


 

BRNO UNIVERSITY OF TECHNOLOGY 
Faculty of Mechanical Engineering 
Institute of Physical Engineering 

 
 
 
 
 
 

 
 
 
 
 

Mgr. Miroslav Černý, Ph.D. 
 
 
 

THEORETICAL STRENGTH AND STABILITY OF CRYSTALS 
FROM FIRST PRINCIPLES 

 
 

TEORETICKÁ PEVNOST A STABILITA KRYSTALŮ Z PRVNÍCH 
PRINCIPŮ 

 
 
 

Short Version of Habilitation Thesis 
 

 
 
 
 
 
 
 
 
 
 
 

 
BRNO 2008 



 

KEY WORDS 
Theoretical strength, elastic stability, crystal lattice, atomistic modeling, ab initio calculations 

 

 

KLÍČOVÁ SLOVA 
Teoretická pevnost, elastická stabilita, krystalová mříž, atomární modelování, ab initio výpočty 

 

 

 

MÍSTO ULOŽENÍ HABILITAČNÍ PRÁCE 
Fakulta strojního inženýrství VUT v Brně 

The habilitation work is stored at Faculty of Mechanical Engineering, BUT, Brno. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Miroslav Černý, 2008 
ISBN 978-80-214-3583-4 
ISSN 1213-418X



 3

CONTENTS 
 
 

1 INTRODUCTION.........................................................................................................................5 

2 THEORETICAL STRENGTH .....................................................................................................6 

2.1 Applicability of TS calculations in materials engineering...................................................6 
2.2 Brief history of TS calculations ........................................................................................... 6 

2.2.1 Theoretical shear strength .......................................................................................6 
2.2.2 Theoretical tensile strength......................................................................................7 

3 COMPUTATIONAL METHODS ................................................................................................9 

3.1 General introduction ............................................................................................................9 
3.2 Particular computational codes ..........................................................................................10 

3.2.1 TB – LMTO – ASA code.........................................................................................10 
3.2.2 Wien 95–w2k codes................................................................................................11 
3.2.3 VASP code..............................................................................................................11 

4 APPLICATIONS ........................................................................................................................12 

4.1 Theoretical isotropic strength.............................................................................................12 
4.2 Theoretical isotropic strength of magnetic materials .........................................................13 
4.3 Stability analysis of isotropically loaded cubic crystals ....................................................14 
4.4 Stability analysis of isotropically loaded magnetic crystals ..............................................15 
4.5 Uniaxial loading of elemental crystal ................................................................................16 
4.6 Uniaxial loading of nanocomposites..................................................................................17 
4.7 Coupling of uniaxial and biaxial stress tensor components...............................................18 
4.8 The shear strength under superimposed normal stress.......................................................19 
4.9 Two-scale analysis of nanoindentation process .................................................................20 

5 CONCLUSION ...........................................................................................................................20 

REFERENCES.................................................................................................................................21 

SHRNUTÍ ........................................................................................................................................24 

 
 
 
 
 
 
 
 
 



 4 

Miroslav Černý obtained his first academic degree Mgr. (MSc.) at 
Faculty of Education, Masaryk University in Brno in 1996, after 
finishing his study of “Physics and Technical Education”. From 1996 
until 2001 he studied Ph.D. course of “Applied Physics” at the Institute 
of Physical Engineering, Faculty of Mechanical Engineering, Brno 
University of Technology. There, starting from 1999, he worked as an 
assistant (junior lecturer). In the years 2000–2001, he was employed 
also at Institute of Physics of Materials, Academy of Sciences of 
Czech Republic. He defended his PhD thesis „On the ab initio 
calculations of ideal strength“ (in Czech) in December 2001.  

During his Ph.D. study, M. Černý has acquired an experience in condensed matter physics and 
computer modeling with the main focus on ab initio calculations (based on density functional 
theory) of electronic structure of solids and related structural and mechanical characteristics. He 
paid a special attention to the problems of strength and stability of metallic and covalent crystals 
under various loading types, particularly, the isotropic (hydrostatic) loading, uniaxial tension, 
simple shear and, later on, a combination of certain loading types. He has also learned to operate 
several program codes as TB – LMTO – ASA (based on Linear Muffin-Tin Orbital method within 
the Atomic Sphere Approximation), WIEN97 and w2k (based on Full-Potential Linear Augmented 
Plain Waves method) and VASP code (Pseudo-Potential Plane Wave method). Although all of his 
published research activities were based on the above mentioned three computational codes, he has 
also gained a basic experience with all-electron code EXCITING and pseudo-potential package 
ABINIT. 

The research activities were supported by several grants. After he finished his Ph.D. course, he 
received a post-doc grant “Ab initio calculation of elastic properties of FeP ordered system” 
supported by the Czech Science Foundation (project GA 106/02/D101, 2002–2004) and, later, 
a COST project “Twoscale analysis of stress distribution under nanoindentor tip” (OC 148 – P19, 
2006-2009) within the section P19 “Multiscale Materials Modeling”. Besides the two, he also 
participated in several other projects (MSM 0021630518, MSM 262100002, GA106/05/0134, 
GA106/05/0274, GA106/99/1178, GA101/05/0320). The results achieved were published in 
impacted international scientific journals (15 publications in last 5 years) and in proceedings of 
international conferences. 

Teaching activities of M. Černý are focused mostly on basic university course of physics. 
Within the courses of Physics I and Physics II in Masters Study Programs, he teaches labs as well 
as seminars. Within the course of Physics B in Bachelors Study Programs he presents lectures and 
teaches labs. He is a supervisor (and sometimes also a teacher) of Selected Topics in Physics 
(I and II in Masters Study Programs and B in Bachelors Study Programs). He also teaches Physical 
Laboratory course for Physical Engineers. Starting from 2001, M. Černý participates on 
preparation of entrance exams to the Faculty of Mechanical Engineering.  

