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1 Introduction

This thesis deals with numerical solution of stiff systems of ordinary differential
equations (ODE), which appear often in simulation of continuous dynamic sys-
tems. In such a simulation (of electronic circuits, chemical reactions, physical phe-
nomenons etc.) a system of differential equations is used to create an abstract math-
ematical model of the examined system.

However common in practice the stiff systems are, they stay in the background
of the interest. It is a real challenge to collect up-to-date information on the topic:
the literature mentions this problem marginally, there are few articles scattered in
proceedings and journals.

1.1 Stiff systems

The actual definition of stiffness differs in many publications. There are vague
definitions like “problems for which explicit methods don’t work” [14] as well as
other definitions that try to specify the characteristics in a more precise way. One of
the most frequently mentioned definition is from [23]:

Definition Let

y′ = f(y, t) y(0) = y0 (1.1)

be a system of n ordinary differential equations. Let J be the Jacobian of the (1.1)
and λi the eigenvalues of J . The eigenvalues λi are generally time-dependent.

A stiff system stable on the integration interval I is characterized by the follow-
ing features:

1. Reλi < 0 for i = 1, . . . , n and t ∈ I

2. max
i

|Reλi| ≥ min
i

|Reλi|, i = 1, . . . n

Let the eigenvalues λi be arranged so as |Reλmax| ≥ |Reλi| ≥ |Reλmin|, where
i = 1, . . . , n. The stiffness ratio

r =

∣

∣

∣

∣

Reλmax

Reλmin

∣

∣

∣

∣

(1.2)

is a coefficient that helps to decide whether a problem is stiff or not. A higher r
indicates a more stiff system.

However, there is no exact value of the stiffness ratio r that would distinguish the
non-stiff problems from the stiff-problems. For many problems in common practice
the stiffness ratio r “is very high” (say 1 · 106 or higher).
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1.1.1 Features of a stiff system

1. Let us consider the case we have to find out the steady state of system (1.1).
A small |Reλmin| implies a longer integration interval the system has to be
solved on, because |Reλmin| determines the speed the slowest component of
the solution is damped with.

2. However, in order to keep the stability of the computation a reasonably short
integration step h has to be used – so as |hλmax| ≤ K where K is a constant
dependent on both the method and the problem. This may impose immense
restrictions on the size of the integration step h.

1.2 Stiffness Detection Methods

It is important that the solver is equipped with a cheap means of detecting stiffness
so as an explicit method does not waste too much effort when encountering stiffness
and to enable a switch to a more suitable method. There are two basic methods of
stiffness detection shown here.

Eigenvalues of Jacobian The basic method uses the definition of stiffness di-
rectly. That means the Jacobian J of the system has to be computed and its eigen-
values found. Having λmin and λmax we can now compute the stiffness ratio and
take a proper action.

The great disadvantage of this method is the evaluation of the eigenvalues of
J . This operation is very computational power consuming. When it comes to large
scale problems it is very difficult to perform the computation in a reasonable time.
The other thing is that the computation has to be done repeatedly when solving a
nonlinear problem.

Special Error Estimator A reliable but not too costly stiffness detection tech-
nique is the method of the “Low-order comparison formula pair” [12, 14, 21]. The
idea is to use a comparison formula pair in addition to the basic formula pair during
the integration process. The two error estimates obtained from the two formulas are
used to assess the degree of stiffness in the problem.

In the context of Runge-Kutta methods the comparison formula pair is designed
to use the same stages as the basic formula, thus no extra function evaluations are
required. The comparison formula has lower order of accuracy than the basic for-
mula, hence when the problem is nonstiff, it is expected to yield a larger error es-
timate than the basic formula pair. However, if the comparison formula pair has a
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larger stability region than the basic formula pair, we would expect its error estimate
to become smaller than that of the basic formula pair when the problem is stiff.

The prevalent methods have a common unpleasant feature – they are very ex-
pensive in the terms of computational costs and are seldom applicable to large scale
stiff systems of ODE’s. The stiffness detection process usually consists in comput-
ing the extreme eigenvalues of the Jacobian of the system. This is acceptable only
in the case the examined system is of a low order.

Apart from the naive and inapt method of direct computation of stiffness ratio r
of the system, there are methods that try to harness the intermediate results of the
particular ODE method. This often requires to integrate additional formulas into the
solver. Thus the detection algorithms are often ODE method-dependent.

1.3 Solving Stiff Systems

Once the system is declared to be stiff and it is decided that the stiff-solver would be
more suitable one should choose a convenient method to use in further computation.

Recalling the fact that the explicit methods are not usable for the stiff systems
(it is one of the definitions of the stiffness) only implicit methods are considered
further. It is obvious that there are many various stiff-solvers. Those interested are
encouraged to have a look in a bibliography, starting probably with [13, 14].

Some methods require an autonomous system of ODE’s, i.e. a system that does
not explicitly contain the independent variable (it does not depend on time). A non-
autonomous system (1.1) can be converted to autonomous form by adding a new
equation t′ = 1 with initial condition t0 = 0.

y′ = f(y) y(0) = y0 (1.3)

Partitioning Method One of the oldest ideas [14] is to partition a stiff system
(1.3) into a (hopefully) small stiff system and a large nonstiff part

y′a = fa(ya, yb) (stiff)
y′b = fb(ya, yb) (nonstiff)

(1.4)

so that the two systems can be treated by two different methods, one implicit and the
other explicit. The obvious difficulty of this approach is to decide which equations
should be the stiff ones.

