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1 INTRODUCTION

We introduce a part of the theory of gauge-natural operators and mention some
possible applications of modern differential geometry in mathematical physics. First
we recall some basic facts from differential geometry such as parallel transport, geode-
sics and linear connections. We also show a direct application of differential geometry
in classical mechanics.

Generalizing linear connections on manifolds we get connections on fibered mani-
folds and adding a general structure grawipve introduce the principal bundles and
principal connections. In what follows we use the theory of jets and the corresponding
notation used in12).

For the study of principal connections on higher order principal prolongations we
use some techniques of finding general connections on higher order jet prolongations
by means of a linear connection on the base manifold. These in fact are natural opera-
tors transforming a connection on the fibered maniféld- M into a connection on
ther-th order jet prolongation by means of a linear connection on the base manifold,
see [/]. We are going to show the constructions on the first order jet prolongation in
detail and then we generalize for higher orders. We also distinguish between the holo-
nomic, semiholonomic and nonholonomic higher order jet prolongations, respectively.

Finally, given a principal bundlé> — M, it is well known that the--th principal
prolongationiV" P of P has many applications in differential geometry. For example,
if £/ is an arbitrary fiber bundle associatediothen ther-th order jet prolongation
J"E of E'is associated tbl’” P. The gauge-natural bundle functdf” plays a funda-
mental role also in the theory of gauge-natural bundles/1&j; pvery gauge-natural
bundle is a fibre bundle associated to the buftfe” of certain order. We show se-
veral constructions of principal connectionsidff P by means of a linear connection
on the base manifold/. Similarly to general connections, these are the gauge-natural
operators transforming a connection on the principal bundle into a connection on its
principal prolongation by means of a linear connection on a base manifold. We again
distinguish between the holonomic, semiholonomic and nonholonomic higher order
principal prolongations, respectively. We provide the exact coordinate formula for
connections on the second order principal prolongation and show several constructi-
ons of connections on higher order principal prolongations.

The theory of gauge-natural operators, gauge-natural bundles and principal con-
nections can be applied in physics, for example in quantum mechanics for studying
the spin structures, seg4).

The aim of the thesis is to introduce the constructions of connections on higher
order principal prolongations. An important part is devoted to prolongation of general
connections, which is then used as a tool to achieve the main goal.



2 BASIC DEFINITIONS
2.1 CLASSICAL DIFFERENTIAL GEOMETRY

Let (M, g) be ann-dimensional Riemannian manifold and denote (y;(z)),

1,7 = 1,...,nthe coordinate matrix of the metric We can define
I~y (Ogq Ogq; Ogi
F?j:_zgkl< gz{_|_ gl?_ gz}y))
2 — ouw  Out  Ou
where(g" (z)) stands for the inverse matrix 6f;;(x)) and(u’), i = 1,...,n are lo-

cal coordinates of\/. Ffj are called the Christoffel symbols of the Riemannian metric
g. We recall that a vector field is a section of the tangent buidle-> T M.

Definition 2.1. We say that a vector field(t) = (v(¢)) is parallel transported along
the pathp : I — M, p(t) = p'(t), if

dvt dp”
+ 3 Tilp(t)’ == =o. (2.1)
k=1

Symboll means a real interval.

This definition is independent of the choice of coordinatesMdnAs the vector
v(ty) determines an initial condition im(t, ), the system of differential equatiori®.1)
determines the parallel transportdf ) uniquely. But if we transport the vector along
different paths, we obtain different results, see Figk where we move a vector
from the pointS' to the pointB5.

Figure 2.1:Parallel transport



Further, we can define a covariant derivative along the given path.
Definition 2.2. Given a systemv(¢) of tangent vectors along the patiit) on the
Riemannian manifold M/, g), we define a covariant derivativ%j% = (%—i}“) by
the coordinate expression

Vol do! ; dp
R D I N

The operation of covariant derivative can be easily extended to the derivative along
vector fields. Let us start with two vector field§ Y and their coordinate expression
Xi(x),Yi(x) on (M, g). At the pointz € M consider a pathp(t) such thatd%—(f) =
X (x). Further, consider a system of tangent veclio(g(¢)) along the path(t). We
directly obtain the coordinate expression of the vegtéw in the form

> (M + FZMW’“(%‘)) X/ (x). (2.2)

— oxJ
jik=

Definition 2.3. The vector field2.2) is called the covariant derivative of the vector
field Y with respect to the vector field and we denote it bW x Y.

Finally, generalizing the parallel transport for an arbitrary manifaldwe can de-
fine the linear connection. We introduce the axiomatic approach given by
J. L. Koszul.

Definition 2.4. Let x (M) be the set of all vector fields on the manifdld, that is the
set of all smooth sections of the tangent buriife. Consider a mapping

Vix(M) x x(M) = x(M), (X,Y)— VxY

satisfying
(l) YX(Yl +Ys) =VxY; +_VXY2
(i) Vx(fY)=(Xf)Y + fVyY
(i) VxixY =VxY+VyY
(IV) Vf)(Y fVXY
for arbitrary vector fieldsX, Y, Y7, Y5 and a real functiorf : M — R. Such a map-
ping V is called a linear connection on a manifdid.

Given the local coordinates’ on M and the corresponding base tangent vectors

9 \e set

ort’

amJ 8:1:Z Z I 8:1:’“’

wherePk denote the Christoffel symbols Using the Koszul axioms we deduce that

the vector fieldV xY has the coordinate expressi@hd), so that it is again called a
6



covariant derivative of the vector field with respect to the vector field and denoted
by V xY. This suggests the concept of a constant vector field along the integral curves
of a vector fieldY and, consequently, along any smooth curveldn Thus if M
Is connected (and hence path connected), one has the notion of parallel transport of
tangent vectors between any two points/df along a particular curve connecting
these points. The idea of parallel transport represents the original concept leading to
the theory of connections.