 
 
 
 
 
 
 
 
 
 
 



 5

1  INTRODUCTION 
The strength of any solid has its upper limit called the theoretical (ideal) strength (TS). 

Although the terms ideal strength and theoretical strength are often considered to be synonyms, 
there is a slight difference in "feeling" their definition. While the ideal strength stands for stress 
value corresponding to the failure of an infinite perfect single crystal (ideal crystal) under zero 
absolute temperature, the theoretical strength can be assigned also to a system containing defects. 
Most of the methods for TS calculations based on atomistic simulations use periodic boundary 
conditions. Therefore, it is much simpler to build a model of an ideal crystal than a crystal 
structure with lattice imperfections.  To make a model of crystal containing a defect, large unit 
cells (containing many atoms) are necessary even in case of point defects. Because of high 
computational demands of ab initio methods, the calculations presented in this work were 
performed for crystals of a perfect symmetry. Therefore, both terms (ideal strength and theoretical 
strength) are used as synonyms throughout the whole work. 

The term TS must be always accompanied by a complete description of the studied system 
(chemical composition, lattice structure) as well as determination of a loading mode (direction of 
tension, slip system or other specification in case of a combined loading). It is necessary to 
describe the applied loading in detail because the computational methods based on atomistic 
approaches enable us to model sometimes also curious deformation paths, far from reality. From 
the historical point of view, calculations of theoretical strength became very important issue that 
made the scientists aware of a significance of crystal defects [1]. First estimates of the tensile 
strength yielded values of about two orders of magnitude higher then the highest observed ones. 
This discrepancy led to a conclusion that crystalline solids normally contained imperfections. This 
became a motivation for deeper studies of various lattice defects, their behaviour under applied 
load and their mutual interactions. A development of corresponding theories (principally the 
dislocation theory) moved an attention of materials scientists to this new subject. 

However, simultaneous development of materials led to fabrication of almost perfect crystalline 
fibres (whiskers). In mechanical tests on whiskers of very pure metals and semiconductors [1], the 
measured strengths approached values of ~10 GPa, very close to theoretical predictions. 
Nowadays, nanoindentation experiments became used as a new and effective tool for approaching 
the TS limits and the obtained data contributed to a convergence of theoretical and experimental 
values [2]. 

The work is written as a commented collection of nine selected authors articles published in 
scientific journals or conference proceedings. The papers attempt to map more or less continuous 
author's effort to penetrate problems of theoretical strength calculations and their application in the 
field of materials science and engineering. The sequence of the papers was chosen so that it 
reflects a transition from the simplest analyses of TS of pure crystals to more sophisticated 
approaches, more complex loading conditions and to atomistic models of composites. The last part 
of the work is devoted to a multi-scale analysis of the nanoindentation test, where some of the 
previously obtained results can be directly applied.  

Introduction is followed by a chapter containing a brief history of TS calculations as well as 
their recent development. Chapter 3 describes briefly the methods for ab initio calculations. 
A particular attention is devoted to three computational codes (TB – LMTO – ASA, VASP, 
Wien2k) that were employed in all the calculations discussed in the next chapter. Chapter 4 
introduces examples of applications of the ab initio computational techniques. This chapter 
consists of nine sections, each containing individual comments to the selected papers [3–11].  
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2  THEORETICAL STRENGTH 
2.1 APPLICABILITY OF TS CALCULATIONS IN MATERIALS ENGINEERING 

The TS values set an upper limit to the envelope of attainable stresses and its knowledge 
enables us to assess the gap remaining to upper strength values of advanced engineering materials. 
Another reason for the TS investigation is that it plays a crucial role in the fundamental theory of 
fracture. For example, the stress necessary for nucleation of a dislocation loop can be identified 
with the shear TS value and the local stress for nucleation of a cleavage crack should overcome the 
tensile TS value [12]. The ratio of these values expresses a tendency of the crystal matrix to 
become brittle or ductile [13, 14]. Moreover, the TS values can be also used for calibration or 
checking of semi-empirical interatomic potentials that are currently used for study of extended 
defects. 

From the practical point of view, the shear TS appears to control both the onset of fracture and 
the dislocation nucleation in defect-free thin films and, in particular, in nanostructured materials 
that are currently being developed. This has been con-firmed most eloquently by nanoindentation 
experiments [15] which suggest that the onset of yielding at the nanoscale is controlled by 
homogeneous nucleation of dislocations in a small, dislocation free, volume under the 
nanoindenter where stresses approach the TS. Therefore, starting from the beginning of the last 
century, there is a more or less continuous effort expended in order to obtain theoretical and 
experimental data concerning TS of various solids. 

 
2.2 BRIEF HISTORY OF TS CALCULATIONS 

2.2.1 Theoretical shear strength 

Historically first calculations of shear strength were made 1926 by Frenkel [1, 16]. Model of 
a crystal subjected to shear is in Fig. 1 together with the related behaviour of the shear stress τ 
under applied shear deformation, expressed by the plane shift s. The τ(s) dependence was assumed 
to be of a sinusoidal shape.  

 
a) 

            a s

b
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b) 

             

a
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�

0
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Figure 1: a) Model of a homogeneous shear deformation. Dark spheres represent atomic positions 
within atomic planes, mutually shifted by s, the light spheres show their original positions. 
b) Shear stress τ as a function of shift s of two adjacent planes. 

 
According to specification of variables in Fig. 1, the stress behaviour can be described by the 

relation  

 sa
πττ 2

max sin= . 

Next step is a calibration of the stress amplitude τmax that can be done using the shear modulus G. 
For a small shift, the shear modulus should be ξ

τ
d
dG = , where b

s=ξ . The shear strength is equal to 
the derived  



 7

 
b

Ga
π

τ
2max = ,  

that yields values τmax ~1/9G for { } 211111  shear of fcc metals, τmax ~1/9G and τmax ~1/5G for 

{ }111211  and { }111101  shears of bcc metals, respectively. 
Mackenzie presented 1949 a more extended study of theoretical shear strength based on 

variation of potential energy U per unit area of a shear plane with plane shift s [1, 17]. From this 
perspective, the above described Frenkel's approach considers only first two terms in the Fourier 
series for U(s). Mackenzie included further terms into consideration. The shear stress is computed 
from the energy U as  

 
ds
dU=τ . (1) 

Mackenzie’s theory yielded results τmax ~1/30G for { }111211  shear in fcc lattice [1]. However, 
latter studies on shear strength [18] yielded τmax values of about 0.1G. 

