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Klı́čová slova
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Abstract

The present thesis studies grammars with context conditions and their applications.
In particular, it discusses sequential and parallel grammars whose derivation steps
are restricted by some conditions placed on the rewritten sentential forms. Ac-
cording to the types of context conditions, it classifies the grammars with context
conditions into three classes and sums up crucial results about them. Specifically,
this classification results from the distinction between context conditions placed on
(1) the domains of grammatical derivations, (2) the use of grammatical productions,
and (3) the neighborhood of the rewritten symbols. In all these cases, the main atten-
tion is concentrated on establishing the grammatical generative power and important
properties. In particular, this thesis studies how to reduce these grammars with re-
spect to some of their components, such as the number of grammatical symbols or
productions, in order to make the grammars small, succinct and, therefore, easy to
use in practice. To demonstrate this practical use, it also discusses the applications
and implementation of grammars with context conditions. Most of the applications
are related to microbiology, which definitely belongs to the central application areas
of computer science today.



1 Introduction

Formal languages fulfill a crucial role in many computer science areas, ranging
from compilers through mathematical linguistics to molecular genetics. Whenever
dealing with them, we face the problem of choosing their appropriate models in
order to grasp them elegantly and precisely. By analogy with the specification of
natural languages, we often base these models upon suitable grammars.

A grammar generates its language by performing derivation steps that change
strings, called sentential forms, to other strings according to its grammatical produc-
tions. During a derivation step, the grammar rewrites a part of its current sentential
form with a string according to one of its productions. If in this way it can make
a sequence of derivation steps from its start symbol to a sentential form consisting
of terminal symbols—that is, the symbols over which the language is defined, the
resulting sentential form is called a sentence and belongs to the generated language.
The set of all sentences made in this way is the language generated by the grammar.

In the classical formal language theory, we can divide grammatical produc-
tions into context-dependent and context-independent productions, and based on
this division, we can naturally distinct context-dependent grammars, such as phrase-
structure grammars, from context-independent grammars, such as context-free gram-
mars. Making a derivation step according to context-dependent productions de-
pends on rather strict conditions, usually placed on the context surrounding the
rewritten symbol while making a step according to context-independent productions
does not. From this point of view, we obviously tend to use context-independent
grammars. Unfortunately, compared to context-dependent grammars, context-in-
dependent grammars are significantly less powerful; in fact, most of them are inca-
pable to grasp some aspects of quite common programming languages. On the other
hand, most context-dependent grammars are as powerful as the Turing machines,
and this remarkable power represents their indisputable advantage. To overcome
the difficulties and, at the same time, maintain the advantages described above, the
modern language theory has introduced some new grammars that simultaneously
satisfy these three properties:

• they are based on context-independent productions;

• their context conditions are signficantly more simple and flexible than the
strict condition placed on the context surrounding the rewritten symbol in the
classical context-dependent grammars;

• they are as powerful as classical context-dependent grammars.

In this thesis, we overview the most essential types of these grammars, whose alter-
native context conditions can be classified into these three categories:

• context conditions placed on derivation domains;
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• context conditions placed on the use of productions;

• context conditions placed on the neighborhood of the rewritten symbols.

As already pointed out, we want the context conditions as small as possible. There-
fore, we pay a lot of attention to the reduction of context conditions in this study.
Specifically, we reduce the number of some of their components, such as the number
of nonterminals or productions. We study how to achieve this reduction without any
decrease of their generative power. By achieving this reduction, we actually make
the grammars with context conditions more succinct and economical, and these
properties are obviously highly appreciated both from a practical and theoretical
standpoint. Regarding each of the dicussed grammars, we introduce and study their
parallel and sequential versions, which represent two basic approaches to grammat-
ical generation of languages in today’s formal language theory. To be more specific,
during a sequential derivation step, a grammar rewrites a single symbol in the cur-
rent sentential form while during a parallel derivation step, a grammar rewrites all
symbols. As context-free and E0L grammars represent perhaps the most fundamen-
tal sequential and parallel grammars, respectively, we usually base the discussion
of sequential and parallel generation of languages on them.

Organization

The thesis consists of the following sections:
Section 2 gives an introduction to formal languages and their grammars.
Section 3 restricts grammatical derivation domains in a very simple and natu-

ral way. Under these restrictions, both sequential and parallel context-independent
grammars characterize the family of recursively enumerable languages, which are
defined by the Turing machines.

Section 4 studies grammars with conditional use of productions. In these gram-
mars, productions may be applied on condition that some symbols occur in the
current sentential form and some others do not. We discuss many sequential and
parallel versions of these grammars in detail. Most importantly, new characteri-
zations of some well-known families of L languages, such as the family of ET0L
languages, are obtained.

Section 5 studies grammars with context conditions placed on the neighborhood
of rewritten symbols. We distinguish between scattered and continuous context
neighborhood. The latter strictly requires that the neighborhood of the rewritten
symbols forms a continuous part of the sentential form while the former drops this
requirement of continuity.

Section 6 takes a closer look at grammatical transformations, which are fre-
quently studied in the previous chapters. Specifically, it studies how to transform
grammars with context-conditions to some other equivalent grammars so that both
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the input grammars and the transformed grammars generate their languages in a
very similar way.

Section 7 demostrates the use of grammars with context conditions by several
applications related to biology.

Section 8 summarizes the main results of the thesis and states several open prob-
lems. In addition, it proposes new directions in the investigation of these grammars.

2 Preliminaries and Definitions

This section reviews the basics of grammars. Specifically, it provides definitions
of context-free, context-sensitive, and phrase-structure grammars along with some
related notions and basic results which are used throughout the thesis.

Definition 1. A phrase-structure grammar is a quadruple G = (V, T, P, S), where
V is the total alphabet, T is the set of terminals (T ⊂ V ), P ⊆ V ∗(V −T )V ∗×V ∗

is a finite relation, and S ∈ V − T is the axiom of G. The symbols in V − T are
referred to as nonterminals. In what follows, each (x, y) ∈ P is called a production
or a rule and written as x → y ∈ P ; accordingly, P is called the set of productions
in G. The relation of a direct derivation in G is a binary relation over V ∗ denoted
by ⇒G and defined in the following way. Let x → y ∈ P , u, v, z1, z2 ∈ V ∗, and
u = z1xz2, v = z1yz2; then, u ⇒G v [x → y]. When no confusion exists, we
simplify u ⇒G v [x → y] to u ⇒G v. By ⇒k

G, we denote the k-fold product of
⇒G. Furthermore, let ⇒+

G and ⇒∗
G denote the transitive closure of ⇒G and the

transitive and reflexive closure of ⇒G, respectively. If S ⇒∗
G x for some x ∈ V ∗,

x is called a sentential form. If S ⇒∗
G w, where w ∈ T ∗, S ⇒∗

G w is said to be
a successful derivation of G. The language of G, denoted by L(G), is defined as
L(G) = {w ∈ T ∗ : S ⇒∗

G w}. In the literature, the phrase-structure grammars are
also often defined with productions of the form xAy → xuy, where u, x, y ∈ V ∗,
A ∈ V − T (see [3]). Both definitions are interchangeable in the sense that the
grammars defined in these two ways generate the same family of languages—the
family of recursively enumerable languages, denoted by RE.

