
Brno University of Technology
Faculty of Electrical Engineering and Computer Science

Department of Computer Science and Engineering

PhD Thesis

Authorization Model for Strongly
Distributed Information Systems

Ing. Daniel Cvrček

Supervisor: Prof. Ing. Tomáš Hruška, CSc.

Opponents: Prof. dr. ir. W. M. P. van der Aalst
plk. Doc. Ing. Jaroslav Dočkal CSc.
Prof. Ing. Jǐŕı Šafař́ık, PhD.

Thesis defended on June 1, 2001

Authorization Model for Strongly Distributed Information Systems
c© 2001 Daniel Cvrček
ISBN 80-214-1900-8
ISSN 1213-4198

Contents

1 Introduction 1

2 State of the Art 1

3 Objectives 3

4 Structure of the Work 4
4.1 AAM - Selection . 6
4.2 Categorization and Classification 8
4.3 Definition Of Secure System . 10
4.3.1 Access Control of Secure System 10
4.3.2 Flow Control of Secure System 11
4.4 Processes in Secure CCS . 12
4.5 Secure CCS - Action and State 13
4.6 Inheritance of Processes . 16
4.6.1 Axioms . 17
4.6.2 Definition of Inheritance . 18

5 Results 20

6 Shrnut́ı 22

7 Author’s Bibliography 27

8 Curriculum Vitae 28

i

1 Introduction

Workflow management is a fast developing technology that has gained increas-
ing attention recently. Workflow management systems are very suitable for
the business environment because they provide powerful solution for effective
administration of business processes, for re-engineering and they allow rapid
changes of business processes and environment.

A workflow management system (WfMS) is a system that supports specifica-
tion, execution, coordination and management of workflow processes through
the execution of software [12]. Workflow management systems1 are already
used in a wide variety of commercial sectors, e.g. manufacturing, health-
care, banking, insurance companies, service order processing, collaborative
software environment, telecommunications, office automation, and many oth-
ers. Workflow management is a new area and therefore an emerging new area
of research. Standardization effort undertaken by the Workflow Management
Coalition (WfMC) is also in the very beginning [12, 1].

The application range of the technology is rather wide. What this work
wants to introduce is an approach that would ensure secure usage of such big
information systems.

2 State of the Art

Despite increasing research efforts, commercial products by software vendors
and standardization efforts by Workflow Management Coalition, security as-
pects in WfMS have not been given enough attention.

In the following, we elaborate the problems encountered in enforcing security
in strongly distributed information systems.

Strongly distributed systems are very complex for security management.
First condition for enforcing security is to split the distributed system into
homogeneous (from the security point of view) parts that are centrally ad-
ministered. We shall call them autonomous information system or s-node.
Distributed system is then composed form a number of s-nodes that have to
securely cooperate. To ensure such a secure cooperation we have to solve
(beside others) authorization control. One may found several areas of autho-
rization control to solve.

1Throughout the work, we also use the notion of strongly distributed system as an
abstraction of WfMS but it may be understood as equivalent.

1

1. Access control in autonomous system - This comprises access control to
resources local in the s-node and it is solved by access control model
implemented in the local platform (operating system, database manage-
ment system, . . .) the s-node uses. Each autonomous system may have
different access control model. And even in the case access models are
the same, security policies used on s-nodes may differ and may therefore
be incompatible.

2. Global administration of system - Distributed system has to solve, some-
how, problems with heterogeneity of its s-nodes and enforce uniform ad-
ministration of security properties. This demands some sort of backbone,
some basis that may be used as referential by all s-nodes.

3. Flow control - We are talking about systems that allow (space) distribu-
tivity of computational tasks. Those tasks may use data with different
sensitivity, stored on many s-nodes. There has to be a common template,
common rules for data flow control, some reference monitor [2].

The work [13] uses notions discretionary and mandatory security for WfMS.
We do not think that this is the correct partitioning. Discretionary access
control means that access control is enforced by the owner of the resource,
but it is not what the security in WfMS is about. On the other side, we may
discern several layers in security of a distributed system.

1. Access control to resources on s-node - It is the lowest layer. We may use
discretionary access control or mandatory access control or anything else.
Not users, but tasks (that are invoked by users or other tasks) access
resources according to workflows’ definitions. The principal problem is
to replace a task with the proper user on the s-node.

2. Access control to resources in workflow - It is higher layer. We have
to define authorizations in workflow in some common way. One may
say there is no difference between this and the previous item, but the
opposite is true. The difference is in the way access rights are specified
(s-node vs. distributed system). And the conversion between those two
ways is an important issue for security in heterogeneous systems.

3. Access control to workflows - It comprises management of activation
of computational tasks by users and other tasks. This is again more
abstract view on access control.

4. Flow control of workflows - This is in the same layer as access control
in workflows. We may say that access control and flow control are two
sides of the same coin.

2

You can see that discretionary is able to satisfy security requirements only
in the lowest level of authorization control. An axiomatic access control has to
be on the other side used for access control to workflows (items 2-4). We may
use mandatory access control, or more relaxed policies. The WfMS security
is very often connected with role-based access control [4, 11, 17, 15, 5, 6, 16].

3 Objectives

The target of the thesis is to develop system ensuring secure execution of
long-timed computational tasks performed on several s-nodes. A formal model
that will settle rules for secure cooperation of various access control models is
necessary condition. Design of such a formal model covers number of research
issues:

1. Definition of a methodology that sharply discerns security problems that
shall be solved on particular layers of security model of distributed sys-
tem. The layers shall be specified correctly.

2. A formal security model for task-based authorizations does not exist.
Such a theoretical model is necessary to provide a basis for formal proofs
that allow to establish higher confidence in the correctness of the work-
flow.

3. A formal framework that covers all layers of security in the heterogeneous
distributed system’s environment does not exist. We may identify the
following areas of problems according to layers of security abstraction.

(a) Access control to resources in computational tasks and especially
its cooperation with underlying access control models is not solved.
It is necessary to ensure secure transition of access privileges from
global definitions in computational tasks into definitions usable in s-
nodes’ access control systems and vice versa. This transition must
have properties that prevent obtaining access rights by unautho-
rized subjects (users, tasks), but also ensure successful execution of
tasks.

(b) Control of information-flow and authorization-flow has to be main-
tained in such a way that allows enforcement of mandatory access
control when necessary. This control is based on classification of
resources and subjects. The constrained information flow must en-
sure at least one of:

3

i. Confidentiality - the task execution does not give raise to direct
or indirect illegal disclosure of sensitive information.

ii. Integrity - the task execution does not allow any unauthorized
changes of data.

