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Figure 1: Left-hand side: Locations in a composite material where a singular stress concentration
is expected. Right-hand side: Sharp material inclusion tip where a singular stress concentration
is expected.

1. Introduction
Fracture mechanics has been developed following the fact that the majority of components and
structures in engineering application contain cracks or crack-like flaws [1]. Linear elastic fracture
mechanics (LEFM) uses methods of the linear elastic stress analysis of a cracked part to determine
the conditions under which a crack, or crack-like flaw will extend. The linear elastic analysis of
a body with a crack shows that the stresses around the crack tip vary according to r−1/2 where
r is the distance from the crack tip. It is obvious that the elastic stresses become unbounded as
r approaches the crack tip [2, 3].

As a result of the near tip stress field character of a crack, it is among so called singular
stress concentrators. A crack can be conceived as a special case of a sharp V-notch with an
opening angle equal to zero. It has been found that the stress field in the vicinity of a sharp
V-notch tip (with a non-zero opening angle) also has the singular character, nonetheless different
from the case of a crack [7]. The singular stress concentrators discussed above originate from a
discontinuity in geometry. However, singular stress character in a body different from a crack can
also arise from a material properties discontinuity. This may be the case of a bi-material junction
which is a model for a sharp polygon-like inclusion embodied in a parent material, Figure 1. An
ultimate case of a singular stress concentrator a sharp bi-material notch is the case combining
both geometrical and material discontinuities.

Nowadays we encounter a rising number of components and structures made out of composite
materials. The composite materials (or composites) consist of two or more combined constituents
that are combined at a macroscopic level [5]. One constituent is called the reinforcing phase and
the one in which the reinforcement is embedded is called the matrix as shown in Figure 1. The
reinforcing phase material may be in the form of fibers, particles, or flakes. One of the reasons
to choose composites is that for example monolithic metals and their alloys cannot always meet
the demands of today’s advanced technologies. Only by combining several materials can the
performance requirements be met as we can see in the aerospace industry where a combination of
supreme structural characteristics and low weight is critical. On the other hand, the very nature
of composites (the material properties mismatch) brings higher complexity of their description in
terms of fracture mechanics.

Advanced studies of the linear elastic fracture mechanics of cracks show an influence of partic-
ular singular and non-singular stress series terms on the fracture behavior of solids with a crack.
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It is shown in literature that the first non-singular (constant) term of Williams’ stress series [8]
called T-stress plays an important role within crack behavior assessment both in the case of brittle
fracture and in the case of fatigue crack propagation [9, 10, 11, 12]. Similarly, the effects of the
T-stress on interfacial cracks in isotropic bi-materials were studied [13].

Contrary to this, the approaches that will be able to assess the influence of the non-singular
stress terms on a fracture initiation in the general singular stress concentrators are in the focal
point to be developed. The following stress concentrators are considered: the sharp V-notch, the
sharp bi-material notch and the bi-material junction. In the case of the general stress concentra-
tors, the influence of the non-singular terms has not been studied sufficiently, but it is expected as
well. The stress concentrators mentioned above can model a number of typical dangerous points
of components usually responsible for their failure.

Depending on loading conditions and geometry of a component with the stress concentrator, a
generalized constraint can have a positive or negative influence. It can counteract crack initiation
or it can stimulate it. Thus assessment not covering the influence of the constraint provides
overestimated or underestimated results. In the first case the new approaches can save a certain
volume of material, while in the second case the new stability assessment can prevent a fatal
damage. Thus the results of the future research can raise the credibility and extend the application
possibilities of the fracture mechanics.

x

y

σ∞

θ = 0

Crack

singular stress terms dominated region

Notch

Inclusion

Figure 2: Region of domination of singular terms ahead of a crack and a notch or an inclusion,
where stress is precisely described by singular terms only. Dashed line describes the singular
terms solution.
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Figure 3: V-notch in the left-hand side, bi-material notch in the right-hand side.

2. Methods and results

2.1. Limitations of single-parameter fracture mechanics
The area near the crack in which the stress field is precisely described only by a singular term
is known as the K-dominated region (in the case of fracture mechanics of cracks). A similar
region can be found near the notch tip or the sharp material inclusion tip, and it is again a region
where the singular stress terms dominate as illustrated in Figure 2. This region with dominating
singular terms is one of the building blocks of classic fracture mechanics. Some of crack initiation
criteria of generalized stress concentrators require establishing a specific distance from the tip of
the concentrator, which depends on material characteristics (the strength and fracture toughness
of the material [21] or the size of material grain, [16, 17]). In fact, these distances are in some
cases much larger than the characteristic dimension of the domain of prevailing singular stress
terms [14, 15, 19, 20]. This means that a description only by a singular term may not be sufficient
to describe stresses precisely enough and therefore to assess reliably the stability of a dangerous
point. Single-parameter fracture mechanics is not sufficient in the case of assessment of crack
initiation and propagation in silicate-based composites. In these quasi-brittle materials a fracture
process zone ahead of a crack has a larger size (in the order of millimeters) than a plastic zone
occurring in the case of metallic materials (typically from micrometers to 1 mm). For this reason,
stress distribution must be described reliably in a larger area ahead of the stress concentrator by
singular and non-singular terms.

