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1 INTRODUCTION

We introduce a part of the theory of gauge-natural operators and mention some
possible applications of modern differential geometry in mathematical physics. First
we recall some basic facts from differential geometry such as parallel transport, geode-
sics and linear connections. We also show a direct application of differential geometry
in classical mechanics.

Generalizing linear connections on manifolds we get connections on fibered mani-
folds and adding a general structure groupG we introduce the principal bundles and
principal connections. In what follows we use the theory of jets and the corresponding
notation used in [12].

For the study of principal connections on higher order principal prolongations we
use some techniques of finding general connections on higher order jet prolongations
by means of a linear connection on the base manifold. These in fact are natural opera-
tors transforming a connection on the fibered manifoldY → M into a connection on
ther-th order jet prolongation by means of a linear connection on the base manifold,
see [7]. We are going to show the constructions on the first order jet prolongation in
detail and then we generalize for higher orders. We also distinguish between the holo-
nomic, semiholonomic and nonholonomic higher order jet prolongations, respectively.

Finally, given a principal bundleP → M, it is well known that ther-th principal
prolongationW rP of P has many applications in differential geometry. For example,
if E is an arbitrary fiber bundle associated toP, then ther-th order jet prolongation
JrE of E is associated toW rP. The gauge-natural bundle functorW r plays a funda-
mental role also in the theory of gauge-natural bundles. By [12], every gauge-natural
bundle is a fibre bundle associated to the bundleW rP of certain orderr. We show se-
veral constructions of principal connections onW rP by means of a linear connection
on the base manifoldM. Similarly to general connections, these are the gauge-natural
operators transforming a connection on the principal bundle into a connection on its
principal prolongation by means of a linear connection on a base manifold. We again
distinguish between the holonomic, semiholonomic and nonholonomic higher order
principal prolongations, respectively. We provide the exact coordinate formula for
connections on the second order principal prolongation and show several constructi-
ons of connections on higher order principal prolongations.

The theory of gauge-natural operators, gauge-natural bundles and principal con-
nections can be applied in physics, for example in quantum mechanics for studying
the spin structures, see [14].

The aim of the thesis is to introduce the constructions of connections on higher
order principal prolongations. An important part is devoted to prolongation of general
connections, which is then used as a tool to achieve the main goal.
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2 BASIC DEFINITIONS

2.1 CLASSICAL DIFFERENTIAL GEOMETRY

Let (M, g) be ann-dimensional Riemannian manifold and denote by(gij(x)),
i, j = 1, . . . , n the coordinate matrix of the metricg. We can define

Γk
ij =

1

2

n∑

l=1

g̃kl

(
∂gil

∂uj
+

∂glj

∂ui
− ∂gij

∂ul

)
,

where(g̃ij(x)) stands for the inverse matrix of(gij(x)) and(ui), i = 1, . . . , n are lo-
cal coordinates ofM. Γk

ij are called the Christoffel symbols of the Riemannian metric
g. We recall that a vector field is a section of the tangent bundleM → TM.

Definition 2.1. We say that a vector fieldv(t) = (vi(t)) is parallel transported along
the pathp : I → M, p(t) = pi(t), if

dvi

dt
+

n∑

j,k=1

Γi
jk(p(t))vj dpk

dt
= 0. (2.1)

SymbolI means a real interval.

This definition is independent of the choice of coordinates onM. As the vector
v(t0) determines an initial condition inp(t0), the system of differential equations (2.1)
determines the parallel transport ofv(t0) uniquely. But if we transport the vector along
different paths, we obtain different results, see Figure2.1, where we move a vector
from the pointS to the pointB.

S

A

B

Figure 2.1:Parallel transport
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Further, we can define a covariant derivative along the given path.

Definition 2.2. Given a systemv(t) of tangent vectors along the pathp(t) on the

Riemannian manifold(M, g), we define a covariant derivative∇v(t)
dt =

(
∇vi(t)

dt

)
by

the coordinate expression

∇vi

dt
=

dvi

dt
+

n∑

j,k=1

Γi
jk(p(t))vj dpk

dt
.

The operation of covariant derivative can be easily extended to the derivative along
vector fields. Let us start with two vector fieldsX, Y and their coordinate expression
X i(x), Y i(x) on (M, g). At the pointx ∈ M consider a pathp(t) such thatdp(0)

dt =
X(x). Further, consider a system of tangent vectorsY (p(t)) along the pathp(t). We
directly obtain the coordinate expression of the vector∇Y (p(0))

dt in the form

n∑

j,k=1

(
∂Y i(x)

∂xj
+ Γi

kj(x)Y k(x)

)
Xj(x). (2.2)

Definition 2.3. The vector field (2.2) is called the covariant derivative of the vector
field Y with respect to the vector fieldX and we denote it by∇XY.

Finally, generalizing the parallel transport for an arbitrary manifoldM, we can de-
fine the linear connection. We introduce the axiomatic approach given by
J. L. Koszul.

Definition 2.4. Let χ(M) be the set of all vector fields on the manifoldM, that is the
set of all smooth sections of the tangent bundleTM. Consider a mapping

∇ : χ(M)× χ(M) → χ(M), (X,Y ) 7→ ∇XY

satisfying

(i) ∇X(Y1 + Y2) = ∇XY1 +∇XY2
(ii) ∇X(fY ) = (Xf)Y + f∇XY
(iii) ∇X1+X2

Y = ∇X1
Y +∇X2

Y
(iv) ∇fXY = f∇XY

for arbitrary vector fieldsX, Y, Y1, Y2 and a real functionf : M → R. Such a map-
ping∇ is called a linear connection on a manifoldM.

Given the local coordinatesxi on M and the corresponding base tangent vectors
∂

∂xi , we set

∇ ∂

∂xj

∂

∂xi
=

n∑

k=1

Γk
ij(x)

∂

∂xk
,

whereΓk
ij denote the Christoffel symbols. Using the Koszul axioms we deduce that

the vector field∇XY has the coordinate expression (2.2), so that it is again called a
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covariant derivative of the vector fieldY with respect to the vector fieldX and denoted
by∇XY. This suggests the concept of a constant vector field along the integral curves
of a vector fieldY and, consequently, along any smooth curve onM. Thus if M
is connected (and hence path connected), one has the notion of parallel transport of
tangent vectors between any two points ofM along a particular curve connecting
these points. The idea of parallel transport represents the original concept leading to
the theory of connections.

If we consider a linear connection on a manifoldM as a map∇ : X(M)×X(M) →
X(M), it is easy to define the torsion of such a connection.
Definition 2.5. The mapT : X(M)× X(M) → X(M) defined by

T (X, Y ) = ∇XY −∇Y X − [X,Y ], X, Y ∈ X(M)

is called thetorsion of a linear connection∇. If T = 0 we say that∇ is torsion-free
linear connection.

