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1 INTRODUCTION AND THESIS OBJECTIVES

The thesis deals with the motion planning of an autonomous robot1 in an
unknown or partially known indoor or outdoor environment [37]. The solved
tasks include the global and real-time motion planning2 between two given
positions3 for a polygonal robot, which has the largest possible (the safest)
distance from surrounding obstacles (see Figure 1.1), where uncertainty, lo-
calisation, kinodynamic properties of the robot (see Figure 1.2), and path
relaxation techniques4 are also considered. Furthermore, a map generation
and exploration task is solved together with the motion planning for groups of
robots and their formations.

In the thesis, the methods presented solve these tasks efficiently by means
of the computational geometry [13]. The computational geometry emerged
from the field of algorithms design and analysis in the late 1970s. Its success
of the problems studied, practical and efficient solutions from the asymptotic
time complexity point of view, and its huge range of application domains laid
grounds for its future expansion into robotics.

One of the most useful structure in the computational geometry for the robot
motion planning is the Voronoi diagram [13, 28]. It has a lot of applications
in various fields since it preserves the largest distance from surrounding point
generators. This property can be employed as a base for several motion plan-
ning tasks, where these generators are formed by obstacles. In addition to this,
its retraction property assures that the robot is always capable of transferring
itself onto this diagram along a collisionless sight line, from which follows, that
the Voronoi diagram entirely captures the continuity of the whole space as a
topological graph [28]. The extension of this diagram for point, segment, or
polygonal generators is called the generalised Voronoi diagram [28].

The usability of this generalised diagram for the robot motion planning is
conditioned by an existence of efficient, robust, and practical algorithms for
its computation. There are presented two designed algorithms in the thesis,
which are accompanied by their asymptotic time complexity analysis. The
added value of these approximation algorithms lies in robustness and simplicity
of their implementation and high computational efficiency in comparison to
algorithms of the same class.

1“Autonomous robots are robots which can survive in unstructured environments without continuous human
guidance. Unlike factory robots they must negotiate environments which are changeable, full of obstacles and
eventually hostile.” (Webster’s Online Dictionary).

2The robot does not have a priori knowledge of the environment.
3An important part of the robotics is to have an algorithm capable of processing a high-level task of moving

a robot from an initial position to a final one. A classical version of this problem is referred to as the Piano’s
Mover’s Problem.

4In the case when the path does not have to strictly preserve the requirement of being in the largest possible
distance from surrounding obstacles.
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Figure 1.1: Robot motion planning in an office-like environment based on the
generalised Voronoi diagram.

The robot motion planning is an enormous and exciting field. It originally ig-
nored dynamics and other differential constraints, uncertainties, processing er-
rors, optimality, and further extensions used nowadays. It has a lot of flavours
and countless applications. These include hazardous duty services like de-
mining military zones, cleaning toxic waste, repairing nuclear power plants,
autonomous safe driving, parking-assist systems (parking cars and trailers,
for example airport baggage trailers), cleaning windows on high buildings,
aerospace applications (autonomous flying through the air or in space – de-
signing safe trajectories), or maze exploration.

The perspectives of the robot motion planning are biped android walkers
which can co-exist in human society, robots helping handicap people, or nan-
otech medical bots (small microscopic robots in patient’s bloodstream).

Thesis Objectives The thesis addresses different types of motion planning
tasks based on the generalised Voronoi diagram for an autonomous robot in
an unknown or partially known environment. The primary objective is to
design an algorithm for computing the generalised Voronoi diagram efficiently
for a complex environment with point, segment, or polygonal obstacles (or
polyhedral obstacles as the 2D representation of the environment is given by
the robot’s sensors) and to plan a motion of the robot on the shortest path
between two given positions in this diagram.

In short, the objectives include:

• Design of a new approximation geometric algorithm for computing the gen-
eralised Voronoi diagram, which represents a trade-off between the com-
putational efficiency, robustness, and implementation difficulty while pre-
serving the sufficient precision for most applications like the robot motion
planning. The algorithm should be accompanied by a detailed theoretical
discussion including the proof of its asymptotic time complexity. Also a
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comparison to existing techniques reflecting the current state of literature
should be accomplished.

• Global motion planning (or multi-query motion planning) for a robot be-
tween two given positions. This presents a problem of finding a path for
a robot, which has the largest (the safest) distance from surrounding ob-
stacles in a priori known static environment.

• Real-time motion planning (or single-query motion planning) for a robot
between two given positions. This presents a problem of finding a path
for a robot, which has the largest (the safest) distance from surrounding
obstacles in an unknown environment.

• Improvement of the found shortest path in the generalised Voronoi diagram
in such a way that conforms to the robot’s kinodynamic properties.

• Solution of the map generation and exploration task for the robot to be
able to autonomously explore and map the whole a priori unknown environ-
ment based on the generalised Voronoi diagram and other computational
geometry algorithms.

• Group robot motion planning exploiting the main substantial properties
of the generalised Voronoi diagram.

• Analysis and discussions about the robot’s localisation techniques and pos-
sible ways of improving it by the generalised Voronoi diagram, which con-
sequently leads to improving uncertainty.

• Carrying out experiments using an implemented motion planning simula-
tor for proving the theoretical discussions in practice.