2.2. Fracture mechanics of V-notch and bi-material notch
A V-notch and bi-material notch are shown in Figure 3. The geometry of a V-notch is charac-
terized by the angles γ1 and γ2 and complementary opening angle 2α. The case of a bi-material
notch has three geometric parameters γ1, γ2 and γ3 and complementary opening angle 2α. The
material properties are given by the elastic constants of Young’s moduli and Poisson’s ratios. The
solution mostly presupposes the approximation of plane strain or plane stress. For the case of
a bi-material notch a perfect bonding (displacement and traction continuity) is assumed at the
interface. Furthermore, the notch surfaces are traction-free. Stress distribution in the case of a
V-notch or bi-material notch [15, 23] is given by:

7



Ondřej Krepl Methods and results

0 50 100 150 200 250 300180 360
2� [�]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

� k

Re(�k)
Im(�k)

Figure 4: Dependence of eigenvalues λk of the V-notch on the opening angle 2α. The black
dashed line divides the graph into fields where singular and non-singular eigenvalues are found.
The yellow dashed line represents notch free plate.
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Figure 5: Dependence of eigenvalues λk of the bi-material notch on the opening angle 2α. The
black dashed line divides the graph into fields where singular and non-singular eigenvalues are
found. The yellow dashed line represents the free edge singularity. The geometry of studied case
is γ1 = α, γ2 = π, γ3 = 2π − α. The Young’s moduli ratio is E1/E2 = 0.25 and Poisson’s ratio is
ν1 = ν2 = 0.25.
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σij (r, θ) =
∞∑

k=1

{
Hkrλk−1fijk(θ) + H̄krλ̄k−1f̄ijk(θ)

}
. (1)

where the indices (i, j) ≡ (r, θ) are polar coordinates. The symbol Hk stands for the Generalized
Stress Intensity Factor (GSIF) with the unit of [Hk] = MPa � m1−λk . The fijk (θ) is the angular
eigenfunction, which is dimensionless. The stress terms exponents 1 − λk , where λk is the kth
eigenvalue of the problem are in general complex. In most of the geometrical and material config-
urations of V-notches and bi-material notches there are two real singular stress terms exponents
in the interval (0, 1) corresponding to the singular terms of the series [24]. Eigenvalues with the
real part greater than 1 correspond to the higher order terms (non-singular). The stress terms
exponents are dependent only on the local geometry of the problem. The boundary conditions of
the V-notch correspond to the zero traction on the notch free surfaces. Similarly, the boundary
conditions for the bi-material notch are based on zero traction on the notch free surfaces as well as
the displacement and traction continuity through the interface. The determination of eigenvalues
λk is virtually identical for the case of a V-notch or a bi-material notch. It is based on the solution
of the eigenvalue problem:

A (λ) v = 0, (2)

The general dependence of eigenvalues λk on the opening angle 2α is shown in Figure 4 for a
V-notch and in Figure 5 for a bi-material notch. Note, that in the case of the V-notch for angle
2α ∼ 103° the eigenvalue λ2 = 1. For larger angles 2α, the term associated with eigenvalue λ2 is
always a non-singular one. This is in accordance with results of Ayatollahi and Nejati in [31] who
report the angle value of 102.55°. The generalized stress intensity factors Hk are dependent on the
global geometry and the loading. Methods of its calculation are the combination of numerical and
analytical approaches. One of the possible method of its determination is the path independent
Ψ-integral by which the kth GSIF can be calculated as:

Hk = Ψ(uFE(θ), r−λkf−
ik(θ))

Ψ(rλkfik(θ), r−λkf−
ik(θ)) . (3)

Because of the Ψ-integral path independence the analytical term in denominator Ψanalyt
k =

Ψ(rλkfik(θ), r−λkf−
ik(θ)) can be calculated once for all for given problem. The term in the nu-

merator ΨFE
k = Ψ(uFE (θ) , r−λkf−

ik (θ)) is calculated from the finite element results. Another
method of GSIFs determination is the overdeterministic method. The ODM belongs to so called
direct methods and is based on the least-squares solution of overdetermined system of linear
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equations. In the general case of Hk ∈ C the system has the following form:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
{
frr1 (θ1) rλ1

}
�

{
frr1 (θ1) rλ1

}
. . . �

{
frrn (θ1) rλn

}
�

{
frrn (θ1) rλn

}
�

{
frr1 (θ2) rλ1

}
�

{
frr1 (θ2) rλ1

}
. . . �

{
frrn (θ2) rλn

}
�

{
frrn (θ2) rλn

}
... ... ... ...

�
{
frr1 (θm) rλ1

}
�

{
frr1 (θm) rλ1

}
. . . �

{
frrn (θm) rλn

}
�

{
frrn (θm) rλn

}
�

{
frθ1 (θ1) rλ1

}
�

{
frθ1 (θ1) rλ1

}
. . . �

{
frθn (θ1) rλn

}
�

{
frθn (θ1) rλn

}
�

{
frθ1 (θ2) rλ1

}
�

{
frθ1 (θ2) rλ1

}
. . . �

{
frθn (θ2) rλn

}
�

{
frθn (θ2) rλn

}
... ... ... ...

�
{
frθ1 (θm) rλ1

}
�

{
frθ1 (θm) rλ1

}
. . . �

{
frθn (θm) rλn

}
�

{
frθn (θm) rλn

}
�

{
fθθ1 (θ1) rλ1

}
�

{
fθθ1 (θ1) rλ1

}
. . . �

{
fθθn (θ1) rλn

}
�

{
fθθn (θ1) rλn

}
�

{
fθθ1 (θ2) rλ1

}
�

{
fθθ1 (θ2) rλ1

}
. . . �

{
fθθn (θ2) rλn

}
�

{
fθθn (θ2) rλn

}
... ... ... ...

�
{
fθθ1 (θm) rλ1

}
�

{
fθθ1 (θm) rλ1

}
. . . �

{
fθθn (θm) rλn

}
�

{
fθθn (θm) rλn

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� {H1}
� {H1}
� {H2}
� {H2}

...
� {Hn}
� {Hn}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= SFE
[3m].

The matrix on the left-hand side is formed of the known analytical eigenfunctions. On the left-
hand side we also find the unknown vector of n GSIFs. The right-hand side vector consists of
radial, shear and tangential stress components, determined by FE. For an overdetermined system
of stress based linear equations above that is in a short form written:

F[3m×n]H[n] = SFE
[3m], (4)

no exact solution exists since 3m > n . The approximation of the solution is found by minimizing
the residual vector by least squares method. The method can be also based on displacements,
which is in short form written:

F[2m×n]H[n] = uFE
[2m]. (5)

The displacement based method is in some cases preferred due to higher inherent precision of
displacement based FE codes. The theoretical and numerical derivation of both λk and Hk is in
detail commented in the dissertation.