If we consider a linear connection on a maniféllas amapv : X(M)xX(M) —
X(M), itis easy to define the torsion of such a connection.
Definition 2.5. The mapl" : X(M) x X(M) — X(M) defined by

T(X,Y)=VxY —VyX — [X,Y], X,Y €X(M)

Is called thetorsion of a linear connectiolV. If T' = 0 we say thalV is torsion-free
linear connection.

The torsion is a tensor field of tygé, 2) and this allows us to define the following
concept.
Definition 2.6. Linear connectiorvV = V — T is called the(classical) conjugate
connectiorto V.
If the coordinate expression of a connecthans

di' = TIa/ di”,
then the equations of the conjugate connectioW tare
di' = T},;4/di",

where the symbat’ denotes the induced coordinates on the tangent bintile

Now we can generalize the former definition of the parallel transport.
Definition 2.7. We say that the vector fieltr = Y'(¢) is parallel transported along
the pathp(t), if the equation

VY? ; kdpj B
3T )Y =0

jk=1

n

Is satisfied.

The pathp : I — M is called the geodetic path of a linear connect\dnif the
systemny(t) = dﬂ—g) of the vectors tangent to(¢) can be included into a vector field
Y = Y(t) on M in such a way that’ is parallel transported alongt). The geodetic

pathp(t) = (z'(t)) satisfies the system of differential equations

A2zt " ‘ da’ dax*
I A =1.....n.
dt2 +]%::1 jk(x) dt dt Y [ ) 7n

The pathp(t) is called a geodetic curve, shortly a geodesic, if there exists a para-
metrizationy(¢) of p(t) such thaty(¢) is a geodetic path.
7



Theorem 2.1.Let (M, g) be a Riemannian space and consider the linear connection
corresponding to the metrig. Then there exists a neighborhobdof anyx € M
such that the geodesic given by two pointg € U is unique and it determines the
shortest path i/ connecting the pointg, q.

The following example shows the application of geodesics in classical mechanics.
But first, we recall some basic facts from classical differential geometry.

Let S be a surface with parametrizatigitu, v) and let7,. S be a space of all tangent
vectors toS at the pointz € S. Further, denote by

_of of _of of _ . _9f of
gll—au o0 922—8U 9 912—921—au 90

the scalar products of the tangent base vectors. Then the niatrjxdetermines a
quadratic formp, called the first fundamental form and the numbgysare called the
coefficients of the first fundamental form. Consider a unitary normal vectirthe

pointx € S. If we denote

0 f 0 f 0 f
hii=n-—%, hp=n-—-=, hiy=hy =n-
11=n 0w’ 22 =1 902’ 12 21 =1 Judv
and consider a tangent vectar = (a',a*) € T,S, then the expression

©o(a) = Z?,j:l a'a’h;; determines a quadratic form @n.S. Theny, is called the
second fundamental form of the surfageNumbersh;; are called the coefficients of
the second fundamental form.

Now let us denotef; := 2L, f, := % and f;; the second order derivatives.
Consider a unitary vectai normal to the surfacé and let us recall tha‘ﬂ“fj denote
the classical Christoffel symbols.

Theorem 2.2.At each point of a surfacg the following equations hold:

2
fij = Thfe+hij-m. (2.3)
k=1

These equations are called the Gauss equations.

Example 2.1.We examine the motion of a mass point of weiglhttonded to a surface

S = f(ut,u?) C FEjinthe force fieldf = F(zy, 29, x3). Suppose the point moves
along the pathp(t) with parametrization{u!(¢), u*(t)). The corresponding expression

of such path on the surfaceis x = x(u!(t), u*(t)). The bondage of the point moving

on the surfaceS is realized by the forc&s, which is at each point perpendicular

to S. This situation practically corresponds to the frictionless motion of a ball in a
bowl caused by the gravity forcE. Let us remark that the surface really has to be
bowl-shaped so that the ball stays in it. Otherwise the ball could leave the surface
and we would loose the bondage condition. The motion equation is then of the form

8



d%x i
dtgt) = F +G@. Let us denote the velocity byt) =

together with the Gauss equations we obtain

d’z Vo n h(dx dx)

- = — —) ' n

dez2 dt de’ de”
where h is the second fundamental form 6f n is its unitary normal vector and
‘3—’; denotes the tangent vector to the surfgtat the pointp(t). Let us decompose
the forceF = flx; + f?x, + f - n into its tangential and vertical part and write

G = v - n, where~ is a real function. Using the Einstein summation convention, we
obtain

2l "By second differentiation

Vo ; dx dx
ma—fxﬂr (m-h(a,a)—f—w)n—(}
As the velocity in the vertical direction is zero, we have
Vo
Mo~ fix; — 2% =0
and thus a system of differential equations
d?u’ - du! duF ,
— L—— — f'=0.
(O TERRL [ T T

Furthermore, consider the initial conditions (¢,) = u} and d%(t“) = v}. We find
that the motion is uniquely determined if we know the initial location of the velocity
vector tangential to the surface If F'is zero vector field, the motion is realized along
geodesics and the vector of initial velocity is parallel transported along them.

2.2 CONNECTIONS

One of the most important notions in differential geometry and mathematical phy-
sics is that of a connection. In Definiti¢h4 we recalled the notion of a linear con-
nection.

Generalizing the idea of linear connections to fibered manifolds, we come to the
following definition of a general connection.

Definition 2.8. A general connectiomn the fiber bundld £, p, M, S) is a vector-
valued 1-forml’ € Q!(E; V E) with values in the vertical bundl& E such thafl” o
I'=Tandlml’=VE.

Remark (1). Geometrically, a general connectibron the fiber bundle : £ — M
Is defined simply as a projectiodhiZ — V E, whereT'EE denotes the tangent bundle
of I/, seelll?] for details.

Remark (2). In the following, we omit the word general and we specify the special
characteristics of the connections if needed, e.g. principal connections.



