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INTRODUCTION

From all mechanisms of communication, sound communication is by far the most wi-

dely used by humans and at the same time easily processed using modern technology,

namely digital signal processing. Most mammals, including humans, communicate

using air stream modulation ranging in frequency from infrasound (whales) to ul-

trasound (bats). If the air stream modulation is constant, the produced sound can

be approximated using an impulse train. In the frequency domain, the impulse train

consists of a fundamenal frequency and harmonics at integer multiplies of the funda-

mental frequency. Such signal can therefore be effectively analyzed using traditional

tools like the Fourier Transform. However if the air stream modulation changes in

time, as is the case of most real signals, its frequency components also change in

time. While frequency variance of the fundamental frequency may not be significant,

it multiplies for each additional harmonic contained in the signal. When using Fou-

rier Transform to analyze such singal, the higher harmonics may span over several

frequency bins of the analyzed time interval depreciating the accuracy of harmonic

parameters that can be acquired from the signal.

There are many applications that rely on the analysis of harmonic signals with

time-varying components. Most of them deal with speech signals for speech coding,

gender and age classification, detection of alcohol intoxication, emotion detection,

or jitter estimation in Parkinsonian speech. Some musical instruments can be played

in a way that causes fundamental frequency modulation like viola, violin, trombone,

or guitar while some instruments create frequency modulation by their nature like

the Theremin or the Leslie speaker. Also most synthesizers can be modulated using

the pitch wheel which enables continous variation of the fundamental frequency.

Analysing such signals may be performed with higher precision with a method that

enables to take time-variant fundamental frequency into account.

This thesis therefore focuses on the representation of non-stationary signals with

time-varying components. First it provides a summary of the state-of-the-art me-

thods with main focus on Fan-Chirp Transform and Harmonic Transform. Then

the focus turns solely on the Harmonic Transform and its computational demands

which prevent its efficient use. A prerequisite to computing Harmonic Transform

is knowledge of fundamental frequency change and an approach to decrease its es-

timation is presented. However the goal is decrease in computational complexity,

which is presented as the Fast Harmonic Transform. This introduces some artifacts

to the signal which is covered in the text. Then two algorithms for fundamental

frequency estimation are presented. One is based on the gathered log-spectrum and

the other on analysis-by-synthesis approach. Both algorithms are applied to a speech

signal to compare their output. The thesis finishes with experiments on real signals.
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1 THESIS OBJECTIVES

From the methods for representation of non-stationary signals with time-variant

frequency components presented in the previous chapter this thesis will deal with

the Harmonic Transform. Specifically with decreasing its computational demands.

Knowledge of fundamental frequency change is required before computing the Har-

monic Transform. This is done by Spectral Flatness Measure and our first focus will

be on optimizing its computation. Unfortunately, the Harmonic Transform compu-

tation still employs O(N2) computational complexity. So the next focus will be on

obtaining a Harmonic Transform which employs subquadratic computational com-

plexity. This will be attempted substituting the time-warping kernel of Harmonic

Transform with time-warping of the time axis. Since we usually only have discrete

signals available, it is necessary to use interpolation which introduces noise into the

signal. This renders Spectral Flatness Measure ineffective for the computation of

fundamental frequency change as will be shown in the next chapter. Therefore a dif-

ferent method of fundamental frequency change estimation is needed. Two methods

will be presented in this thesis. The first method computes fundamental frequency

change using gathered log-spectrum which performs gathering of the logarithm of

the magnitude spectrum at the places of the fundamental frequency and its mul-

tiples. The second method selects the optimal fit of fundamental frequency change

by comparing the reconstruction error of the harmonic part of the signal which is

estimated using the Harmonic Transform centered on the fundamental frequency.

Both of these methods will be tested on the same speech signal to compare their

approach.

Since the Fast Harmonic Transform uses interpolation for its fast computation,

there will inevitably be artifacts caused by the interpolation. This will be even

more pronounced in the signal reconstructed using Inverse Fast Harmonic Transform

from the harmonic domain. The reconstruction error will be measured for several

interpolation methods. Another artifact present in the Fast Harmonic Transform

image is aliasing and it will be addressed using oversampling and evaluated for

different oversampling factors and interpolation methods.