Criteria of crack initiation direction and stability criteria

A V-notch, bi-material notch and a crack in homogeneous material are all the singular stress
concentrators. Thus we suppose that the mechanism of crack initiation in a V-notch or bi-
material notch is the same as the mechanism of crack propagation in single material. The criteria
of the direction of crack initiation at a V-notch or bi-material notch tip and the criteria of the
stability of a V-notch or bi-material notch are derived in analogy to the approaches of a crack
in homogeneous material. The classic fracture mechanics approach of comparison of the stress
intensity factor KI with its critical value KIcrit is generalized to the following relation:

H1 (σappl) < H1,crit (KIcrit) . (6)
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A crack is not initiated at the notch tip if the value H1 is lower than its critical value H1,crit. The
value H1 (σappl) follows from a numerical solution and depends mainly on the level of external
loading and on the global geometry. Its critical value H1,crit depends on the critical material
characteristic KIC or KIth and has to be deduced with the help of the controlling variable L, see
[34]. The controlling variable L needs to have a clear and identical physical meaning in the case
of assessing both a crack in homogeneous material and a V-notch or bi-material notch. With
respect to particularities of a V-notch or bi-material notch following controlling variables L were
chosen: (i) the mean value of the stress component σθθ and (ii) the mean value of the strain
energy density factor Σ. In this work we use multi-parameter approach, which consider first n
terms of the stress series. Contrary to the case of a crack, direction of maximum of tangential
stress near tip of a bi-material notch is dependent on the radial distance. In order to mitigate the
radial dependence of the maximum in tangential stress, an average value over specific distance d
which is fracture mechanism or material microstructure is used.

The criterion of maximum of average tangential stress. The detailed derivation of the
equations bellow is found in the dissertation, therefore this sub-chapter presents only the equations
in its final form. We can find the crack initiation direction θ0, where the σθθ (θ) has its global
extreme by solving the equation:

n∑
k=1

Γk1
dλk

λk

∂fθθk (θ)
∂θ

= 0, (7)

where the Γk1 is the ratio between individual GSIFs Γk1 = Hk/H1. The critical value of GSIF for
a notch problem is for complex λk and Hk:

H1C,m = KIC,m√
2π�

{∑n
k=1 Γk1

dλk− 1
2

λk
fθθk (θ0,m)

} . (8)

As introduced by Eq. (6) on p. 10, the generalized fracture toughness H1C,m depends on the
fracture toughness KIC,m of the material m. In the case of a bi-material notch, there are two
materials in which the crack can initiate. If the value H1C,1 is lower than H1C,2, crack initiation
is expected into the material 1, otherwise it onsets in the material 2. The third option is the
crack initiation in the interface. The value H1C,interface is determined based on fracture toughness
of the interface, KIC,interface. Note that for all the critical values H1C,1, H1C,2 and H1C,interface, the
shape functions fθθk (θ) shall contain corresponding angle of potential crack initiation θ0,m(m =
1, 2, interface). The angle θ0,m is determined by Eq. (7) for the case when the material contains
the global maximum of σθθ (θ) and equals to γ2 for the remaining cases of local maximum of
σθθ (θ) of the interface failure. Then, the crack initiation occurs if the following stability criterion
is violated [18]:

H1 < {H1C,1, H1C,2, H1C,interface} . (9)

In general, the criteria always compare value H1 with critical values H1C,m. This is true for
approach when only the singular terms factors are employed as well as for the multi-parameter
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approach. There is no need to compute critical values for other terms Hk since they are dependent
on H1 by the ratio Γk1. Finally the critical load for crack onset from a bi-material notch can be
calculated:

σC = σappl
min (H1C,1 (θ0,1) , H1C,2 (θ0,2) , H1C,interface (θ0,interface))

H1 (σappl)
. (10)

The average strain energy density factor criterion. According to (ii) the mean value of
the strain energy density factor Σ, the equation by which we will find the crack initiation angle
θ0 is:

n∑
k=1

n∑
l=k

Γk1Γl1
dλk+λl−1

λk + λl

∂Ukl (θ)
∂θ

= 0, (11)

where Γl1 = Hl/H1. The formula for determination of critical value of GSIF is:

H1C,m = KIC,m

√√√√ km

2π�
{∑n

k=1
∑n

l=k Γk1Γl1
dλk+λl−1

λk+λl
Ukl (θ)

} . (12)

Note that all the critical values H1C,1, H1C,2 and H1C,interface should be evaluated for calculated
corresponding angles of crack initiation θ0,1, θ0,2 and θ0,interface respectively, which were determined
earlier by Eq. (11). Once the critical fracture toughness values are known, in order to assess
stability, the generalized stability condition as stated in equation (6) is used. The condition of
stability for the case of a bi-material notch is written identically as in Eq. (9) in the MTS criterion
section, since it is a general one. The crack onset load is then calculated by Eq. (10).

Failure load predictions vs. experimental data. Experiments on three point bending
specimens made of polymethyl methacrylate (PMMA) with a V-notch were conducted by Dunn
et al. in [42]. Dunn et al. tested specimens with notch opening angle 2α of 60°, 90° and 120°.
They also varied the notch depth, so the specimens with a/h ratio of 0.1, 0.2, 0.3 and 0.4 were
tested. In [42] Dunn et al. measured fracture toughness of PMMA as an average value KIC = 1.02
MPa