Figure 1.2: Kinodynamic planning of a car-like robot based on the generalised
Voronoi diagram.
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2 THEORETICAL BACKGROUND AND

PREVIOUS WORK

This chapter presents the necessary theoretical background and references
to previous work, which are closely related to the main results provided in the
next chapter.

2.1 VORONOI DIAGRAM

The Voronoi diagram (see [13, 28], further VD) presents a way of dividing
a m-dimensional continuous space into a set of regions, where all locations in
that space are associated with the closest isolated points (so-called generators).
Its counterpart is the Delaunay triangulation (see [13, 28], further DT), see
Figure 2.1, where VD is marked by a full line and DT is marked by a dashed
line.

A major reason for persisting success of Voronoi diagrams is that it can be
generalised in a diversity of ways including 3D and higher dimensional varieties.
There are a lot of variants (different types of generators and distance measures)
of this diagram, which are covered in [16, 28].

Given a finite set P = {p1, . . . , pn} ⊂ R2, where 1 ≤ n < ∞, of n point
generators in the plane. Let xi and xj be location vectors of pi and pj. Then,
xi 6= xj for i 6= j, i, j ∈ Nn (Nn is a set of native numbers with the size n). All
sites in the space are assigned to their nearest point generators from P with
regard to the Euclidean distance. The result is a transformation of R2 into a
set of regions

V (pi) = {x| ‖ x− xi ‖≤‖ x− xj ‖ for ∀x ∈ R2, i, j ∈ Nn; j 6= i} (2.1)

associated with generator pi. The ordinary Voronoi diagram (further VD) is
given by a set of regions VD(P ) = {V (p1), . . . , V (pn)} generated by a set of

Figure 2.1: Voronoi diagram (full line) for point generators together with the
Delaunay triangulation (dashed line), which makes its counterpart.
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generators P . All points laying on the VD are assured to have the largest
distance from surrounding point generators.

Generalised Voronoi diagram Given a set O = {o1, . . . , on} ⊆ R2(1 ≤
n < ∞) of n generators in the plane, their generalised Voronoi diagram [28]
(further GVD) is a partition of the plane into regions, one for each generator,
such that the region of generator oi ∈ O contains all locations of the plane
that are closer to oi than to any other generator oj ∈ O. The generators in O
can be a set of points, segments, polygons, areas, polyhedrons, etc.

2.1.1 Voronoi Diagram Computation Overview

To evaluate an efficiency of an algorithm that carries out a computation
over a set of input data, a standard approach, that is not susceptible to im-
plementation or hardware, is needed. This approach evaluates the asymptotic
behaviour of the time required by the algorithm with respect to the size of
input data [28].

An overview, including time complexity of basic algorithms, for a determin-
istic construction of the Voronoi diagram with varying metrics can be found
in [16].

By using efficient techniques and data structures, the time complexity of
the Voronoi diagram computation can equal to O(n log n). This is the case of
the Fortune plane sweep algorithm (see [13, 15, 28, 37]), which is based on the
fundamental plane sweep technique of the computational geometry.

The main idea of this algorithm is a shift of a horizontal line l (called a
sweep line) from the top to the bottom part of a plane over all n generators
p ∈ P , where P = {p1, . . . , pn} ⊆ R2(1 ≤ n < ∞), while constructing the
VD(P ). During this shift, a sequence of parabolic arcs (so-called a beach
line) is maintained consisting of points, which have the same distance from
the sweep line l and the generators of these parabolic arcs, as is illustrated in
Figure 2.2.

The proof of the plane sweep algorithm can be found in [13] and [28], whereas
some practical ideas for improving its implementation and making it more
robust can be found in [26, 37].

During the computation, the breakpoints between these parabolic arcs in the
beach line trace the VD(P ), and the part of the plane above l does not affect
the computation in comparison to the part of the plane below l. A change
in the structure of the beach line is affected by two basic events – a creation
of a new parabolic arc producing a new site event or shrinking of an existed
parabolic arc producing a new circle event.
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Figure 2.2: Beach line – a sequence of parabolic arcs.

Refer to [37] or [36] for a detailed description of this algorithm including
description of its implementation and handling degenerated cases.

2.1.2 Generalised Voronoi Diagram Computation Overview

The incremental algorithm for GVD computes this diagram for a set of
point generators in advance, and then segment generators without their end
vertices are being added one by one, thereby modifying the diagram [28]. The
implementation difficulty of this algorithm lies primarily in direct handling
parabolic arcs.

The divide and conquer algorithm for computing GVD recursively approxi-
mately divides a set of generators into two sets until all subsets contain only
two generators [28]. In the next step, these sets are being connected into larger
units, until final GVD is created. The complexity of this algorithm is situated
in unifying sets and generating symmetry axes (edges of GVD).

The Fortune plane sweep algorithm serves also as a base in the VVP tech-
nique [25], which uniformly approximates segment generators by point gener-
ators and combines the Voronoi diagram, the Visibility graph [13, 28], and the
Potential field method [13] into one technique for motion planning.

An approximation algorithm for constructing medial axis (a set of centers
of circles, which touch the inner surface at more than one point) in 2D or 3D
environment is presented in [3]. This algorithm adapts the density of point
generators in particular places. The main idea is to efficiently generate a small
set of partially overlapping maximal spheres to enclose the entire space. These
spheres are then further approximated in order to identify points that are in
proximity to the medial axis.