The torsion is a tensor field of type(1, 2) and this allows us to define the following
concept.
Definition 2.6. Linear connection∇ = ∇ − T is called the(classical) conjugate
connectionto∇.
If the coordinate expression of a connection∇ is

dẋi = Γi
jkẋ

jdẋk,

then the equations of the conjugate connection to∇ are

dẋi = Γi
kjẋ

jdẋk,

where the symbol̇xi denotes the induced coordinates on the tangent bundleTM.
Now we can generalize the former definition of the parallel transport.

Definition 2.7. We say that the vector fieldY = Y i(t) is parallel transported along
the pathp(t), if the equation

∇Y i

dt
+

n∑

j,k=1

Γi
kj(p(t))Y k dpj

dt
= 0

is satisfied.
The pathp : I → M is called the geodetic path of a linear connection∇, if the

systemγ(t) = dp(t)
dt of the vectors tangent top(t) can be included into a vector field

Y = Y i(t) onM in such a way thatY is parallel transported alongp(t). The geodetic
pathp(t) = (xi(t)) satisfies the system of differential equations

d2xi

dt2
+

n∑

j,k=1

Γi
jk(x)

dxj

dt

dxk

dt
= 0, i = 1, . . . , n.

The pathp(t) is called a geodetic curve, shortly a geodesic, if there exists a para-
metrizationγ(t) of p(t) such thatγ(t) is a geodetic path.
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Theorem 2.1.Let (M, g) be a Riemannian space and consider the linear connection
corresponding to the metricg. Then there exists a neighborhoodU of anyx ∈ M
such that the geodesic given by two pointsp, q ∈ U is unique and it determines the
shortest path inU connecting the pointsp, q.

The following example shows the application of geodesics in classical mechanics.
But first, we recall some basic facts from classical differential geometry.

LetS be a surface with parametrizationf(u, v) and letTxS be a space of all tangent
vectors toS at the pointx ∈ S. Further, denote by

g11 =
∂f

∂u
· ∂f

∂u
, g22 =

∂f

∂v
· ∂f

∂v
, g12 = g21 =

∂f

∂u
· ∂f

∂v

the scalar products of the tangent base vectors. Then the matrix(gij) determines a
quadratic formϕ1 called the first fundamental form and the numbersgij are called the
coefficients of the first fundamental form. Consider a unitary normal vectorn at the
pointx ∈ S. If we denote

h11 = n · ∂
2f

∂u2 , h22 = n · ∂
2f

∂v2 , h12 = h21 = n · ∂2f

∂u∂v

and consider a tangent vectora = (a1, a2) ∈ TxS, then the expression
ϕ2(a) :=

∑2
i,j=1 aiajhij determines a quadratic form onTxS. Thenϕ2 is called the

second fundamental form of the surfaceS. Numbershij are called the coefficients of
the second fundamental form.

Now let us denotef1 := ∂f
∂u , f2 := ∂f

∂v and fij the second order derivatives.
Consider a unitary vectorn normal to the surfaceS and let us recall thatΓk

ij denote
the classical Christoffel symbols.

Theorem 2.2.At each point of a surfaceS the following equations hold:

fij =
2∑

k=1

Γk
ijfk + hij · n. (2.3)

These equations are called the Gauss equations.

Example 2.1.We examine the motion of a mass point of weightm bonded to a surface
S = f(u1, u2) ⊂ E3 in the force fieldF = F (x1, x2, x3). Suppose the point moves
along the pathp(t) with parametrization(u1(t), u2(t)). The corresponding expression
of such path on the surfaceS is x = x(u1(t), u2(t)). The bondage of the point moving
on the surfaceS is realized by the forceG, which is at each point perpendicular
to S. This situation practically corresponds to the frictionless motion of a ball in a
bowl caused by the gravity forceF. Let us remark that the surface really has to be
bowl-shaped so that the ball stays in it. Otherwise the ball could leave the surface
and we would loose the bondage condition. The motion equation is then of the form
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md2x(t)
dt2 = F +G. Let us denote the velocity byv(t) = dx(t)

dt . By second differentiation
together with the Gauss equations we obtain

d2x

dt2
=
∇v

dt
+ h(

dx

dt
,
dx

dt
) · n,

whereh is the second fundamental form ofS, n is its unitary normal vector and
dx
dt denotes the tangent vector to the surfaceS at the pointp(t). Let us decompose
the forceF = f 1x1 + f 2x2 + f · n into its tangential and vertical part and write
G = γ · n, whereγ is a real function. Using the Einstein summation convention, we
obtain

m
∇v

dt
− f ixi +

(
m · h(

dx

dt
,
dx

dt
)− f − γ

)
n = 0.

As the velocity in the vertical direction is zero, we have

m
∇v

dt
− f 1x1 − f 2x2 = 0

and thus a system of differential equations

m
d2ui

dt2
+ mΓi

jk

duj

dt

duk

dt
− f i = 0.

Furthermore, consider the initial conditionsui(t0) = ui
0 and dui(t0)

dt = vi
0. We find

that the motion is uniquely determined if we know the initial location of the velocity
vector tangential to the surfaceS. If F is zero vector field, the motion is realized along
geodesics and the vector of initial velocity is parallel transported along them.

2.2 CONNECTIONS

One of the most important notions in differential geometry and mathematical phy-
sics is that of a connection. In Definition2.4 we recalled the notion of a linear con-
nection.

Generalizing the idea of linear connections to fibered manifolds, we come to the
following definition of a general connection.

Definition 2.8. A general connectionon the fiber bundle(E, p,M, S) is a vector-
valued 1-formΓ ∈ Ω1(E; V E) with values in the vertical bundleV E such thatΓ ◦
Γ = Γ andImΓ = V E.

Remark (1). Geometrically, a general connectionΓ on the fiber bundlep : E → M
is defined simply as a projectionTE → V E, whereTE denotes the tangent bundle
of E, see [12] for details.

Remark (2). In the following, we omit the word general and we specify the special
characteristics of the connections if needed, e.g. principal connections.

9



Definition 2.9. Let Γ ∈ Ω1(E; V E) be a connection on a fiber bundle(E, p,M, S).
Then thecurvatureC ∈ Ω2(E, V E) of Γ is given by

C(X,Y ) =
1

2
[Γ, Γ](X,Y )

for any vector fieldsX,Y onE, where[ , ] means the Fr̈olicher-Nijenhuis bracket.
Remark (1). Note that for vector fieldsX, Y ∈ X(M) and their horizontal lifts
ΓX, ΓY ∈ X(E) with respect to the connectionΓ onE we have

C(ΓX, ΓY ) = [ΓX, ΓY ]− Γ([X, Y ]).

ThusC is an obstruction against integrability of the horizontal subbundle.
Remark (2). Equivalently to Definition2.9, we can define the curvature of a con-
nectionΓ onE → M as a map

C(Γ) : E ×M ∧2TM → V E

given by

C(Γ)(y, X, Y ) = (Γ([X, Y ])− [ΓX, ΓY ]) (y) for y ∈ E, X, Y ∈ X(M),

whereΓX means theΓ-lift of the vector fieldX. Thus in the following, the curvature
of a connectionΓ will be denoted byC(Γ).