Definition 2.9. LetT" € Q!(E; V E) be a connection on a fiber bund|&, p, M, S).
Then thecurvatureC' € Q*(E, VE) of T is given by

C(X,Y) = %[F, I(X,Y)

for any vector fieldsX, Y on E, where[ , | means the Flicher-Nijenhuis bracket.
Remark (1). Note that for vector fieldsX,Y € X(M) and their horizontal lifts
I'X,T'Y € X(FE) with respect to the connectidhon E we have

C(IX,TY) = [[X,TY] - T([X,Y]).

ThusC' is an obstruction against integrability of the horizontal subbundle.

Remark (2). Equivalently to Definitior2.S, we can define the curvature of a con-
nection' on £ — M as a map

C(T): E xy NTM - VE
given by
CO)(y, X,Y) = (T([X,Y]) - X, IY]) (y) for yeE, X,Y € X(M),

wherel’ X means thd'-lift of the vector fieldX. Thus in the following, the curvature
of a connectiord” will be denoted byC'(T").

Equivalently to the Definitio2.8 any connection on the fiber bundlg, p, M, S) is
determined by the horizontal projectign= idry — I, or by the horizontal subspaces
x(1,Y) C T,Y inthe individual tangent spaces, i.e. by the horizontal distribution. But
every horizontal subspagd,Y") is complementary to the vertical subspagé” and
therefore it is canonically identified with a unique elemj:jﬁ € J;Y. On the other
hand, eactjg}s S Jle determines a subspace})Y complementary td/,Y. This
leads us to the equivalent definitiodZ].

Definition 2.10. A general connectioon the fibered manifoldY’, p, M) is a section
I': Y — JYY of the first jet prolongatio'Y — Y.
In local coordinates, a general connectlors given by

dy” = F!(z,y)da’,

where F!(x,y) are smooth functions. Using this notation, curvatGi@’) of a con-
nectionI” has the following coordinate expression:

dz' =0

OF?  OF? | | (2.4)
dy? = <8—‘7Z + a—‘;Fiq> dx' A da’.
T Yy

Further, letJ"Y — M be ther-th nonholonomic jet prolongation of a fibered
manifoldp : Y — M. In general, an-th order nonholonomic connectiam " is a
sectionl’ : Y — J"Y. Such a connection is called semiholonomic or holonomic, if it

has values i/ Y orin J'Y, respectively.
10



3 PROLONGATION OF GENERAL CONNECTIONS
3.1 FOUNDATIONS

In what follows, we recall some facts about the orders of bundle functors and several
helpful results and observations. et Y — M andp : Y — M be two fibered
manifolds ancs > r < ¢ be three integers. We recall that two morphisfng : ¥ —

Y with the base mapg, g : M — M determine the same, s, q)-jetjgs"ff = J,;"
aty € Y, p(y) = z, if

Iyl = 3y9s Jy(f | Ya) = 5y(9 | Ye), Jif = Jig-

Further, a bundle functafr on M is said to be of the orde(r, s, q) if j;*f =
Jy>4gimpliesGf | G,Y = Gg | G,Y. Then the integey is called the base order,
is called the fiber order andis called the total order df.

It is well known that product preserving bundle functors can be expressed in the
terms of Weil algebras. The most important result from this field is that each product
preserving bundle functdr on M f is a Weil functorF’ = T4 determined by the Weil
algebrad, [12]. Then the iteratiod™ o T'Z of two Weil functors corresponds to the
tensor producd ® B of Weil algebras and natural transformaticdfi$ — 77 are in
bijection with algebra homomorphisms — B. In [15], the fiber product preserving
bundle functors o M,,, are characterized in terms of Weil algebras.

Let £’ be a natural bundle aM f,,. The F-vertical functor is a bundle functdr®
on ¥ M,,,, defined by

VY = [ FY), vEF = | F(f),

zeM reM

where f, is the restriction and corestriction ¢f: Y — Y over f : M — M to the

fibersY, andY ;). Clearly, if the order ofF" is s, then the order ot/ * is (0, s, 0).
For the tangent functaF’ = T we obtain the classical vertical functor. M. Doupovec
and W. M. Mikulski have recently proved]

Proposition 3.1.LetG be a bundle functor oif M,, ,,. Then the following conditions
are equivalent:

(@) The order ofGG is (0, s, 0) for somes.

(b) The base order ofr is zero.

(c) G is naturally equivalent to somg-vertical functorV "

(d) Thereis anF.M,, ,-natural operator transforming connections &— M into
connections oY — M.

Further, the existence of the prolongation of higher order connections was studied
by M. Doupovec and W. M. Mikulski ing]. They proved that itF' : # M,,, — FM
is a fiber product preserving bundle functor and< r are two integers, then there
exists a natural operator transforming th#h order connections on — M into the

11



r'-th order connections oRY — M if and only if I = V4 for some Weil algebra
A.

It is well known that an arbitrary bundle functéf on 7 M,, ,, admits a natural
operator transforming connections &h — M into connections oY — M by
means of an auxiliary higher order linear connectioménsee P], [12] and Section
3.4below. By Propositior3.1, if the base order dfr is not zero, then the use of such
th order linear connection is unavoidable. Clearly, this is the case of all higher order jet
functors. In the rest of this section we study the prolongation of connections into the
higher order jet bundles, but we do not intend to present the complete classification
of all natural operators of the given type. Let us note, that this problem was solved
by I. Kolar for the first jet prolongation/!. More precisely, he classified all natural
operators transforming connections bn— M and classical linear connections on
the base manifold\/ into connections ow/'Y — M. The generalization of such
classification to generatth order jet prolongations is still an open question.