Further theoretical shear strength (TSS) calculations were performed with various models and 
methods [19, 20]. Most of them, however, used an analogy to Eq. (1). The potential energy U was 
calculated via summation of pair-potentials of various types as Morse potential, Lennard-Jones, 
etc [13, 18, 21, 22]. Nowadays, ab initio approaches enable us to compute the crystal energy in 
a very accurate manner (for simple crystals) [22, 23] or very sophisticated semi-empirical methods 
as potentials of Finnis-Sinclair type, embedded atom method or bond-order potentials are used for 
more complex studies [25–27]. 

Not just the methods for energy evaluation were upgraded during years, but also models of 
deformation processes experienced further development. The very first models assuming rigid 
shear planes in a constant distance [1, 13] were exchanged by more sophisticated models that 
enable to relax not only interplanar distance but also the arrangement of atomic positions within 
the planes [28–30]. 

 
2.2.2 Theoretical tensile strength 

The first attempts to compute the theoretical strength in tension were performed by 
Polanyi [1, 31] (1921) and Orowan [32]. It was based on an assumption of brittle fracture of 
a stretched crystal. The basic idea is that when a perfect solid is stretched at absolute zero 
temperature, forces between two adjacent atomic planes (perpendicular to the loading axis) as well 
as tensile stress vary with the interplanar distance as in Fig. 2. 

 

a0
x

�

0

�max

a +d0  
Figure 2: Tensile stress σ as a function of distance x of atomic planes. 

The dependence was approximated by a sinusoidal function πσσ
d

ax 0
max sin

−
=   and the 

expected deviation from this trend for high strain values was neglected. The function was 
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parameterized according to following two assumptions: i) the work of deformation per unit area 
corresponds to energy 2γ of the two new surfaces  

 ∫
+

=
da

a

dx
0

0

2γσ  

and ii) in the vicinity of the equilibrium state (x = a0), the stress is proportional to the Young's 
modulus and the relation ε

σ
d
dE =  must be valid for the strain d

ax 0−=ε . The maximum value of the 
tensile stress can be then evaluated as  

 
0

max a
Eγσ = . 

Corresponding cleavage strengths of metals were mostly very high (several tens of GPa). 
In the very first studies of TS, it has been assumed that the deformation proceeds in a stable 

manner until the applied stress reaches its maximum value, i.e. that the crystal fails in the same 
mode as it was deformed. This assumption was later disputed in many works [20, 33, 34]. Under 
certain tensile loadings, shear stresses in some slip systems can exceed their critical values 
(corresponding to the related TSS) well before the tensile stress reaches its maximum. This was 
observed also in experimental tensile tests on whiskers [1, 19]. Some of the whiskers evidently 
failed by cleavage across a favourable plane yielding apparently atomically smooth fracture 
surfaces. Thus, the definition of TS as a maximum attainable stress along the deformation path 
was assigned to a stress related to the first onset of instability. 

Plenty of stability studies were based on analysis of elastic response of crystal subjected to 
small homogeneous deformations. Such analysis, based on calculations of independent elastic 
moduli, is often called elastic stability analysis and its application led, in some cases, to 
a significant decrease in theoretical strengths [7, 35–37].  

A further step towards identification of the very first onset of instability was made by studies on 
phonon spectra of crystal states along investigated deformation paths. This approach has reduced 
the theoretical strengths even more [38]. The phonons are quasiparticles usually used to express 
the particle aspect of lattice vibrations. Although they play a major role e.g. in the theory of both 
thermal and electric conductivities, they can also serve as an indicator of lattice instability at zero 
absolute temperature. 

Instability of the lattice is related to so-called soft phonon modes (at which the phonon 
frequency becomes an imaginary number). Such instabilities are responsible for various structural 
transitions [39]. They can be understood as an irreversible non-uniform (inhomogeneous) 
distortion of a crystal. In this aspect, the phonon analysis represents generalization of the elastic 
stability analysis because any observed elastic instability corresponds to a soft phonon mode with 
an infinite wavelength. Once the crystal becomes unstable, it will follow a trajectory in 
configurational space that will eventually violate the harmonic approximation inherent in the 
phonon calculation. Therefore, to find such trajectories requires molecular dynamic (MD) methods 
that can account for variations of the unit cell shape as well as the positions of constituent atoms. 

Molecular dynamic methods are probably the most promising tools for investigation of system 
stability and eventual structure evolution during spontaneous structural transition. They can give 
sufficient number of degrees of freedom to the studied system and, furthermore, they can also 
incorporate finite temperatures and bring the simulations closer to reality. However, certain 
limitations related to computational capacity hinders to their wider distribution and application. 
Present MD methods are based mostly on empirical or semiempirical interatomic potentials. 
Quantum ab initio MD simulations [40] are computationally more demanding but, on the other 
hand, they represent very reliable tool for atomistic simulations. 
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3  COMPUTATIONAL METHODS 
3.1 GENERAL INTRODUCTION 

Calculations described in this work were performed with utilization of ab initio (first principles) 
methods. The fundamental problem of ab initio approaches, based on applied quantum theory, is to 
calculate stationary states for electrons in the electrostatic field of nuclei, i.e. the electronic 
structure (ES). The energy of this ground state can then serve as a potential energy for 
displacements of nuclei. From the point of view of TS calculations, the total energy of the system 
is the most important output of ab initio methods. 

The main advantage of ab initio methods is their independence on experimental data. Unlike the 
empirical and semi-empirical methods, there is no need for calibration parameters. Thus, they can 
be used also for calculations of some structural and mechanical characteristics of hypothetical 
systems (prediction of properties of materials that have not been yet developed) or study of 
materials behaviour under large deformation (far from the equilibrium state) that can give a better 
understanding of micromechanisms of materials failure. 