Definition 2. A context-sensitive grammar is a phrase-structure grammar, G =
(V, T, P, S), such that each production in P is of the form xAy → xuy, where
A ∈ V − T , u ∈ V +, x, y ∈ V ∗. A context-sensitive language is a language gen-
erated by a context-sensitive grammar. The family of context-sensitive languages is
denoted by CS.

Definition 3. A context-free grammar is a phrase-structure grammar, G = (V, T, P,
S), such that each production x → y ∈ P satisfies x ∈ V − T . A context-free
language is a language generated by a context-free grammar. The family of context-
free languages is denoted by CF.
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For the families of languages generated by context-free, context-sensitive and
phrase-structure grammars, it holds:

Theorem 1 (see [9]). CF ⊂ CS ⊂ RE.

Besides context-free, context-sensitive and phrase-structure grammars, we also
discuss ET0L grammars and EIL grammars in this study.

Definition 4. An ET0L grammar (see [21], [22]) is a t+3-tuple, G = (V, T, P1, . . . ,
Pt, S), where t ≥ 1, and V , T , and S are the total alphabet, the terminal alphabet
(T ⊂ V ), and the axiom (S ∈ V − T ), respectively. Each Pi is a finite set of
productions of the form a → x, where a ∈ V and x ∈ V ∗. If a → x ∈ Pi implies
x 6= ε for all i ∈ {1, . . . , t}, G is said to be propagating (an EPT0L grammar for
short). Let u, v ∈ V ∗, u = a1a2 . . . aq, v = v1v2 . . . vq, q = |u|, aj ∈ V , vj ∈ V ∗,
and p1, p2, . . . , pq is a sequence of productions of the form pj = aj → vj ∈ Pi for
all j = 1, . . . , q, for some i ∈ {1, . . . , t}. Then, u directly derives v according to
the productions p1 through pq, denoted by u ⇒G v [p1, p2, . . . , pq]. In the standard
manner, we define the relations ⇒k

G (k ≥ 0), ⇒+
G, and ⇒∗

G. The language of G,
denoted by L(G), is defined as L(G) = {w ∈ T ∗ : S ⇒∗

G w}. The families of
languages generated by ET0L and EPT0L grammars are denoted by ET0L and
EPT0L, respectively.

Let G = (V, T, P1, . . . , Pt, S) be an ET0L grammar. If t = 1, G is called an E0L
grammar. We denote the families of languages generated by E0L and propagating
E0L grammars (EP0L grammars for short) by E0L and EP0L, respectively.

By E0L, EP0L, ET0L, and EPT0L, we denote the families of languages gen-
erated by E0L grammars, EP0L grammars, and EPT0L grammars, respectively.

Theorem 2 (see [21]). CF ⊂ E0L = EP0L ⊂ ET0L = EPT0L ⊂ CS.

Definition 5. Given integers m, n ≥ 0, an E(m,n)L grammar (see [21], [22]) is
defined as a quadruple G = (V, T, P, s), where V , T , and s are the total alphabet,
the terminal alphabet T ⊆ V , and the axiom s ∈ V , respectively. P is a finite set of
productions of the form (u, a, v) → y such that a ∈ V , u, v, y ∈ V ∗, 0 ≤ |u| ≤ m,
and 0 ≤ |v| ≤ n. Let x, y ∈ V ∗. Then, x directly derives y in G, written as x ⇒G

y, provided that x = a1a2 . . . ak, y = y1y2 . . . yk, k ≥ 1, and for all i, 1 ≤ i ≤ k,
(ai−m . . . ai−1, ai, ai+1 . . . ai+n) → yi ∈ P. We assume aj = ε for all j ≤ 0 or
j ≥ k +1. In the standard way, ⇒i

G, ⇒+
G, and ⇒∗

G denote the i-fold product of ⇒G,
i ≥ 0, the transitive closure of ⇒G, and the transitive and reflexive closure of ⇒G,
respectively. The language of G, L(G), is defined as L(G) = {w ∈ T ∗ : s ⇒∗

G w}.
Let G = (V, T, P, s) be an E(0, n)L grammar, n ≥ 0, and p = (ε, A, v) → y ∈ P .
We simplify the notation of p so that p = (A, v) → y throughout this thesis. By EIL
grammars, we refer to E(m,n)L grammars for all m, n ≥ 0.

8



If some grammars define the same language, they are referred to as equiva-
lent grammars. This equivalence is central to this thesis because we often discuss
how to transform some grammars to some other grammars so that both the original
grammars and the transformed grammars are equivalent.

3 Conditions Placed on Derivation Domains

Standardly, the relation of a direct derivation, ⇒, is introduced over V ∗, where V
is the total alphabet of a grammar. Algebraically speaking, ⇒ is thus defined over
the free monoid whose generators are symbols. In this section, we modify this def-
inition so that we use strings rather than symbols as the generators. More precisely,
we introduce this relation over the free monoid generated by a finite set of strings;
in symbols, ⇒ is defined over W ∗, where W is a finite language. This modifica-
tion represents a very natural context condition: a derivation step is performed on
the condition that the rewritten sentential form occurs in W ∗. Simultaneously, it
results into a strong increase of the generative power of both sequential and paral-
lel context-independent grammars, represented by context-free grammars and E0L
grammars, respectively.

Definition 6. A context-free grammar over word monoid (a wm-grammar for short,
see [4], [7]), is a pair (G, W ), where G = (V, T, P, S) is a context-free grammar,
and W , called the set of generators, is a finite language over V . (G, W ) is of degree
i, where i is a natural number, if y ∈ W implies |y| ≤ i. (G, W ) is said to be
propagating if A → x ∈ P implies x 6= ε.