The controls still have to ensure availability of resources that are
necessary for execution of tasks and should protect computational
tasks from delays and starvation.
We have got three basic properties of secure data access: confiden-
tiality, integrity and availability. It is natural that availability goes
down any time we increase control of confidentiality or integrity of
resources. Further, confidentiality and integrity are opposites (in
some sense) and their demands go against each other. It means
that any independent tightening of requirements on confidentiality
or integrity worsens availability.
This is one of the key issues of mandatory access control. The
control is so tight that its usage in commercial environment is in-
effective or even impossible. It has been the reason for role-based
access control to appear.

(c) Access rights for activation of workflows (computational tasks) have
to be solved in such a manner that allows effective access control
and tasks’ distribution throughout the distributed system.

4. Construction of new theories that use definition of authorization model
according to the previous paragraphs.

To succeed, we have to solve minimum subset of the above mentioned areas.
We have to solve items 1 and 2 completely. 3a) is going to be solved generally
by introducing possible mechanism. Item 3b) has to be solved at least for
confidentiality or integrity and 3c) must be solved fully, of course. We shall
introduce categorization and use it when appropriate. Last chapter of the
thesis defines secure inheritance of processes that may be understood as a
representation of item 4.

4 Structure of the Work

Generally, this dissertation identifies specific requirements for incorporating se-
curity into distributed information systems and proposes basic security model
that allows synchronization of workflow execution and authorization flow.

4

There is proposed classification of security layers that allows easier treatment
of security problems, the model is defined and incorporated into formalism for
communicating processes and idea of inheritance of processes is formalized by
previously created theory.

The text of the thesis is divided into nine chapters. Two chapters contain
problem statement and short survey of security in information and database
systems. Following chapter presents a brief introduction into process algebra -
CCS. CCS (Calculus of Communicating Processes) [14, 10] has been designed
for modeling communicating processes.

Rest of the thesis contains original contribution to the field of security in
strongly distributed systems. The theory uses CCS and ideas of inheritance of
processes. The CCS theory and its description is strongly used in definition of
Secure CCS, where the original calculus is modified to satisfy security require-
ments. Next chapter describes general architecture of authorization system
for strongly distributed information systems. The architecture is the corner-
stone of the subsequent construction. The basic structure of authorization
system is defined and it is followed by description of basic communication and
cooperation among layers.

One chapter introduces Active authorization model (AAM). This model is
the basis for authorization system. The original idea has been to use this
model as is, but it showed up that a formalism for tasks’ definitions is needed
to demonstrate applicability of AAM. The original idea is the reason why e.g.
relations of authorization steps are defined. Three sections of the chapter are
denoted to definition of distributed system, basic concepts of authorization
model and complete formal AAM definition itself.

Next chapter (Incorporating Security into CCS) is the first chapter that ad-
dresses security in CCS. It consists from three sections. ”Refinement of AAM”
that makes minor changes in AAM necessary for successful incorporation into
CCS. It introduces definitions of access and flow control, specifies their ma-
nipulation and defines classification/categorization of system elements. Next
section introduces forms of authorization information for states and defines op-
erator that enables joining of states. Last section defines properties of secure
distributed system and secure tasks (and workflows).

Chapter ”Secure CCS” goes through specification of CCS and makes ap-
propriate changes to ensure security requirements stated in previous chapters.
The aim was to introduce as little changes in CCS as possible. The resulting
Secure CCS ensures properties of secure distributed system while preserving
simplicity and useful properties of the original specification. The most impor-
tant are notions of bisimilarity that had to be changed, but the original ideas

5

stay preserved.
The last part of the work tries to incorporate ideas of Van den Aalst and

Basten about inheritance of processes into the frame developed in the previous
chapters. The thesis concludes with results of the work and possible directions
for future research.

It is very difficult to depict part of the work because it is very compact
and its parts are chained together. We have decided to resume some of basic
notions to illustrate the approach used in the work. Following pages contain
selection of some important problems solved in the thesis to show construction
of the theory. We should start with some basics that are needed for definition
of secure system. Some notions of Secure CCS are resumed and inheritance
of secure processes concludes the chapter.

4.1 AAM - Selection

Original section is very compact and contains complete specification of Active
authorization model. At this place, we are to introduce just a set of selected
notions.

Definition 4.1. (Authorization set) Let us Oi be a set of all resources, Si

be a set of all subjects and Ai be a set of all access modes on an s-node. If
there is defined k ∈ N then Ui = {u | u ∈ N ∨ u < k} is a set of all possible
repeating counts. Then the set of all authorizations Pi is defined as

Pi ⊆ Si×Oi×Ai×Ui

For that holds:

∀ p = (s, o, a, u) ∈ Pi : u > 0, ∃p′ = (s, o, a, u− 1) ∈ Pi

�

This is the first and the last time when subjects are directly associated with
authorizations in AAM. The reason to define authorization sets is a need to
express concrete privileges on s-nodes and to have a basis for deriving more
abstract notions for authorizations. We are going to use association task –
privilege from now on. Because users are not needed for that specification,
there are also introduced authorization templates. There are two forms of
them - specific (for particular objects) and abstract (for types of objects).

6

Definition 4.2. (Authorization application) We define a function Λ that
expresses application of an authorization. There are the same rules for autho-
rizations, as well as for both types of authorization templates. Domains of the
function are therefore Pi, ΠA and ΠS

i .

1. Λ : P 7→ P ,
p = (s, o, a, u) ∈ P ∧ u > 0 then Λ(s, o, a, u) = (s, o, a, u− 1)

2. Λ : ΠA 7→ ΠA

πA = (c, a, u) ∈ ΠA ∧ u > 0 then Λ(c, a, u) = (c, a, u− 1)

3. Λ : ΠS 7→ ΠS

πS = (o, a, u) ∈ ΠS ∧ u > 0 then Λ(o, a, u) = (o, a, u− 1) �

We define initial authorizations to allow definition of conditions that subjects
initializing tasks on the particular s-node have to satisfy.

Definition 4.3. (Initial authorizations) Let us assume that Pi is a set
of authorizations and ΠA is the set of respective abstract authorization tem-
plates. Then let P t

I be the set of initial authorizations (for the task step t).

P t
I ⊆ ΠA

is the set of initial authorizations. �

We should notice at least two facts. There is no constrain for sets of objects.
It means that we may want a subject working on one s-node to have autho-
rizations for objects on another s-node. The second fact is that there has to
be at least one subject (in the system) that satisfies the initial authorizations.
This condition is necessary for execution of the associated task. All subjects
that posses the initial authorizations are called initiators.