Equivalently to the Definition2.8, any connection on the fiber bundle(Y, p,M, S) is
determined by the horizontal projectionχ = idTY −Γ, or by the horizontal subspaces
χ(TyY ) ⊂ TyY in the individual tangent spaces, i.e. by the horizontal distribution. But
every horizontal subspaceχ(TyY ) is complementary to the vertical subspaceVyY and
therefore it is canonically identified with a unique elementj1

ys ∈ J1
yY. On the other

hand, eachj1
ys ∈ J1

yY determines a subspace inTyY complementary toVyY. This
leads us to the equivalent definition, [12].
Definition 2.10. A general connectionon the fibered manifold(Y, p, M) is a section
Γ : Y → J1Y of the first jet prolongationJ1Y → Y.
In local coordinates, a general connectionΓ is given by

dyp = F p
i (x, y)dxi,

whereF p
i (x, y) are smooth functions. Using this notation, curvatureC(Γ) of a con-

nectionΓ has the following coordinate expression:

dxi = 0

dyp =

(
∂F p

j

∂xi
+

∂F p
j

∂yq
F q

i

)
dxi ∧ dxj.

(2.4)

Further, letJ̃rY → M be ther-th nonholonomic jet prolongation of a fibered
manifoldp : Y → M. In general, anr-th order nonholonomic connectionon Y is a
sectionΓ : Y → J̃rY. Such a connection is called semiholonomic or holonomic, if it
has values inJ

r
Y or in JrY , respectively.
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3 PROLONGATION OF GENERAL CONNECTIONS

3.1 FOUNDATIONS

In what follows, we recall some facts about the orders of bundle functors and several
helpful results and observations. Letp : Y → M andp : Y → M be two fibered
manifolds ands ≥ r ≤ q be three integers. We recall that two morphismsf, g : Y →
Y with the base mapsf, g : M → M determine the same(r, s, q)-jet jr,s,q

y f = jr,s,q
y g

aty ∈ Y, p(y) = x, if

jr
yf = jr

yg, js
y(f | Yx) = js

y(g | Yx), jq
xf = jq

xg.

Further, a bundle functorG on FM is said to be of the order(r, s, q) if jr,s,q
y f =

jr,s,q
y g impliesGf | GyY = Gg | GyY. Then the integerq is called the base order,s

is called the fiber order andr is called the total order ofG.
It is well known that product preserving bundle functors can be expressed in the

terms of Weil algebras. The most important result from this field is that each product
preserving bundle functorF onMf is a Weil functorF = TA determined by the Weil
algebraA, [12]. Then the iterationTA ◦ TB of two Weil functors corresponds to the
tensor productA ⊗ B of Weil algebras and natural transformationsTA → TB are in
bijection with algebra homomorphismsA → B. In [15], the fiber product preserving
bundle functors onFMm are characterized in terms of Weil algebras.

Let F be a natural bundle onMfm. TheF -vertical functor is a bundle functorV F

onFMm,n defined by

V FY =
⋃

x∈M

F (Yx), V Ff =
⋃

x∈M

F (fx),

wherefx is the restriction and corestriction off : Y → Y overf : M → M to the
fibersYx andY f(x). Clearly, if the order ofF is s, then the order ofV F is (0, s, 0).
For the tangent functorF = T we obtain the classical vertical functor. M. Doupovec
and W. M. Mikulski have recently proved, [2]

Proposition 3.1.LetG be a bundle functor onFMm,n. Then the following conditions
are equivalent:

(a) The order ofG is (0, s, 0) for somes.
(b) The base order ofG is zero.
(c) G is naturally equivalent to someF -vertical functorV F .
(d) There is anFMm,n-natural operator transforming connections onY → M into

connections onGY → M .

Further, the existence of the prolongation of higher order connections was studied
by M. Doupovec and W. M. Mikulski in [5]. They proved that ifF : FMm → FM
is a fiber product preserving bundle functor andr′ ≤ r are two integers, then there
exists a natural operator transforming ther-th order connections onY → M into the

11



r′-th order connections onFY → M if and only if F ∼= V A for some Weil algebra
A.

It is well known that an arbitrary bundle functorG on FMm,n admits a natural
operator transforming connections onY → M into connections onGY → M by
means of an auxiliary higher order linear connection onM , see [2], [12] and Section
3.4below. By Proposition3.1, if the base order ofG is not zero, then the use of suchr-
th order linear connection is unavoidable. Clearly, this is the case of all higher order jet
functors. In the rest of this section we study the prolongation of connections into the
higher order jet bundles, but we do not intend to present the complete classification
of all natural operators of the given type. Let us note, that this problem was solved
by I. Kolá̌r for the first jet prolongationJ1. More precisely, he classified all natural
operators transforming connections onY → M and classical linear connections on
the base manifoldM into connections onJ1Y → M. The generalization of such
classification to generalr-th order jet prolongations is still an open question.

3.2 VERTICAL PROLONGATION

Consider a connectionΓ : Y → J1Y on a fibered manifoldY → M . If we apply
the vertical functorV , we obtain a mapV Γ : V Y → V J1Y. Let iY : V J1Y →
J1V Y be the canonical involution constructed by H. Goldschmidt and S. Sternberg,
see also [12]. Then the composition

VΓ := iY ◦ V Γ : V Y → J1V Y

is a connection onV Y → M , which will be called thevertical prolongationof Γ.
Since this construction has geometrical character,V is an operatorJ1 Ã J1V natural
on the categoryFMm,n.

Proposition 3.2.The vertical prolongationV is the only natural operatorJ1 Ã J1V .

Let
dyp = F p

i (x, y)dxi (3.1)

be the coordinate expression ofΓ and letY p = dyp be the additional coordinates on
V Y. Then the equations ofVΓ are (3.1) and

dY p =
∂F p

i

∂yq
Y qdxi.

3.3 THE OPERATORS P (Γ, Λ) AND J r(Γ, Λ)

We recall that a linearr-th order connection onM is a linear base preserving mor-
phismΛ : TM → JrTM satisfyingπr

0 ◦ Γ = idTM , whereπr
k denotes the canonical

projection ofr-jets ontok-jets. Clearly, forr = 1 this is the classical linear connection
on M. We note that there is a bijection between the linearr-th order connections on
M and the principal connections onP rM.

12



By [12], there are two well known geometric constructions transforming a con-
nectionΓ : Y → J1Y and a classical linear connectionΛ : TM → J1TM into the
connection onJ1Y → M. First, letVΓ : V Y → J1V Y be the vertical prolongation
of Γ and letΛ∗ : T ∗M → J1T ∗M be the dual connection ofΛ. SinceJ1Y → Y is an
affine bundle with the associated vector bundleV Y ⊗ T ∗M, the sectionΓ determines
an identificationIΓ : J1Y ≈ V Y ⊗ T ∗M. Then the composition

J1Y
IΓ // V Y ⊗ T ∗M

VΓ⊗Λ∗
// J1V Y ⊗ J1T ∗M

J1(IΓ)−1

// J1J1Y (3.2)

determines a connectionP (Γ, Λ) onJ1Y → M.
On the other hand, consider ther-th order linear connectionΣ : TM → JrTM, the

lifting map γ : Y ×M TM → TY of Γ and its r-th jet extension
Jrγ : JrY ×M JrTM → JrTY. Denoting byµr : JrTY → TJrY the flow
natural transformation from [12], the composition

JrY ×M TM
id×Σ

// JrY ×M JrTM
Jrγ

// JrTY
µr

// TJrY (3.3)

is the lifting map of a connection onJrY → M, which will be denoted byJ r(Γ, Σ).