√
m with standard deviation of 0.12 MPa

√
m and the average strength σu = 124 MPa. They

reported on failure strength σf of notched specimens of individual geometric configuration. We
compare their experimental results with our prediction by above mentioned criteria. The H1C,m

are determined by Eq. (8) on p. 11 in the case of criterion of maximum of average tangential
stress or by Eq. (12) on p. 12 in the case of average strain energy density factor criterion.
The generalized fracture toughness is computed by the above stated KIC of PMMA. The crack
initiation angle is assumed to be θ0 = 180° because of problem symmetry. The parameter d
related to microstructure or fracture mechanism was varied, so the charts show predictions with
d = 0.001 mm, d = 0.01 mm and d = 0.1 mm. The results for specimens with notch opening
angle 2α = 60° and 2α = 90° are found in Figure 6 and the results for 2α = 120° in Figure 7. The
review of results show, that the very good agreement between experimental data and theoretical
predictions occur for d = 0.01 mm especially in the case of the largest opening angle 120°. The use
of the above mentioned criteria and parameter d = 0.01 mm leads to results which underestimate
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Figure 6: Comparison of experimental failure forces [42], the MTS and SEDF criterion predicted
critical forces for a V-notch. The cyan color represents results of 2α = 60° and the magenta color
represents results of 2α = 90°.
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Figure 7: Comparison of experimental failure forces [42], the MTS and SEDF criterion predicted
critical forces for a V-notch. Results of 2α = 120°.

the actual failure load. From the engineering point of view, it is a desirable situation, since the
results lay on so called safe side. The criteria used to predict the failure force are multi-parameter,
nevertheless on distances in order of 10−2 mm, the contribution of higher order terms is small.
The difference in failure loads predicted by the single-parameter criteria and multi-parameter
criteria is in units of percents. The higher order terms contribution would become significant for
materials and configurations where larger d is necessary.

2.3. Fracture mechanics of sharp material inclusion

The geometry of a bi-material junction as shown in Figure 8 is characterized by angles γ0, γ1
and γ2. Analogically to the case of the sharp notch, complementary opening angle 2α is defined.
The joint has two interfaces and no free surface. The material is considered as linear elastic and
fully described by Young’s moduli and Poisson’s ratios in terms of elasticity. Perfect bonding
is assumed at the interfaces so the displacements and tractions are assumed to be continuous.
The solution mostly presupposes the approximation of plane strain or plane stress. The stress
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Figure 8: Bi-material junction as a model for a sharp material inclusion.

distribution in the case of a bi-material junction is given by the asymptotic expansion [35]:

σij (r, θ) =
∞∑

k=1

{
Hkrλk−1fijk(θ) + H̄krλ̄k−1f̄ijk(θ)

}
. (13)

where the indices (i, j) ≡ (r, θ) are polar coordinates. The symbol Hk again stands for the
GSIF. Generally, the eigenvalue λk is a complex number. For λk satisfying 0 < � (λk) < 1, the
corresponding stress term is considered singular. For λk where 1 < � (λk) the corresponding stress
term is considered non-singular. The boundary conditions of the problem reflect the traction
and displacement continuity on both interfaces. Eigenvalue λk is found as a solution of the
characteristic equation rising from determinant of matrix A (λ) as in the case of a notch. The
dependence of eigenvalues for particular bi-material configuration of E1/E2 = 0.25 is shown
in Figure 9. The Hk are determined by methods which are the combination of analytical and
numerical approaches such as the Ψ-integral and ODM, as in the case of a notch. However, there
are some particular differences in determination of both λk and Hk, commented in detail in the
dissertation.

Criteria of crack initiation direction and stability criteria

A sharp material inclusion is regarded as a singular stress concentrator, which is represented by a
model of a bi-material junction. The mechanism of crack initiation from the bi-material junction
tip is presumed to be identical to the mechanism of crack propagation in single homogeneous
material. The stability condition of a bi-material junction suggests the condition when the crack
is initiated from the bi-material junction tip. Analogical to the case of a V-notch or bi-material
notch, the stress singularity exponent changes as the step function during crack initiation. Since
an inherently combined loading mode is observed in majority of cases it is generally speaking not
possible to separate the modes from each other (possible only in e.g. the symmetrically loaded
symmetrical bi-material junction). The stability assessment of a GSSC as it is defined in (6) for
a notch can be utilized for the case of a bi-material junction. Then the controlling quantity L
regarding the identical physical meaning for a crack in homogeneous material and a bi-material
junction has to be chosen.

When we consider sharp rectangular material inclusion, there are 8 possible cases of loading
direction and bi-material stiffness ratio variation. This determines the character of singularity,
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Figure 9: Dependence of eigenvalues λk the opening angle 2α. The geometry of the studied
bi-material junction is defined: γ0 = −α, γ1 = α, γ2 = 2π − α. The Young’s moduli ratio is
E1/E2 = 0.25 and Poisson’s ratios are ν1 = ν2 = 0.25.

which exists at the singular concentrator tip. These 8 possible configurations are illustrated in
Figure 10. For some cases, the singular terms describe the singular solution with solid accuracy
(as in Part 1 of the Numerical example on p. 19), in other instances, the employment of higher
order terms is essential (as in Part 2 of the Numerical example on p. 23). Let’s analyse the
configurations with the vertical loading, cases (i)-(iv). The Young’s modulus of an inclusion is
denoted by E1 and the modulus of matrix by E2. The cases (i) and (iii) both act like a V-notch,
since the inclusion acts like a compliant reinforcement. In the former case loaded in tension and
the latter case in compression. In both cases the singular terms describe the stress state well.
Employment of higher order terms increases precision on larger distances from the tip. On the
other hand, we have configurations (ii) and (iv) which represent inclusion stiffer than matrix.
The case (ii) is similar to Part 2 of Numerical example, where the stress is not described well
by singular terms. The case (iv) is its equivalent in compression, characterized also by poor
description of the stress field by singular terms. Employment of higher order terms is essential
to obtain stresses that truly represents the stress state near the inclusion tip. The configurations
with horizontal tension (v)-(viii) show a different pattern. The cases (v) and (vii), i.e. cases of
inclusion more compliant than matrix are characterized by poor stress description by singular
terms. To obtain results that represent the actual stress field, employment of higher order terms
is necessary. In contrast, in the cases (vi) and (vii) with inclusion stiffer than matrix singular
terms describe the stress state well. Again, precision is increased by use of higher order terms.
The Table 1 provides a summary of all the cases. The general load of an engineering component
is a combined one. Moreover, the orientation of an inclusion in composite is random (depending
on the composite type). Therefore, we can not state that the singular terms only are sufficient for
the case of an inclusion more compliant than matrix and that the non-singular terms are crucial
for the case of inclusion stiffer than matrix. By comparing e.g. the cases (i) and (v) it is obvious,
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E1 < E2 E1 > E2
loading case descrip. by s. t.: use of n. s. t.: case descrip. by s. t.: use of n. s. t.:
vertical (i) good increased prec. (ii) poor necessary
vertical (iii) good increased prec. (iv) poor necessary
horizontal (v) poor necessary (vi) good increased prec.
horizontal (vii) poor necessary (viii) good increased prec.