The direct derivation ⇒(G,W ) on W ∗ is defined as follows: if p = A → y ∈ P ,
xAz, xyz ∈ W ∗ for some x, z ∈ V ∗, then xAz directly derives xyz, xAz ⇒(G,W )

xyz [p] in symbols. The language of (G, W ), symbolically denoted by L(G, W ), is
defined as L(G, W ) = {w ∈ T ∗ : S ⇒∗

(G,W ) w}.
We denote by WM the family of languages generated by wm-grammars. The

family of languages generated by wm-grammars of degree i is denoted by WM(i).
The families of propagating wm-grammars of degree i and propagating wm-gram-
mars of any degree are denoted by prop-WM(i) and prop-WM, respectively.

In [4], Meduna proved the following theorem which establishes the generative
power of wm-grammars of various degrees:

Theorem 3.
prop-WM(1) = WM(1) = CF

⊂
prop-WM(2) = prop-WM = CS

⊂
WM(2) = WM = RE.
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Note that the characterization of RE can be further improved in such a way that
even some reduced versions of wm-grammars suffice to generate all the family of
recursively enumerable languages (see [7]):

Theorem 4. Every L ∈ RE can be defined by a ten-nonterminal context-free gram-
mar over a word monoid generated by an alphabet and six words of length two.

Next, we discuss parallel versions of grammars over word monoids. In particu-
lar, we define and investigate E0L grammars over word monoids.

Definition 7. An E0L grammar on word monoid (a WME0L grammar for short,
see [6]) is a pair (G, W ), where G = (V, T, P, S) is an E0L grammar. The set
of generators, W , is a finite language over V . By analogy with wm-grammars,
(G, W ) has degree i, where i is a natural number, if every y ∈ W satisfies |y| ≤ i.
If A → x ∈ P implies x 6= ε, (G, W ) is said to be propagating. Let x, y ∈
W ∗ such that x = a1a2 . . . an, y = y1y2 . . . yn, ai ∈ V , yi ∈ V ∗, 1 ≤ i ≤ n,
n ≥ 0. If ai → yi ∈ P for all i = 1 . . . n, then x directly derives y according to
productions a1 → y1, a2 → y2, . . ., an → yn, x ⇒(G,W ) y [a1 → y1, . . . , an → yn]
in symbols. As usual, the list of applied productions is omitted when no confusion
arises. The language of (G, W ), denoted by L(G, W ), is defined in the following
way: L(G, W ) = {w ∈ T ∗ : S ⇒∗

(G,W ) w}.

By WME0L(i), WMEP0L(i), WME0L, and WMEP0L, we denote the fami-
lies of languages generated by WME0L grammars of degree i, propagating WME0L
grammars of degree i, WME0L grammars, and propagating WME0L grammars,
respectively. Note that WME0L grammars of degree 2 are called symbiotic E0L
grammars in [6]. The families of languages generated by symbiotic E0L grammars
and propagating symbiotic E0L grammars are denoted by SE0L and SEP0L; that
is, SE0L = WME0L(2) and SEP0L = WME0L(2).

Clearly, WMEP0L(0) = WME0L(0) = ∅. Recall that for ordinary E0L lan-
guages, EP0L = E0L (see Theorem 2.4 in [23]). Therefore, the following theorem
follows immediately from the definitions:

Theorem 5. WMEP0L(1) = WME0L(1) = EP0L = E0L.

In [6], Meduna proved that WMEP0L(2) = CS and WME0L(2) = RE. Con-
sequently, the following theorem holds:

Theorem 6.
CF
⊂

WMEP0L(1) = WME0L(1) = EP0L = E0L
⊂

WMEP0L(2) = CS
⊂

WME0L(2) = RE.
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4 Conditions Placed on the Use of Productions

In this section, we discuss grammars with context conditions represented by strings
associated with productions. We distinguish two types of these conditions—forbid-
ding conditions and permitting conditions. A production is applicable to a sentential
form if each of its permitting conditions occurs in the sentential form and any of its
forbidding conditions does not. In Section 4.1, we study sequential grammars with
context conditions, originally introduced by van der Walt [25] in 1970. Then, in
Section 4.2, we introduce and discuss parallel versions of these grammars.

4.1 Sequential Conditional Grammars

Informally, a sequential conditional grammar is an ordinary context-free grammar
in which the application of productions is regulated by the permitting and forbid-
ding context conditions. In every derivation step, such a grammar can rewrite only
one nonterminal symbol in the given sentential form; that is, it works purely se-
quentially. Making use of this basic principle, a large number of variants of these
grammars have been introduced. In order to unify the notations and definitions, we
start with the basic definition of a context-conditional grammar. Then, we investi-
gate some special cases of the context-conditional grammars.

4.1.1 Context-Conditional Grammars

Definition 8. A context-conditional grammar is a quadruple, G = (V, T, P, S),
where V , T , and S are the total alphabet, the terminal alphabet (T ⊂ V ), and the
axiom (S ∈ V − T ), respectively. P is a finite set of productions of the form
(A → x, Per, For), where A ∈ V − T , x ∈ V ∗, and finite sets Per, For ⊆ V +.
If Per 6= ∅ or For 6= ∅, the production is said to be conditional; otherwise, it
is called context-free. G has degree (r, s), where r and s are natural numbers,
if for every (A → x, Per, For) ∈ P , max(Per) ≤ r and max(For) ≤ s. If
(A → x, Per, For) ∈ P implies x 6= ε, G is said to be propagating. Let u, v ∈ V ∗

and (A → x, Per, For) ∈ P . Then, u directly derives v according to (A →
x, Per, For) in G, denoted by

u ⇒G v [(A → x, Per, For)]

provided that for some u1, u2 ∈ V ∗, the following conditions hold: u = u1Au2,
v = u1xu2, Per ⊆ sub(u), and For ∩ sub(u) = ∅. The language of G, denoted by
L(G), is defined as

L(G) = {w ∈ T ∗ : S ⇒∗
G w}.

The families of languages generated by context-conditional grammars and prop-
agating context-conditional grammars of degree (r, s) are denoted by CG(r, s) and
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prop-CG(r, s), respectively. Furthermore, we define CG =
⋃∞

r=0

⋃∞
s=0 CG(r, s)

and prop-CG =
⋃∞

r=0

⋃∞
s=0 prop-CG(r, s).

Theorem 7.
prop-CG(0, 0) = CG(0, 0) = CF

⊂
prop-CG = CS

⊂
CG = RE

Proof. This proof can be found in the full version of this PhD thesis. �

4.1.2 Random-Context Grammars

This section discusses three special cases of context-conditional grammars whose
conditions are nonterminal symbols, so their degree is not greater than (1,1). Specif-
ically, random-context grammars, also known as permitting grammars, are of de-
gree (1,0). Forbidding grammars are of degree (0,1). Finally, random-context gram-
mars with appearance checking are of degree (1,1).