If Λ̃ : TM → J1TM is the conjugate connection ofΛ, then we have the following
result, [12]:

Proposition 3.3.P (Γ, Λ) = J 1(Γ, Λ̃) if and only ifΓ is curvature free.

We remark, that curvature of the operatorJ 1(Γ, Λ) was studied by I. Koĺǎr and A.
Cabras in [1].

3.4 THE FLOW PROLONGATION G(Γ, Σ)

The connectionJ r(Γ, Σ) is a particular case of the following general construction.
Let G : FMm,n → FM be an arbitrary bundle functor of the base orderq. Then the
couple of a connectionΓ : Y → J1Y and aq-th order linear connectionΣ : TM →
JqTM induces a connectionG(Γ, Σ) onGY → M in the following way. Consider a
vector fieldX on M and denote byΓX : Y → TY its Γ-lift. The flow prolongation
G(ΓX) of such a vector field is defined by

G(ΓX) :=
∂

∂t
|0G(expt(ΓX)),

whereexpt(ΓX) means the flow ofΓX. This vector field depends only onq-jets of
the vector fieldX. This gives rise to a map

G(ΓX) : GY ×M JqTM → TGY,

which is linear in the second factor. Then the composition

G(ΓX) ◦ (id×M Σ) : GY ×M TM → TGY
13



is the lifting map of a connectionG(Γ, Σ) on GY → M. In what follows the con-
nectionG(Γ, Σ) will be called the flow prolongation ofΓ by means ofΣ.

Clearly, forG = Jr we obtain the connectionJ r(Γ, Σ) onJrY → M, which was
constructed above and forG = J̃r we get a connectioñJ r(Γ, Σ) on J̃rY → M.
Obviously, the base order of a vertical functorG = V F is zero. Then the connection
G(Γ, Σ) does not depend onΣ andG(Γ, Σ) = VFΓ is exactly theF -vertical prolon-
gation ofΓ. In the simplest caseF = T we obtain in such a way the classical vertical
prolongationVΓ := VTΓ.

3.5 CLASSIFICATION PROBLEMS

The classification of all natural transformationsJrJs → JsJr depending on a clas-
sical linear connectionΛ on the base manifold is a very difficult problem. Up to now
this problem was solved only forr = s = 1, see [12]. By [12], the only two natural
transformationsJ1J1 → J1J1 depending on a symmetric linear connectionΛ on the
base manifold are the identity ofJ1J1 andexΛ. Further, I. Koĺǎr and M. Doupovec
have proved that the only natural transformationJrJs → JrJs is the identity.

The classification of all natural operators transforming connections onY → M and
classical linear connections onM into connections onJrY → M is also a complica-
ted problem. It was solved only forr = 1, see [12]. In particular, all natural operators
transforming a connectionΓ onY → M and a symmetric linear connectionΛ onM
into a connection onJ1Y → M are of the form

(Γ, Λ) 7→ k · P (Γ, Λ) + (1− k)J 1(Γ, Λ), k ∈ R.

If Λ is not symmetric, then the list of all natural operators contains some additional
difference tensors, see [12] for more details.

3.6 ITERATION METHOD FOR HIGHER ORDER NONHOLONOMIC

PROLONGATION

Obviously, ther-th nonholonomic prolongatioñJrY is defined by iteration. The same
method can be used to construct connections onJ̃rY → M. Consider a natural ope-
ratorA transforming a connectionΓ onY → M and a linear connectionΛ onM into
a connectionA(Γ, Λ) onJ1Y → M. Write

A1(Γ, Λ) = A(Γ, Λ)

A2(Γ, Λ) = A(A1(Γ, Λ), Λ)
...

Ar(Γ, Λ) = A(Ar−1(Γ, Λ), Λ).

ThenAr(Γ, Λ) is a connection oñJrY → M.

14



Let us now consider the caser = 2. Applying the above iteration process to the con-
nectionsP (Γ, Λ) andJ 1(Γ, Λ) on J1Y → M, we obtain the following connections
on J̃2Y → M :

P (P (Γ, Λ), Λ), J 1(J 1(Γ, Λ), Λ), P (J 1(Γ, Λ), Λ) and J 1(P (Γ, Λ), Λ).

For example, to obtain the connectionP (P (Γ, Λ), Λ), the composition (3.2) should
be replaced with

J̃2Y
IP (Γ,Λ)−−−→ V J1Y ⊗ T ∗M

VP (Γ,Λ)⊗Λ∗−−−−−−−→ J1V J1Y ⊗ J1T ∗M ≈

≈ J1(V J1Y ⊗ T ∗M)
J1(IP (Γ,Λ))−1

−−−−−−−→ J1J̃2Y, (3.4)

whereIP (Γ,Λ) is the identification of the affine bundlẽJ2Y → J1Y with the as-
sociated vector bundleV J1Y ⊗ T ∗M. Quite similarly to (3.3), the lifting map of
J 1(J 1(Γ, Λ), Λ) is of the form

J̃2Y ×M TM
id×Λ−−→ J̃2Y ×M J1TM

J1γJ 1(Γ,Λ)−−−−−−→ J1TJ1Y
µ−→ T J̃2Y, (3.5)

whereγJ 1(Γ,Λ) is the lifting map of the connectionJ 1(Γ, Λ). Quite analogously we
obtain the remaining mixed operators.

4 EHRESMANN PROLONGATION

Given two higher order connectionsΓ : Y → J̃rY andΓ : Y → J̃sY, the product
of Γ andΓ is the(r + s)-th order connectionΓ ∗ Γ : Y → J̃r+sY defined by

Γ ∗ Γ = J̃sΓ ◦ Γ.

If both Γ andΓ are of the first order, thenΓ ∗ Γ : Y → J̃2Y is semiholonomic if
and only ifΓ = Γ andΓ ∗ Γ is holonomic if and only ifΓ is curvature-free, [8], [17].

Considering a connectionΓ : Y → J1Y, we can define anr-th order connection
Γ(r−1) : Y → J̃rY by

Γ(1) := Γ ∗ Γ = J1Γ ◦ Γ, Γ(r−1) := Γ(r−2) ∗ Γ = J1Γ(r−2) ◦ Γ.