Table 1: Summary of results, the particular cases are shown in Figure 10. The acronym s. t.
stands for singular terms and n. s. t. for non-singular terms.

that even for cases of an inclusion more compliant than matrix, the non-singular terms do not
describe the stress precisely enough.

The criterion of maximum of average tangential stress
As described in the sub-section 2.2 on p. 10, the maximum tangential stress criterion states

that the crack will initiate in the direction of maximal tangential stress. General case of a
bi-material junction (non-symmetrical) is characterized by radial dependence of the direction
of maximum σθθ (r, θ). To mitigate this dependence, as in the case of a bi-material notch, we
determine the average value of tangential stress σθθ (θ) over some specific distance d. This distance
d is established by the relation to microstructure or fracture mechanism. The derivation of the
multi-parameter formula to assess stability of a bi-material junction is analogical to the case of a
bi-material notch, which is shown in the dissertation. Thus we can rewrite the equation (7):

n∑
k=1

Γk1
dλk

λk

∂fθθk (θ)
∂θ

= 0, (14)

by which we find the global and local maximum of σθθ (θ). Recall that Γk1 is the ratio between
GSIFs defined as Γk1 = Hk/H1. In the equation above, the angle of global maximum is the only
unknown. In the case of a bi-material junction, there are three possible directions of crack onset.
The crack can onset into direction with global maximum of σθθ (θ), into a local maximum, or in
one of the interfaces. These three depend on the fracture toughness of inclusion, matrix and the
interface, the KIC,1, KIC,2 and KIC,interface respectively. Based on an assumption that the crack
initiation mechanism is the same as in the case of a crack propagation in homogeneous media, we
compute the generalized critical value of fracture toughness as:

H1C,m = KIC,m√
2π�

{∑n
k=1 Γk1

dλk− 1
2

λk
fθθk (θ0,m)

} (15)

The generalized fracture toughness of the matrix, inclusion and the interface H1C,1, H1C,2 and
H1C,interface have to be calculated on corresponding angles of crack onset θ0,1, θ0,2 and θ0,interface
respectively. The condition of stability is a general one, common for both cases of a bi-material
notch and junction, as written in Eq. (9) on p. 11. The critical load is calculated by Eq. (10) on
p. 12.
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Figure 11: Model of the sharp material inclusion specimen subjected to 3 point bending.

The average strain energy density factor criterion
The strain energy density factor (SEDF) criterion, developed by Sih, found many applications

in assessment of crack problems. The problem of a sharp material inclusion, modeled as a bi-
material junction can be assessed by this criterion as well. The theoretical multi-parameter
approach is identical to the case of a bi-material notch. The global and local minimum of the
SEDF is found as a potential crack initiation direction. Thus we rewrite the formula (11) on p.
12:

n∑
k=1

n∑
l=k

Γk1Γl1
dλk+λl−1

λk + λl

∂Ukl (θ)
∂θ

= 0. (16)

Based on the SEDF approach, we determine the generalized fracture toughness for all potential
crack onset directions, the global minimum, local minimum and the interface. This is achieved
by Eq. (12) on p. 12, written as:

H1C,m = KIC,m

√√√√ km

π�
{∑n

k=1
∑n

l=k Γk1Γl1
dλk+λl−1

λk+λl
Ukl (θ)

} . (17)

The condition of stability is a general one, common to all general singular stress concentrators,
stated in Eq. (9) on p. 11. Finally the formula for critical load, also a general one, is given by
Eq. (10) on p. 12.

Numerical example: Crack initiation direction and initiation load in the case of a
bi-material junction

Part 1 Let’s consider a problem shown in Figure 11, which represents a three point bending
specimen with rectangular inclusion. In the Part 1 we consider inclusion more compliant than
matrix where E1/E2 = 0.033. The material region 1, which represents the inclusion, is modeled
with PMMA material properties E1 = 2.3 GPa, ν1 = 0.34 and the material region 2, which
represents matrix, with aluminum material model characterized by E2 = 69 GPa, ν2 = 0.33.
To assess crack initiation direction we use (a) criterion of maximum of average tangential stress
and (b) average strain energy density criterion. The fracture toughness of PMMA is KPMMA

IC
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Figure 12: Average value of the σθθ (θ) plotted by (i) singular terms: the yellow line, by (ii)
singular and non-singular terms: the cyan line. The black dashed lines denote the interfaces.

= 1.02 MPa
√

m [42]. The fracture toughness of aluminum is 14÷28 MPa
√

m depending on
the particular alloy and treatment. We choose aluminum alloy (7075) with KAl

IC = 24 MPa
√

m.
Without an experiment with the particular bi-material configuration, it is uneasy to estimate
fracture toughness of the interface. In [43] Shatil and Shaimoto tested aluminum/PMMA bi-
material 3PB specimens, however they do not provide value regarding fracture toughness of the
interface. To bond the materials together they use epoxy adhesive. Experimental evaluation in
[44, 45] show that the fracture toughness of interface can vary widely depending on conditions and
particular configuration of materials to be bonded. Our estimation for this numerical example
therefore is K interface

IC = 0.75 MPa
√

m.