Definition 4.4. (Initiators) Let ΠA be the set of authorization templates,
Si be the set of subjects on s-node Si and P t

I be the set of initial authorizations
chosen over ΠA and St,i

0 ⊆ Si. We define function Φi:

Φi(Si, P t
I) 7→ St,i

0

that returns a set of subjects St,i
0 on s-node Si those privileges form superset

to P t
I . The set St,i

0 is then called initiators for P t
I (on s-node Si). �

7

Basic authorization data structure is authorization unit. It is associated
with task step - part of task that is executable by one subject in one step. We
may say it is atomic for users.

Definition 4.5. (Authorization unit revisited) We have a set of abstract
authorization templates ΠA. Let P t

I be the proper set of initial authorizations
and P t

E = (PA,t
E , PF,t

E) ⊆ ΠA×ΠA be enabled authorizations consisting of the
set of access control (PA,t) and the set of flow control (PF,t) authorizations.
Further, let St

e ⊆ St
0 be a set of executors of the authorization unit:

St
e = {st

e| ∃i, st
e ∈ Si∧st

e ∈ Φi(Si, P t
I)}

Each task may be repeated several times, so we define number of initializations
of the associated authorization unit n ∈ N. The authorization unit ωi is then
defined as a 4-tuple:

ωi = (P t
I , P t

E , n, St
e)

The most important are the first three elements of ωi. �

Assuming execution of any authorization unit we are not interested in ap-
plication of particular enabled privileges. This application is done according
to Def 4.2. We shall denote authorization unit as ωl

i,k after l-th application of
enabled privileges.

Definition 4.6. (Validity of authorization unit) Assume, we have the
authorization unit ωi in the k-th state ωi,k = (P t

I , P t
E , St

e,k, nk). One says that
ωi is invalid if and only if nk = 0. Otherwise (n > 0), the authorization unit
is valid. �

4.2 Categorization and Classification

Each process that creates new data, applies all the data it receives (through
communication as well as through direct access to s-node resources). Catego-
rization of the output must respect properties of all input data. We have to go
even further and say that categorization of all data that are changed, created
or stored on an s-node should look at categorization of all input data.

We have used the word respect input data. Before we try to formalize this,
we have to define categorization. The following definition introduces exact
specification of categorization (classification). The basic idea comes from BLP
model [2] and lattice model for flow control [7, 8, 9].

8

Definition 4.7. (Classification) Each object has got assigned security clas-
sification that is defined on the set of data categories DC and on the set of
security classes SC, C = SC ×DC. Classification is a couple ci = (sci, dci).

Each security class is an element of ordered set SC = {sc1, . . . , sck} accord-
ing to operation ≤ (sc1 ≤ sc2 ≤ · · · ≤ sck).

Each category dci ⊆ DC and categories constitute a partially ordered set
of sets with minimal element ∅, maximum element DC and operation ⊆.

Classifications constitute a lattice with minimum element (sc1, ∅) and max-
imum element (sck, DC). Elements are partially ordered:

(sc1, dc1) ≤ (sc2, dc2) ⇔ (sc1 ≤ sc2)∧(dc1 ⊆ dc2)

The lowest upper bound M is defined as

(sc1, dc1) M (sc2, dc2) = (max(sc1, sc2), dc1∪dc2)

and greatest lower bound O as

(sc1, dc1) O (sc2, dc2) = (min(sc1, sc2), dc1∩dc2)

Each element ci of security classification is called a classification class . �

Definition 4.8. (Categorization) Assume, we have a classification C de-
fined on the set of data categories DC and on the set of security classes SC.
Assume that SC = {sc1}. In other words, all data has got the same security
class. We then call C a categorization. Each element of a given categorization
is called categorization class . �

When respecting security properties of input data, the classification of out-
put data c is join of classification classes of all input data c1, . . . , cn. It is
defined as c = c1 M · · · M cn.

Definition 4.9. (State classification) There is a function Γ that assigns
a classification class to each state. Let’s say that P is the set of all states,
C = {c1, c2, . . .} is the classification ((sc1, ∅) is the minimum element of C),
pi enabled authorizations and ωj are authorization units.

pi = ((oi,A, ai,A, ui,A), (ci,F , ai,F , uiF))

ωj = (P t
I , ({(oi, A, ai,A, ui, A)}i∈I , {(cj, F , aj,F , uj, F)}i∈J), St

e, n)

9

Γ : P → C is defined as:

Γ(Ppi) = Θ(oi,A) M ci,F

Γ(Pωj) = 4i∈I Θ(oi,A) 4i∈J cj,F M (sc1, ∅)
Γ(PPI) = (sc1, ∅)
Γ(Pσi∪σj) = Γ(P1,σi) M Γ(P2,σj)

�

4.3 Definition Of Secure System

The properties, whose compliance ensures security of a given system are stated
in this section. We also have to formalize them to be used as a basis for proving
security of the proposed authorization system.

Security properties are divided into two sections, access control and flow
control. There may be systems those tasks do not allow communication or
communication is not important feature. Such systems define categorization
of data, but all users are allowed (generally) to access all data sent among
task steps of workflows and tasks are used only to define their job. In that
case only access control is what we are interested in. On the other side, flow
control makes the system generally secure and should enable definition of rules
that correspond with principles of mandatory access control.

We state properties necessary for systems to be called secure. They are
divided into two groups, related to access control and flow control.

4.3.1 Access Control of Secure System

We have already several times mentioned that authorization unit is the basic
information to define security properties of tasks. This is confirmed in the
following items that use the notion to define properties of secure system.

1. Each workflow definition defines maximum number of initializations for
all authorization units it contains.

2. Authorization unit defines, through enabled authorizations, set of au-
thorizations that may be granted to a subject (a task or a user).

3. A subject may be granted just the minimum set of privileges necessary
to execute the authorization unit. This set is specified by enabled au-
thorizations.

10

4. A subject is granted authorizations defined in an authorization unit only
for the time he executes it. The necessary condition for the execution is
satisfaction of initial authorizations defined in the executed authoriza-
tion unit.

5. A subject may execute only one task at a time.

6. Application of any authorization from enabled authorizations causes de-
creasing of available initializations of given authorization unit2.

As you can see, properties of access control correspond with properties of
Active authorization system. Property (1) is implied by Def 4.5 as well as
Property (2). Property (3) is expressed in definition of 4 operator used for
abstraction of authorization information. Property (6) is enforced by definition
of authorization application - Def 4.2 and Def 4.6 (validity of authorization
unit). Requirements (4) and (5) are directed towards properties of Workflow
engine.