Definition 9. Let G = (V, T, P, S) be a context-conditional grammar. G is called
a random-context grammar with appearance checking provided that (A → x, Per,
For) ∈ P implies Per ⊆ N and For ⊆ N .

Definition 10. Let G = (V, T, P, S) be a random-context grammar with appearance
checking. G is called a random-context grammar (an rc-grammar for short) or
permitting grammar provided that every (A → x, Per, For) ∈ P satisfies For =
∅.

Definition 11. Let G = (V, T, P, S) be a random-context grammar with appearance
checking. G is called a forbidding grammar if every (A → x, Per, For) ∈ P
satisfies Per = ∅.

The families of languages defined by random-context grammars, random-context
grammars with appearance checking, and forbidding grammars are denoted by RC,
RC(ac), and F, respectively. To indicate that only propagating grammars are con-
sidered, we use the prefix prop-.

The generative power of random-context grammars is intensively studied in [2]
and [18]. These publications present several theorems and lemmas whose results
are summarized in the following theorem:

Theorem 8.
CF ⊂ prop-RC ⊆ prop-RC(ac) ⊂ CS,

prop-RC ⊆ RC ⊂ RC(ac) = RE,

CF ⊂ ET0L ⊂ prop-F ⊆ F ⊂ CS.
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4.1.3 Generalized Forbidding Grammars

Generalized forbidding grammars introduced by Meduna in [5] represent a gener-
alized variant of forbidding grammars in which forbidding context conditions are
formed by finite languages.

Definition 12. Let G = (V, T, P, S) be a context-conditional grammar. If every
(A → x, Per, For) satisfies Per = ∅, then G is said to be a generalized forbidding
grammar (a gf-grammar for short).

The families generated by gf-grammars and propagating gf-grammars of de-
gree s are denoted by GF(s) and prop-GF(s), respectively. Furthermore, GF =⋃∞

s=0 GF(s) and prop-GF =
⋃∞

s=0 prop-GF(s).
By analogy with Theorem 7, it is easy to see that gf-grammars of degree 0

are ordinary context-free grammars; futhermore, gf-grammars of degree 1 are as
powerful as forbidding grammars:

Theorem 9. prop-GF(0) = GF(0) = CF ⊂ GF(1) = F.

In 1990, Meduna [5] proved that gf-grammars of degree 2 generate all the family of
recursively enumerable languages:

Theorem 10. GF(2) = GF = RE.

In this thesis, we further improve this result by reducing the number of forbidding
productions and nonterminals:

Theorem 11. Every recursively enumerable language can be defined by a general-
ized forbidding grammar of degree 2 with no more than 13 forbidding productions
and 15 nonterminals.

Proof. The proof can be found in the full version of this PhD thesis or in [16]. �

4.1.4 Simple Semi-Conditional Grammars

Simple semi-conditional grammars, a special case of semi-conditional grammars,
have been introduced by Meduna and Gopalaratnam in 1994 (see [14]). Informally,
a simple semi-conditional grammar is defined as a context-conditional grammar in
which every production has no more than one condition.

Definition 13. Let G = (V, T, P, S) be a context-conditional grammar. G is a sim-
ple semi-conditional grammar (an ssc-grammar for short) if (A → x, Per, For) ∈
P implies |Per| + |For| ≤ 1.
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The families of languages generated by ssc-grammars and propagating ssc-
grammars of degree (r, s) are denoted by SSC(r, s) and prop-SSC(r, s), respec-
tively. Furthermore, SSC and prop-SSC denote the families of languages generated
by ssc-grammars and propagating ssc-grammars of any degree, respectively.

By Meduna and Gopalaratnam (see [14]), the following relations between the
families of languages generated by simple semi-conditional grammars hold:

Theorem 12.

CF
⊂

prop-SSC = prop-SSC(2, 1) = prop-SSC(1, 2) =
prop-SC = prop-SC(2, 1) = prop-SC(1, 2) = CS

⊂
SSC = SSC(2, 1) = SSC(1, 2) = SC = SC(2, 1) = SC(1, 2) = RE.

In this thesis, we demonstrate that there exist a normal form of ssc-grammars with
a limited number of conditional productions and nonterminals:

Theorem 13. Every recursively enumerable language can be defined by a simple
semi-conditional grammar of degree (2, 1) with no more than 12 conditional pro-
ductions and 13 nonterminals.

Proof. This proof can be found in the full version of the PhD thesis or in [15]. �

4.2 Parallel Conditional Grammars

This section studies parallel grammars with permitting and forbidding context con-
ditions. As ET0L grammars represent a very important type of parallel grammars
in modern theoretical computer science (see [19], [20], [21], [22], [24]), we base
our discussion on these grammars extended by context conditions.

Definition 14. A context-conditional ET0L grammar (a CET0L grammar for short)
is defined as a t+3-tuple, G = (V, T, P1, . . . , Pt, S), where V , T , and S are the total
alphabet, the terminal alphabet (T ⊂ V ), and the axiom (S ∈ V − T ), respectively.
Every Pi, 1 ≤ i ≤ t, for some t ≥ 1, is a finite set of productions of the form (a →
x, Per, For) with a ∈ V , x ∈ V ∗, and Per, For ⊆ V + are finite languages. A
CET0L grammar without erasing productions is said to be propagating (a CEPT0L
grammar for short). G has degree (r, s), where r and s are natural numbers, if for
every i = 1, . . . , t and (a → x, Per, For) ∈ Pi, max(Per) ≤ r and max(For) ≤
s. Let u, v ∈ V ∗, u = a1a2 . . . aq, v = v1v2 . . . vq, q = |u|, aj ∈ V , vj ∈ V ∗,
and p1, p2, . . . , pq is a sequence of productions pj = (aj → vj, Perj , Forj) ∈ Pi

for all j = 1, . . . , q and some i ∈ {1, . . . , t}. If for every pj , Perj ⊆ sub(u)
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and Forj ∩ sub(u) = ∅, then u directly derives v according to p1, p2, . . . , pq in G,
denoted by

u ⇒G v [p1, p2, . . . , pq].

The language of G is defined as

L(G) = {x ∈ T ∗ : S ⇒∗
G x}.

