unique, as the base for the further investigation. 
Alternatively, the shape of the excitation signal could be very useful in this field. 

In the field of the BSS, there are many ways of possible research topics. 
Remember we used only two biometric technologies to design a MBSS. This can be 
improved and some methods of the decision fusion must be designed. A more 
complex way of the unique vector generating would be welcomed. Improvement of 
the base for the unique vector specification, the quantisation step estimation, the 
overall algorithm specification, and many others are needed. 

The Biometric Security Systems can offer much space for further work. Reward 
for the development of the first-quality BSS is a higher reliability and users’ 
satisfaction with the functionality. 
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ABSTRACT 
It has been quite a long time since the first biometric systems were introduced and, 
until present, they have not become widely used. In spite of this, the importance of 
the biometric security systems is growing now. Many research groups are working 
on the development of the individual biometric technologies such as the fingerprint 
recognition, iris or retina recognition or the speaker recognition. However, not many 
of them combine these technologies together. Future of the biometric security 
systems is in the combination of more technologies. This work aims at the 
technology of the speaker recognition and proposes a solution of its integration into 
a more complex biometric security system. 

There are many speaker recognition systems but none of them is reliable and 
stable enough to be applied as a standalone security system. In the first part of the 
dissertation there are described the goals of this works and the state of art of the 
biometry. Then, description of some methods of the common signal processing and 
techniques of the pre-processing phase together with feature extraction follows. The 
feature extraction is a crucial phase of the recognition process. In the next part, some 
new features focused on the speaker recognition are introduced. The following part 
aims at the speaker recognition itself. The speaker may be recognised in many ways, 
but the most suitable one for this task seems to be a method based on the Hidden 
Markov Models. The next part introduces a design of a complex biometric security 
system based on the speaker recognition and the fingerprint authentication. A 
method of acquisition of a unique vector from speaker specific features is outlined 
as well. If the vector proved to be unique, it would be possible to use it with success 
in cryptography. In the last part, there are summarised experimental results. Some 
experiments were performed, their results were summarised and interpreted. 

Keywords: speaker recognition, speaker verification, speaker identification, 
biometric security system, hidden Markov model 
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ABSTRAKT 
První biometrické systémy byly představeny již před dlouhou dobou a dosud se 
nestaly široce využívanými. Přesto důležitost těchto systémů nyní stoupá. Mnoho 
výzkumných skupin pracuje na vývoji individuálních biometrických technologií 
jako je například rozpoznávání otisků prstů, rozpoznávání sítnice nebo duhovky, 
nebo rozpoznávání mluvčích. Nicméně ne mnoho z nich slučuje jednotlivé 
technologie do jednoho celku. Budoucnost biometrických systémů však leží 
především v kombinaci více biometrických technologií. Tato práce se zaměřuje na 
technologii rozpoznání mluvčích a navrhuje řešení její integrace do komplexního 
biometrického systému. 

Existuje již mnoho systémů pro rozpoznávání mluvčích, ale žádný z nich není 
dostatečně spolehlivý a stabilní, aby bylo možné ho použít jako samostatný 
bezpečnostní systém. V první části disertace jsou popsány běžné metody zpracování 
signálů a techniky předzpracování signálů za účelem rozpoznávání mluvčích. Další 
část práce se zabývá příznaky a jejich extrakcí. Extrakce příznaků je rozhodující a 
velmi významná fáze procesu rozpoznávání. Jsou zde popsány běžně používané 
příznaky. V následující části je popsána skupina nových příznaků zaměřených 
speciálně na oblast rozpoznávání mluvčích. Následuje popis problematiky 
samotného rozpoznávání mluvčích. Mluvčí mohou být rozpoznáni mnoha způsoby, 
ale nejvhodnější pro tento úkol se jeví metoda založená na skrytých Markovových 
řetězcích. V další části práce je představen návrh komplexního biometrického 
bezpečnostního systému založeného na rozpoznávání mluvčích a otisků prstů. Je zde 
také uvedena metoda výpočtu unikátního vektoru z řečového signálu. Pokud se 
prokáže unikátnost tohoto vektoru, bude možné ho úspěšně využít v kryptografii. 
V poslední části jsou shrnuty výsledky experimentů. Byly provedeny pokusy jejichž 
výsledky jsou zde shrnuty a vyhodnoceny. 

Klíčová slova: rozpoznání mluvčího, verifikace mluvčího, identifikace mluvčího, 
biometrické bezpečnostní systémy, skryté Markovovy modely 
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