The generalised Voronoi diagram can also be computed from digital images
of generalised polygons, see [31] or [21]. Graphics rasterization hardware is
used for computing the GVD in [18]. Also in [12] the authors present an
approximation algorithm based on graphics hardware. Further theory behind
the computation of the GVD based on a raster is presented in [28]. The obvious
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disadvantage of this approach is a need for a mobile robot to be equipped with
a powerful graphics hardware.

Some solutions for motion planning of robots with many degrees of free-
dom [19] are based on the hiearchical generalised Voronoi diagram (further
HGVD) defined in detail in [4, 5, 7]. The approximation incremental construc-
tion of the HGVD, originally developed for sensor based motion planning, is
described in papers [6, 9] and further improved in [8, 11], other modifications
and applications can be found in [10].

2.2 ROBOT MOTION PLANNING

Motion planning is one of the most challenging task in robotics. An au-
tonomous robot knows where it is, it knows where it is going but it does not
know how to get to the required position. The motion planning is a process,
that transforms a semantic description to a sequence of numerical descriptions
of motion. It relies on success of the following parts of robotics: perception,
localisation, cognition, and motion control.

The purpose of the motion planning is to determine feasible paths1 or tra-
jectories2 in an unknown or partially unknown environment.

There are two basic criteria imposed on the constructed path. The first is
the feasibility criteria, where the constructed path has to allow the robot to
get to the goal position, regardless of the path efficiency. The second one is the
optimality criteria, where the path is optimal in some specific manner (length,
time). For most problems, feasibility is already challenging enough, therefore
achieving optimality is considerably harder.

2.2.1 Basic Motion Planning Methods

Motion planning methods can be divided into two classes – the single-query
(or real-time, it assumes to have only single initial and final configurations as
an input) and the multi-query (or global, it involves numerous queries) motion
planning methods.

In the multi-query version, it is suitable to preprocess the whole environment
so that the future queries can be answered efficiently. Therefore this version
of motion planning includes two main steps [23]:

• Preprocessing – the result is a representation of the free configuration
space Cfree (set of all possible robot’s configurations or placements, see

1A feasible path is a collision-free path guaranteeing the effective execution of a specified actions especially
in presence of kinodynamic models. It must satisfy some constraints imposed by the workspace or by the robot
itself.

2A trajectory is a path with dynamic constraints like velocity and acceleration.
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[37]), among all obstacles in a given area, using a graph or function.

• Query processing – searching graph or using a function to find a path.

The motion planning method depends on the description of the robot’s en-
vironment representation. This can be a continuous geometric description, a
decomposition-based geometric map, or even a topological map. A detailed
comparison of the cell decomposition and roadmap methods can be found in
[32].

The three basic classes of methods for robot motion planning are as follows:

• Cell Decomposition – a decomposition of Cfree into cells. The continuity
representation of this decomposition is made by using a neighbourhood
graph of cells (introduced by Latombe [23]).

• Roadmap – a continuity representation of Cfree by a graph.

• Potential Field – a mathematical function is defined over Cfree, which has
a global minimum in the goal configuration and maximum in places of
given obstacles.

The retraction approach belongs to a family of methods for constructing
roadmaps [23]. Therefore it can be used for a direct construction of a graph
representing Cfree continuity and the problem of finding a path amid obstacles
CB ∈ Cobs is reduced to a problem of finding the path in a topological graph.
The important property is that the generated graph has the largest distance
from surrounding obstacles (generators).

2.2.2 Motion Planning with Kinematic and Dynamic Constraints

The robot’s free configuration space Cfree defines the range of possible con-
figurations, which the robot can achieve in its environment. All the robot’s
possible configurations are defined by its controllability. This controllability is
given by the robot’s kinematic model, which is given by the robot’s underlying
mechanism. This kinematic model, to some extent, limits the robot’s ability
to move in a certain way. The robot dynamics is related to the robot’s inertia
and adds another additional constraints on Cfree and trajectory due to mass
and force considerations.

A robot must be able to correctly move between two configurations on the
constructed path. The nonholonomic constraint imposes that the curvature of
a resulting path should have a maximum limit. For a robot in order to stay
on the trajectory, it must exert effort to overcome the centrifugal acceleration,
therefore a circular arc on the path should have a minimum curvature radius.
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3 MAIN RESULTS

Challenging implementation of the plane sweep algorithm [15] and other
methods for computing the GVD for segment generators leads further research
to approximation algorithms, that represent a trade-off between speed of com-
putation and implementation difficulty, and are easy made to be numerically
robust. For most applications (like the robot motion planning) the computa-
tion of an approximated Voronoi diagram within a given precision is sufficient.

The presented basic uniform approximation algorithm uniformly approxi-
mates segment or polygonal generators by point generators first (see [28]) and
then applies the modified Fortune plane sweep technique (see [37]) to compute
the GVD over this set. Due to the uniform approximation nature, this algo-
rithm is very slow, thus two new approximation algorithms, which attempt to
put approximation points only to places where needed, have been proposed.

The following sections of this chapter deal with the robot motion planning
based on the GVD including the robot’s kinodynamic constraints, the map
generation and exploration task, and finally with the motion planning of a
group of robots.