Implicit Runge-Kutta Methods (IRK Methods) The Runge-Kutta methods are
very favored and often used. More information on the IRK methods – their con-
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struction, error estimation and stability issues – are discussed for example in [14, 8,
9, 4, 3, 6, 5, 7, 2, 1].

The general formula of implicit Runge-Kutta method of s−stages is

ki = f

(

tn + cih, yn + h
s
∑

j=1

aijkj

)

i = 1, . . . , s (1.5)

yn+1 = yn + h
s
∑

i=1

biki

There is also a tabular notation – the Butcher tableau. An s−stage IRK in this
notation is shown in table 1.

c A
bT =

c1 a11 a12 · · a1s

c2 a21 a22 · · a2s

· · · · · ·
cs as1 as2 · · ass

b1 b2 · · bs

Table 1: General IRK method in Butcher tableau notation

Obviously the coefficients bi, ci, aij in (1.5) have to meet several conditions so
as the method is usable. The details are stated for example in [14].

The solution of a general system of n ODE’s using an s−stage IRK method
requires the solution of s · n generally non-linear equations to determine the stage
derivatives ki of (1.5). For large ODE systems the solution of this system is usually
very costly. In order to reduce this cost several modification of the general IRK
were created.

A method with aij = 0 for i < j and at least one aii 6= 0 is called diagonal
implicit Runge-Kutta method (DIRK). If in addition all diagonal elements are iden-
tical (aii = γ for i = 1, . . . , s) we speak of singly diagonal implicit Runge-Kutta
method (SDIRK) – see table 2.

An example of well-known IRK methods is the implicit Euler method

yn+1 = yn + hf(tn+1, yn+1) (1.6)

General Linear Methods An unifying framework to both one-step and multistep
methods provides the concept of general linear methods. General linear methods
were introduced (refer to [6, 24]) as a unifying framework for the traditional meth-
ods to study the properties of consistency, stability and convergence and to formu-
late new methods with clear advantages over the traditional methods.
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c1 a11 0 0 . . . 0
c2 a21 a22 0 . . . 0
... ... ... ... ... ...
cs as1 as2 as3 . . . ass

b1 b2 b3 . . . bs

c1 γ
c2 a21 γ
... ... . . .
cs as1 as2 . . . γ

b1 b2 . . . bs

Table 2: Butcher tableau for DIRK and SDIRK methods.

A general linear method used for numerical solution of an autonomous system
of ODE’s (1.3) is both multistage and multivalued. Denote the internal stage values
of step number n by Y

[n]
1 , Y

[n]
2 , . . . , Y

[n]
s and the derivatives evaluated at these steps

by f(Y
[n]
1 ), f(Y

[n]
2 ), . . . , f(Y

[n]
s ). At the start of step n, there are r quantities denoted

by y
[n−1]
1 , y

[n−1]
2 , . . . , y

[n−1]
r available from approximations computed in step n − 1.

Corresponding quantities y
[n]
1 , y

[n]
2 , . . . , y

[n]
r are evaluated in the step n.

A general linear method is then characterized by four matrices which can be
arranged in a partitioned (s + r) × (s + r) matrix as follows

M =

[

A U
B V

]

(1.7)

The stage values Yi and outgoing values yi from step number n are defined by

Yi = h
s
∑

j=1

aijf(Y
[n]
j ) +

r
∑

j=1

uijy
[n−1]
j i = 1, 2, . . . , s

y
[n]
i = h

s
∑

j=1

bijf(Y
[n]
j ) +

r
∑

j=1

vijy
[n−1]
j i = 1, 2, . . . , r

(1.8)

General linear methods can be represented by the following string of numbers,
pqrs, where p is the order of the methods, q is the stage order, r is the number of
output approximations and s is the number of internal stages. The construction of
various pqrs−methods is shown for example in [10].

1.4 Implementation issues

When a numerical method is constructed it is important to compare it with existing
numerical solvers. Such a comparison makes possible to verify the advantages and
disadvantages the method is claimed to have. Before doing so, it is essential to
discuss certain choices regarding how the method is implemented. The five main
issues with regards to implementation of the IRKs methods (they are focused here
because of their wide usage) are:
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• Starting procedure
One-step methods are easy to use. The procedure is all the same during the
computation from the very beginning. However, the situation is quite different
in the case of multistep methods. The implementation of multistep methods
has usually two parts – the starting procedure which provides y1, . . . , yk−1

(approximations to the exact solution at the points t0 + h, . . . , t0 + (k − 1)h)
and, secondly, a multistep formula to obtain an approximation to the exact
solution y(t0 + kh). This is then applied recursively, based on the numerical
approximations of k successive steps, to compute y(t0 + (k + 1)h), etc. An-
other problem is stopping because the equal steps are unlikely to land directly
on the desired termination point.

• Error estimation
It must be possible to estimate the local truncation error for any general linear
method to be implemented in an adaptive fashion, as this allows a measure of
how accurate the approximations are, and how much the stepsize should be
varied. The formula representing the truncation error differs from method to
method. The principal term of the local truncation error is calculated for the
sake of usability usually.

• Variable stepsize
It is obvious that the step size selection depends on the current step error and
the predefined acceptable error range. With a given initial stepsize the solver
code must be capable to select the next stepsize automatically to gain as much
efficiency as possible.