If t = 1, then G is called a context-conditional E0L grammar (a CE0L gram-
mar for short). If G is a propagating CE0L grammar, then G is said to be a
CEP0L grammar. The families of languages defined by CEPT0L, CET0L, CEP0L,
and CE0L grammars of degree (r, s) are denoted by CEPT0L(r, s), CET0L(r, s),
CEP0L(r, s), and CE0L(r, s), respectively. Set

CEPT0L =
⋃∞

r=0

⋃∞
s=0 CEPT0L(r, s), CET0L =

⋃∞
r=0

⋃∞
s=0 CET0L(r, s),

CEP0L =
⋃∞

r=0

⋃∞
s=0 CEP0L(r, s), CE0L =

⋃∞
r=0

⋃∞
s=0 CE0L(r, s).

Next, we investigate two special cases of context-conditional grammars in detail.

4.2.1 Forbidding ET0L Grammars

This section discusses forbidding ET0L grammars, introduced by Meduna and Švec
in [17].

Definition 15. Let G = (V, T, P1, . . . , Pt, S) be a CET0L grammar. If every p =
(a → x, Per, For) ∈ Pi, where i = 1, . . . , t, satisfies Per = ∅, then G is said to
be forbidding ET0L grammar (an FET0L grammar for short). If G is a propagating
FET0L grammar, than G is said to be an FEPT0L grammar. If t = 1, G is called
an FE0L grammar. If G is a propagating FE0L grammar, G is called an FEP0L
grammar.

The families of languages defined by FE0L grammars, FEP0L grammars, FET0L
grammars, and FEPT0L grammars of degree s are denoted by FE0L(s), FEP0L(s),
FET0L(s), and FEPT0L(s), respectively. Moreover,

FEPT0L =
⋃∞

s=0 FEPT0L(s), FET0L =
⋃∞

s=0 FET0L(s),

FEP0L =
⋃∞

s=0 FEP0L(s), FE0L =
⋃∞

s=0 FE0L(s).

In this thesis, we establish the following relationships of FET0L language families:
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Theorem 14.

CF
⊂

FEP0L(0) = FE0L(0) = EP0L = E0L
⊂

FEP0L(1) = FEPT0L(1) = FE0L(1) = FET0L(1) =
FEPT0L(0) = FET0L(0) = EPT0L = ET0L

⊂
FEP0L(2) = FEPT0L(2) = FEP0L = FEPT0L = CS

⊂
FE0L(2) = FET0L(2) = FE0L = FET0L = RE.

Most importantly, we see that FET0L grammars of degree 2 generate the family
of recursively enumerable languages and FEPT0L grammars of degree 2 generate
the family of context-sensitive languages. Surprisingly, while ordinary ET0L gram-
mars are more powerful than E0L grammars, FET0L(1) and FE0L(1) grammars
characterize the same language family.

4.2.2 Simple Semi-Conditional ET0L Grammars

Simple semi-conditional ET0L grammars represent another variant of context-cond-
itional ET0L grammars with restricted sets of context conditions. By analogy with
sequential simple semi-conditional grammars (see Section 4.1.4), these grammars
are context-conditional ET0L grammars in which every production contains no
more than one context condition.

Definition 16. Let G = (V, T, P1, . . . , Pt, S) be a context-conditional ET0L gram-
mar, for some t ≥ 1. If for all p = (a → x, Per, For) ∈ Pi for every i = 1, . . . , t
holds |Per| + |For| ≤ 1, G is said to be a simple semi-conditional ET0L grammar
(SSC-ET0L grammar for short). If G is a propagating SSC-ET0L grammar, then G
is called an SSC-EPT0L grammar. If t = 1, then G is called an SSC-E0L grammar;
if in addition, G is a propagating SSC-E0L grammar, G is said to be an SSC-EP0L
grammar.

The families of languages generated by SSC-EPT0L grammars of degree (r, s),
SSC-ET0L grammars of degree (r, s), SSC-EP0L grammars of degree (r, s), and
SSC-E0L grammars of degree (r, s) are denoted by SSC-EPT0L(r, s), SSC-ET0L
(r, s), SSC-EP0L(r, s), and SSC-E0L(r, s), respectively. The families of lan-
guages generated by SSC-EPT0L, SSC-ET0L, SSC-EP0L, and SSC-E0L grammars
of any degree are denoted by SSC-EPT0L, SSC-ET0L, SSC-EP0L, and SSC-E0L
respectively.

The following theorem summarizes the relationships between the language fam-
ilies generated by SSC-ET0L grammars established in the thesis:
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Theorem 15.

CF
⊂

SSC-EP0L(0, 0) = SSC-E0L(0, 0) = EP0L = E0L
⊂

SSC-EPT0L(0, 0) = SSC-ET0L(0, 0) = EPT0L = ET0L
⊂

SSC-EP0L(1, 2) = SSC-EPT0L(1, 2) = SSC-EP0L = SSC-EPT0L = CS
⊂

SSC-E0L(1, 2) = SSC-ET0L(1, 2) = SSC-E0L = SSC-ET0L = RE.

5 Conditions Placed on the Neighborhood of Rewrit-
ten Symbols

In this section, we study grammars with context conditions placed on the neighbor-
hood of rewritten symbols. First, we investigate grammars with context conditions
that strictly require a continuous neighborhood of the rewritten symbols. We dis-
cuss both sequential and parallel grammars of this kind. Then, we study scattered
context grammars, in which rewriting depends on symbols occurring in the senten-
tial form, but these symbols may not form a continuous substring of the sentential
form. Rather, these symbols, which are simultaneously rewritten during a single
derivation step, may be scattered throughout the sentential form. Since this section
contains no results established by the author of this PhD thesis, we only sketch the
basic ideas here.

5.1 Continuous Context

This section discusses grammars with continuous context conditions placed on the
neighborhood of rewritten symbols—ordinary phrase-structure grammars and EIL
grammars. More specifically, it demonstrates that these grammars can be trans-
formed to some special forms in which they generate only sentential forms that
have a uniform permutation-based form. These results were established by Meduna
in [8] and [11].

5.2 Scattered Context

This section overviews several results regarding the descriptional complexity of
scattered context grammars, established by Meduna and Fernau. Perhaps most im-
portantly, Meduna [10] proved that three-nonterminal scattered context grammars
generate the family of recursively enumerable languages. Furthermore, Meduna and
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Fernau established several normal forms of scattered context grammars (see [12]
and [13]) in which only a reduced context-sensitivity and a reduced number of con-
ditional productions and nonterminals suffice to generate all RE languages.