To summarize the goals of this thesis, they can be divided into these main areas:

• Fast Harmonic Transform Algorithm

• Fast Inverse Harmonic Transform Algorithm

• Computational load of the Fast Harmonic Transform

• Fundamental frequency change estimation using gathered log-spectrum

• Fundamental frequency change estimation using analysis-by-synthesis

• Aliasing artifacts and anti-aliasing by oversampling

• Experiments on real frequency-modulated signals
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2 STATE OF THE ART

Many harmonic signals, including speech and music, exhibit frequency modulation

caused by varying fundamental frequency. A traditional instrument for the analysis

of speech and musical signals is Fourier Transform (FT). The ability of the FT to

represent frequency content of a signal diminishes if the signals contains components

with varying frequency [1, 2]. One solution of this problem is to use Warped Fou-

rier Transform (WFT) [3], where the signal is frequency or time warped [4] before

applying the FT, giving birth to warped wavelets [5, 6]. This operation can be in-

terpreted as change of the signal’s scale for the conversion of time-varying frequency

components to frequency invariant components. The scaling operation can be ge-

neralized using the Scale Transform [7–9], where the scale is taken as a physical

property of the signal, or the scaling operation can be integrated into the definition

of transformation, as in Harmonic Transform [10]. Speech signals and other har-

monic signals with a formant structure require a method to preserve the formant

structure if modified. This can be done efficiently using frequency warping [11, 12].

There are other means of representation of signals with variable frequency com-

ponents which are based on several models of speech. A family of transforms is

based on the similarity of voiced speech to a chirp-periodic signal. Fan-Chirp Trans-

form [13, 14] is suitable for signals with frequency components varying linearly on fan

geometry, a property providing it with the best representation of chirp-like signals.

2.1 Harmonic Transform

Harmonic transform has been introduced in [10] and it is based on [15] [16]. Its

main difference from Fourier transform is the integrated time-warping function. It

is defined as

Sφu(t)(ω) =

∫ +∞

−∞
s(t)φ′u(t)e

−jωφu(t)dt, (2.1)

where φu(t) is a unit phase function, which is the phase of the fundamental har-

monic component divided by its nominal instantaneous frequency [10], and φ′u(t) is

first derivation of φu(t). The φu(t) is required to be invertible and differentiable on

(−∞,+∞). When the φu(t) = t, the HT reverts to the FT. The inverse harmonic

transform (IHT) is defined as [10]

s(t) =
1

2π

∫ +∞

−∞
Sφu(t)(ω)ejωφu(t)dω. (2.2)
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The DHT variant aligned with the fundamental frequency is defined as [17]

S(k) =
N−1∑
n=0

s(n)α′(n)e−j
2πkfr
fs

α(n), (2.3)

where fr is the fundamental frequency and k = 1, ..., K is the number of harmonics.

2.2 Fan-Chirp Transform

For a signal x(n), which is a discrete-time version of the signal x(t) at sampling

frequency fs, the discrete-time FChT is defined as [14]

X(f, α) =
N−1∑
n=0

x(n)
√
φ′α̂(n)e−j2π

k
N
φα̂(n), (2.4)

where k is the frequency bin index, N is the number of segment samples, α̂ is related

to its continuous-time counterpart α̂ = α/fs, and φα̂ is the following mapping,

bijective in [0, N ]

φα̂ =

(
1 +

1

2
α̂(n−N)

)
n. (2.5)

While the discrete-time FChT can be computed directly using (2.4), computati-

onal load of the direct version is quadratic. A fast version of the FChT operates

reformulating the FChT as the FFT of a time-warped signal, substituting τ = φα(t)

thus significantly reducing computation [13]. The FChT with the variable substitu-

tion becomes [18]

X(f, α) =

∫ φα(−T2 )

φα(−T2 )
x̃(τ)ρ̃(τ)e−j2πfτdτ, (2.6)

where x̃(τ) is a time-warped version of the signal x(t) and ρ̃(τ) is a scaling function

on the time-warped axis. In discrete time equation (2.6) can be written as

X(k, α̂) =
∑
m

x̃(m)ρ̃(m)e−j2π
k
K
m, (2.7)

where the range of m in (2.7) is derived from the relationship φα(−T
2
) ≥ τ ≥ φα(T

2
),

which yields

M

(
1

8
α̂N − 1

2

)
≤ m ≤M

(
1

8
α̂N +

1

2

)
. (2.8)
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3 RESEARCH RESULTS

This chapter deals with efficient implementation of the Harmonic Transform. The

original implementation requires O(N2) operations. The first approach to reduce

the number of computations required to compute HT is to reduce the number of

operations for computation of spectral frequency measure. This is done by exploiting

redundancy in its algorithm.