3.2 VERTICAL PROLONGATION

Consider a connectioli : Y — J'Y on a fibered manifold” — M. If we apply
the vertical functor//, we obtain a mag/’T : VY — VJY. Letiy : VJIY —
J'VY be the canonical involution constructed by H. Goldschmidt and S. Sternberg,
see also12]. Then the composition

VI :=iy o VI : VY — J'VY

is a connection oY — M, which will be called thevertical prolongationof T'.
Since this construction has geometrical charagtés,an operatog! ~ J'V natural
on the categoryF M., ..

Proposition 3.2. The vertical prolongatior) is the only natural operatoy! ~ JV,

Let |
dy? = F! (2, y)da’ (3.1)

be the coordinate expressionlofand letY”? = dy” be the additional coordinates on
VY. Then the equations ofT" are 3.1) and
OF?

P _ 271 VG0
dY —aqudx.

3.3 THE OPERATORS P(I';A) AND J"(I', A)

We recall that a linear-th order connection of/ is a linear base preserving mor-
phismA : TM — J"T'M satisfyingrn; o I' = idr),, wherer;, denotes the canonical
projection ofr-jets ontok-jets. Clearly, for- = 1 this is the classical linear connection
on M. We note that there is a bijection between the line#in order connections on
M and the principal connections dri' M.

12



By [12], there are two well known geometric constructions transforming a con-
nection’ : Y — J'Y and a classical linear connection: TM — J'TM into the
connection on/'Y — M. First, letVI : VY — J'VY be the vertical prolongation
of 'and letA\* : T*M — J'T*M be the dual connection &f. SinceJ'Y — Y is an
affine bundle with the associated vector bundlg 7 M, the sectiod” determines
an identificationly : J'Y ~ VY ® T*M. Then the composition

I VI@A* JH(Ip)™!
JY VY @ T*M —> J'VY @ J'T*M —= J\J'y (3.2)

determines a connectid?(T’, A) on J'Y — M.

On the other hand, consider theh order linear connection : T'M — J"T'M, the
liftng map v : Y xy TM — TY of I' and its r-th jet extension
J'y o JY xy J'TM — J'TY. Denoting byu, : J'TY — TJ'Y the flow
natural transformation fronilP], the composition

. r i
TY s TM Y5 gy sy oo - gy ey (3.3)
is the liting map of a connection o'y — M, which will be denoted by/" (", 32).

If A: TM — J'TM is the conjugate connection Af then we have the following
result, [L2]:

Proposition 3.3. P(I', A) = J(T", A) if and only ifI" is curvature free.

We remark, that curvature of the operatpt(I', A) was studied by I. K& and A.
Cabras in1].

3.4 THE FLOW PROLONGATION G(I',Y)

The connectior" (I, X0) is a particular case of the following general construction.
LetG : FM,,,, — F.M be an arbitrary bundle functor of the base orgleThen the
couple of a connectioh : Y — J'Y and ag-th order linear connection : TM —
J9T M induces a connectiog(I', ¥) on GY — M in the following way. Consider a
vector fieldX on M and denote by' X : Y — TY its I'-lift. The flow prolongation
G(I'X) of such a vector field is defined by

G(rX) = Ty Gexpt(TX)),

whereexpt(I'X') means the flow of' X. This vector field depends only anjets of
the vector fieldX. This gives rise to a map

GI'X):GY xp JITM — TGY,
which is linear in the second factor. Then the composition

G(LX)o(idxy ) :GY xy TM — TGY
13



is the lifting map of a connectiog (', >) on GY — M. In what follows the con-
nectiong (I, 32) will be called the flow prolongation df by means of.

Clearly, forG = J" we obtain the connectiog" (I', X) on J"Y — M, which was
constructed above and f&¢ = J" we get a connectiog" (I, %) on JY — M.
Obviously, the base order of a vertical funct@r= V* is zero. Then the connection
G(I", %) does not depend on andG (T, ) = VIT is exactly theF-vertical prolon-
gation ofI'. In the simplest casé’ = 1" we obtain in such a way the classical vertical
prolongationVT" := VIT.

3.5 CLASSIFICATION PROBLEMS

The classification of all natural transformatioffs/* — J*J" depending on a clas-
sical linear connectioA on the base manifold is a very difficult problem. Up to now
this problem was solved only for = s = 1, seeL2]. By [12], the only two natural
transformations/!J! — J'J! depending on a symmetric linear connectibon the
base manifold are the identity oft J! andex,. Further, |. Kobf and M. Doupovec
have proved that the only natural transformatiB® — J"J? is the identity.

The classification of all natural operators transforming connections en M and
classical linear connections dd into connections oY — M is also a complica-
ted problem. It was solved only fer= 1, seellL2]. In particular, all natural operators
transforming a connectionionY — M and a symmetric linear connectidnon M
into a connection oo’'Y — M are of the form

(D,A) — k-P(I,A) + (1 —k)JYT,A), keR.

If A is not symmetric, then the list of all natural operators contains some additional
difference tensors, se&?] for more details.

3.6 ITERATION METHOD FOR HIGHER ORDER NONHOLONOMIC
PROLONGATION

Obviously, the"-th nonholonomic proIongatioNﬁTY Is defined by iteration. The same

method can be used to construct connectiond’dn — M. Consider a natural ope-
rator A transforming a connectiononY — M and a linear connectiof on M into
a connectiod(I", A) on J'Y — M. Write

A(T,A) = A(TLA)
Ay (I A) = A(A(T,A), A)

A,(T,A) _ A(A1(T, A), A).

ThenA4,(I', A) is a connection oo™y — M.

14



Let us now consider the case= 2. Applying the above iteration process to the con-
nectionsP(T', A) andJ'(T', A) on J'Y" — M, we obtain the following connections

onJ?Y — M :
P(P(I',A),N), JYINT,A),A), P(JYT,A),A) and JH(P(T,A), A).