4.3.2 Flow Control of Secure System

To define flow control we need classification (Def 4.7) and its elements, classi-
fication classes, or categorization (Def 4.8).

1. Each data in the system is assigned a classification class. This class
is defined as static or dynamic according to type of the given resource.
The static class does not change during the data existence. The dynamic
class is affected by flow control (by classes of all input data).

2. There is defined a flow relation on pairs of classification classes. Given
two classes c1 and c2, the relation c1 → c2 is valid if, and only if, infor-
mation in c1 is allowed to flow into c2 (c1 ≤ c2, according to Def 4.7).

3. There is defined operation M for classification class combination that
defines classification class resulting from interference of two classification
classes: c1 M c2 = c3.

4. There does not exist a sequence of operations that violates the flow
relation. If a value f(a1, a2, . . . , an) flows into an object with class b,
then the relation a1 M a2 M . . . M an → b must be satisfied.

2It holds even for fail of the unit execution. We understand that there may be different
opinions on this question. We can imagine rules that define number of possible initialization
with fail, but for simplicity we use this rule.

11

Item (1) specifies property of Workflow engine and is necessary for all other
flow control properties. Item (2) states when a data flow is correct. Next
property shall be used for classification of output ports (output data) and
item (4) puts new requirement on subsequent task steps.

Access control is stated by AAM. When showing security of a new task, all
we need to do is to show compliance with properties of flow control.

4.4 Processes in Secure CCS

The authorization model needs to make difference (in contrary to CCS) among
three basic abstraction levels for process modeling.

1. E-complete - Atomic processes on s-node level. Processes are complete to
perform some atomic action defined by system (e.g. operation system)
that is installed on a particular s-node. (An example may be to read a
given file or to write a record in a database.)

2. A-complete - Atomic processes on the authorization system level. They
are complete to be granted basic set of authorizations (expressed in an
authorization unit by enabled authorizations) and to perform an atomic
action defined in the context of the distributed system. (We may state
examples like changing balance of an account or filing an insurance
claim.)

3. W-complete - Composite tasks (workflows) that may be initiated by
users. Those tasks represent the layer of a distributed system that is
managed by users (users may decide whether initiate a workflow). With
a-complete processes, users may decide when, but necessity to run a
process is stated by the system.

Processes (or states in the process calculus) on the finest resolution, a-
complete processes, change authorization unit ωi by removing elements from
the set of enabled authorizations of the authorization unit. Assume that
P t

E,i = {p1, . . . , pj , . . . , pk} then P t
E,i+1 = {p1, . . . , p′j , . . . , pn}, where p′j =

Λ(pj) is result of application pj during execution of associated e-complete
process.

P t
E,i, P

t
E,i+1 are enabled authorizations from consecutive states of an autho-

rization unit and pj is the authorization applied in the former state. We are
not interested in initial authorizations on this level of abstraction.

12

The second level of abstraction works with execution of authorization units.
This level takes P t

E as a primitive entity. The set of initial authorizations
is used here, but no users are allowed to initiate the task on this level of
abstraction by themselves. Authorization units are parts of task steps of
a workflow and the distributed system determines whether (and sometimes
when) to execute them and searches for appropriate subjects when needed.

The highest level of abstraction is represented by tasks that may be initi-
ated by users. To initiate a task, we need to define conditions for it - initial
authorizations. Those authorizations are defined accordingly to the needs of
application environment. Initial authorizations defined for particular steps tj
of the workflow are independent on the initial authorization of the workflow.

We do not need to assume sets of enabled authorizations on this abstraction
level. The same may hold for the number of possible initializations n.

4.5 Secure CCS - Action and State

We have discussed some basic properties that have to be satisfied for modeling
of access and flow control. Let us start with actions that represent communi-
cation3 between processes. Assume, we have an infinite set A of names and
we use a, b, c, . . . ∈ A as names. Those names are used for communication
between agents.

Definition 4.10. (Names) Assume, there is a set of names A and data
classification C = {c1, c2, . . . , cn} defined on DC and SC. Each element a ∈ A
is assigned a classification ci ∈ C. We denote a name as aci . �

Definition 4.11. (Co-names) Assume, there is a set of names A. We denote
by Ā the set of co-names. We say that āci ∈ Ā is complement of aci ∈ A. The
classification class ci of ā is the same as the classification class of a. �

Definition 4.12. (Labels) Labels is union of sets of names and co-names.
L = A ∪A. �

States in the system are represented as agents (agent constants, agent ex-
pressions, . . .). We have said that each state possesses its security information.

3We should talk about synchronization because we are going to work with basic calculus
that does not offer value passing. We have got two reasons for that. Basic calculus is simpler
for development of theory and CCS offers simple way for reducing full calculus into the basic
one.

13

The type of information depends on the abstraction the state represents (e-
complete, a-complete or w-complete process). Each state possesses generally
a set of tuples of static security information (they are used for access con-
trol). Each tuple may contain enabled authorizations P t

E = (PA
E,t, P

F
E,t) where

PA,t
E = {pA

e,t} ∨ ∅ and with authorization unit ωt or a set of initial authoriza-
tions P t

I . The allowed forms of authorization information are:
ai = ((pA

e,i, P
F
E,i), ∅, ∅, (pA

e,i, P
F
E,i), ∅) for e-complete process

ai = ((∅, PF+
E,i), ω, ∅, P+

E , P+
I) for a-complete process

ai = ((∅, PF+
E,i), ∅, P i

I , P+
E , P+

I) for w-complete process
ai = ((∅, PF+

E,i), ∅, ∅, P+
E , P+

I) for all other processes

Where P+
E and P+

I are sets of counted authorizations that are counted from
authorizations of all states the given state is composed of. Those are used for
determination of proper authorization sets in more abstract states.

To shorten notation of authorization information, we denote agents with σt
that represent all authorization information assigned to the state. We may
write a transition as:

Pσi

`c→ Qσj

Pσi and Qσj are agents, `c ∈ L is a label.
We still need to introduce one last action. It is action that arises each time

when bci and bci (complementary actions) are invoked simultaneously. This
action is internal for a composite agent, i.e. the same action arises from any
pair of complementary actions.

Definition 4.13. (Perfect actions) The action that denotes simultaneous
invocation of any complementary actions ac, ac is called perfect or completed
action and is denoted τc. This action has got assigned the same classification
as actions it represents - c.
τ∗ denotes set of all perfect actions. �

All perfect actions have the same visible effects - none. We need to preserve
classification of original actions and that is the only difference among perfect
actions.