6 Grammatical Transformations and Simulations

Classical formal language theory defines equivalent formal models as models that
generate the same language. This definition of equivalency plays a crucial role in
almost every transformation of formal language models, such as grammars or au-
tomata. However, taking a closer look at the transformations of equivalent models,
we see that some transformations result in models that generate their languages in a
more similar way than others.

Consider such a transformation converting one formal model to another equiva-
lent model. Next, consider a yield sequence generated by the first model and a yield
sequence of the second model. If there exists a substitution such that for every step
of the first yield sequence, there is a corresponding subsequence of steps in the sec-
ond yield sequence such that the substitution maps the first and the last string of the
subsequence to the strings appearing in the given step of the first yield sequence, we
say that the second yield sequence simulates the first one with respect to the given
substitution. By a natural generalization of this simulation to all yield sequences of
the models, we obtain a simulation-based relationship, reflecting the similarity of
the yield sequences of these models. This section provides a formal definition of the
above described concept. Then, it introduces a grammatical simulation and, finally,
it demonstrates the simulation in terms of Lindenmayer grammars.

6.1 Derivation Simulation

Definition 17. A string-relation system is a quadruple Ψ = (W,⇒, W0, WF ), where
W is a language, ⇒ is a binary relation on W , W0 ⊆ W is a set of start strings, and
WF ⊆ W is a set of final strings.

Every string, w ∈ W , represents a 0-step string-relation sequence in Ψ. For
every n ≥ 1, a sequence w0, w1, . . . wn, wi ∈ W , 0 ≤ i ≤ n, is an n-step string-
relation sequence, symbolically written as w0 ⇒ w1 ⇒ . . . ⇒ wn, if for each
0 ≤ i ≤ n − 1, wi ⇒ wi+1.

If there is a string-relation sequence w0 ⇒ w1 ⇒ . . . ⇒ wn, where n ≥ 0,
we write w0 ⇒n wn. Furthermore, w0 ⇒∗ wn means that w0 ⇒n wn for some
n ≥ 0, and w0 ⇒+ wn means that w0 ⇒n wn for some n ≥ 1. Obviously, from
the mathematical point of view, ⇒+ and ⇒∗ are the transitive closure of ⇒ and the
transitive and reflexive closure of ⇒, respectively.

Let Ψ = (W,⇒, W0, WF ) be a string-relation system. A string-relation se-
quence in Ψ, u ⇒∗ v, where u, v ∈ W , is called a yield sequence, if u ∈ W0. If
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u ⇒∗ v is a yield sequence and v ∈ WF , u ⇒∗ v is successful.
Let D(Ψ) and SD(Ψ) denote the set of all yield sequences and all successful

yield sequences in Ψ, respectively.

Definition 18. Let Ψ = (W,⇒Ψ, W0, WF ) and Ω = (W ′,⇒Ω, W ′
0, W

′
F ) be two

string-relation systems, and let σ be a substitution from W ′ to W . Furthermore, let
d be a yield sequence in Ψ of the form w0 ⇒Ψ w1 ⇒Ψ . . . ⇒Ψ wn−1 ⇒Ψ wn, where
wi ∈ W , 0 ≤ i ≤ n, for some n ≥ 0. A yield sequence, h, in Ω simulates d with
respect to σ, symbolically written as h Bσ d, if h is of the form y0 ⇒m1

Ω y1 ⇒m2

Ω

. . . ⇒mn−1

Ω yn−1 ⇒
mn

Ω yn, where yj ∈ W ′, 0 ≤ j ≤ n, mk ≥ 1, 1 ≤ k ≤ n, and
wi ∈ σ(yi) for all 0 ≤ i ≤ n. If, in addition, there exists m ≥ 1 such that mk ≤ m
for each 1 ≤ k ≤ n, then h m-closely simulates d with respect to σ, symbolically
written as h Bm

σ d.

Definition 19. Let Ψ = (W,⇒Ψ, W0, WF ) and Ω = (W ′,⇒Ω, W ′
0, W

′
F ) be two

string-relation systems, and let σ be a substitution from W ′ to W . Let X ⊆ D(Ψ)
and Y ⊆ D(Ω). Y simulates X with respect to σ, written as Y Bσ X , if the
following two conditions hold:

1. for every d ∈ X , there is h ∈ Y such that h Bσ d;

2. for every h ∈ Y , there is d ∈ X such that h Bσ d.

Let m be a positive integer. Y m-closely simulates X with respect to σ, Y Bm
σ

X , provided that:

1. for every d ∈ X , there is h ∈ Y such that h Bm
σ d;

2. for every h ∈ Y , there is d ∈ X such that h Bm
σ d.

Definition 20. Let Ψ = (W,⇒Ψ, W0, WF ) and Ω = (W ′,⇒Ω, W ′
0, W

′
F ) be two

string-relation systems. If there exists a substitution σ from W ′ to W such that
D(Ω) Bσ D(Ψ) and SD(Ω) Bσ SD(Ψ), then Ω is said to be Ψ’s derivation simu-
lator and successful-derivation simulator, respectively. Furthermore, if there is an
integer, m ≥ 1, such that D(Ω) B

m
σ D(Ψ) and SD(Ω) B

m
σ SD(Ψ), Ω is called

an m-close derivation simulator and m-close successful-derivation simulator of Ψ,
respectively. If there exists a homomorphism ρ from W ′ to W such that D(Ω) Bρ

D(Ψ), SD(Ω) Bρ SD(Ψ), D(Ω) Bm
ρ D(Ψ), and SD(Ω) Bm

ρ SD(Ψ), then Ω is Ψ’s
homomorphic derivation simulator, homomorphic successful-derivation simulator,
m-close homomorphic derivation simulator and m-close homomorphic successful-
derivation simulator, respectively.
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6.2 Grammatical Simulation

Consider a typical transformation of a grammar G1 to another equivalent grammar
G2 in the formal language theory. As a rule, G2 simulates derivations in G1 by
performing these three phases: (A) initialization that produces a string of a desired
form by making a few initial steps; (B) main phase that actually makes the deriva-
tion simulation; (C) conclusion that removes various auxiliary symbols.

Phase (B) almost always fulfills a crucial role while the other two phases are
usually much less important. Furthermore, phases (A) and (C) usually correspond
to no derivation steps in terms of this simulation. As a result, the simulation as a
whole is less close than the main phase. Therefore, we next introduce string-relation
systems that allow us to formally express phase (B) and, simultaneously, supress the
inessential phases (A) and (C).

Making use of the notions introduced in the previous section, we formalize the
grammatical simulation in terms of EIL grammars. Let us point out, however, that
quite analogically, this simulation can be formalized in terms of any grammatical
models.