This however still leaves an algorithm with quadratic computational complexity,

so the research is then focused on producing an algorithm with subquadratic com-

putational complexity. This is achieved by time-warping the input signal, where the

relationship between the warped axis and original axis is given by the transformation

kernel of the HT.

3.1 Reducing The Number Of Computations Of

The Harmonic Transform

One of the crucial steps in computation of the Harmonic Transform is to estimate

the fundamental frequency change of the analyzed signal. So far, algorithm based

on SFM has been used. When exploring this algorithm, several observations have

been made. The SFM has several minimums and if a search algorithm was used, it

could fall into local minimum. It is also noteworthy that it is possible the harmonic

transform |DHT(a, k)| will be equal to zero for some values of k, which could mean

that the spectral flatness will be zero for all a. Removing zero values solves this

problem and leads to band-limited spectral flatness measure [19].

Harmonic spectrum of the Harmonic Transform is not complex conjugated even

for real signals (which is true for Fourier transform). From the frequency axis point

of view, the unit phase function φu(t) shifts the spectrum towards lower frequen-

cies if a is positive, and to higher frequencies if it is negative. For harmonic signal

analysis, only left side of the spectrum is useful, because it appropriately repre-

sents non-stationary harmonic signal. Using the modified spectral flatness measure

(MSFM) [19]

arg min
a

MSFM(a) =

√∏N/2
k=0 |DHT(a, k)|

1
N/2+1

∑N/2
k=0|DHT(a, k)|

(3.1)

we can get function of a which has clearly defined minimum [20]. This is caused

by using only left side of the spectrum when computing SFM and it consequently

leads to reducing the number of operations needed to compute spectral flatness by
N
2
− 1 [20].
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3.2 Fast Harmonic Transform

The number of operations in direct computation of the HT raises quadratically,

similarly to direct computation of Fourier transform. The goal of this section is to

present an algorithm to compute the HT which shows sub-quadratic complexity.

When there is a transform with quadratic complexity, then its sub-quadratic form is

referred to as the fast version of the transform. In this case it is the Fast Harmonic

Transform (FHT).

Discrete-Time Fast Harmonic Transform

The DFHT can be written as

S(k, a) =
N∑
n=0

s̃(n)ρ̃(n)e−j2π
k
K
n (3.2)

which is a FFT of the product s̃(n)ρ̃(n) which is the uniformly sampled product

s̃(τ)ρ̃(τ). Since we usually only have discrete signals available, we will use discrete-

time intervals n even though its value can be non-integer. Any values at non-integer

intervals will be enumerated using interpolation from the signal samples. Now to

get a discrete-time counterpart we take αa(n) which is a quadratic function and its

inverse α−1a (n) yields two results. The result of interest is

ψa(n) =
N

2
− N

a
+
N
√

(a
2

4
− a+ 2an

N
+ 1)

a
, (3.3)

where n is sample index and N is number of samples [21].

With (3.3) we can define the discrete-time time-warped signal as

sa(n) = ρ̃(n)s̃(ψa(n)), (3.4)

where ρ̃(n) = φ′a(ψa(n))−1 is the scaling factor which can be written as

ρ̃(n) =

−a
2

+
N
2
− N

a
+

N
√
a2/4−a+ 2an

N
+1

a

N
+ 1

−1 (3.5)

and s̃(ψa(n)) is the time-warped signal [21]. The last step to compute the HT is

using FFT on the time-warped signal sa(n) as follows [21]

S(k, a) =
N−1∑
n=0

sa(n)e−j2π
k
N
n. (3.6)

Now we have a Fast Harmonic Transform for harmonic signals with linear frequency

change which in the next step will be turned into an algorithm which will enable
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its use for analysis and synthesis in the harmonic domain. Fast implementation of

the Harmonic Transformation is based on (3.6), though its actual implementation

employs several improvements. Block diagram of the Harmonic Transform algorithm

is shown in Fig. 3.1

3.2.1 Inverse Fast Harmonic Transform

Inverse Fast Harmonic Transform (IFHT) is the inverse transform to the Fast Har-

monic Transform. It can be used to obtain a time domain signal from a harmonic

spectrum and its estimated fundamental frequency slope a. The IFHT is defined as

s(n) =
1

N

N−1∑
n=0

S(k, a)e j2π k
N
n. (3.7)

An algorithm to compute the IFHT is very similar to the algorithm of FHT with

reversed block order. The block diagram is in Fig. 3.2. Description of the blocks

follows.