The connectionΓ(r−1) is called the(r − 1)-st prolongation ofΓ in the sense of Ehre-
smann, shortly(r − 1)-st Ehresmann prolongation. By [8], the values ofΓ(r−1) lie
in the semiholonomic prolongationJ

r
Y andΓ(r−1) is holonomic if and only ifΓ is

curvature free, [17]. Let yp
i = F p

i (x, y) be the coordinate expression of a connection

Γ : Y → J1Y. Then the connectionΓ(1) = Γ ∗ Γ : Y → J
2
Y has equations

yp
i = F p

i , yp
ij =

∂F p
i

∂xj
+

∂F p
i

∂yq
F q

j .

For second order connections we have the following identification
15



Proposition 4.1.Second order nonholonomic connections onY → M are in bijection
with triples(Γ, Γ, Σ), whereΓ, Γ : Y → J1Y are first order connections onY → M

andΣ : Y → V Y ⊗ 2⊗T ∗M is a section.

Now we come to the main result of this section. In particular, we find all natural
operators transforming first order connectionsΓ : Y → J1Y into second order se-
miholonomic connectionsΣ : Y → J

2
Y. Taking into account the notation from the

previous section, we setG = idFMm,n
, E = J

2
andF = J1.

J1Y

²²

J̃2Y

²²

///o/o/o/o/o/o/o

Y

Γ

??

Y

Γ∗Γ

__

(4.1)

We remind the following property ofJ
2
Y , [12]. Given the local coordinates

(xi, yp, yp
i , y

p
ij) on J

2
Y , we have a natural mape : J

2
Y → J

2
Y with the coordi-

nate expression
yp

i = yp
i , yp

ij = yp
ji.

Remark. J. Pradines introduced a natural mapJ
2
Y → J

2
Y with the same coor-

dinate expression. We use the notation of [12], where the mape is obtained from
the natural exchange mapeΛ : J1J1Y → J1J1Y as a restriction to the subbundle
J

2
Y ⊂ J1J1Y . Note that whileeΛ depends on the linear connectionΛ on M , its re-

strictione is independent of any auxiliary connection. We remark, that originally the
mapeΛ was introduced by M. Modugno.

I. Kolá̌r and M. Modugno proved

Proposition 4.2.All natural transformationsJ
2 → J

2
form a one parametric family

X 7→ kX + (1− k)e(X), k ∈ R.

Now we are ready to formulate a new result

Proposition 4.3. All natural operators transforming first order connectionΓ : Y →
J1Y into second order semiholonomic connectionY → J

2
Y form a one parametric

family
Γ 7→ k · (Γ ∗ Γ) + (1− k) · e(Γ ∗ Γ), k ∈ R. (4.2)

Remark. In other words, all natural operators from Proposition4.3 can be obtained
from the Ehresmann prolongationΓ ∗Γ by applying all natural transformationsJ

1 →
J

2
from Proposition4.2.
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Clearly, (4.2) can be written also as

Γ 7→ (Γ ∗ Γ) + t(Γ ∗ Γ− e(Γ ∗ Γ)), t ∈ R. (4.3)

We recall, that the difference tensorδ(U) of a semiholonomic 2-jetU ⊂ J
2
Y is the

mapδ : J
2
Y → V Y ⊗ ∧2T ∗M defined byδ(U) := U − e(U), in local coordinates

δ(yp
ij) = yp

ij − yp
ji.

Obviously, in our situationδ corresponds to the termΓ ∗ Γ− e(Γ ∗ Γ) in (4.3).

Further, we can consider the connectionΓ ∗ Γ as a sectionY → J
2
Y. The bundle

J
2
Y → J1Y is an affine bundle with the associated vector bundle

V Y ⊗ 2⊗T ∗M = (V Y ⊗ S2T ∗M)⊕ (V Y ⊗ ∧2T ∗M),

where the second part is determined by the values of the difference tensorδ. The coor-
dinate expression of (4.3) implies, that ifΓ is curvature free, then the difference tensor
is zero and thus the associated vector bundle is reduced to the symmetric part. This
corresponds to the subbundleJ2Y → J1Y. We showed above, that ifΓ is curvature
free, the connectionΓ∗Γ has values in holonomic jet prolongationJ2Y, see also [17].

We remark that A. Cabras and I. Kolá̌r have systematically studied the prolongation
of second order connections to vertical Weil bundlesV AY → M . Further, M. Dou-
povec and W. M. Mikulski [5] have characterized all bundle functorsF on FMm,
which admit natural operators transforming higher order connections onY → M into
higher order connections onFY → M. The same authors have also introduced the
prolongation of higher order connections to higher order jet bundles by means of some
auxiliary linear connection∆ on the base manifold, [4].

It is interesting to pose a question whether the connectionP (Γ, Λ) on J1Y → M
defined by the composition (3.2) could be generalized to some connectionP r(Γ, Λ)
onJrY → M . Clearly, the composition (3.2) essentially depends on the identification
IΓ : J1Y → V Y ⊗ T ∗M given by

Y p
i = F p

i − yp
i .

It is well known thatJrY → Jr−1Y is an affine bundle with the associated vector
bundleV Y ⊗SrT ∗M overJr−1Y. To generalize (3.2) to some connectionP r(Γ, Λ) :
JrY → J1JrY , it is necessary to replaceIΓ by some base preserving morphism

f : JrY → V Y ⊗ SrT ∗M. (4.4)

Denote byC(Γ) the curvature of connectionΓ. Clearly,C(Γ) can be considered as a
sectionY → V Y ⊗ ∧2T ∗M with the coordinate expression

C(Γ) ≡
(

∂F p
j

∂xi
+

∂F p
j

∂yq
F q

i

)
∂

∂yp
⊗ (dxi ∧ dxj).
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By [9] all natural operators transforming connectionsΓ : Y → J1Y into sections

Y → V Y ⊗ 2⊗T ∗M are of the form

Γ 7→ k · C(Γ), k ∈ R.

If we denote byi the canonical projectionJ2Y → Y and byiC(Γ) the composition

C(Γ) ◦ i : J2Y → V Y ⊗ 2⊗T ∗M , we have

Proposition 4.4. All natural operators transforming connectionsΓ : Y → J1Y into

base preserving morphismsJ2Y → V Y ⊗ 2⊗T ∗M, are of the form

Γ 7→ k · iC(Γ), k ∈ R.

As C(Γ) has values inV Y ⊗ ∧2T ∗M ⊂ V Y ⊗ 2⊗T ∗M, we have

Corollary 4.1. The only natural operator transforming connectionsΓ : Y → J1Y
into the base preserving morphismsJ2Y → V Y ⊗ S2T ∗M is the zero one.

SoIΓ has no analogy (4.4) for r = 2. On the other hand we verify easily

Proposition 4.5. The only natural operator transforming connectionsΓ : Y → J1Y
into the base preserving morphismsJ1Y → V Y ⊗ T ∗M is

Γ 7→ IΓ.

This proves that there is no analogue to the operatorP (Γ, Λ) for higher order jet
prolongations.