Definition 21. Let G be an EIL grammar. Let V and T denote G’s total and terminal
alphabets, respectively. Let ⇒G be the direct derivation relation in G. For ⇒G and
every l ≥ 0, set

∆(⇒G, l) = {x ⇒G y : x ⇒G y ⇒i
G w, x, y ∈ V ∗, w ∈ T ∗, i + 1 = l, i ≥ 0}.

Next, let G1 be an EIL grammar with total alphabet V1, terminal alphabet T1

and axiom S1 ∈ V ∗. Let G2 be an EIL grammar with total alphabet V2, terminal
alphabet T2 and axiom S2 ∈ V ∗. Let ⇒G1

and ⇒G2
be the derivation relations of

G1 and G2, respectively. Let σ be a substitution from V2 to V1. G2 simulates G1

with respect to σ, D(G2) Bσ D(G1) in symbols, if there exists two natural numbers
k, l ≥ 0 so that the following conditions hold:

1. Ψ1 = (V ∗
1 ,⇒G1

, {S1}, T ∗
1 ) and Ψ2 = (V ∗

2 ,⇒Ψ2
, W0, WF ) are string-relation

systems corresponding to G1 and G2, respectively, where W0 = {x ∈ V ∗
2 :

S2 ⇒k
G2

x} and WF = {x ∈ V ∗
2 : x ⇒l

G2
w, w ∈ T ∗

2 , σ(w) ⊆ T ∗
1 };

2. relation ⇒Ψ2
coincides with ⇒G2

− ∆(⇒G2
, l);

3. D(Ψ2) Bσ D(Ψ1).

In case that SD(Ψ2) Bσ SD(Ψ1), G2 simulates successful derivations of G1

with respect to σ; in symbols, SD(G2) Bσ SD(G1).

Definition 22. Let G1 and G2 be EIL grammars with total alphabets V1 and V2,
terminal alphabets T1 and T2, and axioms S1 and S2, respectively. Let σ be a sub-
stitution from V2 to V1. G2 m-closely simulates G1 with respect to σ if D(G2) Bσ
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D(G1) and there exists m ≥ 1 such that the corresponding string-relation systems
Ψ1 and Ψ2 satisfy D(Ψ2) Bm

σ D(Ψ1). In symbols, D(G2) Bm
σ D(G1).

Analogously, G2 m-closely simulates successful derivations of G1 with respect
to σ, denoted by SD(G2) Bm

σ SD(G1), if SD(Ψ2) Bm
σ SD(Ψ1) and there exists

m ≥ 1 such that SD(G2) Bm
σ SD(G1).

Definition 23. Let G1 and G2 be two EIL grammars. If there exists a substitution σ
such that D(G2) Bσ D(G1), then G2 is said to be G1’s derivation simulator.

By analogy with Definition 23, the reader can also define homomorphic m-close
derivation simulators of EIL grammars.

6.3 Close Simulation of E(0,1)L Grammars by Symbiotic E0L
Grammars

The above derivation simulation formalism defined in terms of EIL grammars al-
lows us to establish several simulation-based relationships between different vari-
ants of Lindenmayer grammars. For example, it can be shown that for every E(0,1)L
grammar G, there exist an equivalent symbiotic E0L grammar (G′, W ) such that
(G′, W ) is a 1-close homomorphic derivation simulator of G:

Theorem 16. Let G = (V, T, P, s) be an E(0,1)L grammar. Then, there exists a
symbiotic E0L grammar (G′, W ) and a homomorphism ω̃ such that D(G′, W ) B1

ω̃

D(G) and SD(G′, W ) B1
ω̃ SD(G).

Proof. Formal proof of this statement can be found in the full version of this PhD
thesis. �

7 Applications and Implementation

Although this thesis primarily represents a theoretically oriented treatment, most
grammars discussed in the previous chapters have quite realistic applications. In-
deed, these grammars are useful to every scientific field that formalizes its results
by some strings and studies how these strings are produced from one another under
some permitting or, in contrast, forbidding conditions. To illustrate the practical use
of the grammars with context conditions, we concentrate our attention on a single
application area—biology, which appears of great interest at present.

Case Study 1. Consider a cellular organism in which every cell divides itself into
two cells during every single step of a healthy development. However, when a virus
infects some cells, all the organism stagnates until it is cured again. During the
stagnating period, all the cells just reproduce themselves without producing any
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new cells. To formalize this development by a suitable simple semi-conditional
L grammar, we denote a healthy cell and a virus-infected cell by A and B, respec-
tively, and introduce the simple semi-conditional 0L grammar, G = ({A, B}, P, A),
where P contains the following productions:

(A → AA, 0, B), (B → B, 0, 0),
(A → A, B, 0), (B → A, 0, 0),
(A → B, 0, 0).

Figure 1 describes G simulating a healthy development while Figure 2 gives a de-
velopment with a stagnating period caused by the virus.

In the following case study, we concentrate on a simulation of growing plants
generated by parametric 0L grammars extended by context conditions.

Case Study 2. Parametric 0L grammars (see [19], [20]) operate on strings of mod-
ules called parametric words. A module is a symbol from an alphabet with an asso-
ciated sequence of parameters belonging to the set of real numbers. Productions of
parametric 0L grammars are of the form

predecessor [ : logical expression ] → successor.

The predecessor is a module having a sequence of formal parameters instead of real
numbers. The logical expression is any expression over predecessor’s parameters
and real numbers. If the logical expression is missing, the logical truth is assumed.
The successor is a string of modules containing expressions as parameters; for ex-
ample,

A(x) : x < 7 → A(x + 1)D(1)B(3− x).

Such a production matches a module in a parametric word provided that the sym-
bol of the rewritten module is the same as the symbol of the predecessor module,
both modules have the same number of parameters, and the value for the logical
expression is true. Then, the module can be rewritten by the given production.

As usual, a parametric 0L grammar can rewrite a parametric word provided that
there exists a matching production for every module that occurs in it. Then, all
modules are simultaneously rewritten, and we obtain a new parametric word.

Next, we extend the parametric 0L grammars by permitting context conditions.
Each production of a parametric 0L grammar with permitting conditions has the
form

predecessor [ ? context conditions] [ : logical expression] → successor.

where the predecessor, the logical expression, and the successor have the same
meaning as in parametric 0L grammars, and context conditions are some permitting
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Figure 1: Healthy development.

Figure 2: Development with a stagnating period.
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context conditions separated by commas. Each condition is a string of modules with
formal parameters. For example, consider

A(x) ? B(y), C(r, z) : x < y + r → D(x)E(y + r).