• Variable order
It is well known that to obtain high efficiency of the computational process
not only the stepsize is varied but also the order of the method. To appreciate
this statement one looks at possible problems which occur with fixed order
methods.

Rigorous instructions on how to change the order of the used methods are
presented for example in [13, 14, 2, 24]. However, [2] offers an algorithm
expressed in both mathematical and human words. The advices are:

– The order multiplied by the error per work done should be maintained
constant from step to step.

– The order p selected for any step should be the one which minimizes the
product of p + 1 and the error per unit step.

• Computing the stages
Implicit methods are much more complicated to use than explicit methods,
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because the stages are defined implicitly. It is generally regarded, that to solve
the stages accurately and efficiently the modified Newton’s method should be
used. The modified Newton’s method uses the Jacobian matrix J evaluated
at the beginning of the step for each iteration in one step. Often to further
increase efficiency the same Jacobian is used over several steps.

There are many (implicit) methods for solving stiff systems of ODE’s, from the
most simple such as implicit Euler method to more sophisticated (implicit Runge-
Kutta methods) and finally the general linear methods. The mathematical formula-
tion of the methods often looks clear, however the implicit nature of those methods
implies several implementation problems. Usually a quite complicated auxiliary
system of equations has to be solved in each step. The modified versions of Newton
algorithm is employed in common practice. Another computational costs are caused
by helping transformations (such as LU factorization) used during the computation.
Both the stepsize and method order should be controlled to achieve good results,
too. These facts lead to immense amount of work to be done in each step of the
computation.

That is why on has to judge well the actual necessity of using stiff solver.

2 Modern Taylor Series Method

The Modern Taylor Series Method (MTSM) is the cornerstone for this thesis. It is
an original mathematical method which uses the Taylor series method for solving
differential equations in a non-traditional way. Even though this method is not much
preferred in the literature, experimental calculations done at the Department of In-
telligent Systems of the Faculty of Information Technology of TU Brno have shown
and theoretical analyses at the Department of Mathematics of the Faculty of Elec-
trical Engineering and Communication of TU Brno have verified that the accuracy
and stability of the MTSM exceeds the currently used algorithms for numerically
solving differential equations. It has been verified that the computation quite nat-
urally uses the full hardware accuracy of the computer and is not restricted to the
usual accuracies of 10−5 to 10−6.

The main idea behind the MTSM is an automatic integration method order set-
ting, i.e. using as many Taylor series terms for computing as needed to achieve the
required accuracy [15]. The pth order method (ORD=p) uses Taylor series terms up
to the pth power of the integration step h.

The “Modern Taylor Series Method” also has some properties very favourable
for parallel processing. Many calculation operations are independent making it pos-
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sible to perform the calculations independently using separate processors of parallel
computing systems [19, 11]. This parallel approach has been tested using the avail-
able parallel transputer system – an original methodology for parallel computation
of systems of differential equations in a transputer system has been defined.

Since the calculations of the transformed system (after the automatic transfor-
mation of the initial problem) use only the basic mathematical operations (+,−,×,÷),
simple specialized elementary processors can be designed for their implementation
thus creating an efficient parallel computing system with a relatively simple archi-
tecture [19].

MTSM been successfully applied to a number of various problems [15]:

• Systems of linear algebraic equations (including detection of linear depen-
dency) [17, 15]

• Partial differential equations (parabolic, elliptical, hyperbolic) [18]

• Definite integrals [15]

• Fourier series coefficients [15]

• Algebraic and transcendental equations [16, 15]

(a) User interface, editor (b) User interface, result browser

Figure 1: TKSL/386

2.1 TKSL/386

The simulation system TKSL/386 has been created in order to test algorithms which
utilize MTSM for solving the sets of differential equations. The user friendly envi-
ronment TurboVision has been used (Fig 1(a)). User is able to control the accuracy
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of the computation, the order of the method and some other parameters of the com-
putation. The system is able to detect discontinuities precisely. The integration step
changes during the computation.

The program features an integrated editor, a compiler of the equations, a simu-
lation engine and result displayer – all in one program (Fig. 1(a) and 1(b)). Once
you successfully compile the source code which describes the system of equations
it is possible to start the simulation. The results are plotted into a graph which you
can explore using the cursor. The values of solution can be read in this way.

3 Goals

The availability of the “Modern Taylor series method” and the presence of the stiff
systems of ordinary differential equations lead to a straightforward formulation of
the problems to solve.

• To find a cheap way of detection of stiff systems of ordinary differential
equations using Modern Taylor series method.
The commonly used methods of stiffness detection are quite complicated and
quite expensive in the terms of computational power. It is especially true in
case of large systems because many methods use eigenvalues of the Jacobian
J of the system. The goal is to utilize MTSM as much as possible during the
stiffness detection.

• To adapt the Modern Taylor series method so as it is able to solve stiff
systems of ordinary differential equations.
There are several methods theoretically suitable for the stiff systems. Unfortu-
nately, because of their complexity and high specialization few of them appear
in widely spread applications. Large systems (as they commonly appear for
example in simulations of electrical circuits) usually cause more problems.
The goal is to suggest a method based on MTSM which makes it possible
to deal with stiff systems in a reasonable way. It should be as much consis-
tent with the MTSM as it is suitable for hardware implementation and this
’improvement’ would extend the area of usage of the method.

The Modern Taylor series method is used to achieve the goals because of its unique
features: it is both very fast and accurate even when dealing with large systems of
ordinary differential equations. Such systems appear very often in simulations. The
stiff systems are a hard nut to crack and the potential MTSM promised to be the
right tool to solve the problem.