First attempts to develop applicable theories were made in late twenties [41], few years after the 
foundations of modern quantum theory were laid (derivation of the Schrödinger equation). A very 
successful step forward represented the Hartree-Fock method [42] (also called the self-consistent 
field method).  This method yields very good bond lengths in molecules. On the other hand, the 
binding energies are generally not in a good agreement with experimentally obtained energies. 
Moreover, for solids, the Hartree-Fock method has problems with a description of band structures. 
The density functional theory (DFT) [43, 44] was invented to include correlation effects without 
using the very costly wave function methods. All the methods used within this work are based on 
the density functional theory. 

In DFT the energy is not obtained as an eigenvalue of a wave function, but rather as 
a functional of the electron density. The complex problem of many interacting electrons is 
transformed into much simpler study of a single electron interaction with an effective potential Ueff 
created by other electrons and all nuclei. This is expressed by the Kohn-Sham equation (one-
electron Schrödinger equation) 

 ( ) 0)()( =−+∆− rrU iieff
rr ψε , 

where εi represents one-electron energies and ψi are the one-electron wave functions. 
The wave functions are then occupied in accordance with the Pauli principle and a new field is 

obtained by solving the Poisson equation for point nuclei shielded by the electronic cloud of the 
density 

 ∑=
occi

i rr
,

2)()( rr ψρ . 

In the case of periodic crystalline materials, the one-electron wave functions are expanded into 
appropriate basis sets and satisfy the Bloch theorem. The Kohn-Sham equation is solved iteratively 
till the solution becomes self-consistent, i.e., the electron density, determined from the effective 
one-electron potential, must generate the same effective potential (which is again a functional of 
the electron density). The self-consistent cycle usually starts with a guess of the effective potential 
(superposition of atomic-like potentials) and then the input and output potentials are appropriately 
mixed before starting a new iteration. The quality and speed of the convergence of such 
calculations is related not only to the choice of a suitable basis, but also to the sophistication of the 
iterative process. Necessary corrections for exchange and correlation are also included in effective 
potential U. This seems to be the crucial point of ab initio calculations because the exchange-
correlation (XC) functional is not known exactly and must be approximated. The first (and the 
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simplest) attempt to build an approximation of the exchange-correlation (XC) energy functional in 
the density functional theory is the local-density approximation (LDA) [45]. This approximation 
uses the XC energy of an electron in a non-interacting homogeneous electron gas of equivalent 
density as the XC energy of an electron in the system being calculated. The LDA is local in the 
sense that the electron exchange and correlation energy at any point in space is a functional of the 
electron density at that point only. As a consequence of this, LDA fails in situations where the 
density undergoes rapid changes (molecules). 

An improvement to this can be made by considering the gradient of the electron density. The 
density gradient corrections are implemented in the so-called Generalized Gradient Approximation 
(GGA). While there is only one LDA there are several different parameterizations of the 
GGA [46]. Some of them are semi-empirical – experimental data (e.g. atomization energies) are 
used in their derivation. Others are derived entirely from first principles.  

Various methods used for the electronic structure calculations may be distinguished according 
to the choice of the basis functions. The better we choose them (according to the character of the 
problem), the smaller number of them is needed for the description of one-electron wave 
functions. The next three chapters describe the basis sets implemented in three computational 
codes that were employed for all the presented calculations. 

 
3.2 PARTICULAR COMPUTATIONAL CODES 

3.2.1 TB – LMTO – ASA code 

Linearized ab initio methods have been successfully utilized for solving many problems in solid 
state physics and materials science [47]. One of the most effective approaches for early first 
principles calculations was the linear muffin-tin orbital (LMTO) formalism which has been 
continuously developed since 1980 [48]. This method is very appropriate for the self-consistent 
calculations. 

The TB – LMTO – ASA code was developed in Max-Planck-Institut für Feskörperforschung in 
Stuttgart and its description can be found in the user’s guide [49]. The crystal potential U is 
approximated by a muffin-tin shape potential which is composed of a set of spherically 
symmetrical potentials inside slightly overlapping spheres around individual nuclei and a constant 
potential in the interstitial region outside the spheres (Fig. 3). Atomic-like orbitals derived for the 
MT potential constitute a suitable basis set. In order to avoid problems arising from an infinite 
range of conventional solid-state muffin-tin orbitals (MTO’s), the tight binding (TB) MTO’s [50] 
were proposed. They represent short-ranged linear combinations of the conventional set. 

 
a) 

 

b) 

Figure 3: Muffin-tin shape potential in (110) plane of a general bcc crystal of the lattice constant 
a = 3 au with sphere radii a) rMT = 1 au and b) rMT = rWS = 1.48 au. 
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In all presented calculations, the LMTO method is used in the framework of an Atomic Sphere 
Approximation (ASA) which is particularly suitable for closely packed structures like fcc or 
bcc [47]. The size of a spherically symmetric potential is assumed to be equal to that of the 
Wigner-Seitz cell (Fig. 3b). It suppresses the interstitial region and neglects the kinetic energy of 
related free electrons. Owing to the necessary space-filling condition, ASA represents a physically 
plausible model only for description of an infinite system of atomic spheres. 

 
3.2.2 Wien 95–w2k codes 

Computational codes Wien95, Wien97 and w2k (Wien2000) were written at Vienna University 
of Technology, Institute of Physical and Theoretical Chemistry, Austria. All the codes are 
individual versions of program package WIEN [51]. 

This code does not use any shape approximation to the potential. The crystal environment is 
divided into a region of non-overlapping atomic spheres (centred at individual atomic sites) and an 
interstitial region as can be seen in Fig. 4. In order to describe ES reliably and effectively, two 
different basis sets are employed: a product of linear combination of radial functions and spherical 
harmonics are used inside the spheres whereas the wave functions in the interstitial region are 
expanded into a linear combination of plane waves. Solution in both regions must be continuous at 
the sphere boundary. Each basis function is then defined as a plane-wave in the interstitial region 
connected smoothly to a linear combination of atomic-like functions in the spheres, thus providing 
an efficient representation throughout the space. A similar representation is used for potentials and 
charge densities. The method is called Linear Augmented Plane Wave (LAPW) method [47].  