5 PRINCIPAL PROLONGATION

Given a principal bundleP → M with a structure groupG, one can define nonholo-
nomic principalr-th order connections onP asG-invariant sectionsP → J̃rP, [17].
Let dimM = m. The r-th order principal prolongationW rP of a principal bundle
P → M is defined as the space of allr-jets at(0, e) ∈ Rm ×G of all local principal
bundle isomorphismsRm × G → P, wheree ∈ G denotes the unit, [12]. Denoting
by P rM ther-th order frame bundle, we have the natural identification

W rP = P rM ×M JrP. (5.1)

Further, W rP → M is a principal bundle with the structure group
W r

mG = Jr
(0,e)(R

m ×G,Rm ×G)(0,−), i.e.

W r
mG = Gr

m × T r
mG (5.2)

as a set. HereGr
m = invJr

0(Rm,Rm)0 and T r
mG = Jr

0(Rm, G). For any
(A,B), (A′, B′) ∈ Gr

m × T r
mG, the multiplicationµ : W r

mG × W r
mG → W r

mG
is given by

µ ((A,B), (A′, B′)) = (A ◦ A′, (B ◦ A′).B′) , (5.3)
18



where the dot is the multiplication in the Lie groupT r
mG and◦ is the composition of

jets, see [12]. This defines onW r
mG the structure of semidirect product

W r
mG = Gr

m o T r
mG. (5.4)

If we replace holonomic jets by nonholonomic or semiholonomic ones, we ob-
tain the nonholonomic or semiholonomic principal prolongationsW̃ rP and W

r
P,

respectively. Quite analogously to (5.1), (5.4) we have

W̃ rP = P̃ rM ×M J̃rP, W
r
P = P

r
M ×M J

r
P

and
W̃ r

mG = G̃r
m o T̃ r

mG, W
r
mG = G

r
m o T

r
mG.

Moreover, we have a natural identification

W̃ r(W̃ sP ) = W̃ r+sP

of principal bundle structures with corresponding structure groups.
In what follows all connections on the principal bundleP → M are supposed to be
principal.

6 CONNECTIONS ON PRINCIPAL PROLONGATIONS

We remark that the following part of the thesis can be found in [16].
Let Γ : P → J1P be a connection onP → M andΛ : P 1M → J1P 1M be a

linear connection. By [13], Γ andΛ induce the connectionp(Γ, Λ) on W 1P → M,
which is defined in the following way. First, we define a subspace

R(Γ) := P 1M ×M Γ(P ) ⊂ P 1M ×M J1P = W 1P.

This is a reduction of the principal bundleW 1P → M to the subgroup
G1

m o i(G) ⊂ W 1
mG, wherei is an injectionG ↪→ T 1

mG. ThereforeR(Γ) can be
identified withP 1M ×M P and the product connectionΛ × Γ on P 1M ×M P can
be identified with a connection inR(Γ). Finally, this connection can be uniquely ex-
tended into a connectionp(Γ, Λ) in W 1P. Clearly,p(Γ, Λ) is fully determined by its
value in

(u, Γ(v)) ∈ R(Γ) ⊂ W 1P.

Let
∆(u) = j1

xλ ∈ J1P 1M, λ : M → P 1M

and
Γ(v) = j1

xϕ ∈ J1P, ϕ : M → P.

Then we have
(Γ ∗ Γ)(v) = j1

x(Γ ◦ ϕ)
19



so that
p(Γ, Λ)(u, Γ(v)) = (Λ(u), (Γ ∗ Γ)(v)) = j1

x(λ(y), Γ(ϕ(y))).

This formula can be used to obtain the coordinate expression ofp(Γ, Λ). If we denote
the local coordinates onW 1P by

(xi, xi
j, y

p, yp
i ),

the equations ofp(Γ, Λ) are

dyp = Γp
i (x, y)dxi (6.1)

dxi
j = Λi

lkx
l
jdxk (6.2)

dyp
i =

(
∂Γp

k

∂xj
xk

i +
∂Γp

k

∂yq
Γq

jx
k
i + Γp

l Λ
l
kjx

k
i

)
dxj, (6.3)

[7], where (6.1) and (6.2) are the coordinate expressions of the connectionsΓ andΛ
respectively.

On the other hand, the couple(Γ, Λ) induces the connectionW1(Γ, Λ) on
W 1P → M by means of the flow prolongation with the equations (6.1), (6.2) and

dyp
i =

(
∂Γp

j

∂xk
xk

i +
∂Γp

j

∂yq
yq

i + Γp
kΛ

k
ljx

l
i

)
dxj, (6.4)

see [7]. By Proposition3.3, there is an interesting relation between general connecti-
onsP (Γ, Λ) andJ 1(Γ, Λ) on J1 → Y . Now we present a similar relation between
principal connectionsp(Γ, Λ) andW1(Γ, Λ̃) on W 1P. We first recall the concept of
the curvatureC(Γ) of principal connectionΓ on P → M. To deduce the coordinate
expression we have to use the structure equations ofΓ, see [12]. Let the equations of
Γ be of the formdyp = Γp

i dxi. Further, denote bycp
qr the structure constants of the

Lie groupG and byRp
ij the curvature tensor. ThenC(Γ) is determined by

Rp
ij = Γp

[ij] + cp
qrΓ

q
iΓ

r
j,

whereΓp
[ij] means an antisymmetrization ofΓp

ij in the subscripts, see [12] for details.

Now if Λ̃ is the conjugate connection ofΛ, I. Kolá̌r and G. Virsik in [13] proved
Proposition 6.1.p(Γ, Λ)−W1(Γ, Λ̃) = C(Γ).

Remark. ForW rP, W
r
P andW̃ rP, we have not found a similar construction to that

of the operatorp(Γ, Λ), yet. Thus the generalization of Proposition6.1to higher order
principal prolongations is still an open question.

6.2 CONSTRUCTION OF CONNECTIONS ON NONHOLONOMIC PRINCIPAL

PROLONGATIONS W̃ rP

I. First, given two connectionsΓ : P → J̃r+1P andΛ : P̃ rM → J1P̃ rM, we can
construct a connection

κr+1(Γ, Λ) : W̃ rP → J1W̃ rP, (6.5)
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for the groupoid form see also [7]. Let us denote byΓ1 := πr+1
r Γ : P → J̃rP

the underlying connection of orderr − 1, whereπr+1
r : J̃r+1P → J̃rP is the jet

projection. Write

R(Γ1) := P̃ rM ×M Γ1(P ) ⊂ P̃ rM ×M J̃rP = W̃ rP.

One finds easily, thatR(Γ1) is a reduction of the principal bundlẽW rP to the sub-
group G̃r

m × i(G) ⊂ W̃ r
mG, where i : G → T̃ r

mG is an injection. As every
Γ(v) ∈ J̃r+1P can be considered as an element ofJ1J̃rP over Γ1(v), we obtain
in such a way a map

ϕ : R(Γ1) → J1P̃ rM ×M J1J̃rP = J1(P̃ rM ×M J̃rP ) = J1W̃ rP

defined by

ϕ(u, Γ1(v)) = (Λ(u), Γ(v)) for (u, v) ∈ P̃ rM ×M P.