3.3 Estimation of Fundamental Frequency Change

Using Gathered Log-Spectrum

A block diagram of this method can be seen in Fig. 3.3. Its principle is computation

of gathered log-spectrum for a predefined range of fundamental frequencies and

fundamental frequency changes based on the nature of the analyzed signal. A (a, f0)

plane is constructed from the gathered log-spectrum values which represent pitch

salience and the most likely candidates for fundamental frequency are represented as

peak values. For signals with dominant first harmonic component the first candidate

with highest value is usually equal to the fundamental frequency in the analyzed

signal. The resulting fundamental frequency f0 and its slope a is taken from the

maximum value of the gathered log-spectrum.

To show a typical output of the presented algorithm, it has been run on an speech

signal micf01sa02 which is an utterance “Don't ask me to carry an oily rag like that”

pronounced by a female speaker with parameters M = 511, NFFT = 511, overlap

= 5 ms, fs = 8 kHz, nH = 4, for f0 ∈< 80; 350 > and a ∈< −0.3; 0.3 > without

oversampling. Spectrogram constructed from the outputs of Harmonic Transform is

shown in Fig. 3.4 and a STFT spectrogram is shown in Fig. 3.5 for reference. It

is evident the Harmonic Transform based spectrogram has sharper peaks without

spectral smearing where a harmonic structure is present in the signal, specifically in

the higher frequencies.
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Upsampling

Normalization

Interpolation

FFTshift

FFT

Input signal

Zero-phase 
zero padding

Harmonic spectrum

Fig. 3.1: Block diagram of the forward

Fast Harmonic Transform.

IFFT

FFTshift

Interpolation

Normalization

Downsampling

Output signal

Input harmonic 
spectrum

Fig. 3.2: Block diagram of the In-

verse Fast Harmonic Transform com-

putation.
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Segmentation

Windowing

Gathered log-
Spectrum

Argmax(GlogS)

Input signal

Harmonic 
transform

Harmonic 
spectrum

Fig. 3.3: Block diagram of Harmonic Transform computation with f0 estimation

using gathered log-spectrum.
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Fig. 3.4: Spectrogram of the micf01sa02 signal obtained using Fast Harmonic Trans-

form with gathered log-spectrum as the f0 change estimation algorithm.
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Fig. 3.5: Spectrogram of the signal micf01sa02 obtained using STFT.
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3.4 Estimation of Fundamental Frequency Change

Using Analysis-by-Synthesis Approach

In this approach we will use the (a, f0) plane to estimate the fundamental frequency

as in 3.3 but with harmonic-to-noise ratio instead of pitch salinity. This approach

assumes analysis of signals which are composed of a fundamental frequency and its

harmonics. We will try to estimate harmonic parameters of each harmonic of such

signal where hypothetical number of harmonics nH, range of fundamental frequencies

f0 and range of fundamental frequency changes a is based on previous knowledge

of the nature of the analyzed signal. After the harmonic parameters have been

estimated, they are used to construct the harmonic part of the analyzed signal

which is then subtracted from the analyzed signal to get the residual signal. Then

harmonic-to-noise ratio is computed from the harmonic and residual signal for all

values of a and f0 which are then assembled on the (a, f0) plane. For a and f0 that

match the analyzed signal there will be a peak in the (a, f0) plane and these values

are evaluated as the final values.

FFT cannot be used to compute (2.3) though its computational complexity is

O(kN), where k is the number of harmonic components and N is length of the

transformation. Computational requirements can be kept reasonable through sui-

table choice of input parameters. Block diagram of the algorithm can be seen in

Fig. 3.6.

The algorithm has been tested on a signal micf01sa02 with the same parameters

as in case of the method presented in Section 3.3: M = 511, NFFT = 511, overlap

= 5 ms, fs = 8 kHz, nH = 4, for f0 ∈< 80; 350 > and a ∈< −0.3; 0.3 > without

oversampling. From Fig. 3.7 we can see the harmonic spectrogram provides much

sharper peaks compared to the STFT spectrogram in Fig. 3.5 and it is very similar

to the harmonic spectrogram obtained using gathered log-spectrum as can be seen

in Fig. 3.4. There are also parts where the harmonic spectrogram provides doubtful

results occuring usually at transients e.g. at time intervals (0.8 s;1 s) and (2.3 s;

2.5 s).