(a) The criterion of maximum of average tangential stress. The tangential stress
is averaged over a specific distance d, which is chosen as 1 mm. The averaged tangential stress
calculated by (i) singular terms (the yellow dotted line) and by (ii) singular and non-singular
terms (the cyan dotted line) is shown in Figure 12. The yellow line with markers represents
the solution of σθθ (r, θ) on d = 1 mm by singular terms. In similar manner, the cyan line with
markers represents the singular and non-singular terms solution. For this particular bi-material
and geometrical configuration there are two singular terms. Regarding the singular and non-
singular terms solution, two singular and two non-singular terms are considered. Please recall
the formula to find potential crack initiation directions (14) on p. 17. We see that there are two
extremes in the tangential stress angular distribution, the global maximum (occurs in the matrix,
m = 2) and the local maximum (occurs in the inclusion, m = 1). In both cases, the singular
terms solution of extreme (represented by the vertical yellow solid line) and the non-singular terms
solution of extreme (represented by the vertical cyan dashed line) has the same direction (both in
the local and global average tangential stress maximum). The potential crack initiation direction
in the global maximum is θglb.

0 = 180◦ and in local maximum θloc.
0 = 0◦ which is apparent because
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of the problem symmetry. Nevertheless, as the solution by employment of non-singular terms is
more precise, increase in precision of the critical parameters is also expected. In the previous
theoretical chapter we stated that the crack initiation can occur in the inclusion, matrix or the
interface, whereas each of them possesses a particular material parameter K1C,m and therefore
different H1C,m. We calculate these critical values by Eq. (15). The results (i) singular terms
solution are found in Table 2 and results of (ii) non-singular terms solution in Table 3. The
methods (i) and (ii) lead to difference of 5.94 % in H1C,2 which is in global maximum, 1.72 %
in H1C,1 which is in local maximum and 0.83 % in interface critical GSIF value. The minimum
value of H1C,m is found in the PMMA. By criterion of maximum of average tangential stress the
crack is therefore predicted to initiate in this direction and material. Remember, that we assume
interface with perfect adhesion, which allows full traction transmission. If the actual interface
does not comply to this assumption and crack may not initiate in this predicted direction.

θ0,m m H1C,m

global maximum 180.0° 2 ≡ aluminum 177.765048
local maximum 0.0° 1 ≡ PMMA 62.32677

interface ±45.0◦ interface 72.968331

Table 2: The generalized fracture toughness H1C,m for global minimum, local minimum and the
interface determined by (i) singular terms and (a) criterion of maximum of average tangential
stress.

θ0,m m H1C,m

global maximum 180.0° 2 ≡ aluminum 188.317388
local maximum 0.0° 1 ≡ PMMA 61.254716

interface ±45.0◦ interface 72.359732

Table 3: The generalized fracture toughness H1C,m for global minimum, local minimum and the
interface determined by (ii) singular and non-singular terms and (a) criterion of maximum of
average tangential stress.

(b) The average strain energy density factor criterion. The averaged strain energy
density factor over distance d = 1 mm is plotted in Figure 13. The yellow line represents solution
by (i) two singular terms and the cyan line represents solution by (ii) two singular and two non-
singular terms. We see that there is a global minimum and a local one, found by solving Eq. (16).
Both (i) and (ii) return identical angular values corresponding to these points. However some
offset of Σ(θ) between solutions exists, therefore difference in critical parameters is expected. The
generalized fracture toughnesses are calculated by formula (17). The results (i) singular terms
solution are found in Table 4 and results of (ii) non-singular terms solution in Table 5. The
methods (i) and (ii) leads to the difference of 9.6 % in H1C,2 which corresponds to local minimum,
2.9 % in H1C,1 for global minimum and 2.2 % in interface critical GSIF value prediction. The
lowest value of generalized fracture toughness corresponds to the interface, thus the crack is
expected to initiate in this direction. We see that the crack initiation direction and material
predicted by (a) and (b) is different as in the former case the crack is predicted to initiate
in PMMA with θglb.

0 = 0◦ and the latter case it is predicted to initiate in the interface with
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θ0,interface = ±45◦. In (a) only the tangential stress component is used to calculate H1C,m whereas
in (b) all stress components are employed. The level of tangential stress acting on the interfaces
is low, leading to higher value of H1C,interface calculated by (a) than by (b).
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Figure 13: Average value of the Σ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular
and non-singular terms (the cyan line). The black dashed lines denote the interfaces.

θ0,m m H1C,m

global minimum 0.0° 1 ≡ PMMA 62.786943
local minimum 179.9° 2 ≡ aluminum 187.279553

interface ±45.0◦ interface 39.704644

Table 4: The generalized fracture toughness H1C,m for global minimum, local minimum and the
interface determined by (i) singular terms and (b) average strain energy density criterion.

θ0,m m H1C,m

global minimum 0.0° 1 ≡ PMMA 60.974337
local minimum 179.9° 2 ≡ aluminum 205.32978

interface ±45.0◦ interface 38.813687

Table 5: The generalized fracture toughness H1C,m for global minimum, local minimum and the
interface determined by (ii) singular and non-singular terms and (b) average strain energy density
criterion.
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Figure 14: Average value of the σ̄θθ (θ) plotted by (i) singular terms: the yellow line, by (ii)
singular and non-singular terms (the cyan line). The black dashed lines denote the interfaces.

Part 2 In the Part 2 we consider three point bending specimen with rectangular inclusion
stiffer than matrix where E1/E2 = 30. The elastic constants remain identical to those in Part
1, only the inclusion is modeled with aluminum material properties and the matrix with PMMA
material properties. Again, to assess crack initiation direction and critical value of GSIF we
use (a) the criterion of maximum of average tangential stress and (b) the average strain energy
density criterion. In the part 2 of the numerical example, we use averaging distance d = 0.5 mm.