3.1 GENERALISED VORONOI DIAGRAM COMPUTATION

3.1.1 Non-Uniform Real-Time Approximation Algorithm

A new approximation algorithm for constructing the GVD for point, seg-
ment, or polygonal generators has been developed as introduced in [35]. This
algorithm is based on the Fortune plane sweep technique, which combines ad-
vantages of being optimal like the divide-and-conquer algorithm but avoiding
the difficult merge step, and being relatively simple like the incremental algo-
rithm, while representing a trade-off between a complexity of implementation
and a speed of computation.

The main idea of this algorithm is a non-uniform approximation of every
segment generator (or series of segment generators) by sequences of point gen-
erators with higher density in narrow corridors (see Figure 3.1). This approach
attempts to efficiently detect edges of narrow corridors (segment generators),
which are approximated by more point generators than others, thereby the
computation is faster in comparison to uniform point distribution with the
same precision for all generators.

This approximation process can be divided into two parts. The first part
is responsible for an initial uniform coarse approximation with a given preci-
sion K, which defines a length of subsegments laying between approximation
point generators on segment generators or segments of polygonal generators.
This initial uniform approximation is optional and it serves for acquiring bet-
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Figure 3.1: Generalised Voronoi diagram for a 3D environment with spikes
computed using the real-time non-uniform approximation algorithm.

ter precision of the diagram in the second part of the approximation process.
The second part is more complex and the approximation process is applied
only when two neighbouring generators are close enough. The logic respon-
sible for the approximation process itself is directly put into the underlying
implementation of the Fortune plane sweep technique, refer to [37].

Theorem 1. The asymptotic time complexity of the real-time non-uniform
approximation algorithm for computing the GVD is O(n log n) for n input seg-
ment generators (including segments of polygonal generators), where the res-
olution of approximation point generators on each segment generator is upper
bounded by a precision constant K.

See [37] for a proof of this theorem.

3.1.2 Approximation Algorithm With Fast Preprocessing

A new approximation algorithm with fast preprocessing for constructing the
GVD of segment or polygonal generators has been developed. The algorithm
is based on the already presented idea, where segment generators, based on
their proximity, are approximated by a sequence of point generators, thereby
detecting narrow corridors in the space.

This new approach is focused on two stages, the first – segment or polygonal
generators fast preprocessing stage and the second – computing GVD using
the Fortune plane sweep algorithm stage itself. The already mentioned – real-
time algorithm – has no need for the preprocessing part, however this comes
in price regarding the resulting precision of the GVD.

The algorithm is divided into two parts. The first part is responsible for
a fast uniform preprocessing of segment or polygonal generators (the non-
uniform version can be considered as well). This preprocessing includes a
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Figure 3.2: The status structure T .

point approximation process, that is applied only when two neighbouring gen-
erators are close enough. It is based on the plane sweep technique to be able
to detect the closest neighbouring segment generators in O(n log n) time com-
plexity, where n is a number of input segment generators. Having applied the
neighbouring detection procedure, these segments are uniformly updated by
new approximation point generators.

The second part is made by the modified Fortune plane sweep algorithm as
described in the thesis. Having constructed the GVD for approximation point
generators made in the preprocessing part, the redundant edges are deleted or
not considered during further computation on this structure.

The main data structures of this algorithm include the priority queue Q, the
status structure T , and the visibility structure V .

Status Structure The status structure T is represented as AVL tree [13,
22]. It serves for an efficient detection of neighbouring horizontal segments in
O(n log n) time complexity. It stores only top end points of segments detected
on the plane sweep line (see Figure 3.2).

Visibility Structure The visibility structure serves for an efficient detec-
tion of neighbouring vertical segments in O(log n) time complexity and is rep-
resented as AVL tree. This structure belongs to the category of dimensional
range searching data structures [13]. The input data is a set of segments
S ← {s1, s2, . . . , sn} in one dimensional space. A query asks for a segment
containing a given point or returns segments inside a one dimensional inter-
val [s : s′]. The main operations are adding a new segment, and finding and
removing a set of segments within an interval. Each node in the tree stores
a visibility segment, which points to its original input segment, to guide the
search.

11



Algorithm details The algorithm starts by storing end points of all segment
generators into the priority queue Q, where these end points are represented as
events and sorted according to their y coordinates. During the process, these
events are being dequeued from Q and handled according to their type.

If an event ep represents the top point of its parent segment generator,
neighbouring horizontal segment generators of this point are found in the status
structure T and their point resolution is changed.

To detect neighbouring horizontal segment generators using the status struc-
ture T , traverse through this tree of top segment end points. The algorithm
starts in the root node of T and descends into its left or right child node ac-
cording to the x coordinate of the event. During this descend, it maintains
current left and right neighbouring segment generators. Once a leaf node is
detected, the latest detected left and right neighbouring segment generators
given by their end points are returned.

The point resolution of a given segment generator can be both, the uniform
or the non-uniform point distribution. In case of using the uniform point
distribution, the distance between points on a segment generator represents
the value of resolution, and is given by the precision approximation factor P .

The next step is inserting the top point of the segment generator into the
status structure T . This is followed by changing of resolution of segment
generators immediately above currently processed segment generator. These
segment generators are detected using the visibility structure V as described
earlier. During this process, a few visibility segments disappear and maximum
three new visibility segments in V are created.