12



4 Test Examples

In order to be able to compare several different numerical methods suitable for solv-
ing stiff systems a set of problems has been compiled. This test set consists of equa-
tion proposed in [13, 14, 15, 23, 20]. Some other interesting problems have been
added to this set, too.

As there are stiff systems of various nature the test set tries to cover the most of
the types so as one can judge the most suitable method for his needs. The selected
problems are taken from the common practice – they represent physical or chemical
phenomenons, simulation of electrical circuits etc.

Both linear and nonlinear examples were examined. Among them were well-
known stiff problems such as the reaction of Robertson, Belusov–Zhabotinky reac-
tion, reaction-diffusion (brusselator) or van der Pol oscillator. There are only two
examples introduced in this short version of the thesis.

Linear problem
An example of linear stiff problem is system:

y′ = −2.7 · 106y + 2.7 · 106z + 1.08 · 106 (4.9)
z′ = −3.5651205z + 19.60816275

with initial conditions y(0) = 4.2 and z(0) = 0.3 is shown in Fig. 2. The solution
of y drops rapidly at first but then it copies the solution of z.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5e-06 1e-05 1.5e-05 2e-05

y,
 z

Time

y
z

0

1

2

3

4

5

6

0 1 2 3 4 5

y,
 z

Time

y
z

Figure 2: Linear problem, solution of (4.9)

Van der Pol Oscillator
The van der Pol problem is described by system

y′1 = y2 (4.10)
y′2 = ((1 − y2

1)y2 − y1)/ε, ε > 0
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The solution of (4.10) for initial conditions y1(0) = 2, y2(0) = 0 and parameter
ε = 10−6 is shown in Fig. 3.

The significant feature of (4.10) is that the small oscillations are amplified and
the large oscillations are damped. The coefficient ε influences the stiffness of the
system.
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Figure 3: Van der Pol oscillator, solution of (4.10)

5 Detecting Stiff Systems Using Modern Taylor
Series Method

There are experiments with the famous van der Pol system in TKSL in the back-
ground of the idea. The striking fact is that the used order of MTSM varies on the
integration interval. The more noticeable thing is that the changes in ε coefficient
of the system (which affects its stiffness) impacted the number of used Taylor series
terms used, too.

The situation is shown in Fig. 4. The integration step is fixed h = 0.01 in all
cases. In order to meet the precision requirements, the MTSM is forced to use
more Taylor series terms (see the line labeled as “ORD”). The usage of the Taylor
series terms is enormous on intervals where the solution changes rapidly. This is
especially true if the local stiffness ratio of the system is high.

Mathematical background

Let J be the Jacobian of system (1.1) and λi(t) = λt
i its eigenvalues in time t (local

eigenvalues). We are able to compute the local stiffness ratio rt =
∣

∣

∣

Reλt
max

Reλt
min

∣

∣

∣
.
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Figure 4: Order of the MTSM used depending on stiffness of system (4.10)

Consider now a linear system of ODE’s

z′ = g(t, z) z(t0) = z0 (5.11)

of m equations such that its eigenvalues are equal to the local eigenvalues λt
i of the

J which belongs to the system (1.1). The solution of (5.11) is

z(t) =
m
∑

i=1

cie
λitui + p(t) (5.12)

where p(t) is the particular solution and ui is the eigenvector corresponding to the
negative eigenvalue λi.

The crucial are the solutions with λmax and λmin – the fast and the slow compo-
nent of the solution. If we now create a system

y1 = eλmaxt (5.13)
y2 = eλmint
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processed by the MTSM which uses up to p Taylor series terms we can write the pth

terms

y1p =
hp

p!
y

(p)
1 =

hp

p!

(

eλmaxt
)(p)

=
hp

p!
λp

maxe
λmaxt (5.14)

y2p =
hp

p!
y

(p)
2 =

hp

p!

(

eλmint
)(p)

=
hp

p!
λp

mine
λmint

Let us focus on the terms (5.14) without the known factor hp/p!, transforming
them to the form used in many common computers, i.e. in form

x = a · 2b, 1/2 ≤ |a| < 1 (5.15)

Supposing the examined system is stiff, the difference between the maximum
and minimum eigenvalue is significant (λmax is a large number and λmin is a small
number).

Let the pth Taylor series terms y1p and y2p be written in the form given by (5.15).
The part b in this notation is

for y1p : dlog2 λp
max + log2 eλmaxte = dp log2 λmax + λmaxt log2 ee

b1 ≈ tλmax

for y2p : dlog2 λp
min + log2 eλminte = dp log2 λmin + λmint log2 ee

b2 ≈ p + tλmin

(5.16)

This shows us that only a comparison of the exponents of the pth Taylor series terms
is needed to decide whether a system is stiff or not. The Taylor series terms of order
p used in the computation may be very different in size across the system. In other
words the slow and stiff components are easily guessed by the rate the sizes of the
Taylor series terms of the particular equation decrease.

If the difference is very significant the system may be declared (locally) stiff.
Unlike the commonly used stiffness ratio, the analysis of the Taylor series terms
provides more information – it also indicates whether the system in the examined
time is changing rapidly (small difference of the Taylor series terms) or not. Using
the information a proper action might be taken.