This production matches a module in a parametric word w provided that the pre-
decessor A(x) matches the rewritten module with respect to the symbol and the
number of parameters and there exist modules matching to B(y) and C(r, z) in w
such that the value for logical expression x < y + r is true.

Having described the parametric 0L grammars with permitting conditions, we
next show how to simulate the development of some plants by using them.

In the nature, developmental processes of multicellular structures are controlled
by the quantity of substances exchanged between the modules. In case of plants,
the growth depends on the amount of water and minerals absorbed by the roots and
carried upwards to the branches. The model of branching structures making use
of the resource flow was proposed by Borchert and Honda in [1]. The model is
controlled by a flux of resources, that starts at the base of the plant and propagates
the substances towards the apices. An apex accepts the substances and when the
quantity of accumulated resources exceeds a predefined threshold value, the apex
bifurcates and initiates a new lateral branch. The distribution of the flux depends on
the number of apices that the given branch supports and on the type of the branch—
plants usually carry greater amount of resources to straight branches than to lateral
branches (see [1] and [19]).

Consider the following model:

axiom : I(1, 1, eroot) A(1)
p1 : A(id) ? I(idp, c, e) : id == idp ∧ e ≥ eth

→ [+(α) I(2 ∗ id + 1, γ, 0) A(2 ∗ id + 1)]/(π) I(2 ∗ id, 1 − γ, 0)
A(2 ∗ id)

p2 : I(id, c, e) ? I(idp, cp, ep) : idp == bid/2c
→ I(id, c, c ∗ ep)

This L grammar describes a simple plant with a constant resource flow from its roots
and with a fixed distribution of the stream between lateral and straight branches. It
operates on the following types of modules:

• I(id, c, e) represents an internode with a unique identification number id, a
distribution coeficient c, and a flux value e;

• A(id) is an apex growing from the internode with identification number equal
to id;

• +(φ) and /(φ) rotate the segment orientation by angle φ (for more informa-
tion, consult [19]);
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Figure 3: Developmental stages of the plant.
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• [ and ] enclose the sequence of modules describing a lateral branch.

Standardly, we assume that if no production matches a given module X(x1, . . . , xn),
the module is rewritten by an implicit production of the form X(x1, . . . , xn) →
X(x1, . . . , xn); that is, it remains unchanged.

At the beginning, the plant consists of one internode I(1, 1, eroot) with apex
A(1), where eroot is a constant flux value provided by roots. The first production,
p1, simulates the bifurcation of an apex. If an internode preceding the apex A(id)
reaches a sufficient flux e ≥ eth, the apex creates two new internodes I terminated
by apices A. The lateral internode is of the form I(2 ∗ id + 1, γ, 0) and the straight
internode is of the form I(2 ∗ id, 1 − γ, 0). Clearly, identification numbers of these
internodes are unique. Moreover, every child internode can easily calculate the iden-
tification number of its parent internode; the parent internode has idp = bid/2c. The
coeficient, γ, is a fraction of the parent flux to be directed to the lateral internode.
The second production, p2, controls the resource flow of a given internode. Observe
that the permitting condition I(idp, cp, ep) with idp = bid/2c matches only the par-
ent internode. Thus, p2 changes the flux value e of I(id, c, e) to c ∗ ep, where ep

is the flux of the parent internode, and c is either γ for lateral internodes or 1 − γ
for straight internodes. Therefore, p2 simulates the transfer of a given amount of
parent’s flux into the internode. Figure 3 pictures twelve developmental stages of
this plant, with eroot, eth, and γ set to 12, 0.9, and 0.4, respectively. The numbers
indicate the flow values of internodes.

8 Conclusion

The classical context-dependent grammars, such as context-sensitive and phrase-
structure grammars, represent powerful generators of languages. However, their
strict context conditions placed on the context surrounding the rewritten symbol
during the generation of languages complicate their use both in theory and in prac-
tice. Therefore, in this thesis, we discuss a large variety of grammars with much
less restrictive context conditions, which are placed on derivation domains, use of
productions, or the neighborhood of rewritten symbols. All these grammars use
context-independent productions, which obviously significantly simplify the lan-
guage generation process. Perhaps most importantly, we demonstrate that most
of the grammars with alternative context conditions are as powerful as the classi-
cal context-dependent grammars. That is, they have the same generative power as
the phrase-structure grammars, and if erasing productions are ruled out, they are as
powerful as the context-sensitive grammars. From a practical viewpoint, these easy-
to-use grammars with flexible context conditions have their important applications
in reality as we demonstrate in terms of biology in this thesis as well.

Main goals of this PhD thesis are as follows:
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Overview of the Grammars With Context Conditions

Although the language theory have introduced a large number of grammars with
context conditions, there exists no monograph dealing with these grammars. Thus,
the thesis provide a compact overview of sequential and parallel grammars with
context conditions, including their formal definitions and examples.

Reduction of Conditional Grammars

The PhD thesis introduces new results concerning the descriptional complexity of
grammars with context conditions. That is, we prove that only a reduced number of
conditional productions suffice to generate any recursively enumerable language by
generalized forbidding grammars and simple semi-conditional grammars.

Parallel Grammars With Context Conditions

The thesis introduces two parallel variants of conditional grammars—forbidding
ET0L grammars and simple semi-conditional ET0L grammars. In both cases, we
demonstrate that context conditions significantly increase the generative power of
ET0L grammars.

Derivation Simulation

The thesis proposes a general concept formalizing the derivation similarity of rewrit-
ing processes of formal language models. Then, it demonstrates its use in terms of
Lindenmayer grammars.

Future Research

This thesis opens several new research areas in the language theory. For instance,
it introduces and discusses some conditional variants of ET0L grammars. How-
ever, there exist a number of parallel and semi-parallel grammars whose variants
with context conditions have not been studied yet. Because the computational par-
allelism plays a crucial role in today’s computer science, parallel versions of con-
ditional grammars clearly represent an important contribution to the research of
parallel models.

The concept of the derivation simulation gives rise to a number of questions as
well. Indeed, consider any transformation between two different types of grammars.
Then, it is possible to discuss the following questions: Does the transformation re-
sult in a grammar that simulates the input grammar? If so, what degree of closeness
the transformation guarantees? Is it possible to find another transformation with
better simulation properties?
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Finally, there is a number of practical applications in which the theory of gram-
mars with context conditions might be applied in the future. These applications
range from the language theory, compilers and parallel computations to the simula-
tion of biological structures, molecular biology and genetics.
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