 
 
 
 
 
 

Figure 4: Illustration of a crystal model – three atomic spheres (S1 – S3) with potential 
∑=
lm

lmlmS rYrUrU )ˆ()()(  embedded in the interstitial region I with ∑=
K

rKi
KI erUrU

rr
r

r )()( . 

 
With respect to the fact that no shape approximation to the potential is made, a method of 

treating the electronic structure implemented within WIEN code is called full-potential 
LAPW [52]. 

In order to increase the flexibility of the basis (to improve upon the linearization of wave 
functions) and to make possible a consistent treatment of semicore and valence states in one 
energy window (to ensure orthogonality) additional basis functions can be added. They are called 
local orbitals [53] and consist of a linear combination of two radial functions at two different 
energies (e.g. at the 3s and 4s energy) and one energy derivative (at one of these energies). The 
local orbitals are normalized and have zero value and slope at the sphere boundary. 

 
3.2.3 VASP code 

Another way how to avoid a problem with plane wave basis set in vicinity of atomic nuclei, 
where number of plane waves would exceed any practical limits (perhaps except for H or Li), is to 
substitute the exact potential by a pseudopotential.  

 

S1 S2 S3

I
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Figure 5: Comparison of a wavefunction in the Coulomb potential of the nucleus (dashed lines) to 
that in the pseudopotential (solid lines). 

 
Construction of pseudo-wavefunctions is schematically described in Fig. 5 [54]. The Coulomb 

potential of the nucleus and corresponding wavefunction are represented by dashed line. The solid 
line displays pseudopotential and pseudo-wavefunction. The real and the pseudo-wavefunction 
(and also the potentials) match above a certain cutoff radius rcut. 

The pseudopotential approach has been implemented in VASP (Vienna Ab initio Simulation 
Package) code. This code was built at Institut für Materialphysik, Universität Wien. The VASP 
currently supports three types of pseudopotentials: norm-conserving pseudopotentials [55], 
ultrasoft pseudopotentials [55] and projector augmented waves pseudopotentials [56]. In all three 
cases, the core electrons (at lower energy levels than valence electrons) are precalculated in an 
atomic environment and kept "frozen" in the course of the remaining calculations. 

 
4  APPLICATIONS 
4.1 THEORETICAL ISOTROPIC STRENGTH 

 One of the applications of ab initio methods is calculation of the theoretical strength under 
isotropic (hydrostatic) loading (TIS). The knowledge of TIS and the theoretical shear strength 
allows for the assessment of both the ductile/brittle response and the crack stability in solids [14]. 
On the other hand, there are no experimental data for isotropic strength. The reason lies in 
difficulties in experimental realization of isotropic tensile loading. Thus, a theoretical assessment 
remains the only applicable tool to gain such information. 

Summary of computed TIS values can be found in Table 1 and in Ref. [3]. The presented 
isotropic strength values correspond to stresses at the onset of a volumetric instability. The data in 
Table 1 were taken from LMTO [57, 58] and VASP [9, 29] calculations and semiempirical 
(polynomial, Morse, sinus) methods [22, 59]. 

 The minor differences between LMTO computed values in Table 1 (and in Table 1 in Ref. [3]) 
are caused by slightly different computational conditions (different version of computational code, 
different number of k-points). 

 



 13

Table 1: Theoretical isotropic strength σiso from two ab initio (LMTO – ASA [57, 58], 
VASP [9, 29]) and several semiempirical (polynomial, Morse and sinus [22] and Discrete 
Variation Cluster (DVC) [59]) approximations. 

 
 Theoretical strength σiso (GPa) 

crystal Ab initio results Semiempirical results 
  LMTO LMTO VASP VASP poly Morse sinus DVC 
  LDA GGA Ref. [9] Ref. [29]     
Li      bcc       3.53      3.13                       5.06      2.49       4.91   1.92    
C       dia      66.1        53.2      88.5a  88.5a    84.7       69.7   138          
Na      bcc       1.97      1.55                       1.87      1.20       1.86   1.77    
Al      fcc      13.8       12.0               11.2b    22.2     11.9       23.0             
Si      dia      15.0       10.4       15.5a  15.4a   15.1     13.7       28.2               
K       bcc       0.955     0.701                      0.99     0.659     1.28   0.10    
V       bcc      39.2       33.2       32.7b            32.6     23.5       45.4     38.3    
Cr      bcc      37.2       21.0                         35.2     25.9       50.2     47.4    
Fe      bcc      37.7       26.7       27.7b  28.5b    33.8     24.1       48.1             
Ni      fcc      39.5       27.4       28.9b  29.2b    44.7     26.9       51.2             
Cu      fcc      28.8       20.9       19.8b  20.4b    32.7     19.9       38.4             
Ge      dia      11.0        6.46     11.1a            11.3     10.1       21.4             
Nb      bcc      36.3       31.6       31.6b            35.5     25.5       49.4     34.1    
Mo      bcc      49.3       42.7       42.9b  43.2b    48.2     35.0       68.9     42.2    
 Ag     fcc      19.0       12.6               17.6a    20.2     13.7       26.7             
Ba      bcc       2.69      1.93                       2.36      1.64       3.17           
Ta      bcc      41.3       36.4                         39.2     28.5       55.1     41.3    
W       bcc      57.0       50.6       50.7b  50.2b    56.1     42.2       80.1     53.1    
 Ir     fcc                            40.1b            61.2     45.6       85.6     
 Pt     fcc      42.7       33.6       39.6a            48.5     35.1       68.0     
 Au     fcc      25.5       17.6       23.2a  23.5a    28.4     20.9       39.9     
Pb      fcc       8.7       6.98                       7.91     5.47       10.6     
          

aLDA 
bGGA 
 
4.2 THEORETICAL ISOTROPIC STRENGTH OF MAGNETIC MATERIALS 

Some of elements in the periodic table have a magnetic moment in their atomic ground state. 
The major role in magnetism plays the spin of electrons that is not included in equations of non-
relativistic quantum mechanics. The simplest way how to introduce the electronic spin into ab-
initio study is an ad hoc approach called the spin polarization. Heart of the spin-polarized 
calculations dwells in a separate treatment of self-consistent charge densities for each spin 
orientation. 