The detection method has been implemented in TKSL/C and put to a test on a
set of various stiff systems with positive results (see Fig. 5).
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Problem 3, system (4.9), p. 13
Stiffness ratio r is constant, r = 757337.6552
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Van der Pol oscillator, system (4.10), p. 13
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Figure 5: Stiffness ratio r versus proposed stiffness detection method.

6 Adaptation of Modern Taylor Series Method for
Stiff Systems

The second major goal of the thesis is to suggest a modification of the MTSM such
that would make it suitable for stiff systems.

6.1 High-order MTSM and Multiple Word Arithmetics

The more Taylor series terms are used, the larger is the region of absolute stability.
Being aware of this fact one can decide to use more terms to ensure the stability of
solution of a stiff system while keeping a sufficiently large integration step. How-
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ever, the rounding error often ruins the computation in such a case.
Nevertheless, by employing a multiple word arithmetics in the MTSM the com-

putation can be done with an extremely large integration step, because a greater
number of Taylor series terms can be used without the loss of precision due to the
rounding error.

Let us examine the Dahlquist’s test problem

y′ = λy (6.17)

The k−th Taylor series term for equation (6.17) is y(k) = hk

k! λ
kekt

We have to ensure that starting from a term k > n the Taylor series term factor
λk grow slowlier than the problem-independent factor k!/hk. This ensures that the
Taylor series terms diminish starting with the n−th term.

The Table 4 shows the number of Taylor series terms needed for the computation
should the last used term be less than ε = 10−20. Various stepsizes h and values of
λ are examined. Very similar results were achieved for ε = 10−10 . . . 10−50.

|λ|
h 1 10 100 103 104 105 106

10−8 3 3 4 4 5 6 8
10−7 3 4 4 5 6 8 12
10−6 4 4 5 6 8 12 22
10−5 4 5 6 8 12 22 58
10−4 5 6 8 12 22 58 312
10−3 6 8 12 22 58 312 2760
10−2 8 12 22 58 312 2760 27223
0.1 12 22 58 312 2760 27223 271868

1 22 58 312 2760 27223 271868 2718320
10 58 312 2760 27223 271868 2718320 27182855

Table 4: Order of MTSM used to solve problem (6.17) depends on both λ and
stepsize h.

The obvious fact shown in the Table 4 is that for a certain number of Taylor
series terms computed a pair (h, λ) can be chosen. However, λ is given by the
problem and so a proper stepsize h for the particular maximum number of Taylor
series terms (or vice versa) has to be used. A thing to consider is the fact that the
number of required Taylor series terms grows quickly as h and/or λ increases.
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Stepsize Versus Order of MTSM

The number of operations needed to compute the Taylor series terms up to order p is
O(p2). Considering the remainder term R = hp+1

(p+1)!f
(p+1)(t) of the Taylor expansion

of order p we often speak of accuracy of order O(hp+1). Let ε be the truncation
error when MTSM of order p and integration step h is used. The options to increase
the accuracy to εk, k ≥ 2 are:

• to reduce the integration step size (while maintaining the order of MTSM
equal to p).

The new stepsize h̄ = hk. According to the formula of the remainder Taylor
series term

ε : O(hp) εk : O(hpk) O(h̄p), h̄ = hk

In this case we have to use 1
hk−1 steps of size h̄. The total number of operations

is thus increased by a factor 1
hk−1 .

• to increase the order of MTSM to kp (the stepsize remains unchanged).

There is a quite complicated result in [22] that the number of Taylor series
terms p needed to achieve accuracy ε is p = −1

2 log ε. Using this conclusion,
it is clear that the increase of the accuracy to εk corresponds to increase of the
MTSM order to kp. By increasing the order of MTSM to kp the total number
of operations is increased by a factor k2.

In order to produce results with accuracy increased to εk one has to either increase
the the order of MTSM to kp or reduce the stepsize to hk. The former usually leads
to much smaller increase of operations than the latter option.

The qualities of the used arithmetics, available memory, computer architecture
have to be considered to obtain optimal results.

The test problems were solved by the suggested technique (i.e. using MTSM
of high-order and multiple word arithmetics). The parameters for the method were
all the same in all the cases in the sake of simplicity and easy comparison. The
requested accuracy was ε = 1·10−10 in every case. A multiple word arithmetics with
1024 bits used for the mantissa was employed. This is obviously a too exaggerated
value, but it ensured all the calculations were done correctly even when using a
very high MTSM order p. The results are summarized in the Fig. 6 There are two
pictures for each of the problems:

• The relation between the largest possible integration step h and the used
MTSM order p is shown first. There are minimum and maximum values of h,
the average integration step h and the median of h shown in the figure.
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• The second picture of the series presented for each of the problems shows
the used MTSM order p and the corresponding integration step h as time
functions (along with the solution of the problem). One can see that both the
order p and the integration step h vary over the time.

Problem 3, Van der Pol oscillator,
system (4.9), p. 13 system (4.10), p. 13

Step h as a function of MTSM order p
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Figure 6: High-order MTSM and multiple word arithmetics, features of the solution.

According to [13]: The predictor-corrector Adams code DEABM of Shampine
& Watts solves van der Pol problem with µ = 500, Rtol = 1 · 10−2, Atol = 5 · 10−8

on interval t ∈< 0, 0.001 > in 450 steps. By using the IRK RADAU5 method,
the problem is solved in 11 steps. The suggested method solves this problem with
ε = 1 · 10−10 using MTSM order p = 90 in 119 steps.