(a) The criterion of maximum of average tangential stress. The distribution of σθθ (θ)
is shown in Figure 14, where the yellow dotted line represents the averaged tangential stress
solution given by (i) two singular terms. The cyan line represents the solution given by (ii) two
singular and two non-singular terms. In addition, the stress on particular distance d is plotted by
(i) and (ii) and denoted by lines with markers. Please note that the tangential stress given by (i)
is compressive for all θ. The black squares represents the FE solution. As in the previous case,
we see two extremes of σθθ (θ) represented by vertical lines, the yellow in case of (i) and the cyan
in case of (ii). Both singular and non-singular solution predict identical angles of crack initiation,
i. e. θglb.

0 = 180◦ and θloc.
0 = 0◦ . The difference in stress description by (i) and (ii) is severe,

therefore significant difference in value of critical parameters is expected. The results by (i) are
listed in Table 6. The results given by (ii) is summarized in Table 7. When (i) only the singular
terms are taken as an input for critical GSIF calculation a negative valued H1C,m are obtained
(since the σθθ (θ) is compressive). For (ii), the minimum value is H1C,2 and the crack is expected
to initiate in the direction of global maximum found in PMMA.
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θ0,m m H1C,m

global maximum 180.0° 2 ≡ PMMA (-0.015640)
local maximum 0.0° 1 ≡ aluminum (-0.117511)

interface ±45.0◦ interface (-0.001800)

Table 6: The generalized fracture toughness H1C,m for global minimum, local minimum and the
interface determined by (i) singular terms and (a) criterion of maximum of average tangential
stress.

θ0,m m H1C,m

global maximum 180.0° 2 ≡ PMMA 0.004104
local maximum 0.0° 1 ≡ aluminum 0.178545

interface ±45.0◦ interface (-0.004031)

Table 7: The generalized fracture toughness H1C,m for global minimum, local minimum and the
interface determined by (ii) singular and non-singular terms and (a) criterion of maximum of
average tangential stress.
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Figure 15: Average value of the Σ̄ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular
and non-singular terms: the cyan line. The black dashed lines denote the interfaces. In the region
of inclusion, i.e. the Σ̄ (θ) is multiplied by factor of 10.

(b) The average strain energy density factor criterion. The angular distribution of
strain energy density factor Σ(θ) is shown in Figure 15. The yellow line represents (i) two singular
terms solution. The cyan line represents (ii) two singular and two non-singular terms solution.
Because the problem is a symmetric one, there are two directions where global minimum and
local minimum are found. The yellow and cyan vertical lines represent the locations of local
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minima. The global minima are found at the interfaces. The results by (i) are listed in Table
8 and by (ii) in Table 9. The results by (i) are listed in Table 8. The results given by (ii) is
summarized in Table 9.The difference in H1C,m by (i) and (ii) is 1.1 % for the global minimum,
10.7 % for local minimum and 1.1 % for the interface. The lowest value of H1C,m is found at
the interface, therefore it is the expected angle of crack initiation. The angle and material of
expected crack initiation is different from (a), but as discussed in first part of this example, the
possible explanation is that the SEDF uses all the stress components rather than tangential stress
only. The thorough explanation of such behavior will be a subject of following research as well
as experimental evaluation of the problem.

θ0,m m H1C,m

global minimum ±45.0◦ 1 ≡ aluminum 0.027674
local minimum 85.9°, 274.4° 2 ≡ PMMA 0.001334

interface ±45.0◦ interface 0.000865

Table 8: The generalized fracture toughness H1C,m for global minimum, local minimum and the
interface determined by (i) singular terms and (b) average strain energy density criterion.

θ0,m m H1C,m

global minimum ±45.0◦ 1 ≡ aluminum 0.027360
local minimum 85.9°, 273.9° 2 ≡ PMMA 0.001477

interface ±45.0◦ interface 0.000855

Table 9: The generalized fracture toughness H1C,m for global minimum, local minimum and the
interface determined by (ii) singular and non-singular terms and (b) average strain energy density
criterion.
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Figure 16: Crack terminating at the inclusion/matrix interface.

Developing a complete description of crack initiation and propagation near the sharp
material inclusion

This chapter examines possible scenarios of crack behavior near the sharp material inclusion
embedded in matrix. Crack in matrix terminating at inclusion/matrix interface is shown left-
hand side of Figure 17. Similarly, the crack in inclusion terminating at the inclusion/matrix
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interface is shown in right-hand side of Figure 17. This case can be modeled as a crack with its
tip at a bi-material interface. The geometry of problem is shown in Figure 16. The crack that
terminated at the interface can either propagate to the other material or propagate through the
inclusion/matrix interface. The latter situation is examined further in Figure 18, where crack
propagating through the inclusion/matrix interface is shown. In the left-hand side of the Figure 18
the crack originates in matrix and in the left-hand side of the Figure 18 it originates in inclusion.
These cases is modeled as interfacial cracks (special case of the bi-material notch model with
2α = 0◦ and e.g. γ1 = 0◦, γ2 = 180◦ and γ3 = 360◦. Another situation occurs when the crack
reaches the end point of the sharp material inclusion, as shown in Figure 19 (another special
case of the bi-material notch model with 2α = 0◦ and e.g. γ1 = 0◦, γ2 = 270◦ and γ3 = 360◦).
Figure 20 shows crack initiated at the tip of the sharp material inclusion in the matrix (left-hand
side) or in the inclusion (right-hand side). This case is modeled as a bi-material junction. Above
mentioned situations capture complete crack behavior near the sharp material inclusion and all
can be modeled by methods described in the dissertation.

Figure 17: Crack terminating at the inclusion/matrix interface. On the left-hand side the crack
originates in matrix. On the right-hand side the crack originates in the inclusion.

Figure 18: Crack propagating through the inclusion/matrix interface. On the left-hand side the
crack originates in matrix. On the right-hand side the crack originates in the inclusion.