For example, to obtain the connectidi{ P(I", A), A), the composition3.2) should
be replaced with

~ I *
Py 20Ny gty @ v VY iy ly @ M~

J'Iproay)~

~ J (V'Y @ T*M) JLJ?Y, (3.4)
where Ipr 5 is the identification of the affine bundlé?yY — JY with the as-
sociated vector bundl& J'Y @ T*M. Quite similarly to 8.3), the lifting map of
THITHT, A), A) is of the form

idx A T 71
— —

JY xy TM J?Y xy J'TM STy L TJ%Y, (3.5)

wherevy i1 ) is the lifting map of the connectiol }(T', A). Quite analogously we
obtain the remaining mixed operators.

4 EHRESMANN PROLONGATION

Given two higher order connectiofs: Y — JY andi: Y — jSY, the product
of I andT is the(r + s)-th order connectiol * I' : Y — J" Y defined by

'«T = JTol.

If both T" andT are of the first order, theR « T : Y — J2Y is semiholonomic if
and only if " = T andl" * I is holonomic if and only ifl" is curvature-free g], [17].

Considering a connectiohi : Y — J'Y, we can define an-th order connection
L1y — Jy by

T .=T T =JToTl, =1 . pr=2) o P — JIPr-2 o T

The connectiod' "~ is called the(r — 1)-st prolongation of in the sense of Ehre-
smann, shortly(r — 1)-st Ehresmann prolongation. Bg][ the values off ("1 lie

in the semiholonomic prolongatioA' Y andI'"~Y is holonomic if and only ifl" is
curvature free,17). Let ¥ = F'(z, y) be the coordinate expression of a connection

I':Y — J'Y. Then the connectio® =T+ : Y — J'Y has equations
OF"  OF?

p __ 3 7 Fq

Yii = By + Oyt 7

For second order connections we have the following identification

Y, = F},
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Proposition 4.1. Second order nonholonomic connectionsor- M are in bijection
with triples(I", T, ), wherel', " : Y — J'Y are first order connections ofi — M

and : Y - VY ® é)T*M IS a section.

Now we come to the main result of this section. In particular, we find all natural
operators transforming first order connectidhs ¥ — J'Y into second order se-
miholonomic connection : Y — JY. Taking into account the notation from the
previous section, we sét = idz,,,, £ = 7’ andF = J*.

JY J2Y

7 -

r e IaT (4.1)
Y Y

We remind the following property oﬁQY, [12]. Given the local coordinates
(=, 97,92, y};) on 7Y, we have a natural map : 7Y — J°Y with the coordi-
nate expression

vi =Y Y=Y
Remark. J. Pradines introduced a natural mapy — J°Y with the same coor-

dinate expression. We use the notation b2]][ where the mag: is obtained from
the natural exchange map : J'J'Y — J'J'Y as a restriction to the subbundle

72Y c J'J'Y. Note that whilee, depends on the linear connectidron M, its re-
strictione is independent of any auxiliary connection. We remark, that originally the
mape, was introduced by M. Modugno.

I. Kolaf and M. Modugno proved

Proposition 4.2. All natural transformations/- — J- form a one parametric family

X kX +(1—-ke(X), keR

Now we are ready to formulate a new result

Proposition 4.3. All natural operators transforming first order connection: ¥ —
J'Y into second order semiholonomic connectién— 7Y form a one parametric
family

F—k-TxD)+(1—k) e *D), ke R. (4.2)
Remark. In other words, all natural operators from Proposii#b& can be obtained
from the Ehresmann prolongatidh« I" by applying all natural transformations —

7 from Propositioré.2.
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Clearly, 4.2) can be written also as
- T*T)+t(I«xT —e(lxT)), teR (4.3)

We recall, that the difference tensaU ) of a semiholonomic 2-jet/ C T°Y is the
mapJ : TY — VY @ A2T* M defined byd(U) := U — e(U), in local coordinates

0(yi;) = Yy — Yo

Obviously, in our situatiol corresponds to the terin« I' — e(I" x I') in (4.3).

2Further, we can consider the connection ' as a sectiott — 72Y. The bundle
JY — JY is an affine bundle with the associated vector bundle

2
VY @ @T*M = (VY @ S*°T*M) @& (VY @ N*T*M),

where the second part is determined by the values of the difference tefi$w coor-

dinate expression o#(3) implies, that ifl" is curvature free, then the difference tensor

Is zero and thus the associated vector bundle is reduced to the symmetric part. This
corresponds to the subbundldY” — J'Y. We showed above, that If is curvature

free, the connectiof + I" has values in holonomic jet prolongatidiy’, see also17].

We remark that A. Cabras and |. Kbhave systematically studied the prolongation
of second order connections to vertical Weil bundléy” — M. Further, M. Dou-
povec and W. M. Mikulskib] have characterized all bundle functarson FM,,,,
which admit natural operators transforming higher order connectios-en M into
higher order connections aiY — M. The same authors have also introduced the
prolongation of higher order connections to higher order jet bundles by means of some
auxiliary linear connection\ on the base manifold4].

It is interesting to pose a question whether the connedtitin A) on J'Y — M
defined by the compositior8(2) could be generalized to some connectidi{I", A)
onJ"Y — M. Clearly, the compositior3(2) essentially depends on the identification
Ir: JY%Y - VY ® T*M given by

Y= F =y

It is well known thatJ"Y — J"~1Y is an affine bundle with the associated vector
bundleVY & S"T*M overJ"~'Y. To generalize3.2) to some connectio®” (', A) :
J'Y — JLJ'Y, itis necessary to replade by some base preserving morphism

FiJY = VY ® ST M. (4.4)

Denote byC'(I") the curvature of connectidn. Clearly,C(I") can be considered as a
sectionY — VY ® A2T*M with the coordinate expression

_ (OF)  OF} ¢\ 0 i j
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By [9] all natural operators transforming connectidns ¥ — J'Y into sections
Y - VY ® <§2§>T*M are of the form

['—k-C), keR.
If we denote byi the canonical projectiori?Y” — Y and byiC(I") the composition
CM)oi:J?Y - VY ® éT*M, we have
Proposition 4.4. All natural operators transforming connectiofis: ¥ — J'Y into
base preserving morphismgY — VY ® @%T*M, are of the form

I — k-iC(T), k € R,

As C(T) has values iVY @ A°’T*M C VY ® éT*M, we have
Corollary 4.1. The only natural operator transforming connections ¥ — J'Y
into the base preserving morphism$y — VY ® S?T*M is the zero one.