With τ∗ actions, we may define set of all actions Act = L ∪ τ∗.
Perfect actions play very important role because they allow us to ignore all

internal (perfect) actions of composite systems. This is enabled by the fact
that τ∗ actions do not represent any potential communication and they are
therefore not directly observable. But because each τc represents two actions

14

it is reasonable to apply restriction on the composite system. It should not
use the hidden actions.

Definition 4.14. (Port) Each state has ports denoted by names from L.
The ports denoted by any aci ∈ A are able to receive (input ports), ports
denoted by aci ∈ A are able to transmit (output ports).
To define an action aci from agent Pσi to Qσj , there must be defined ports aci

and aci in Pσi and Qσj , respectively. �

Talking about ports, they have to satisfy security properties defined for
secure system. It is especially item 2 and item 4 of flow control.

Definition 4.15. (Secure port) Secure port is a port that satisfies condi-
tions for secure system.

1. Input port - classification class of the input port aci ∈ A is the same as
of the corresponding output port acj ∈ A.

ci = cj

2. Output port - classification class of each output port ai,ci ∈ A for the
given state Pσ is equal or greater than combination of all input ports
aj,cj ∈ A, ∀j ∈ J of the state Pσ and classification of all static resources
accessed in Pσ.

∀j ∈ J : Γ(Pσ) ≤ cj

Input ports in the definition are an abstraction that also represents places to
receive all data flows from local resources (access control). �

Lemma 4.1. Secure port preserves security of distributed system.

Proof. We use Def 4.14 declaring that action and input and output ports it
connects, are all assigned with the same classification class. We are talking
about data flow, so we have to prove fulfillment of property 2 for input ports
and property 4 for output ports (page 11).

1. A transition represents a data flow, so flow relation → must hold. As-
sume, we have a transition Pσp

aca→ Qσq that connects ports aca and aca .
It implies flow relation ca → ca. Because ca ≤ ca by Def 4.7, the flow
relation is valid and property is satisfied.

15

2. A state represents operations and therefore inference of classification
classes that are represented by classification classes of all input ports
ai∈I of the given state. The relation is

4i∈I ci → cj ⇔ c′j → cj

According to Def 4.15 (2), c′j ≤ cj . It means that by Def 4.7, the flow
relation is valid and property is satisfied.

Definition 4.16. (Secure state) The state that contains only secure ports
and that satisfies all relevant requirements of access control for secure system
is called secure state. �

Remember definition of state classification (Def 4.9). Now, when ports have
been introduced, we could redefine classification of state using its ports (flow
control) and inner properties (access control). The resulting classification of
the state would be combination of input ports’ classification classes (it covers
also classification of resources, the state is allowed to access).

Definition 4.17. (State classification in CCS) There is a function Γ
that assigns a classification class to each state. Let’s say that P is the set of
all states, C = {c1, c2, . . .} is the classification (let (sc1, ∅) be the minimum
element of C) and Pσ is a secure state and {a1,c1 , . . . , an,cn} is the set of all
input ports in Pσ. Γ : P → C is defined as:

Γ(Pσ) = 4i=1..n ci M (sc1, ∅)

In case of no input ports in Pσ (n = 0), then holds Γ(Pσ) = (sc1, ∅). �

This is very short selection of original chapter. Frankly, basic notions from
the beginning of the chapter have been chosen. The key notions of bisimilarity
would need much more place to introduce, so we present just secure bisimilarity
in the following section.

4.6 Inheritance of Processes

Inheritance of secure processes is naturally more complicated than inheritance
without considering security. The way we are going to follow is partially

16

determined by van den Aalst and Basten. We are to introduce new set(s) of
axioms that allow us to extend equivalence of processes.

When defining inheritance in CCS, we firstly have to introduce new axioms
that are definitely distinct from the original ones defined in ACP. We are going
to introduce two basic forms of inheritance. They are based on ignoring effects
of actions (actions are replaced by silent actions) and on deferring some actions
(appropriate branches are excepted). We have some advantage because CCS
contains restriction operator that can be used to define one form of inheritance
and there is also a relabelling function that can be used for the latter one.

But we have to go further, there is the second problem - equality of secure
processes. Let us assume the following example. We have definition of a
process - task. We create a subprocess (from now on, the notion is used for
inherited process) by adding new branches, new parallel states and actions.
In the moment we start to hide those new actions (or their effects) we can
not do the same with all the related security information. The result is that
we obtain two equal processes from the functional point of view, but security
properties of them are different.

To solve problem with equality of processes, all possibilities were explored:
some changes in axioms, changes in definitions of inheritance, ignoring secu-
rity properties to some extent. The solution we have finally chosen lies in
minor changes in inheritance definitions, but primarily in introducing new
bisimulation (it is more exactly preorder).

4.6.1 Axioms

We are going to extend set of axioms for finite state agents. Secure CCS
contains two sets of axioms for finite state agents that express monoid laws
and τ -laws of CCS theory.

Axioms A1

A1 Pσp + Qσq =s Qσq + Pσp

A2 Pσp + (Qσq + Rσr) =s (Pσp + Qσq) + Rσr

A3 Pσp + Pσp =s Pσp

A4 Pσp + 0 =s Pσp

The second axiom system contains also the τ laws:
Axioms A2

A1-A4
A5 αcα .τc1 .Pσp =s αcα .εc1 .Pσp =s αcα .Pσp

A6 Pσp + τc1 .Pσp =s τc1 .Pσp

A7 αcα .(Pσp + τc1 .Qσq) + αcα .Qσq =s αcα .(Pσp + τc1 .Qσq)

17

The basis shall be set of axioms A2. We need τ actions to allow abstrac-
tion. This is because of the definition of inheritance that is partially based on
ignoring actions new in subprocess.

First task is to find a way to express encapsulation and abstraction. Basten
and Van den Aalst use ACP [3] process algebra and they introduce two new
operators and use special actions τ and δ for results. We know τ action in the
process calculus, but we do not use δ actions (inaction). We assume that it is
possible to use inactive agent 0 instead.

We have two basic types of inheritance: protocol and projection. We there-
fore define two new sets of axioms for each type and the third one for their
composition. We obtain axioms for protocol inheritance, projection inheri-
tance and the last set contains axioms for both types of inheritance.

Axioms A3 L ⊆ Act
A1-A7
D1 αcα /∈ L ∪ L ⇒ (αcα .Pσp)\L =s αcα .Pσp\L
D2 αcα ∈ L ∪ L ⇒ (αcα .Pσp)\L =s 0
D3 (Pσp + Qσq)\L =s Pσp\L + Qσq\L

For the projection inheritance, we use a relabelling function. We may call
it τL, where L ∪ L is the set of labels that are to be hidden.