The MTSM order p in ranges 20–60 gives the best performance. A very low
order makes the method unusable as the integration step must be very small. A very
high order leads to a great overhead caused by evaluation of the Taylor series terms.
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The MTSM order p may be much larger in the case of some linear problems which
results in an large integration step h.

For many problems the suggested method is quite competitive with the com-
monly used methods. The advantage over the common methods is that the com-
putation needed by the implicit method is completely avoided, which makes the
method usable even for large systems of ODE’s.

6.2 Implicit MTSM

Unfortunately, the MTSM is A-stable only if all the Taylor series terms are used dur-
ing the computation. The explicit methods are not very efficient (or even unusable)
for stiff problems, so let us focus on the implicit methods.

Dahlquist’s problem (6.17) is used for linear stability analysis. Its solution is
y = eλt and this is the reason to make use of the (k, j)-Padé approximation to ez

given by Rkj(z) =
Pkj(z)
Qkj(z) where

Pkj(z) = 1 +
k

j + k
z +

k(k − 1)

(j + k)(j + k − 1)
·
z2

2!
+ · · · +

k(k − 1) . . . 1

(j + k) . . . (j + 1)
·
zk

k!

Qkj(z) = Pjk(−z)

with error
ez − Rkj(z) = (−1)j j!k!

(j + k)!(j + k + 1)!
zj+k+1 + O(zj+k+2)

Theorem 6.1
[14]: A method is A-stable if and only if its stability function is (k, j)-Padé approx-
imation Rkj(z) such that k ≤ j ≤ k + 2 holds.

Coupling this knowledge with the nature of the MTSM we arrive to the fol-
lowing idea: The MTSM lacks the A-stability because its stability function R(z)
doesn’t hold theorem 6.1. This suggests that we try to change the degree of the nu-
merator or denominator of the Padé approximation Rkj(z) =

Pkj(z)
Qkj(z) corresponding

to the stability function so as the condition k ≤ j ≤ k + 2 holds.
The stability function of a one-step methods R(z) is such that

yi+1 = R(z)yi

The stability function of the MTSM of order p is

R(z) = 1 + z +
z2

2!
+

z3

3!
+ · · · +

zp

p!
(6.18)
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According to the theorem 6.1 a way of assuring the method is A-stable is that we
increase the degree of the denominator of the function R(z). The stability function
for k = j is

Rkj(z) =
1 + k

j+k
z + k(k−1)

(j+k)(j+k−1) ·
z2

2! + · · · + k(k−1)...1
(j+k)...(j+1) ·

zk

k!

1 − j
k+j

z + j(j−1)
(k+j)(k+j−1) ·

z2

2! − · · · + (−1)j j(j−1)...1
(k+j)...(k+1) ·

zj

j!

The corresponding A-stable one-step method which uses the Taylor series:

yi+1 = yi + 1
2
h (f(yi) + f(yi+1)) + (k−1)

2(2k−1)
h2

2!
(f ′(yi) − f ′(yi+1))+

+ · · · + (k−1)...1
2(2k−1)...(k+1)

hk

k!

(

f (k−1)(yi) + (−1)kf (k−1)(yi+1)
)

(6.19)

Let us call it Implicit Modern Taylor series method (iMTSM).

Remark Using iMTSM formula (6.19) with k = 1 we get the well-known trape-
zoidal rule yi+1 = yi + 1

2
h (f(yi) + f(yi+1)). The iMTSM formula (6.19) with

k = 2 we get a method with stability function equal to that of Lobatto IIIA (IRK
method of order 4; its description can be found for example in [13]). Similarly, for
k = 3 the stability function of the iMTSM method is equal to that of Kuntzmann &
Butcher method (IRK method of order 6).

L-stable iMTSM
However, the iMTSM (6.19) is not an L-stable method, because limz→∞ Rkk(z) =
(−1)k 6= 0 To make the method L-stable, the denominator Qkj(z) of (6.19) must be
of a higher degree than the numerator Pkj(z).

The L-stable version of the iMTSM, for which the condition limz→∞ Rk,k+1(z) =
0 holds, uses stability function Rk,j(z) where j = k + 1.

yi+1 = yi + 1
2k+1h (kf(yi) + (k + 1)f(yi+1))+ (6.20)

+ 1
2(2k+1)

h2

2!
((k − 1)f ′(yi) − (k + 1)f ′(yi+1))+

+ k−1
2(2k+1)(2k−1)

h3

3! ((k − 2)f ′′(yi) + (k + 1)f ′′(yi+1))+

+ · · ·+

+ (k−1)(k−2)...2
2(2k+1)(2k−1)...(k+2)

hk

k!

(

1f (k−1)(yi) + (−1)k(k + 1)f (k−1)(yi+1)
)

+

+ (k−1)(k−2)...1
2(2k+1)(2k−1)...(k+1)

hk+1

(k+1)!

(

(−1)k+1(k + 1)f (k)(yi+1)
)

Remark Using the L-stable variant of iMTSM (6.20) with k = 0 we get the implicit
Euler method yi+1 = yi + hf(yi+1).
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6.3 Outline of the Suggested iMTSM Algorithm

The algorithm described here is also shown in Fig. 7.

y

0 th

(a) Several values of solution are computed using
MTSM with step h

y

0 th H

(b) Using those values, the solution is estimated in a
distant point (H � h)

y

0 t

ε

h H

(c) The usage of H is veryfied using formula (6.19).

y

0 th H h

(d) Provided the accuracy meets the requirements, the
computation continues using h.