SoIr has no analogy4(.4) for » = 2. On the other hand we verify easily

Proposition 4.5. The only natural operator transforming connectidns Y — J'Y
into the base preserving morphism&y — VY @ T*M is

Fl—>lp.

This proves that there is no analogue to the oper&tdr, A) for higher order jet
prolongations.

5 PRINCIPAL PROLONGATION

Given a principal bundl¢” — M with a structure grouf, one can define nonholo-
nomic principal--th order connections oR asG-invariant sectiong® — J" P, [17].
Let dimM = m. Ther-th order principal prolongatiohl’” P of a principal bundle
P — M is defined as the space of aljets at(0,e) € R™ x G of all local principal
bundle isomorphismR™ x G — P, wheree € G denotes the unitl2]. Denoting
by P" M ther-th order frame bundle, we have the natural identification

W'P=PM XM J"P. (51)

Further, WP — M is a principal bundle with the structure group
WG = J(b’e)(IR{m x G,R"™ x G) -, i.e.

W'G =G x TG (5.2)

as a set. Herelz;,, = invJj(R™ R™), and 1T/, G = Jj(R™ G). For any
(A, B), (A, B") € G}, x T G, the multiplicationy : W) G x W) G — W) G
IS given by

w((A,B),(A,B"))=(Ac A (BoA".B'), (5.3)
18



where the dot is the multiplication in the Lie grolfj,G ando is the composition of
jets, see1?). This defines oW G the structure of semidirect product

WG =G, % T.G. (5.4)

If we replace holonomic jets by nonholonomic or semiholonomic ones, we ob-

tain the nonholonomic or semiholonomic principal prolongati@ﬁéP and WTP,
respectively. Quite analogously 16.1), (5.4) we have

WP=PMxyJ P, WP=PMxyJP
and

G=G xT.G.

m m

WG=G, xT'G, W
Moreover, we have a natural identification

m

W' (W*P) = W'+ p

of principal bundle structures with corresponding structure groups.
In what follows all connections on the principal bundte— M are supposed to be
principal.

6 CONNECTIONS ON PRINCIPAL PROLONGATIONS

We remark that the following part of the thesis can be found.Gj. [

LetI : P — J'P be a connection o® — M andA : P'M — J'P'M be a
linear connection. By13], I" and A induce the connectiop(I’, A) on WP — M,
which is defined in the following way. First, we define a subspace

R(T) := P'M x T(P) C P'M x; J'P = W'P,

This is a reduction of the principal bundl®'P — M to the subgroup
Gl % i(G) ¢ WLG, wherei is an injectionG — T!G. ThereforeR(T") can be
identified with P! M x,; P and the product connectioh x I" on P'M x,; P can
be identified with a connection iR(I"). Finally, this connection can be uniquely ex-
tended into a connectignT", A) in W!P. Clearly,p(T', A) is fully determined by its
value in

(u,I'(v)) € R(I') c W'P.

Let

Alu) =jix € J'P'M, X:M — P'M

X

and
L(v)=jloe J'P ¢: M — P.

Then we have

(T +T)(v) = (T o)
19



so that
p(T, A)(u, T(v)) = (Au), (T +T) () = 5.(Aw), T((y)))-
This formula can be used to obtain the coordinate expressipfiof\). If we denote
the local coordinates o' P by
(', 2%, yP ),

the equations of(I", A) are

dy? = T?(z,y)dz’ (6.1)

dxé- = ;kxédxk (6.2)
or? or? .

dy; = Q%%f+5jmﬁf+mm%ﬁ>¢ﬂ, (6.3)

[7], where 6.1) and 6.2) are the coordinate expressions of the connectibasd A
respectively.

On the other hand, the coupld’,A) induces the connectio®V!(T', A) on
W1lP — M by means of the flow prolongation with the equatic®d), (6.2) and

ort ort .
p_ (23 k. 794 PAK .1 J
dy; = (8:}0ka + &yqy’ + FkAl]xz> da’, (6.4)

see I]. By Propositior3.3, there is an interesting relation between general connecti-
onsP(T',A) and 75", A) on J! — Y. Now we present a similar relation between

principal connectiong(I', A) andW*(T, K) on W1!P. We first recall the concept of
the curvature” (") of principal connectiod’ on P — M. To deduce the coordinate
expression we have to use the structure equatioms sée [L2]. Let the equations of
I be of the formdy? = I''da’. Further, denote by!, the structure constants of the
Lie groupG and bnyj the curvature tensor. Then(I') is determined by

Ry, = P@j] + & T,

qr-i~ jo

wherel“][’iﬂ means an antisymmetrization Bf; in the subscripts, sed] for details.

Now if A is the conjugate connection daf |. Kolarf and G. Virsik in [L3] proved
Proposition 6.1. p(T", A) — WY(T', A) = C(T").

Remark. ForW’P, W' P andWTP, we have not found a similar construction to that
of the operatop(I', A), yet. Thus the generalization of Proposit®d to higher order

principal prolongations is still an open question.

6.2 CONSTRUCTION OF CONNECTIONS ON NONHOLONOMIC PRINCIPAL
PROLONGATIONS WP

|. First, given two connectiont : P — J™"'P andA : P"M — J'P"M, we can
construct a connection

s (T,A) : WP — JW'P, (6.5)
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for the groupoid form see als@][ Let us denote by’ = T P = JP
the underlying connection of order— 1, wherer’*! : J""1P — J"P is the jet
projection. Write

R(Ty) := P'M x3; T1(P) C P"M xp J'P=W"'P.