Axioms A4 L ⊆ Act
A1-A7
I1 αcα /∈ L ∪ L ⇒ τL(αcα) =s αcα

I2 αcα ∈ L ∪ L ⇒ τL(αcα) =s τcα

I3 (Pσp + Qσq)[τL] =s Pσp [τL] + Qσq [τL]
I4 (αcα .Pσp)[τL] =s τL(αcα).Pσp [τL]

Axioms A5
A1-A7, D1-D3, I1-I4

4.6.2 Definition of Inheritance

We are ready to present new definition of observation bisimulation that allows
a little different treatment of authorization information. The definition of se-
cure equality uses previously defined notion of observation equivalence. Both
relations are equivalence relations. We need to introduce new notions that
allow to define inheritance with one relaxation. Authorization information of
states and actions in a subprocess is equal or greater to respective authoriza-
tion information in the base process. The resulting relation is not equivalence
because it lacks symmetry of security information, but preorder. We shall call
the new relation inheritance bisimulation.

18

Definition 4.18. (Inheritance bisimulation) A binary relation S ⊆ P×P
over secure agents is an inheritance bisimulation if (Pσp , Qσq) ∈ S implies, for
all αcα ∈ Act,

1. Whenever Pσp

αcα−→ P ′σ′p then, ∃ Q′
σ′q

, Qσq

bαc′α=⇒ Q′
σ′q

such that c′α ≤ cα and
(P ′σ′p , Q′

σ′q
) ∈ S

2. Whenever Qσq

αcα−→ Q′
σ′q

then, ∃ P ′σ′p , Pσp

bαc′α=⇒ P ′σ′p such that cα ≤ c′α and
(P ′σ′p , Q′

σ′q
) ∈ S �

We continue with the definition of inheritance bisimilar processes.

Definition 4.19. Pσp and Qσq are inheritance bisimilar, written Pσp �s Qσq ,
if (Pσp , Qσq) ∈ S for some inheritance bisimulation S. That is

�s =
⋃

{S : S is an inheritance bisimulation}

�

We have identified protocol inheritance and projection inheritance that cor-
respond to encapsulation and abstraction. The subtle difference between the
two forms of inheritance introduced so far is that under projection inheritance
actions are executed without taking into account their effect, whereas under
protocol inheritance they are not executed at all.

Definition 4.20. (Inheritance relations)

1. Protocol inheritance: For any processes Pσp and Qσq , Pσp is a subprocess
of Qσq under protocol inheritance, iff there exists K ⊆ Act such that
A3 ` Pσp\K �s Qσq .

Pσp ≤pt Qσq

2. Projection inheritance: For any processes Pσp and Qσq , Pσp is a subpro-
cess of Qσq under projection inheritance, iff there exists L ⊆ Act such
that A4 ` (Pσp [τL]) �s Qσq .

Pσp ≤pj Qσq

19

3. Total inheritance: For any processes Pσp and Qσq , Pσp is a subprocess
of Qσq under total inheritance, iff there exists K ⊆ Act such that A3 `
Pσp\K �s Qσq and there exists L ⊆ Act such that A4 ` (Pσp [τL]) �s

Qσq .

Pσp ≤t Qσq

4. Life-cycle inheritance: For any processes Pσp and Qσq , Pσp is a sub-
process of Qσq under life-cycle inheritance, iff there exist K, L ⊆ Act :
(K ∪K) ∩ (L ∪ L) = ∅ such that A5 ` (Pσp\K)[τL] �s Qσq .

Pσp ≤lc Qσq

There is given a reasonable requirement that K and L, it means set of
actions that are to be encapsulated and abstracted (hidden), are disjoint.
This requirement should ensure that order of projection and protocol operators
application can be interchanged without change of the result.

When reasoning about security properties of a process and its subprocesses
we find out that security requirements on subjects to perform subprocesses
are at least equal to the requirements for the base process. It is implied by
definition of inheritance bisimulation.

5 Results

When starting to write the thesis, one basic target was stated. We wanted to
introduce a complex authorization system, or at least its basic ideas that would
be suitable for strongly distributed information systems. We mean systems
that are heterogeneous, consist of a number of local information systems with
their own administration and systems that are able to process tasks that need
cooperation of users and access to resources of more local information systems.
The results achieved in the thesis can be seen in four basic areas.

There is given a general idea to solve security requirements for strongly
distributed information systems. Elements of such systems (s-nodes) have
their own administration, own sets of users. Resources are accessible through
their own environment (operation system, DBMS). There is introduced a new
global level that allows definition of tasks - workflows as mentioned above. The
problem of cooperation between those two levels is solved through a conversion
layer that is based on categorization of resources and subjects. All resources
have a categorization that describes their content and subjects are qualified

20

by the same way according to their authorization. This approach is based on
the fact that properties of data do not change. Categorization of data does
not change until the content is changed. When we start to use new data, we
add new subsets into set of categorizations, but the already existing elements
do not change.

The second area involves design of Active authorization model suitable for
secure workflows. The word active is used because the model is able to syn-
chronize authorizations with execution of tasks. This synchronization is based
on a new concept of protection states (sets of authorizations) associated with
small parts of workflows - task steps. It means that there is not one protection
state that exists for the whole life of the system, but appropriate protection
state is activated with initialization of a task step. There are also introduced
other two very important ideas:

• Strict separation of access and flow control - it starts already by different
definition of privileges.

• General mechanism for transformation of authorizations between work-
flow and s-node.

There is introduced CCS as a formal apparatus for definition of communi-
cating processes. This process algebra is enriched with security properties for
processes and their communication. There is a chapter dedicated to approach
used for incorporation of security into CCS and another one describing Secure
CCS alone. Active authorization model is taken as a basis that is in an in-
tuitive way incorporated into process algebra. We want to mention just one
moment that is very strongly expressed in Secure CCS.

Assuming access control, all privileges are connected with particular pro-
cesses. When we change abstraction of the model to a higher level, the privi-
leges are hidden. It means that access control authorizations are not combined
into more abstract processes. It implies that it is not necessary for a subject
authorized to initiate some process to obtain access rights for s-node resources.
Totally different situation comes with flow control. The privileges are com-
bined and any subject must be authorized to work with dynamic objects -
objects created during the task (workflow) processing. This distinction be-
tween access and flow control is kept very strictly.