Figure 19: Crack propagated to the end point of inclusion/matrix interface. On the left-hand
side the crack originates in matrix. On the right-hand side the crack originates in the inclusion.
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Figure 20: Crack initiated at the tip of the sharp material inclusion. On the left-hand side the
crack initiates in matrix. On the right-hand side the crack initiates in matrix.

3. Conclusions
Methods of the classical fracture mechanics can not be directly applied on general singular stress
concentrators and its generalization is the current objective of many researchers. The identical
motivation stays behind this thesis. Although the dissertation is primarily theoretical, it provides
the researchers with the framework in order to fully assess generalized singular stress concentrators
in terms of the multi-parameter criteria proposed herein. Experiments to verify the theory on
general singular stress concentrators different from a V-notch are the next step to be conducted.
For this purpose the specimens modeled in this work can be used.

The dissertation presents methods to determine the eigenvalues to form the exponents of
singular and non-singular stress terms in cases of general singular stress concentrators. When
the eigenvalues are determined, the angular eigenfunction can be easily formed. The cases of a
V-notch, bi-material notch and bi-material junction are studied in detail. However, the methods
presented herein allow researchers to determine the order of singularity for any type of multi-
material general singular stress concentrator (for example quad-material notch or quad-material
junction). In the following part, application of two different methods to determine generalized
stress intensity factors of singular and non-singular terms are studied. The main advantage of the
Ψ-integral method is, that it allows independent determination of kth generalized stress intensity
factor. The overdeterministic method is simpler and computationally less expensive. When some
requirements are fulfilled, i.e. if the integration path is far enough from singular point in the
case of the Ψ-integral, or number of terms n to be determined is high enough in the case of the
ODM, both methods return results very close to each other. By the knowledge of the eigenvalues
and generalized stress intensity factors, stress field near singular point can be reconstructed. The
analytical solution can be compared with pure finite element solution. When we are interested
in the stress field on distances such as 0.1 − 1 mm, the employment of non-singular terms leads
either to significant increase in precision (notches and inclusion more compliant than matrix) or
provides the only means to describe the stress field well (inclusion stiffer than matrix).

The dissertation also presents stability criteria modified to contain higher order terms. These
multi-parameter criteria are namely the criterion of maximum of average tangential stress and the
average strain energy density factor criterion. Both criteria are applied on problems of V-notch,
bi-material notch and bi-material junction. In the case of V-notch, comparison of the predicted
failure loads and experimental data show very good agreement. In other cases, the crack initiation
direction and critical parameters are calculated. Use of the multi-parameter criteria leads to
change in the predicted critical parameters in order of percents. The experimental validation of
proposed criteria will be a subject of further research.
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6. Abstract
The presented dissertation deals with general singular stress concentrators (GSSC) namely with
a sharp notch also known as a V-notch, a sharp bi-material notch and a sharp material inclusion.
The review section briefly outlines the Kolosov-Muskhelishvili complex potential theory of the
plane elasticity applied on fracture mechanics problems. Next, the linear elastic fracture mechan-
ics of cracks, V-notches, bi-material notches and bi-material junctions is discussed. The review
also includes the crack initiation direction and the stability criteria of the maximum tangential
stress, the strain energy density factor and the coupled stress-energy criterion. In the following
text, limits of the single parameter and advantages of the multi-parameter fracture mechanics
are presented. The next section introduces methods to determine the necessary parameters to
describe the stress and displacement field near the GSSCs. The parameters include the eigen-
value λk and the generalized stress intensity factor Hk. The λk is determined as an eigenvalue
problem, while the methods to calculate the Hk are the Ψ-integral and the overdeterministic
method. Both the methods are applied on the studied GSSCs and mutually compared. Finally
the criteria for crack initiation in the GSSCs are proposed in the multi-parameter form. The
crack initiation direction and the stability conditions are predicted for particular problems in
numerical examples. The failure forces for a V-notch are predicted by above mentioned criteria
and compared with experimental data found in literature. In following section methods to an-
alyze multi-material problem are shown. The final section summarizes with means of the crack
initiation and propagation near the sharp material inclusion.

Abstrakt
Předkládaná disertace se zabývá obecnými singulárními koncentrátory napětí a to zejména ostrým
vrubem neboli V-vrubem, ostrým bi-materiálovým vrubem a ostrou materiálovou inkluzí. V první
části práce je stručně nastíněna Kolosovova-Muschelišviliho teorie komplexních potenciálů rovinné
pružnosti aplikovaná na problémy lomové mechaniky. Dále je diskutována lineární elastická lomová
mechanika trhlin, V-vrubů, bi-materiálových vrubů a bi-materiálových spojů. V rešerši jsou dále
zahrnuta kritéria směru iniciace trhliny i její stability a to kritérium maximálního tečného napětí,
faktor hustoty deformační energie a sdružené napěťově-energetické kritérium. Následují text uvádí
omezení jednoparametrové lomové mechaniky a výhody její multiparametrové formy. Další část
představuje metody pro určení nezbytných parametrů pro popsání pole napětí a posuvů v blízkosti
obecného singulárního koncentrátoru napětí. Tyto parametry zahrnují vlastní číslo λk a zobecněný
faktor intenzity napětí Hk. Vlastní číslo λk je určeno jako řešení problému vlastních hodnot
zatímco metody pro určení Hk tvoří Ψ-integrál a metoda přeurčitosti. Obě zmiňované metody
jsou aplikovány na zde studované obecné singulární koncentrátory napětí a vzájemně porovnány.
Kritéria pro vznik trhliny v obecném singulárním koncentrátoru napětí jsou navržena. V rámci
numerických příkladů jsou předpovězeny směry iniciace trhliny a podmínky stability pro konkrétní
problémy. Kritické síly pro V-vrub jsou předpovězeny pomocí výše zmíněných kritérií a srovnány
s experimentálními daty v literatuře. V následující části jsou ukázány metody analýzy multi-
materiálového problému. V závěru práce jsou shrnuty způsoby iniciace a šíření trhliny v blízkosti
ostré materiálové inkluze.
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