3.5 Computational Load

The computational load of the fast algorithm can be enumerated using the number of

operations required for analysis of one segment of length N . In normalization stage,

the input signal x(n) is multiplied by the window function which has been divided

by the scaling factor φ′(n). Warped index computation estimates time instants of

the signal time-warped according to the warping function ψa(n). The time-warped
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Windowing
Harmonic 
transform 
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Sinusoidal 
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Fig. 3.6: Block diagram of Fast Harmonic Transform algorithm using harmonic pa-

rameters for f0 change estimation.
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Fig. 3.7: Spectrogram of the signal micf01sa02 obtained using the analysis-by-

synthesis method.

discrete-time signal sa(n) is obtained using interpolation from the normalized input

signal za(n). Finally the output harmonic spectrum S(k, a) is computed using FFT.

The resulting computational load is N(logN+7) for the Hermite spline interpolation

and N(logN + 5) for the linear interpolation.

3.6 Effect of Aliasing

The Fast Harmonic Transform uses interpolation of the input signal which introduces

errors, namely, aliasing. To demonstrate the effect of aliasing we have used test signal

which is a linear chirp with 17 harmonics. Time warping performed using (3.3) maps

one axis with equidistant intervals to a time-warped axis where the intervals between

samples get shorter towards one of the ends of analysis segment. This causes the

signal on the warped axis to be undersampled. Aliasing can be seen as a noise floor

which increases with frequency.

One of the straightforward means of diminishing aliasing is oversampling. Over-

sampling consists of increasing the sampling frequency by adding zeroes to the signal

and then filtering the signal by a low-pass filter to eliminate mirroring artifacts. The

resulting signal will have a multiple number of samples which in principle reduces

the intervals between samples of the signal on the original axis and therefore the
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Fig. 3.8: The effect of oversampling on aliasing. Fast Harmonic Transform with linear

interpolation was used on test signal.

time-warped signal is interpolated with higher precision. This also allows us to use

a cheaper interpolation method, if advantageous. A case where linear interpolation

was used on the test signal with 2x and 4x oversampling is shown in Fig. 3.8. A more

thorough analysis has been performed on signal micf01sa02 as shown in Tab. ??.

3.7 Experiments

Since we are analyzing real signals, there is no ground truth for the signal’s harmonic

parameters at each instant as opposed to analyzing synthesized signals, where the

parameters are known and can be directly compared. Therefore we will analyze the

signal using the ABS algorithm and use it to extract the fundamental frequency

which will be used as input to harmonic parameter estimation. The signal will

then be reconstructed using the harmonic parameters when using the knowledge

of fundamental frequency slope and without this knowledge. This will produce a

synthetic harmonic signal, an estimate of the input signal, with (further referred

to as ABS-FM) and without frequency modulation (ABS-S). The ABS-S algorithm

is essentially the same algorithm as ABS-FM with a = 0. This synthetic harmonic

signal will then be subtracted from the input signal, leaving a residual signal. The

better the harmonic parameter estimation, the lesser the residual signal energy. By
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Fig. 3.9: Fundamental frequency of vocal sample salvation with artificial vibrato.

measuring the harmonic-to-noise ratio for different signals with frequency modu-

lation while using the knowledge of fundamental frequency change and without it,

we can quantify the increase of harmonic parameter estimation accuracy which we

get by using ABS-FM algorithm. So far, the Harmonic Transform has been used

on speech signals which are usually conveniently sampled at 8 kHz. Yet, for many

applications higher sampling frequencies are required. Experiments in this section

are done on audio signals with sampling frequency 44.1 kHz.

Artificial vibrato

In this experiment we would like to apply frequency modulation on a harmonic signal

with known and nearly stationary fundamental frequency to compare the ability to

estimate harmonic parameters from a signal in our system from section 3.4 when

using ABS-FM and ABS-S. The selected harmonic signal is a decaying vocal excerpt

with nearly stationary fundamental frequency. The frequency modulation is created

using a vibrato audio effect. This can also be observed from Fig. 3.9 which shows

the computed vibrato as the predicted sinusoid and the estimated sinusoid shows

the estimated fundamental frequency from the ABS-FM algorithm. The difference

between ABS-FM and ABS-S as shown in Fig. 3.10 shows increase in harmonic

component separation at intervals with frequency modulation. [22]
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Fig. 3.10: HNR increase of ABS-FM over ABS-S of reconstructed harmonic part of

the sound sample salvation.