Last contribution of the thesis is introduction of basic notions of inheritance
of processes for formalism for secure processes. The idea comes from Aalst
and Basten that introduced inheritance for dynamic objects in ACP algebra
and also in Petri Nets. We incorporate their ideas into Secure CCS. What
is it good for? We are able to easily create new workflows by using already

21

existing ones, while preserving abidance of security properties. It should help
in administration of large systems - it is easier and more secure. The second
issue is about possible dynamic changes of workflows. We are able to create
subprocess for a task step of a workflow. When keeping exactly defined con-
ditions, we are able to replace the given task step with a new one that do not
have to be known id advance. Regarding security of the workflow, we just
have to check properties of the subprocess.

6 Shrnut́ı

Při hledáńı tématu disertačńı práce, jsme se dostali až k rozsáhlým infor-
mačńım systémům (workflow). Základńı ideou těchto systémů je, že jsou
předem definovány úlohy, při jejichž prováděńı mohou a muśı participovat
r̊uzńı uživatelé. Ti jsou schopni źıskat př́ıstup ke zdroj̊um nutným pro prove-
deńı té které části úlohy. Problém spojený s bezpečnost́ı tohoto schématu byl
natolik zaj́ımavý, že na základě určité obecné představy [18] byla vytvořena
formálńı definice Aktivńıho autorizačńıho modelu.

Vzniklý model má určité vlastnosti, které současné modely pro kontrolu
př́ıstupu neznaj́ı. Základńı myšlenkou je existence samostatného ochranného
stavu pro každý krok běž́ıćı úlohy. Aby mohl být takový krok iniciován, je
třeba nalézt subjekt, který splňuje určité požadavky - inicializačńı oprávněńı.
Jestliže je splńı, tak źıská oprávněńı, která potřebuje k úspěšnému provedeńı
tohoto kroku úlohy - uvolněná oprávněńı. S každou aplikaćı oprávněńı z této
množiny se ochranný stav zmenšuje a s ukončeńım prováděńı kroku je zrušen a
subjekt tak ztráćı všechna efektivńı oprávněńı pro př́ıstup ke zdroj̊um systému.

Aby to nebylo tak jednoduché, tak množina uvolněných oprávněńı je jasně
rozdělena na dvě části. Jsou to oprávněńı pro př́ıstup k lokálńım zdroj̊um
(kontrola př́ıstupu) a oprávněńı pro př́ıstup k dynamickým dat̊um vyrobených
v předchoźıch kroćıch úlohy.

Tato práce se tedy snaž́ı identifikovat specifické požadavky na zajǐstěńı
bezpečnosti v distribuovaných informačńıch systémech a nab́ıźı základńı bez-
pečnostńı model, který umožňuje synchronizaci workflow úloh a autorizačńıho
toku. Je navržena klasifikace základńıch bezpečnostńı vrstev, která umožňuje
snadněǰśı uchopeńı bezpečnostńıch problémů.

Součást́ı práce je krátký úvod do procesńı algebry - CCS. CCS (Calculus of
Communicating Processes)[14, 10] byl navržen pro modelováńı komunikuj́ıćıch
proces̊u. Tento formalismus je poté obohacen o navržený bezpečnostńı model,

22

který umožňuje formálńı specifikaci bezpečných proces̊u a jejich modelováńı a
verifikaci.

Celý text práce je rozdělen na devět kapitol podle logicky uzavřených problé-
mových oblast́ı. Úvodńı kapitoly předkládaj́ı určeńı problémů, stanoveńı ćıl̊u
a krátký přehled bezpečnosti v informačńıch a databázových systémech. Daľśı
kapitola podává přehled o procesńı algebře (viz. výše). Tento kalkul je použit
jako základ, na do kterého je vložen formalismus pro definováńı bezpečnosti
v distribuovaných systémech

Následuj́ıćı části práce již jsou autorovým př́ıspěvkem na poli bezpečnosti
v silně distribuovaných systémech. Teorie je založena na CCS a myšlenkách
dědičnosti proces̊u. Teorie CCS a jej́ı popis je silně využit v kapitole Secure
CCS, kde je originálńı kalkul modifikován tak, aby mohl být použit pro speci-
fikaci a ověřováńı bezpečnostńıch požadavk̊u. Daľśı část se věnuje obecné ar-
chitektuře autorizačńıho systému pro silně distribuované informačńı systémy.
Tato architektura je základńım kamenem následuj́ıćı konstrukce. Popis ar-
chitektury je rozdělen na základńı strukturu systému a základńı komunikaci a
spolupráci mezi jednotlivými vrstvami.

Daľśı část práce představuje Aktivńı autorizačńı model (AAM). Tento model
a jeho základńı ideje jsou použity jako základ pro celý autorizačńı systém.
Původńı myšlenkou bylo použ́ıt tento model tak jak je, ale ukázalo se, že je
vhodné pokusit se jej vtělit také do formalismu schopného popsat komunikuj́ıćı
procesy. Původńı myšlenku lze vysledovat např. z definice vztah̊u mezi autor-
izačńımi kroky. Kapitola popisuje základńı koncepty distribuovaných systémů,
jež jsou následovány základńımi myšlenkami AAM modelu a jeho podrobným
popisem.

Určitým mezistupněm je kapitola upřesňuj́ıćı zp̊usob, jakým lze vtělit AAM
do procesńı algebry. Prvńım předpokladem je upřesnit definici modelu AAM.
Předevš́ım je zavedeno jasné odděleńı kontroly př́ıstupu od kontroly toku dat
a je definován zp̊usob, jak manipulovat s bezpečnostńımi specifikacemi pro
jednotlivé stavy a komunikačńı kanály. Současně je zaveden zp̊usob klasi-
fikace/kategorizace prvk̊u systémů. Druhá část kapitoly definuje formy autor-
izačńıch informaćı pro stavy a definuje operátor, který umožňuje bezpečně spo-
jovat několik stav̊u do jednoho - abstrakce. Na závěr jsou položeny požadavky,
které muśı splňovat bezpečný informačńı systém a v něm prováděné úlohy -
bezpečnostńı axiomy.

Daľśı kapitola již zavád́ı bezpečný CCS. Je použit ten nejjednodušš́ı zp̊usob.
V pořad́ı, ve kterém byly představovány jednotlivé pojmy CCS jsou prováděny
úpravy tak, aby byly zajǐstěny požadavky na bezpečný informačńı systém.
Jestliže je třeba, tak jsou nové vlastnosti dokazovány. Ćılem bylo vnést do

23

CCS co nejmenš́ı množstv́ı změn. Výsledný Secure CCS zajǐsťuje zachováńı
vlastnost́ı bezpečného distribuovaného systému a zároveň zachovává jednodu-
chost a užitečné vlastnosti p̊uvodńı specifikace. Nejd̊uležitěǰśımi pojmy jsou
bisimilarity, které musely být změněny, ale p̊uvodńı myšlenky snad z̊ustaly
zachovány.