One finds easily, thaR(Fl) is a reduction of the principal bundié’" P to the sub-
group GT x i(G) C W’“G wherei : G — TTG is an injection. As every

I'(v) € JT“P can be considered as an eIement]éf]TP over I'1(v), we obtain
in such a way a map

©:R(Ty) — J'P'M x 3 J' TP =J(P"Mxy JP)=JW'P
defined by
o(u, T1(v) = (A(u),['(v)) for (u,v) € P"M X P.

Then p is right invariant and thus it can be extended into the connectioﬁ%ﬁ’,
which will be denoted by, (', A).

Il. Now letT': P — J'P be a connection o — M andA : P"M — J'P"M be a
connection onP” M. Using 6.5) and the Ehresmann prolongatibfi) : P — J" 1P
of I', we have the connection

Pr(T,A) i= 5. (T7) A) (6.6)
onW"™P — M. Denoting byp(I", A) the connection from previous section, we have
p(L,A) = pi(D,A) = s0(T T, A).

ll. Suppose we have a connectibn: P — J!P and a connection : PrM —
JLPT M. Let us note that\ can be interpreted as anth order linear connection de-
noted by the same symbal: TTM — JTM. Then the flow prolongation df with
respect to\ induces the connection” (I', A) on W’ P — M.

IV. Further, quite analogously to the nonholonomic jet prolongaﬁb}ﬁ — M, we
can construct connections di"P — M by means of iteration. Indeed, we have
WP = WP andW"'P = W(W" 'P). For example, starting from connections
r:P— J'P, A: PPM — J'P'M and using the basic operatgrél’, A) and
WYL, A) on W' P, we have the following connections oH2P

p(p(T,A),A), pOW'T,A),A), WHpT,A),A) and W' WYL, A),A).

Obviously, such an iteration process can be applied for an arbitrary arder
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6.3 CONSTRUCTION OF CONNECTIONS ON SEMIHOLONOMIC PRINCIPAL
gl
PROLONGATIONS W P

. Given two principal connections : P — J'P andA : P M — J'P M we
construct a connection L L
7.(T,A): W' P — JW'P. (6.7)

Denote byl'"-V : P — J" P the Ehresmann prolongation bf By Section3.1, this
connection has values in P. FurtherI'") : P — J™+1 P is of the form

0 ==V 4= JiIrt-Dor. p TP,

This yields that forv € P, T")(v) € J P is the element of/'J P over
r—Y(v) € J P. Write

RO =P Mxy TV VP)CPMxyJP=W P

Quite analogously to the nonholonomic principal prolongation we proveitiat —))
is a reduction of/’ P to the subgrougg?, x i(G) C W, G, wherei is the injection
of G'into T,,G. Then we can define a map

¢ : RV = J'P'M xy J'T P=JW P

by
p(u, T D (v)) = (Au), T ().
This defines a connectign (I, A) on W' P — M.
Il. LetT' : P — J'P be a connection andl : TM — J"T M be anr-th order linear

connection onl/. Using the flow prolongation of with respect toA, we have the
connectionV' (I', A) on W' P — M.

6.4 CONSTRUCTION OF CONNECTIONS ON HOLONOMIC PRINCIPAL
PROLONGATIONS WP

l. Letl': P — J'PandA : P"M — J'P"M be principal connections and suppose
thatI" is curvature-free. By17], the Ehresmann prolongatidii"") : P — J'Pis
holonomic. Quite analogously to the connectiéin/ from 6.3 we can construct the
connectionp,. (I, A) : WP — J'W"P. For exampleps (T, A) : WP — J'W?2pP
is of the form

pQ(F, A) = %3(F(2), A)

Il. The flow prolongation of’ : P — J'P with respect to am-th order linear con-
nectionA : TM — J"T M defines the connectiol” (I', A) onW"P — M.
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7 |IDENTIFICATIONS OF CONNECTIONS

In this section we focus on the description of connections on higher order princi-
pal prolongations by means of the couples of connections, one on the higher order
frame bundle of the base manifold and the other being(the 1)-st order princi-
pal connection orP’. We discuss the connections on all three principal prolongations

W’"P W'P andWTP respectively. We start with the identification of the connecti-

ons onW'P = W'P = W'P. Let A : W'P — J'(W'P) be a connection on
W1P. Further letp, : WP — P!M andp, : WP — P be two canonical principal
bundle projections. Clearly; A is the connection o' M. If we setl’ = p,A, then
we can construct

proA(u, T(v)) € JLJ'P for (u,v) € P'M x; P, (7.1)

wherepr, means the projection onto the second argument.@GBy(7.1) lies in 7P
and is independent af. Thus (7.1) defines the second order connectionfodenoted

by u(A): P — 7P Using this notation I. K@ and G. Virsik in [L3] proved

Proposition 7.1. The mapA — (u(A), p1A) establishes a bijection between con-
nections on//1 P and pairs consisting of a second order semiholonomic connection
on P and a classical linear connection aif.

Now we present the generalization of this proposition, see &Bofor the grupoid
version of the following properties se#]].

Proposition 7.2. There is a bijection between the connection$iéhP and the couples
consisting of the connection oR" M and the nonholonomic connection of order
(r+1)onP.