If the event ep represents a bottom point of its parent segment generator,
the top point of this generator is removed from the status structure T . This
is followed by the horizontal resolution update procedure.

Theorem 2. The asymptotic time complexity of the preprocessing part of the
approximation algorithm with fast preprocessing is O(n log n) for n input seg-
ment generators (including segments of polygonal generators).

Theorem 3. The asymptotic time complexity of the approximation algorithm
with fast preprocessing is O(n log n) for n input segment generators, where
the resolution of approximation point generators on each segment generator is
upper bounded by the precision approximation factor P .

The formal descriptions of both algorithms and proofs of their time complexi-
ties can be found in the thesis [37].

3.1.3 Analysis of Experiments

A few experiments have been carried out to prove main advantages of the
real-time non-uniform approximation algorithm and the approximation algo-
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Figure 3.3: Result of the computation of the basic uniform approximation algo-
rithm (left) and the result of the computation of the approximation algorithm
with fast preprocessing (right).

rithm with fast preprocessing over the basic uniform approximation algorithm
(for an example, see Figure 3.3). Moreover, there is drawn a comparison be-
tween them. These algorithms were implemented in the Java programming
language and they run on AMD Sempron 3000+ machine.

According to the accomplished experiments, there is a clear evidence, that
the real-time non-uniform approximation algorithm and the approximation al-
gorithm with fast preprocessing are substantially faster than the basic uniform
approximation algorithm, especially for large and detailed environments. The
main reason for this is the amount of approximation point generators, which
are put in higher density only into problematic places like narrow corridors to
achieve sufficient precision. Not only the amount of approximation point gen-
erators is important but also their distribution. Based on these experiments,
the less uniform distribution, the better efficiency of the Fortune plane sweep
algorithm is.

Even though the environment is very dense, the speed of the preprocessing
part of the approximation algorithm with fast preprocessing is very high. The
percentage from the whole time spent on computing of this algorithm over a
small amount of generators is actually dropping to insignificant part as the
amount of generators is raising.

In the case of the basic uniform approximation algorithm, the sufficient
precision of approximation is not known in advance as in the case of the ap-
proximation algorithm with fast preprocessing (or real-time non-uniform ap-
proximation algorithm). This makes a substantial practical difference between
these two algorithms since the sufficient precision for the basic one must be
guessed.

Finally, according to experiments, the approximation algorithm with fast
preprocessing is faster and more precise in particular situations than the real-
time one hence it should be preferred.

13



3.2 ROBOT MOTION PLANNING

In the thesis, the GVD is used as a roadmap in the workspace for a robot
to be able to find a path between two given locations while preserving the
largest (the safest) distance from surrounding obstacles. The requirement of
having the path in the largest distance from surrounding obstacles is not always
practical and can be relaxed.

The latest research is focused on dealing with the workspace geometry in-
stead of the geometry of the configuration space due to its very difficult and
rather theoretical explicit construction for three dimensional or higher spaces1.
The GVD can also serve as a base for sampling-based robot motion planning
methods for highly articulated robots.

From the implementation point of view, it is almost impossible to construct
a path preserving the optimality criteria. Due to this reason, approximation
algorithms are used, that are capable of constructing a path, which is only an
approximation to the optimal solution.

There are two strategies of solving the motion planning problem, the multi-
query (or global) and the single-query (or real-time) ones. Both strategies have
been implemented and results from the simulator follow.

3.2.1 Global Robot Motion Planning

In cases when a map of the whole environment is known and multiple motion
planning queries are needed, the multi-query motion planning strategy is an
optimal solution. In this case a sequence of the following steps is applied:

1. Computation of the GVD for a given environment by using either the
non-uniform real-time approximation algorithm or the approximation al-
gorithm with fast preprocessing.

2. Computation of a feasible path from an initial to a goal configuration for
a robot using a graph search algorithm like the A* algorithm.

3. An optional application of a path smoothing technique [38].

Two experiments of the multi-query motion planning in indoor and outdoor
environments have been carried out. They show GVD based on a set of ap-
proximation points, which are well distributed in narrow corridors, thereby
preserving the sufficient precision for the motion planning task. In this task,
the robot is moving along the shortest smooth collisionless path.

Each vertex in the Voronoi diagram has the largest distance from surround-
ing generators. The Fortune plane sweep algorithm can record this information

1In cases when the robot has three or more degrees of freedom.
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into all vertices of the DCEL. This clearance information can be used for find-
ing a path for robots with different shapes and sizes and also for robots with
different velocities and accelerations, thus kinodynamic constraints.

3.2.2 Real-Time Robot Motion Planning

In cases when a map is unknown or partially known, only single motion
planning query is needed, the single-query motion planning strategy is an
optimal solution. In this case a sequence of the following steps is applied:

1. Utilisation of a sensor to get a suitable representation of local environment
(high-level features).

2. Computation of the GVD for the local environment by using either the
real-time non-uniform approximation algorithm or the approximation al-
gorithm with fast preprocessing.