With respect to the nature of the participating electrons in solids, we can distinguish two 
different types of magnetism, itinerant and localized. The localized states are well described by the 
atomic theory, including the Hund's rules, with corrections due to the influence of the crystal 
fields. The itinerant magnetism is always a result of the competition of the exchange interaction 
between valence electrons that favours spin polarization and the hybridization that causes band 
formation and favours a paramagnetic ground state. 

A simple and useful model for the itinerant magnetism is the Stoner model. According to this 
model, magnetic ordering is energetically favourable for systems with sufficiently high density of 
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states (DOS) at Fermi level. This model correctly predicts magnetism e.g. for 3d transition metals. 
As an example, total DOS for Ni was computed using the VASP code employing the PAW – GGA 
pseudo-potential with 20x20x20 k-points and plane-wave cutoff of 350 eV. The results of 
magnetic (spin-polarized) as well as non-magnetic calculations at equilibrium lattice parameter 
a0=3.52 Å are displayed in Fig. 6. 
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Figure 6: The density of valence states in fcc Ni computed a) without and b) with the spin-
polarized approach. The zero energy was assigned to the Fermi level. 

 
 The Fermi level in Ni is localized right at the peak in DOS computed without spin-polarization 

(non-magnetic calculation) (Fig. 6a) and the Stoner model predicts magnetic ordering. The 
corresponding DOS for both spin orientations are displayed in Fig. 6b. A difference of integrated 
DOS for both spin orientations up to the Fermi level yields an approximate value of a magnetic 
moment (in Bohr magnetons) per atom.  

 Numerous authors [60–62], have shown that neglecting the magnetic ordering in magnetic 
materials as Fe, Co and Ni leads to an incorrect prediction of the ground-state structure as well as 
some material properties. The results presented in Ref. [4] for four magnetic crystals lead to the 
same conclusion. Moreover, it was found that introduction of the magnetism into calculations can 
also substantially lower the TIS values. 

 
4.3 STABILITY ANALYSIS OF ISOTROPICALLY LOADED CUBIC CRYSTALS 

The theoretical isotropic strength (TIS) values of cubic crystals presented in the previous two 
chapters were identified with the maximum tensile stress along the isotropic deformation path. It 
was widely believed that in cubic lattices, particularly under such kind of loading, no other 
instability precedes the moment of reaching the maximum stress value. The main aim of the work 
presented in Ref. [5] was to verify validity of this presumption. 

Elastic stability of crystals can be assessed using so called Wallace matrix [63, 64]. Such matrix 
corresponding to the cubic system (with 48 symmetry operations) under applied isotropic loading 
(σ1 = σ2 = σ3 = σ) has the symmetric form 
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and a requirement of its positive definiteness (all the principal minors must be positive) yields a set 
of stability conditions 
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that are in a coincidence with conditions derived for equal definition of elastic moduli 
elsewhere [63–64]. 

Each of the criteria can be tested using an energetic response of the crystal to small deviations 
from the reference state. The condition (2 i) expresses the response to the isotropic (hydrostatic) 
loading. Breaking this criterion can be perceived as reaching the maximum isotropic stress. 
Basically, this condition was inadvertently tested in all TIS calculations (also in those presented in 
Refs. [3, 4]). The conditions (2 ii) and (2 iii) are related to crystal responses the tetragonal and the 
trigonal deformations, respectively. 

The necessary additional deformations from the reference states are described in detail e.g. in 
Ref. [23]. The atomic configurations corresponding to the deformed structures usually have lower 
symmetries and, at the strength limit, they are very far from the lowest-energy equilibrium state. 
Therefore, to obtain reliable structural energy differences, the full-potential methods (i.e. without 
any shape approximation of the interstitial crystal potential and the valence charge density) have to 
be utilized in such studies. Wien2k and VASP codes were employed for this purpose. 

A proper study of the elastic stability of three fcc metallic crystals (Al, Cu, Ag) under 
hydrostatic tension that is presented in Ref. [5] shows that aluminium is the only crystal, among 
those investigated, where the shear instability precedes the moment of reaching the maximum 
isotropic stress in the region of tensile stresses. 

 
4.4 STABILITY ANALYSIS OF ISOTROPICALLY LOADED MAGNETIC 

CRYSTALS 

The stability of magnetic metals strongly depends on their magnetic ordering. An example of 
the direct influence of magnetism on structural stability can be found in study of phonon spectra in 
a fixed-spin-moment scheme performed by Hsueh et al. [65]. Their results for α-Fe, bcc Co and 
bcc Zr show that an enhancement of the magnetic moment can stabilize the crystal lattice whereas; 
when it is suppressed, soft phonon modes appear indicating instability. 

In Ref. [6], the elastic stability analysis is presented for three magnetic metals (Cr, Fe, and Ni) 
subjected to isotropic tensile and compressive loading. Unlike the work of Hsueh et al., the 
magnetic moment was not an adjustable parameter. Its value was computed to correspond to the 
ground-state electronic structure of any crystal state. In the region of tensile stresses, no instability 
was found to precede the volume instability related to the inflection point on energy-volume 
dependence. On the other hand, a kind of shear instability was observed in case of iron in the 
compressive region. This instability was accompanied by a sharp decrease of the magnetism in bcc 
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ferro-magnetically ordered crystal. The Fig. 7 displays the density of states (DOS) in bcc iron at 
two relative volumes: the equilibrium volume v = 1 and the volume v = 0.66 corresponding to the 
onset of tetragonal shear instability. The magnetic moment in the equilibrium is 2.20 µB per atom 
and decreases to value of 1.22 µB per atom when the relative volume decreases to 0.66.  
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Figure 7: The density of states in iron crystal at a) equilibrium volume (v = 1.0, a0 = 2.83 Å and 
b) at the first onset of instability in the compressive region (v = 0.66, a0 = 2.46 Å).  The zero 
energy is set to the Fermi level. 