Závěrečná kapitola využ́ıvá nově definovaného nástroje a spojuje jej s my-
šlenkami Van der Aalsta a Bastena ohledně dědičnosti proces̊u. Výsledkem
je definice dědičnosti, která opět zajǐsťuje zachováńı vlastnost́ı bezpečného
systému. Dı́ky formálńımu nástroji je definováno několik typ̊u dědičnosti podle
zp̊usobu porovnáváńı zděděných proces̊u s předky.

24

References

[1] Workflow and Process Automation in Information Systems: State-of-the-
Art and Future Directions (Athens, GA, 1996).

[2] Bell, D., LaPadula, L.: Secure computer systems: Unified exposition
and multics interpretation. Tech. Rep. MTR-2997, The Mitre Corpora-
tion, Bedford, MA, 1976.

[3] Bergstra, J., Klop, J.: Process algebra for synchronous communica-
tion. Information and Control, 60(1-3):109–137, 1984.

[4] Bertino, E., Ferrari, E., Atluri, V.: A flexible model supporting
the specification and enforcement of role-based authorizations in workflow
management systems. In Proc. of the 2nd ACM Workshop on Role-based
Access Control, 1997.

[5] Burkhard, H.: Observations on the real-world implementation of role-
based access control. In 20th National Information Systems Security
Conference, 1997.

[6] Demurjian, S., Ting, T., Price, M., Hu, M.-Y.: Extensible and
reusable role-based object-oriented security. In Database Security, X:
Status and Prospects, Chapman Hall, 1997.

[7] Denning, D.: Secure Information Flow In Information Systems. Phd
thesis, University of Purdue, 1975.

[8] Denning, D.: A lattice model of secure information flow. Communica-
tions of the ACM, 236–243, 1976.

[9] Denning, D.: Cryptography and Data Security. Addison-Wesley, 1982.

[10] Fencott, C.: Formal Methods for Concurrency. International Thomson
Computer Press, 1996.

[11] Ferraiolo, D., Cugini, J., Kuhn, R.: Role-based access control:
Features and motivations. In Proceedings of the 11th Annual Computer
Security Applications Conference (CSAC ’95), 1995.

[12] Hollingsworth, D.: Workflow reference model. Tech. Rep. TC00-003,
Workflow Management Coalition, Winchester, UK, 1995.

[13] Huang, W.-K.: Incorporating Security into Workflow Management Sys-
tems. PhD thesis, Rutgers University, CIMIC, 1998.

25

[14] Milner, R.: Communication and Concurrency. Prentice Hall, 1989.

[15] Sandhu, R.: Role hierarchies and constraints for lattice-based access
controls. In Proc. Fourth European Symposium on Research in Computer
Security, 1996.

[16] Sandhu, R., Feinstein, H.: A three tier architecture for role-based
access control. In Proc. of the 17th NIST-NCSC National Computer
Security Conference, 1994, pp. 138–149.

[17] Sandhu, R. S., et al.: Role-based access control models. IEEE Com-
puter, 38–47, 1996.

[18] Sandhu, R. S., Thomas, R.: Task-based authorization controls
(TBAC): A family of models for active and enterprise-oriented authoriza-
tion management. In Proc. of the IFIP WG 11.3 Workshop on Database
Security, 1997.

26

7 Author’s Bibliography

CVRČEK, D.: Access control in database management system. In DATA-
SEM’98 sborńık přednášek, 1998, pp. 153–163.

CVRČEK, D.: Nové př́ıstupy k databázové bezpečnosti. In Sborńık z letńı
školy Informačńı systémy a aplikace, 1998, pp. 18–35, ISBN 80-214-1205-4.

CVRČEK, D.: Problems of modeling access control in object oriented data-
bases. In ASIS 98 Proceedings, 1998, pp. 21–26, ISBN 80-85988-27-5.

CVRČEK, D.: Access Control in Workflow Systems, In: MOSIS’99 Proceed-
ings, MARQ Ostrava, Rožnov pod Radhoštěm, 1999, pp. 93-100, ISBN 80-
85988-31-3.

CVRČEK, D.: Aktivńı autorizačńı model, In: Sborńık z letńı školy Informačńı
systémy a jejich aplikace 1999, FAST VUT Brno, Ruprechtov, 1999, pp. 46-51.

CVRČEK, D.: Active Authorization Model for Workflow System, In: Sborńık
praćı student̊u a doktorand̊u, roč. 5, FEI VUT Brno, Brno, 1999, pp. 73-74,

CVRČEK, D.: Active authorization as high-level control. In Proc. of the
IFIP WG 11.3 Workshop on Database Security, 2000, pp. –.

CVRČEK, D.: Mandatory access control in workflow systems. In Knowledge-
based Software Engineering - Proc. of the JCKBSE Conference, 2000, pp. 247–
254, ISBN 1-58603-060-4.

and some other works
CVRČEK, D.: Zákon o elektronickém podpisu, In: IT System, č. 6, CCB
spol.s r.o., Brno, 1999, pp. 47-51, ISSN 1212-4567.

CVRČEK, D.: Elektronický obchod, In: IT System, č. 5, CCB spol.s r.o.,
Brno, 1999, pp. 6-9, ISSN 1212-4567.

CVRČEK, D.: Elektronická komunikace - hrozba nebo šance?, In: IT System,
č. 2, CCB spol.s r.o., Brno, 1999, pp. 15-18, ISSN 1212-4567.

27

8 Curriculum Vitae
Education University of Technology Brno Brno, Czech Republic

1992-1997
MSc. in Computer Science and Engineering.

Industrial AEC Ltd. Brno, Czech Republic
Experience 1998-2000

Last position: Senior software engineer, security specialist

Teaching University of Technology Brno Brno, Czech Republic
Experience 1997-2000

Teaching assistant in J.M. Honźık course ”Algorithms
and Data Structures”

Professional Member of IACR for year 2000
Activities Member of expert commission for Electronic Signature Law

Member of editorial board of IT System magazine

28

	TITULNÍ STRANA
	Contents
	1 Introduction
	2 State of the Art
	3 Objectives
	4 Structure of the Work
	4.1 AAM - Selection
	4.2 Categorization and Classification
	4.3 Definition Of Secure System
	4.4 Processes in Secure CCS
	4.5 Secure CCS - Action and State
	4.6 Inheritance of Processes

	5 Results
	6 Shrnutí
	References
	7 Author’s Bibliography
	8 Curriculum Vitae