3. Computation of the local feasible path for a robot using a graph search
algorithm like the A* algorithm.

4. An optional application of a path smoothing technique.

5. Connection of the local GVDnew to the general GVD using the algorithm
GVDConnect (see [37]) and return to the step 1 until the goal is reached.
The GVDnew is connected to the GVD only if the GVDnew contains parts,
which are not presented in the original GVD, and the distance between
the GVDnew and GVD is larger than a given constant (for not connecting
the very similar GVDs). Thus, sequences of small-scale local maps and
GVD trees are generated, that form the final map and GVD.

Two experiments of the single-query motion planning have been carried out.
In the first experiment, the robot does not have a map of the environment,
it only knows its initial and goal positions. The final computed path can be
reused later by other robots to simplify their navigation through the environ-
ment.

The second experiment proves the ability of the robot to follow a path based
on the GVD to handle a cyclic environment correctly and to confirm its ability
to improve its own localisation by matching GVD subtrees independently on
its position [1].
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3.2.3 Motion Planning with Kinematic and Dynamic Constraints

The task of the planner 2 is to compute a trajectory through a state space3

that connects initial and goal states while satisfying the robot’s differential
constraints. The planner has to consider its kinematic or dynamic constraints
by either postprocessing the path (smoothing) or directly including the kine-
matic and dynamic models into the computation.

The objective of the kinematic controller is to follow the path made up of
a sequence of key vertices and segments. An example of an applied car-like
kinematic model on generated path laying on the GVD is shown in Figure 1.2.
In this example, during the computation, the key points on the found path are
determined first, and then the path between these key points is interpolated
with respect to a chosen kinematic or dynamic model. The differential con-
straints are ignored in the planning process (construction of the GVD) first
to be appropriately handled later on. This corresponds to executing the com-
puted path as closely as possible using control techniques. A better approach
could be considering differential constraints directly in the planning process,
which conforms to the natural motions of mechanical system.

The corridor made along the path consists of maximal clearance circles of
Voronoi vertices. This corridor can be used for constructing an arbitrary path,
which suits a particular application regardless of the shape of the original path.
The Figure 3.4 shows this situation, where the original path strictly lays onto
the GVD while the other path is short enough and preserves some amount
of clearance between the robot and obstacles. This path can be computed in
O(n) time complexity, where n is a number of path vertices.

3.3 MAP GENERATION AND EXPLORATION

In some tasks like rescue operations, a robot must be able to autonomously
scour the whole environment (house, ruins, cave, etc.) to find and save human
beings or animals. These tasks involve all components of the robot motion
planning – perception, localisation, cognition, and motion control. The robot
in a map generation and exploration task should be able to autonomously
explore the whole environment with its on-board sensors, extract knowledge
from raw sensor data, interpret it by building an accurate map, and estimate
its position relative to this map.

An algorithm for map generation and exploration based on the GVD, repre-
senting a topological map of the configuration space, has been developed under
the assumption of having an accurate localisation technique.

2In the artificial intelligence notation, the planner stands for an algorithm responsible for constructing a
path [40, 49, 54].

3It can be a configuration space or a phase space of this configuration space, see [24]
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Figure 3.4: Corridor which is encoded into the path during the computation
can be used to create different types of paths for different applications later
on. There is shown a path strictly laying onto the generalised Voronoi diagram
and the other one that is computed to be used in a relevant application.

Algorithm outline The robot starts in an initial position and generates
a local map of its surrounding environment and initial GVD. Thereafter, ac-
cording to the wall-following technique [2], DFS technique for graph searching
[24], or so-called recursive exploration [2], it starts exploring this new gener-
ated graph. Having arrived to a vertex with a degree of edge incidence at
least 2, it generates a new GVD, limit it to a given radius r, and attempts to
connect it to the global GVD. This new GVDnew is connected to the global
one only if it has parts, which are not presented in it, or the global GVD has a
larger distance from GVDnew than is the defined distance δ. Thus, sequences
of small-scale local maps and GVD trees are generated. This technique is also
used for localisation by matching GVD subtrees independently of the robot’s
position, and is capable of handling cyclic environments correctly.

An experiment built on the map generation and exploration task can be
found in the thesis [37]. The map shown is autonomously generated by a
robot after it has been deployed into an unknown environment. The generated
map can further be used for different types of localisation.

3.4 GROUP MOTION PLANNING

In the thesis, the group motion planning task deals with the collisionless
motion planning of a large group of robots between two given positions, see
Figure 3.5. This group of robots should keep its coherence while moving and
the largest possible distance from surrounding obstacles, provided that it has
been given a lateral dispersal (it is perpendicular to the path) and the longi-
tudinal one (the distance between the most and the least advance positions of
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Figure 3.5: Group motion planning based on the generalised Voronoi diagram
and Fortune’s flocking rules.

robots on the path). Possible applications of this task are service operations,
where each robot in the group carries different apparatus or can be equipped
with different sensors.

In theory, the standard planning algorithm can be applied directly to this
task for planning multiple robots in an unknown environment [24]. However,
the dimension of the state space X would make the time of the computation
exponential4. This approach of treating multiple robots as a one composite
system belongs to the centralised [24] planning schemes. These have an ad-
vantage of finding a solution if one exists that is why they are called complete.
Conversely, the decoupled planning scheme generates independent paths for
all robots first and then resolves interactions between them. The prioritised
planning is an example of this scheme [24].

The motion planning of multiple robots can be decoupled in many ways
[24], however for the transportation task, which is the goal of the thesis, it is
reasonable to think of the group as a single entity, where individuals of the
group control themselves according to certain simple rules.