Viola

This experiment has been performed on a viola sound sample. It contains glissando

and vibrato, which are both frequency modulation techniques on stringed instru-

ments. Segments at which the techniques are used can be seen from the fundamen-

tal frequency estimated by the ABS-FM algorithm in Fig. 3.11. Glissando occurs at

around 50-th, 90-th, and 170-th segment as a steep change in fundamental frequency

and vibrato occurs as a slight fluctulations in fundamental frequency throughout the

sound sample. It can be seen from Fig. 3.12 the highest increase in HNR of the ABS-

FM is at time intervals where glissando and vibrato (i.e. intervals with the highest

frequency modulation) take place.
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Fig. 3.11: Fundamental frequency of viola sound sample.
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Fig. 3.12: Increase of HNR when using ABS-FM over ABS-S on sound sample viola.
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4 CONCLUSION

This thesis was focused on methods for representation of harmonic signals with

time-varying frequency components. Most of the focus of the methods used is on

the Fan-Chirp Transform and Harmonic Transform which are both generalizations of

the Fourier Transform for harmonic signals with time-varying frequency components

and therefore they share some resemblances.

The chapter 3.1 is dedicated to Harmonic Transform and its computation speed.

Fundamental frequency estimation is a prerequisite to computing the Harmonic

Transform which has so far been computed using Spectral Flatness Measure. An

algorithm to decrease the number of operations needed for SFM computation is

presented based on the fact that the Harmonic Transform’s image is one-sided.

However the Harmonic Transform is enumerated using direct computation from

the analytical definition which employs O(N2) computational complexity. Therefore

further research was aimed at decreasing the computational complexity of Harmonic

Transform.

Section 3.2 introduces the Fast Harmonic Transform. The fast transform has

been designed by splitting the Harmonic Transform into time-warping of the input

signal and performing FFT. This allows for subquadratic computational complexity.

However the time-warping operation involves interpolation which introduces noise to

the signal and renders SFM ineffective as fundamental frequency change estimation

algorithm. It also introduces aliasing which is dealt with using oversampling and

different interpolation methods.

Since SFM cannot be used as a fundamental frequency change algorithm for

FHT, we have introduced two methods of its estimation. First method is based

on computing a gathered log-spectrum on a range of fundamental frequencies and

its changes. This method is rather fast though it suffers in fundamental frequency

resolution. Second method is based on reconstruction error of harmonic part of the

signal using harmonic parameter estimation. This method is slower than the first

method, though it offers better resolution in fundamental frequency estimation.

Both of these methods have been run on a speech signal micf01sa02 to compare

their results.

Finally, since until now all papers published on the HT have been applied on

speech signals sampled at 8 kHz, we wanted to analyze real signals with frequency

modulation sampled at 44.1 kHz, which is a common sampling frequency in digital

audio. Generally it can be said that the HT decreases reconstruction error (i.e. the

ability to represent the signal) for signals with frequency modulation.
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ABSTRACT
This thesis deals with representation of non-stationary harmonic signals with time-varying
components. Its main focus is aimed at Harmonic Transform and its variant with subqua-
dratic computational complexity, the Fast Harmonic Transform. Two algorithms using
the Fast Harmonic Transform are presented. The first uses the gathered log-spectrum as
fundamental frequency change estimation method, the second uses analysis-by-synthesis
approach. Both algorithms are used on a speech segment to compare its output. Further
the analysis-by-synthesis algorithm is applied on several real sound signals to measure the
increase in the ability to represent real frequency-modulated signals using the Harmonic
Transform.

ABSTRAKT
Tato práce se zabývá reprezentaćı nestacionárńıch harmonických signál̊u s časově
proměnnými komponentami. Primárně je zamě̌rena na Harmonickou transformaci a jeji
variantu se subkvadratickou výpočetńı složitost́ı, Rychlou harmonickou transformaci. V
této práci jsou prezentovány dva algoritmy využ́ıvaj́ıćı Rychlou harmonickou transfor-
maci. Prvni použ́ıvá jako metodu odhadu změny základńıho kmitočtu sb́ırané logarit-
mické spektrum a druhá použ́ıvá metodu analýzy syntézou. Oba algoritmy jsou použity
k analýze řečového segmentu pro porovnáńı vystupů. Nakonec je algoritmus využ́ıvaj́ıćı
metody analýzy syntézou použit na reálné zvukové signály, aby bylo možné změ̌rit zlepšeńı
reprezentace kmitočtově modulovaných signál̊u za použit́ı Harmonické transformace.
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