 
The DOS plot was generated from values computed by the VASP code with settings as 

described in Ref. [6] (PAW pseudopotential, GGA, 20x20x20 k-points). 
 
4.5 UNIAXIAL LOADING OF ELEMENTAL CRYSTAL 

 When a uniaxial stress is applied to any cubic crystal, its symmetry decreases. In case of the 
uniaxial loading in [001] direction, the crystal acquires a tetragonal symmetry with 16 symmetry 
operations. A model of two adjacent cells subjected to [001] loading is displayed in Fig. 8. 
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Figure 8: Illustration of a lattice extended in [001] direction with examples of one cleavage (P2) 
and two possible shear (P1 and P3) planes. 

 
Experiments on whiskers [1, 19, 66] suggested that, under such particular loading, the lattice 

usually fails by shear in {111} plane (P3 in Fig. 8) in fcc systems or in {110} plane (P1 in Fig. 8) in 
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bcc systems rather than by cleavage along {001} plane (P2 in Fig. 8) as was assumed in the very 
first calculations of tensile strength [1] or even in some later studies [67–70]. 

The elastic matrix of such system contains six independent elements and the corresponding 
stability analysis is presented e.g. in Ref. [7] for a particular case of copper and in Refs. [23, 35]. 
As was found, the copper crystal is expected to fail in shear (stability condition 3b in Ref. [7]) at 
the tensile stress of 9.4 GPa, well before the tensile instability (condition 3a in Ref. [7]) can take 
place (24.3 GPa). 

 
4.6 UNIAXIAL LOADING OF NANOCOMPOSITES 

 The perfect single crystalline wires (whiskers) are used as reinforcements in advanced 
composite materials. A first principles study of metallic nano-fibres in metallic matrix under 
uniaxial tensile loading applied parallel to the fibres is presented in Ref. [8]. The results reported 
therein, as well as in Refs. [71] and [72], show that, although quantities as the equilibrium volume 
or bulk modulus more or less follow a simple linear mixture rule, the theoretical strength of the 
reinforcing material can be reached (or even exceeded) at certain atomic concentration (60–80 %) 
of the reinforcement (see Fig. 9). This very interesting result is worth subjecting to further study. 
A possible explanation can be the fact that, due to the lattice mismatch, fibres are under transversal 
tensile or compressive stresses that can influence the stress-strain response and, thus, the uniaxial 
tensile strength of the whole composite. 

 

 
Figure 9: Theoretical tensile strength as a function of atomic concentration of reinforcing fibres 
for three composites. The fibres are made of W or Mo, whereas the matrix consists of V or Nb 
atoms. 

 
It should be noted, however, that the crystal model has only limited number of degrees of 

freedom (given by a size of the supercell composed of 4x4x1 elementary bcc cell) and, thus, its 
stability is not guaranteed along the whole deformation path. 
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4.7 COUPLING OF UNIAXIAL AND BIAXIAL STRESS TENSOR COMPONENTS 

 In order to describe the influence of superimposed transversal biaxial (plane) stress on the 
theoretical tensile strength of metallic fibres in nanocomposites, a corresponding study was 
performed for a bulk system representing ideal crystals of several metallic and covalent systems. 
Results of the analysis are presented in Ref. [9]. 
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Figure 10: Illustration of a triaxial stress state that comprises a tensile stress in [001] direction σuni 
and superimposed transverse biaxial stresses σbi. 

 
This particular study is focused on cubic (and diamond) structures subjected to a superposition 

of tensile stress in [001] direction σuni and transverse biaxial stresses σbi as can be seen from 
Fig. 10. 

 

Figure 11: Dependence of the  theoretical tensile strength σmax on perpendicularly acting biaxial 
stresses σbi for W, Mo, Nb and V. 

 
The results obtained for four metals mentioned in the previous chapter are displayed in Fig. 11. 

As can be seen from the graph, the tensile strength increases (almost linearly) with the applied 
biaxial stresses. Thus, the reinforcing fibre (as well as the matrix) subjected to tensile transverse 
stresses induced by incompatibility strain (lattice mismatch) can exhibit higher strength. 
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4.8 THE SHEAR STRENGTH UNDER SUPERIMPOSED NORMAL STRESS 

Another possible example of coupling between two stress tensor components that can be of 
a high engineering importance is an influence of the stress acting perpendicularly to slip planes 
upon the strength during the simple shear as displayed in Fig. 12 for a particular case of 

{ }111112  shear in fcc lattice. Results of such analyses are presented in Ref. [10] for three bcc 
metallic crystals and in Refs. [30, 73] for several fcc ones. 
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� �
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Figure 12: Model of a crystal under superposition of shear τ and normal σn stresses. 

 
It should be noted that the relaxation procedure used in Ref. [73] comprised just a relaxation of 

distances between the slip planes but did not include the relaxation of ionic positions within the 
planes (in-plane relaxation). On the other hand, the in-plane relaxation was added to the procedure 
used in Ref. [10] and in recent work [30]. 

 
Figure 13: Influence of normal stress σn upon the shear strength τmax in Ir, Ni and Pt computed 
with and without in-plane relaxation. 

 
Few examples of the obtained results are included in Fig. 13. The displayed data correspond to 

computed values for { }111112  shear in three selected crystals with rigid planes (solid symbols) 
and with full relaxation of transverse stresses (open symbols). 

 It seems to be apparent that the compressive (tensile) force can substantially increase 
(decrease) the shear strength of the crystals. The influence can be approximated by a linear 
function (particularly in the region of compressive normal stresses), in a suitable analogy to the 
well known relation between the friction and the normal forces exerted to sliding surfaces. As can 
be also seen from Fig. 16, the in-plane relaxation has only small influence on computed data for Ir.  
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4.9 TWO-SCALE ANALYSIS OF NANOINDENTATION PROCESS 

A particular application of calculations described in the previous section is an analysis of the 
nanoindentation experiment data that can be found in Ref. [11]. This analysis proceeded at two 
different levels (two length scales as well as two different approaches). The first level is 
represented by a finite element analysis of the stress distribution under the nanoindenter. The stress 
field under frictionless sphero-conical indenter was computed in a fine mesh that was refined in 
vicinity of the interface to get sufficiently small elements in comparison with the penetration 
depth. 