The motion planning for a group of robots can be driven by the swarm the-
ory (or swarm intelligence field, [17, 20, 29]). The swarm theory is inspired by
biology, especially by studying social insects colonies. Social insects provide
surplus of examples indicating that locally sensed stimulus and reflexive be-
haviour can result in global behaviours [14]. Flocks of birds, swarms of bees,
and schools of fish present complex spatial behaviour, that is made if each
agent follows a few simple rules.

The robotic swarm is fully autonomous and hence not controlled centrally,
therefore robots also can respond quickly to a dynamic environment since they
do not have to wait for an instruction from a central controller. The swarm
has an increased sensing precision, thus it can localise itself faster and more
accurately provided that the robots in the swarm exchange information about
their positions regularly. The higher reliability of the swarm increases a chance

4The dimension of X grows linearly with respect to the number of robots.
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to complete a task and it can be achieved by redundancy of robots easily.
A robotic swarm moves in order to perform some tasks. When the swarm is

moving, the challenge is to have all robots avoiding obstacles that appear in
their paths. There is an assumption that each robot knows the exact positions
and velocities of other robots in order to compute the swarm center and the
swarm average velocity.

Each robot has its own set of simple behaviours (actions) and cooperation
of them in a swarm can result in a more complex behaviour. Craig Reynolds
introduced a flocking model [30] (or behaviour) for motion planning of a swarm
of entities called boids. This model, presented in its original form, was used
to simulate flocks of birds, fish, or other creatures predominantly for computer
graphics purposes. However, a modified version can be used to simulate or
drive swarms movement of units, squads, or air squadrons. The flocking model
presents self-directing autonomously operating entities without a centralized
control.

The results in this section have been partly presented in [33] and further
expanded in [34]. The robots in the group are driven by simple rules of the
flocking model. The A* algorithm is used to find the shortest path τ between
two given positions. This backbone path is made up by the generalised Voronoi
diagram computed either in advance or computed in real-time by a lead robot
of the group. Every robot should be able to pass the path τ with such minimum
width, that is equal to the diameter of the smallest circle circumscribing the
largest robot from the group.

Each vertex of the GVD contains a maximum clearance information. This
information can be used for deciding whether all robots from the group will
be able to pass the path. This path is divided into subgoals, which equals to
vertices of the GVD on the path. The sequence of all these upper bounded
clearance circles make a collisionless corridor along the path. The transfer
of the group along the path in this corridor consists of partial transfers to
subgoals (or vertices on the path) until the goal is reached. This corridor can
be readily employed for planning of a group of robots to control its maximal
lateral dispersion in different vertices on the path. The larger clearance leads
to higher coherence of the group, therefore motion planning on the GVD is in
this sense optimal [27].

During the path following behaviour, the vertices on the path being followed
are made by the Voronoi vertices, where for each of them the clearance infor-
mation is encoded. Thus, the group is moving along the path while preserving
its lateral and longitudinal dispersal. A robot in this group always chooses
the most advanced key vertex v with a clearance c but the one that is in its
reach inside the corridor. This vertex will cause the robot to move in a given
direction.
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4 CONCLUSIONS AND FUTURE WORK

Two novel approximation algorithms for constructing the generalised Voronoi
diagram have been proposed. These new algorithms – the real-time non-
uniform approximation algorithm and the approximation algorithm with fast
preprocessing are based on the Fortune plane sweep technique. They attempt
to detect narrow corridors in an environment that are consequently sampled
with a higher density of approximation point generators. This results in a
higher computing speed of them in comparison to the speed of computation
of the basic uniform algorithm, which uses a uniform point approximation
on every segment generator with the same precision. The result of the ap-
proximation is that the parabolic arcs of the generalised Voronoi diagram are
substituted by sequences of straight segments.

These new algorithms directly fall into the family of geometric algorithms
and they represent a trade-off between the speed of computation, robustness,
and implementation difficulty while preserving the sufficient precision for most
applications. The time complexity of these algorithms is O(n log n) for n in-
put segment generators (or segments of polygonal generators) provided that
the resolution of approximation point generators on every segment is upper
bounded. This theorem has been proved theoretically for both algorithms.

A few experiments on these algorithms have been carried out to give a reader
an idea about their speed on current machines besides giving their asymptotic
time complexities and also to compare their average speed to the speed of
the basic uniform algorithm. These new algorithms are substantially faster
especially for large and detailed environments. The main reason for this is an
intelligent distribution of approximation point generators in a higher density
in narrow corridors while not approximating segment generators, which are far
away from each other, but still preserving a sufficient precision of the whole
diagram for most applications.

The distribution of point generators is important since the less uniform
distribution, the better efficiency of the Fortune plane sweep algorithm is,
as follows from the shown experiments. The amount of time taken by the
preprocessing part of the uniform algorithm with fast preprocessing makes
only a negligible percentage from the whole computing time. This percentage
is actually dropping as the amount of generators is raising, and this can be
further improved by changing the uniform distribution to the non-uniform one,
however, it can put an extra burden on the computation.