Thenϕ is right invariant and thus it can be extended into the connection onW̃ rP,
which will be denoted byκr+1(Γ, Λ).

II. Now letΓ : P → J1P be a connection onP → M andΛ : P̃ rM → J1P̃ rM be a
connection oñP rM. Using (6.5) and the Ehresmann prolongationΓ(r) : P → J̃r+1P
of Γ, we have the connection

p̃r(Γ, Λ) := κr+1(Γ
(r), Λ) (6.6)

onW̃ rP → M. Denoting byp(Γ, Λ) the connection from previous section, we have

p(Γ, Λ) = p1(Γ, Λ) = κ2(Γ ∗ Γ, Λ).

III. Suppose we have a connectionΓ : P → J1P and a connectionΛ : P̃ rM →
J1P̃ rM. Let us note thatΛ can be interpreted as anr-th order linear connection de-
noted by the same symbolΛ : TM → J̃rTM. Then the flow prolongation ofΓ with
respect toΛ induces the connectioñWr(Γ, Λ) onW̃ rP → M.

IV. Further, quite analogously to the nonholonomic jet prolongationJ̃rY → M, we
can construct connections oñW rP → M by means of iteration. Indeed, we have
W̃ 1P = W 1P andW̃ rP = W 1(W̃ r−1P ). For example, starting from connections
Γ : P → J1P, Λ : P 1M → J1P 1M and using the basic operatorsp(Γ, Λ) and
W1(Γ, Λ) onW̃ 1P, we have the following connections oñW 2P :

p(p(Γ, Λ), Λ), p(W1(Γ, Λ), Λ), W1(p(Γ, Λ), Λ) and W1(W1(Γ, Λ), Λ).

Obviously, such an iteration process can be applied for an arbitrary orderr.
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6.3 CONSTRUCTION OF CONNECTIONS ON SEMIHOLONOMIC PRINCIPAL

PROLONGATIONS W
r
P

I. Given two principal connectionsΓ : P → J1P andΛ : P
r
M → J1P

r
M we

construct a connection
pr(Γ, Λ) : W

r
P → J1W

r
P. (6.7)

Denote byΓ(r−1) : P → J̃rP the Ehresmann prolongation ofΓ. By Section3.1, this
connection has values inJ

r
P. Further,Γ(r) : P → J̃r+1P is of the form

Γ(r) = Γ(r−1) ∗ Γ = J1Γ(r−1) ◦ Γ : P → J
r+1

P.

This yields that forv ∈ P, Γ(r)(v) ∈ J
r+1

P is the element ofJ1J
r
P over

Γ(r−1)(v) ∈ J
r
P. Write

R(Γ(r−1)) := P
r
M ×M Γ(r−1)(P ) ⊂ P

r
M ×M J

r
P = W

r
P.

Quite analogously to the nonholonomic principal prolongation we prove thatR(Γ(r−1))
is a reduction ofW

r
P to the subgroupG

r
m × i(G) ⊂ W

r
mG, wherei is the injection

of G into T
r
mG. Then we can define a map

ϕ : R(Γ(r−1)) → J1P
r
M ×M J1J

r
P = J1W

r
P

by
ϕ(u, Γ(r−1)(v)) = (Λ(u), Γ(r)(v)).

This defines a connectionpr(Γ, Λ) onW
r
P → M.

II. Let Γ : P → J1P be a connection andΛ : TM → JrTM be anr-th order linear
connection onM. Using the flow prolongation ofΓ with respect toΛ, we have the
connectionWr

(Γ, Λ) onW
r
P → M.

6.4 CONSTRUCTION OF CONNECTIONS ON HOLONOMIC PRINCIPAL

PROLONGATIONS W rP

I. Let Γ : P → J1P andΛ : P rM → J1P rM be principal connections and suppose
thatΓ is curvature-free. By [17], the Ehresmann prolongationΓ(r−1) : P → J̃rP is
holonomic. Quite analogously to the connection (6.7) from 6.3 we can construct the
connectionpr(Γ, Λ) : W rP → J1W rP. For example,p2(Γ, Λ) : W 2P → J1W 2P
is of the form

p2(Γ, Λ) = κ3(Γ
(2), Λ).

II. The flow prolongation ofΓ : P → J1P with respect to anr-th order linear con-
nectionΛ : TM → JrTM defines the connectionWr(Γ, Λ) onW rP → M.
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7 IDENTIFICATIONS OF CONNECTIONS

In this section we focus on the description of connections on higher order princi-
pal prolongations by means of the couples of connections, one on the higher order
frame bundle of the base manifold and the other being the(r + 1)-st order princi-
pal connection onP . We discuss the connections on all three principal prolongations
W̃ rP, W

r
P andW rP, respectively. We start with the identification of the connecti-

ons onW̃ 1P = W
1
P = W 1P. Let ∆ : W 1P → J1(W 1P ) be a connection on

W 1P. Further letp1 : W 1P → P 1M andp2 : W 1P → P be two canonical principal
bundle projections. Clearly,p1∆ is the connection onP 1M . If we setΓ = p2∆, then
we can construct

pr2∆(u, Γ(v)) ∈ J1J1P for (u, v) ∈ P 1M ×M P, (7.1)

wherepr2 means the projection onto the second argument. By [6], (7.1) lies in J
2
P

and is independent ofu. Thus (7.1) defines the second order connection onP denoted
by µ(∆) : P → J

2
P . Using this notation I. Koĺǎr and G. Virsik in [13] proved

Proposition 7.1. The map∆ 7→ (µ(∆), p1∆) establishes a bijection between con-
nections onW 1P and pairs consisting of a second order semiholonomic connection
onP and a classical linear connection onM .

Now we present the generalization of this proposition, see also [16]. For the grupoid
version of the following properties see [11].

Proposition 7.2.There is a bijection between the connections onW̃ rP and the couples
consisting of the connection oñP rM and the nonholonomic connection of order
(r + 1) onP .

Proof. First, given a couple of connections(Λ, Γ), whereΛ : P̃ rM → J1P̃ rM

andΓ : P → J̃r+1P, we have constructed a connectionκr+1(Γ, Λ) on W̃ rP , see
Section6.2. On the other hand, letΩ : W̃ rP → J1W̃ rP be a connection. We are
going to find a couple(Λ, Γ), which corresponds toΩ. Write p1 : W̃ rP → P̃ rM and
p2 : W̃ rP → P for the projections and set

Λ := p1Ω, Γ := p2Ω.

ThenΛ is a connection oñP rM andΓ is a connection onP. Furthermore, consider
the Ehresmann prolongationΓ(r−1) : P → J̃rP. For (u, v) ∈ P̃ rM ×M P we have

Ω(u, Γ(r−1)(v)) ∈ J1W̃ rP = J1P̃ rM ×M J1J̃rP.