Figure 7: Outline of the implicit MTSM algorithm.

1. At the beginning, the MTSM is used in the traditional way. If the system is
declared to be stiff the stiff solver starts its job.

2. n values of the solution are computed in equidistant points (with stepsize h)
using the classical MTSM. Using the n values, derivatives of the solution up
to the order n − 1 are evaluated (see the full version of the thesis for details).

3. The computed derivatives in conjuction with the Taylor series are used in
order to estimate the value of the solution yi+1 with step H � h.
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4. The derivatives in the distant point f (k)(yi+1) are computed using the MTSM
again and the formula (6.19) is used in order to estimate the error.

5. The MTMS computation proceeds from the new point yi+1 if a good result
was obtained. The value of H may be increased for further usage.

6. The computation continues with MTMS from the original point, if the test
fails. The length of H may be decreased.

The successful application of the iMTSM is shown in Figure 8. The usage of
steps h and H is especially clear from the Fig. 8(b).
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Figure 8: Stepsize control of the new method which combines usage of multiple
word arithmetics and iMTSM (as computed by TKSL/C)

The multiple word arithmetics and iMTSM method complement one another
well. If the iMTSM shows that the attempted large step H fails, there is still a
chance the usage of high order MTSM together with the multiple word arithmetics
will be successful.
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The new approach was compared to commonly used methods and old imple-
mentation of MTSM – TKSL/386 which lacks the ability to solve stiff problems.
The results obtained using the new simulation system TKSL/C are superior to those
provided by TKSL/386 which was to be expected.

The new method is quite comparable to those commonly used. Although the
number of used integration steps made by TKSL/C is usually higher compared to the
other tested methods, there is still quite an advantage — no need to solve nonlinear
systems or to make an LU decomposition. This feature may be crucial when dealing
with large systems. Refer to the full version of the thesis for detailed comparison.

7 Conclusions

• In order to achieve the goals of the thesis a simulator TKSL/C based on the
MTSM has been created. It can handle very large scale systems, makes use
of multiple arithmetics and is highly configurable.

• A completely new approach in stiffness detection is proposed in this thesis.
It is based on the analysis of the Taylor series terms. The Taylor series are
computed in order to implement the MTSM and thus almost no extra work
is needed. The new stiffness detection method has been implemented and
incorporated into TKSL/C and put to the test on various examples of stiff
systems — with success.

• A new method of solving stiff systems of ODE’s based on the Modern Taylor
series method is suggested. The advantages of usage of high-order Taylor
series, multiple word arithmetics and implicit variant of MTSM were scru-
tinized. The suggested algorithm was implemented into a new simulator
TKSL/C and then put to a test on the problems. The new approach was
compared to commonly used methods and old implementation of MTSM –
TKSL/386 which lacks the ability to solve stiff problems. The results obtained
using the new simulation system TKSL/C are superior to those provided by
TKSL/386, which was to be expected.

The new method is competitive with those commonly used. Although the
number of used integration steps made by TKSL/C is usually higher com-
pared to the other tested methods, there is still quite an advantage — no need
to solve nonlinear systems or to make an LU decomposition. This feature
may be crucial when dealing with large systems.

The fact that the new proposed methods of stiffness detection and stiff system
solving are based on the MTSM implies that they are very suitable for parallel and/or
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hardware implementation. The parallelism occurs at several levels and the method
uses only the basic mathematical operations.

Several parts of this thesis have been presented on internation and national con-
ferences home and abroad.

Further Research

There is still a room for further research – one could analyze the algorithms in order
to find its optimally parallelizable parts or suggest a suitable hardware implementa-
tion. Another possibility is to find rigorous proofs of the algorithms.

8 Přehled

Předkládaná dizertačnı́ práce se zabývá numerickým řešenı́m stiff soustav oby-
čejných diferenciálnı́ch rovnic, které se často vyskytujı́ při vytvářenı́ abstraktnı́ho
matematického modelu spojitých dynamických systémů (popisy dějů v elektrických
obvodech, chemických reakcı́, fyzikálnı́ch jevů atp.).

Jakkoliv jsou stiff soustavy při modelovánı́ obvyklé, zůstávajı́ na pokraji zájmu.
Ucelená literatura, která by se věnovala této problematice, v podstatě neexistuje a je
nutno sbı́rat kusé informace roztroušené v různých sbornı́cı́ch a časopisech.

Zvládnutı́ stiff systémů je v podstatě dvoufázové. Vzhledem k tomu, že num-
erické metody řešenı́ běžných (ne-stiff) soustav obyčejných diferenciálnı́ch rovnic
jsou pro stiff systémy nepoužitelné, je nejprve nutno zjistit, zda je soustava předklá-
daná k řešenı́ stiff systémem. Teprve v přı́padě, kdy jedná o stiff systém, můžeme
nasadit metodu specializovanou na tento typ soustav.

Úvodnı́ kapitoly obsahujı́ stručný přehled současného stavu detekce a numer-
ického řešenı́ stiff systémů. Běžně použı́vané metody majı́ společnou nepřı́jemnou
vlastnost – jsou výpočetně náročné a v přı́padě rozsáhlých soustav diferenciálnı́ch
rovnic v podstatě nepoužitelné. V přı́padě detekce stiff systému se jedná o výpočty
vlastnı́ch čı́sel, při řešenı́ stiff systému pak o řešenı́ pomocných soustav nelineárnı́ch
rovnic, LU rozklad atp.