To show the practical aspects of these algorithms, there have been presented
a few applications of them in the robot motion planning context, where the
main task is a collisionless transfer of a polygonal robot amid point, segment,
or polygonal obstacles from an initial position to a final one. Two main types
of the motion planning task based on the generalised Voronoi diagram have
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been solved – the global motion planning (or multi-query motion planning)
and the real-time motion planning (or single-query motion planning).

In the real-time motion planning task the robot must be able to detect
surrounding obstacles, represent the raw sensor data as high-level features
(segments), compute the generalised Voronoi diagram, and proceed a series
of local motion planning tasks to achieve the final position by having only a
direction to it or by having only its local referenced coordinates. It has also
been shown that the generalised Voronoi diagram can be used for improving
the robot’s localisation, which is a difficult subject in robotics.

The kinodynamics properties of the robot are an important part of the
robot motion planning. These have been considered as well in both types of
motion planning and shown in experiments. It is obvious that the rigidity of
the generalised Voronoi diagram to preserve the largest or the safest distance
from surrounding obstacles can be relaxed to accommodate the practicality of
various motion planning tasks.

A new algorithm for the map generation and exploration task has been
proposed under the assumption that the robot has precise localisation ability.
This algorithm exploits the property of the generalised Voronoi algorithm to
preserve the largest distance from surrounding obstacles, which suit the robot’s
sensors to capture the surroundings from a vantage point. In the exploration
task the robot must be capable of exploring the whole previously unknown
environment, where building its map is its indispensable part. Further, high
level features from the raw sensor data must be extracted, interpreted as a map,
and used to estimate the robot’s position relative to this map. The application
of this algorithm is shown in an experiment, where the robot attempts to
explore and map the whole unknown warehouse environment, which can be
useful mainly for rescue operations. Also as shown in the experiments, the
motion planning based on the generalised Voronoi diagram handles the cyclic
environments correctly.

The last solved task is the group motion planning inspired by biology, espe-
cially by social behaviour of insects. It is rather a theoretical proposal how to
plan a motion of a group of robots between two given places in an unknown en-
vironment based on the generalised Voronoi diagram. This proposal is inspired
by the Reynold flocking algorithm for motion planning of a group of entities
in which the whole group is planned as one entity, whereas the entities inside
this group are driven by three simple rules. The useful information encoded
in the generalised Voronoi diagram is a distance to surrounding obstacles in
each vertex. This information can be readily exploited especially for the group
motion planning in narrow corridors, where the group has to change its shape
to prevent a congestion. Lastly in this subject, the formation motion planning
is also discussed.
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Figure 4.1: Robot motion planning task in an office-like environment with
dynamic obstacles. The robot attempts to move into the office while avoiding
a person going in the opposite direction.

The group motion planning is an exciting field and can be further expanded
for other tasks like the map generation and exploration, include kinodynamic
constraints, different sizes and shapes of robots, where even their reconfigurable
abilities can be considered.

A simulator for all experiments has been implemented, which includes chal-
lenging implementations of different techniques from the computational geom-
etry together with their complex data structures. This work can also serve as
a detailed guide to the implementation of the Fortune algorithm including the
difficulty with treating degenerate cases of this algorithm and maintenance of
its data structures.

The motion planning for dynamic obstacles based on the generalised Voronoi
diagram can be developed. A simple manual simulation from the simulator
of this type of planning can be found in the thesis itself (see Figure 4.1 for
an example). In this simulation, the robot attempts to move into the office
from the corridor while avoiding a moving person. This is a challenging task
in robotics since the robot must incorporate not only the path computing
technique itself but also predictability and reasoning ability.

The approximation algorithms can be also adapted to 3D spaces for motion
planning of flying or diving robots. These algorithms would be based on the
3D Voronoi diagram whose geometrically precise representation is even more
challenging, therefore using an approximation algorithm would be more than
appropriate for practical applications.

There are still a lot of ways of optimising of all the proposed algorithms in
future, especially when they are being deployed into a real environment.
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Abstract

This thesis deals with the motion planning of an autonomous robot in an
unknown or partially known indoor or outdoor environment. This mainly in-
cludes tasks of the global or real-time robot motion planning between two given
positions. The generated path is based on the generalised Voronoi diagram,
which preserves the largest possible distance from surrounding obstacles and
topologically captures the continuity of the whole space. Furthermore, the
map generation and exploration and group motion planning tasks are solved.
Some of these tasks also take into consideration kinodynamics properties of
the robot, its localisation, and uncertainty of the environment.

Two novel approximation geometric algorithms for computing the gener-
alised Voronoi diagram based on the Fortune plane sweep technique are pro-
posed whose efficiency is proved theoretically and by accomplished experi-
ments. These algorithms present a trade-off between the efficiency of com-
putation, implementation difficulty, and robustness. Their asymptotic time
complexity is O(n log n) for n input segment generators provided that the ap-
proximation precision is upper bounded.

Further, a new geometric algorithm for solving the map generation and ex-
ploration task is designed, which exploits the main properties of the generalised
Voronoi diagram. In this task the robot must be able to autonomously explore
the whole environment and generate its map.

Finally, a proposal of a technique for the motion planning of a group of
robots, which uses the maximal clearance information of each vertex of the
generalised Voronoi diagram, is discussed. This is inspired by the Reynold
flocking algorithm for transferring a group of entities by considering them as
one unit in which these entities are driven by three simple rules.
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