The second projectionpr2 yields

pr2Ω(u, Γ(r−1)(v)) ∈ J1J̃rP = J̃r+1P. (7.2)
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One verifies directly that this is independent ofu. Hence (7.2) determines a map

Ω∗ : P → J̃r+1P. (7.3)

Obviously, this map isG-invariant, so it is an(r + 1)-st order principal connection on
P. Finally, the mappingΩ 7→ (p1Ω, Ω∗) determines the requuired bijection.

Using the notation (7.3) from the previous proof, we obtain directly

Corollary 7.1. Let p̃r(Γ, Λ) be the connection(6.6) on W̃ rP. Then we have
(p̃r(Γ, Λ))∗ = Γ(r). In particular, for r = 1 we obtain(p(Γ, Λ))∗ = Γ ∗ Γ.

Next we describe connections onW
r
P by means of a couple of connections(Λ, Σ),

whereΛ : P
r
M → J1P

r
M is a connection onP

r
M andΣ : P → J

r+1
P is a

semiholonomic(r + 1)-st order connection onP .

Proposition 7.3. There is a bijection between the connections onW
r
P and couples

consisting of a connection onP
r
M and the(r+1)-st order semiholonomic connection

onP .

Remark. The same proof as that used in the Thesis is not possible for the description
of connections on the holonomic principal prolongationW rP because of the additio-
nal assumption on the connectionΓ onP to be curvature free.

8 CONCLUSIONS

We showed several generalizations concerning prolongations of connections. We
first treated the general connections and described the construction of a connection
on r-th order jet prolongation of a fibered manifold by means of first order gene-
ral connection and a linear connection on the base manifold. We also determined all
natural operators transforming a first order connection into ther-th order general con-
nection by means of the Ehresmann prolongation. We used these results to describe
the connections on the higher order principal prolongations and showed some useful
identifications. Some of these results were published in [16]. We also distinguished
the holonomic, semiholonomic and nonholonomic principal or jet prolongations, re-
spectively. Yet, the complete description of the connections onr-th order principal
prolongations is still an open question.
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2004, 212-216.

• Connections on higher order principal prolongations, to appear in Rendiconti
del Circolo Matematico di Palermo.
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10 PŘEHLED

Teorie kalibrǎcně p̌rirozeńych opeŕator̊u je úzce spojena s prodlužováńım hlavńıch
bandl̊u ve smyslu praćı C. Ehresmanna a I. Kolá̌re. Ti totiž zavedli hlavńı prodloǔzeńı
W r

mG Lieovy grupy G a hlavńı prodloǔzeńı W rP hlavńıho bandluP → M po-
moćı terminologie jet̊u. D. J. Eck p̌ritom doḱazal, že kǎzdý kalibrǎcně p̌rirozeńy
bandl m̊uže b́yt zkonstruov́an t́ımto zp̊usobem. Zcela źasadńım se pro fyziḱalńı účely
st́avá kalibrǎcně p̌rirozeńy bandl prvńıho hlavńıho prodloǔzeńı W 1P . Je to hlavńı
bandl, kteŕy lze vyjáďrit ve tvaru W 1P = P 1M ×M J1P , se strukturńı grupou
W 1

mG = G1
m o T 1

mG, kde G je strukturńı grupa hlavńıho bandluP → M , G1
m je

diferencíalńı grupařádu 1 dimenzem = dimM aT 1
m je funktorm- dimenziońalńıch

rychlost́ı prvńıho řádu.
V posledńı dob̌e se ov̌sem ukazuje,̌ze ke studiu ňekteŕych ot́azek teoreticḱe fyziky

týkaj́ıćıch se teorie polı́ je poťreba studovat i hlavnı́ prodloǔzeńı obecňe r-téhořádu.
Zde je v̌sak situace slǒzitějš́ı, protǒze hlavńı prodloǔzeńı vyš̌śıho řádu, stejňe jako
jetové prodloǔzeńı fibrovańych variet, se rozpadá na p̌rı́pady neholonomńıho, semi-
holonomńıho a anholonomńıho hlavńıho prodloǔzeńı W̃ rP, W

r
P a W rP, kteŕe je

poťreba studovat zvlá̌st’ . Dodejme,̌ze pro fyziḱalńı účely je nejd̊uležitějš́ı holonomńı
přı́pad. Źakladńı otázkou jsou pak samozřejmě konstrukce konexı́ na ťechto kalibrǎcně
přirozeńych bandlech, které budou vyǔźıvat hlavńı konexi naP a konexi na bandlu
reper̊u vyš̌śıho řáduP rM. Tento proces se pak nazývá prodlǔzováńı hlavńıch konex́ı.
Známy jsou i konstrukce vyǔźıvaj́ıćı hlavńı konexi naP a konexi naP 1M .

Prodlǔzováńı hlavńıch konex́ı vycháźı z technik zńamých p̌ri prodlužováńı ko-
nex́ı obecńych. Souhrnňe jsou tyto procesy popsány v [12]. Ukazuje se nap̌rı́klad,
že źasadńım p̌rirozeńym opeŕatorem p̌reváďej́ıćım konexiΓ : Y → J1Y na fibro-
vańe varieťe Y → M na konexir-téhořáduΓ(r) : Y → J

r
Y je tzv. Ehresmannovo

prodloǔzeńı konexeΓ. Dále jsou zńamy postupy pro konstrukci konexı́ na jetov́em
prodloǔzeńı J1Y fibrovańe varietyY → M pomoćı konexe naY a linéarńı konexe
na M. Jedńım z nich je tokov́e prodloǔzeńı oznǎcovańe J 1. Dalš́ım je konstrukce,
kterou zavedl I. Koĺǎr v [9]. Ta využ́ıvá afinńı strukturu bandluJ1J1Y → J1Y a
přirozeńe zobrazeńı J1TY → TJ1Y , kteŕe zavedli L. Mangiarotti a M. Modugno.
Pomoćı těchto fakt̊u lze pak z konexeΓ naY a linéarńı konexeΛ naM sestrojit ko-
nexi P (Γ, Λ) na J1Y. Ukazuje se,̌ze pŕavě opeŕatory P a J 1 hraj́ı zásadńı roli při
zkouḿańı vlastnost́ı hlavńıch konex́ı pomoćı asociovańych bandl̊u.

V této disertǎcńı práci jsou uḱaźany konstrukce operátor̊u prodlǔzuj́ıćıch obecńe
konexe na jetov́e prodloǔzeńı r-tého řádu. D́ale je zde doḱaźano,že Ehresmannovo
prodloǔzeńı Γ(r) obecńe konexeΓ na fibrovańe varieťe Y → M je jedińy přirozeńy
opeŕator p̌reváďej́ıćı obecnou konexi prvńıho řádu na semiholonomnı́ konexi druh́eho
řádu naY. Tento fakt je pak poǔzit při hledáńı konstrukćı konex́ı na hlavńıch prod-
loužeńıch vy̌šśıho řádu. Je zde uveden také soǔradnicov́y popis takov́ych opeŕator̊u
pro r = 2. Nakonec jsou tyto postupy aplikovány p̌ri prodlužováńı hlavńıch konex́ı.
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