The other level corresponds to an atomistic scale. Here, the results of ab initio study of the 
normal stress influence on the theoretical shear strength in Cu [73] were employed. The onset of 
microplasticity, associated with the pop-in effect identified in experimental nanoindentation tests 
(creation of first dislocations), is assumed to be related to the moment of achieving the value of the 
ideal shear strength for the copper crystal. However, the model used in Ref. [11] does not take into 
account neither crystallography nor the nonlinearity in the stress-strain relation. Subsequently, the 
calculated critical values of the load and the indenter displacement lie exactly at the lower limit of 
the range of experimentally observed pop-ins. 

Our recent study [74] includes both the above mentioned corrections along with an additional 
one related to friction forces between the surfaces of indentor and the substrate. Calculated values 
of the critical indentation depth lie within the range of experimentally observed pop-ins in the 
copper crystal. The related indentation load is somewhat lower than that observed in the 
experiment. 

 
5  CONCLUSION 
A development of powerful computers and effective computational methods enabled materials 

scientists to study materials microstructure also on a theoretical basis with unprecedented 
reliability so far. The ability to simulate various processes in condensed matter yielded a deeper 
insight into micromechanisms of materials fracture that helps materials engineers in their effort to 
design materials with required mechanical, magnetic, electrical or optical properties. 

This work is focused on computer modelling of electronic structure of materials using first 
principles approaches. Output of such calculations is used to predict crystal behaviour under 
applied loading, in particular, to evaluate its elastic response and strength. 

It could be seen from the several examples presented here that a proper computational study 
requires a very careful treatment that includes translation of an engineering problem to the 
language of atomistic simulations, an application of suitable computational procedures and, 
finally, a correct interpretation of the obtained data. 

The summary of the most important conclusions that can be found in this work and in the 
selected applications (also reported in the papers [3–11]) is as follows: 

• A formulation of elastic stability conditions depends on a definition of elastic moduli and 
strain variables. 

• When the crystals of elemental metals are subjected to the isotropic tensile loading they 
usually remain elastically stable up to the onset of tensile instability related to the stress 
maximum. This was proved by calculations assuming zero absolute temperature for 
particular cases of silver, copper, iron, chromium and nickel. On the contrary, aluminium is 
expected to fail by shear prior to the onset of the tensile lattice instability. 

• A copper single crystal subjected to the uniaxial loading in [100] direction becomes unstable 
with respect to shear deformation well before a tensile instability (tearing) can occur. The 
corresponding tensile strength is then reduced to about one third of the tearing stress. 

• Ideal fibre-reinforced metallic nanocomposites exhibit maximum strength values when the 
atomic concentration of the reinforcing material reaches the value of 60–80 %. A possible 
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explanation of the above mentioned result lies in the fact that the tensile strength of many 
cubic metals can be influenced by superimposed transverse biaxial stresses. When the 
reinforcing fibre is subjected to tensile biaxial stresses, its tensile strength usually increases. 

• Study of a shear deformation under a superimposed normal stress suggested that the shear 
strength can be raised by application of a compressive stress to slip planes and lowered by 
a tensile stress. The corresponding dependence seems to be well approximated by a linear 
function. 

• The increase of the shear strength under superimposed compressive normal stress plays 
significant role in a model describing deformation processes in the vicinity of 
a nanoindentor. In this way, the nanoindentation was proved to be an efficient tool for 
experimental determination of the ideal shear strength. 
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SHRNUTÍ 
 

Rozvoj výpočetní techniky a účinných algoritmů umožnil fyzikům, chemikům a materiálovým 
vědcům studovat mikrostrukturu materiálů s užitím velmi spolehlivých teoretických přístupů. 
Možnost simulovat různé stavy a procesy v pevných látkách vedla k lepšímu pochopení 
mikromechanismů porušování materiálů a pomohla materiálovým inženýrům v jejich úsilí vyvíjet 
materiály s požadovanými mechanickými, magnetickými, elektrickými či optickými vlastnostmi. 

Tato práce se zabývá studiem elektronové struktury materiálů pomocí prvoprincipiálních 
metod. Výstupy provedených výpočtů byly využity k předpovědi chování materiálů za různých 
podmínek zatěžování, zejména pak k předpovědi elastických odezev a výpočtu teoretických 
pevností. K úspěšnému využití takových metod je zapotřebí vykonání několika důležitých kroků, 
které zahrnují zejména převedení inženýrského zadání na problém počítačové simulace na 
atomární úrovni, výběr a použití vhodných výpočetních metod a postupů a následně správné 
vyhodnocení a interpretace získaných dat. Toto je demonstrováno v předkládané práci na řadě 
příkladů. Výpočetní metody, kterých autor při práci využil, jsou založeny na teorii funkcionálu 
elektronové hustoty. Tato teorie umožňuje výpočetně zvládnutelné přibližné řešení problémů 
kvantové mechaniky. Pro aplikaci takových metod na konkrétní zadání je však nutné je vhodně 
zkombinovat např. i s krystalografií či mechanikou kontinua. 

Předkládaná práce je koncipována jako komentovaný soubor devíti autorových prací [3–11] 
publikovaných v odborných časopisech a sbornících mezinárodních vědeckých konferencí. Výběr 
prací se snaží zmapovat víceméně trvalé autorovo úsilí proniknout do zmíněné problematiky 
výpočtů teoretické pevnosti a jejího využití v oblasti materiálových věd a inženýrství, jejich pořadí 
pak odráží přechod od nejjednodušších výpočtů teoretické pevnosti elementárních krystalů 
k sofistikovanější analýze jejich stability, složitějším zatěžovacím podmínkám a atomárním 
modelům kompozitů. Poslední z komentovaných prací [11] je věnována víceúrovňovému modelu 
nanoindentačního testu, který byl vytvořen i na základě výstupů předchozích studií. 
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