V nedávné době byla představena [15] originálnı́ numerická metoda pro řešenı́
soustav obyčejných diferenciálnı́ch rovnic – Modernı́ metoda Taylorova rozvoje
(MTSM). Metoda při výpočtu použı́vá proměnný počet členů Taylorova rozvoje,
což má pozitivnı́ dopad na rychlost a přesnost výpočtu. MTSM použı́vá pouze
základnı́ aritmetické operace (+,−,×,÷) a je snadno paralelizovatelná na různých
úrovnı́ch.
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V uvedených souvislostech jsou formulovány cı́le práce – nalezenı́ vhodného
způsobu detekce stiff soustav a jejich numerického řešenı́. Nové metody by měly
být konzistentnı́ se stávajı́cı́ MTSM a také by měly být aplikovatelné na rozsáhlé
soustavy diferenciálnı́ch rovnic.

Má-li být nově navržená metoda zhodnocena, je potřeba provést testy pro srov-
nánı́ se stávajı́cı́mi metodami. Byla představena řada přı́kladů; uvedeny jsou infor-
mace o výchozı́ situaci pro formulaci problému, jeho řešenı́ a některé charakteris-
tiky. Tato sada přı́kladů je posléze použita při testovánı́ navržených metod.

Dosažené výsledky

• K dosaženı́ vytyčených cı́lů byl vytvořen simulátor TKSL/C založený na
MTSM. TKSL/C dokáže řešit rozsáhlé systémy obyčejných diferenciálnı́ch
rovnic prvnı́ho řádu, využı́vá vı́ceslovnı́ aritmetiky a disponuje řadou různých
nastavenı́ ovlivňujı́cı́ch výpočet a výpis výsledků.

• V předložené dizertačnı́ práci je navržena zcela nová metoda detekce stiff
systémů, která se odvı́jı́ od MTSM. Metoda analyzuje jednotlivé členy rozvoje
použité během výpočtu a na základě této analýzy vyhodnotı́, zda je řešen
stiff systém. Vzhledem k tomu, že jsou využity čı́selné informace, které jsou
součástı́ vlastnı́ho výpočtu MTSM, je metoda výpočetně úsporná a vhodná
pro nasazenı́ i v přı́padě rozsáhlých soustav.

• Dále je navržena originálnı́ nová metoda řešenı́ stiff soustav obyčejných difer-
enciálnı́ch rovnic, která je rovněž (v souladu se zadánı́m) založena na MTSM.
Byly prozkoumány výhody použitı́ vysokého početu členů Taylova rozvoje
a vı́ceslovnı́ aritmetiky; zkoumány byly rovněž možnosti navržené implic-
itnı́ varianty MTSM. Byl navržen a implementován algoritmus kombinujı́cı́
výhody obou přı́stupů. Výsledná metoda byla úspěšně použita při řešenı́ testo-
vacı́ch přı́kladů.

Nově navržená metoda řešenı́ stiff systémů byla porovnána s původnı́ MTSM
a také s několika běžně použı́vanými metodami. Výsledně bylo zjištěno, že
nová metoda je s nimi zcela srovnatelná. Výhodou je navı́c jejı́ velice snadná
paralelizovatelnost a zejména pak též použitelnost v přı́padě rozsáhlých sys-
témů (narozdı́l od stávajı́cı́ch metod nenı́ třeba řešit pomocné nelineárnı́ sous-
tavy apod.).

• Nově navržené metody byly implementovány – byl vytvořen simulačnı́ systém
TKSL/C. Mnohé nové poznatky uvedené v této dizertačnı́ práci byly prezen-
továny na celé řadě zahraničnı́ch i domácı́ch konferencı́. Simulačnı́ systém
TKSL/C je využı́ván také při výuce v několika předmětech na FIT VUT.

27



References

[1] BURRAGE, K., BUTCHER, J. C.: Non-linear stability of a general class of
differential equation methods. BIT, (20):185–203, 1980.

[2] BUTCHER, J. C.: Optimal order and stepsize sequences. IMA Journal of
Numerical Analysis, (6):433–438, 1986.

[3] BUTCHER, J. C.: Diagonally-implicit multi-stage integration methods.
Applied Numerical Mathematics, (11):347–363, 1993.

[4] BUTCHER, J. C.: An introduction to DIMSIMs. Journal of Computational
and Applied Mathematics, 59–72, 1995.

[5] BUTCHER, J. C.: Order and stability of parallel methods for stiff problems.
Advances in Computational Mathematics, 77–96, 1997.

[6] BUTCHER, J. C.: General linear methods for stiff differential equations.
Numerical Mathematics, (41):240–264, 2001. ISSN 0006-3835.

[7] BUTCHER, J. C., CASH, J. R.: Some recent developments on numerical
initial value problems: A survey. Applied Numerical Mathematics, (5):3–18,
1989.

[8] BUTCHER, J. C., CASH, J. R.: Towards efficient Runge–Kutta methods for
stiff systems. Society for Industrial and Applied Mathematics, 1990.

[9] BUTCHER, J. C., JOHNSTON, P. B.: Estimating local truncation errors for
Runge–Kutta methods. Journal of Computational and Applied Mathematics,
1992.

[10] BUTCHER, J. C., SINGH, A. D.: The choice of parameters in parallel
general linear methods for stiff problems. Applied Numerical Mathematics,
(34):59–84, 2000.
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