Proof. First, given a couple of connectiorf, I'), where A : P"M — J1]57"M
andl' : P — J'P, we have constructed a connectien(I', A) on W'P, see

Section6.2. On the other hand, le? : WP — JUWV'P be a connection. We are
going to find a coupl¢A, I'), which corresponds t&. Write p; : WP — P"M and

po : WP — P for the projections and set
A= plQ; I' .= pQQ

Then A is a connection oP" M andT is a connection or. Furthermore, consider
the Ehresmann prolongatid’~") : P — J"P. For (u,v) € P"M x,; P we have

Qu, T V() € WP = J'P'M x5, J'JP,
The second projectiopr; yields
proQ(u, L0V (v)) € JLJT'P = J 1P, (7.2)
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One verifies directly that this is independentoiHence 7.2) determines a map
Q. P JHp, (7.3)

Obviously, this map ig7-invariant, so it is ar{r + 1)-st order principal connection on
P. Finally, the mapping2 — (p:€2, 2*) determines the requuired bijection. ]

Using the notation4.3) from the previous proof, we obtain directly

Corollary 7.1. Let p.(I';A) be the connection6.6) on WrP. Then we have
(p,(T', A))* = ') In particular, for~ = 1 we obtain(p(I', A))* =" % I".

Next we describe connections & P by means of a couple of connectiofs X),

whereA : P'M — J'P'M is a connection o M and¥ : P — J "'Pisa
semiholonomidr + 1)-st order connection of.

Proposition 7.3. There is a bijection between the connections/BnP and couples
consisting of a connection aA M and the(r+1)-st order semiholonomic connection
onP.

Remark. The same proof as that used in the Thesis is not possible for the description
of connections on the holonomic principal prolongatiéii P because of the additio-
nal assumption on the connectibron P to be curvature free.

8 CONCLUSIONS

We showed several generalizations concerning prolongations of connections. We
first treated the general connections and described the construction of a connection
on r-th order jet prolongation of a fibered manifold by means of first order gene-
ral connection and a linear connection on the base manifold. We also determined all
natural operators transforming a first order connection inta-theorder general con-
nection by means of the Ehresmann prolongation. We used these results to describe
the connections on the higher order principal prolongations and showed some useful
identifications. Some of these results were published 6. We also distinguished
the holonomic, semiholonomic and nonholonomic principal or jet prolongations, re-
spectively. Yet, the complete description of the connectiong-tmorder principal
prolongations is still an open question.
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10 PREHLED

Teorie kalibr&né prirozerych opeatortl je izce spojena s prodtovanim hlavrich
bandfi ve smyslu praicC. Ehresmanna a |. Kaile. Ti totiz zavedli hlavinprodlowzeri
W G Lieovy grupy G a hlavr prodloweri WP hlavriho bandluP — M po-
mod terminologie jeli. D. J. Eck pitom dokazal, ze kady kalibracné pirozery
bandl nmize byt zkonstruoan imto z@isobem. Zcelagsadim se pro fyzilalni Gcely
stava kalibra&né girozery bandl prviho hlavriho prodloieri W!P. Je to hlavi
bandl, ktey Ize vyjadit ve tvaru W!'P = P'M x,; J'P, se strukturh grupou
WIG = Gl x TLG, kde G je strukturi grupa hlaviho bandluP — M, G je
diferencalni grupafadu 1 dimenzen = dimM a T}, je funktorm- dimenziorélnich
rychlost prvnihofadu.

V posledn dobkg se osem ukazujeze ke studiu Bkteych otaizek teoretick fyziky
tykajicich se teorie polje pofeba studovat i hlavrprodlowen obecrg r-tehofadu.
Zde je \Bak situace slotéjsi, protaze hlavin prodlowen vyssiho fadu, steje jako
jetove prodloieri fibrovarych variet, se rozpadna gipady neholonomiho, semi-
holonomiho a anholonoriho hlavriho prodlogeri W”P, W' P a WP, které je
potieba studovat z@st. Dodejme,ze pro fyzikalni Gcely je nejdilezitéjsi holonomn
pfipad. Zakladn otazkou jsou pak samégjme konstrukce konéxa €chto kalibr&né
prirozerych bandlech, kté& budou vydivat hlavii konexi naP a konexi na bandlu
repetl vySSihotaduP” M. Tento proces se pak naz prodiizovan hlavrich konex.
Znamy jsou i konstrukce vyiivajici hlavri konexi naP a konexi naP! M.

Prodlwzovan hlavrich konex vychadz z technik z&amych @i prodluzovan ko-
nex obecrych. Souhrng jsou tyto procesy popsy Vv [12]. Ukazuje se naiklad,
Ze ZAasadim pfirozenym opeatorem fevacgjicim konexil’ : Y — J'Y na fibro-
varé variee Y — M na konexir-tehotadul') : Y — J'Y je tzv. Ehresmannovo
prodlowen konexel'. Dale jsou zamy postupy pro konstrukci konera jetovem
prodlowzeri J'Y fibrovaré varietyY — M pomod konexe naY” a linearri konexe
na M. Jedim z nich je tokoe prodlo&eri ozn&ovare J!. Dalsim je konstrukce,
kterou zaved! |. Kd¥ v [9]. Ta vyuziva afinii strukturu bandluw/!J'Y — JY a
pfirozeré zobrazenJ!TY — TJ'Y, které zavedli L. Mangiarotti a M. Modugno.
Pomog¢ téchto fakil Ize pak z konex& naY a linearri konexeA na M sestrojit ko-
nexi P(T', A) na J'Y. Ukazuje seze pawe opeatory P a J! hraji zasadin roli pfi
zkoumari vlastnost hlavrich konex pomod asociovagich bandil.

V této diserténi praci jsou ukizany konstrukce opétorll prodiizujicich obeci
konexe na jeto& prodlozen r-tehofadu. Chle je zde do&zano,ze Ehresmannovo
prodloweri I'") obecré konexel" na fibrova® variee Y — M je jediny prirozery
opetor gevackjici obecnou konexi pniho fadu na semiholononnkonexi drutého
fadu naY. Tento fakt je pak pokit pfi hledan konstruké konex na hlaviach prod-
louzerich vy&iho fadu. Je zde uveden talsotiadnicoy popis takoych opeatorti
pror = 2. Nakonec jsou tyto postupy aplikémy @i prodiuzovan hlavrich konex.
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