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Palackého v Olomouci
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I. Introduction

This habilitation dissertation is devoted to second order discrete boundary value
problems. Essentially, this is a collection of the papers [26]–[34], which provides
new or more general existence results for regular discrete problems. Singular
discrete problems studied here have not been solved before.

Chapter II of the dissertation consists of Sections 1–5 and is a compilation
of the papers [26] and [27]. Sections 1 and 2 deal with the discrete Dirichlet
problem. In particular, known existence results by Y. Li [23] are generalized.
A characterization of regular and singular boundary value problems is given in
Section 3. Sections 4 and 5 study the discrete mixed problem with the p-Laplacian
φp(y) = |y|p−2y, p > 1, both in regular and in singular cases. The existence results
proved here extend and generalize the previous ones for the regular case by Z. He
[15]. The singular case is new.

Chapter III of the thesis is formed by Sections 6–13 and contains results of
the papers [28]–[30]. The solvability of difference and differential boundary value
problems on compact intervals and their connections are discussed there. In Sec-
tion 6, the lower and upper functions method is extended for singular difference
equations. The main result of Section 7 provides conditions for the solvability of
a sequence of singular discrete mixed problems. In addition, solutions of these
problems give a sequence of approximate functions locally uniformly converging
for n → ∞ to a solution of the corresponding singular differential mixed problem.
Section 7 is completed by two examples demonstrating the theory. In Section 8
we derive a mathematical model describing a rescaled radial stress of shallow
membrane caps. Such model can be transformed to a singular difference mixed
problem and we provide conditions for its solvability. In Sections 8 and 9 we
also prove the lower and upper functions method as well as the approximation
principle for more general cases. Using these results, we find conditions for the
solvability of the generalized membrane problems in Section 10. Further gener-
alization of singular mixed problems of previous sections is proved in Sections
11–13, which are based on the paper [30]. Here we consider equations admitting
discontinuities not only at a boundary, but also inside a given region.

Difference and differential equations on the half-line are considered in Chap-
ter IV of the dissertation, which is based on the papers [31]–[34] and which has
Sections 14–19. Section 14 shows a construction of a mathematical model de-
scribing a density profile of a gas in bubbles in some liquid. Such model leads
to the differential problem having so-called bubble-type solutions. If we properly
extend the equation on the real line, bubble-type solutions become homoclinic
solutions of the extended equation. Section 15 (by the paper [31]) investigates an
autonomous discrete case of the problem and provides the existence of homoclinic
points of the corresponding autonomous difference equation. A non-autonomous
discrete case of the problem is studied in Sections 16–19. Section 16 describes
four types of possible solutions of this equation: escape, homoclinic, damped and
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non-monotonous solutions. Section 17 provides the first existence result about
the existence of non-monotonous or damped solutions. This is contained in the
paper [32]. Section 18 (by the paper [33]) gives the second existence result about
the existence of escape solutions. Section 19 (by the paper [34]) presents the
third existence result about the existence of homoclinic solutions. This is the
main result of Chapter IV. Examples with numerical simulations illustrate the
results of Chapter IV.

Motivation of this work

Difference equations and their associated operators occupy a central and growing
area in modern applicable analysis. We refer to the monographs [1], [5], [6], [12],
[19], [22], [36], [37], [40]. Linear and nonlinear difference equations appear as
direct mathematical models in almost all areas of science, engineering and tech-
nology where discrete phenomena abound, but also provide the field of numerical
analysis with powerful tools. From the advent and rise of computers, where
differential equations are solved by employing their approximative difference for-
mulations, the interest in studying difference equations has been increasing even
more. Difference equations usually describe the evolution of certain phenomena
over the course of time. This description allows to compute a sequence of values
recursively from a given set of values. The following examples have been chosen
to illustrate the diversity of the uses and types of difference equations.

• In some bottom-feeding fish populations, recruitment appears to be essen-
tially unaffected by fishing. These species have very high fertility rates and
very low survivorship to adulthood. This leads to the Beverton and Holt
population model (1957)

x(n+ 1) =
ax(n)

1 + bx(n)

with positive constants a, b, which is equivalent to the Verhulst difference
equation. ([8], p. 72)

• It was observed that some species of fish, including salmon, habitually can-
nibalize their eggs and young. Such population can be described be the
Ricker metered model (1958) which has a form of the nonlinear first order
difference equation

x(n+ 1) = αx(n)e−βx(n),

where α, β are positive constants. ([8], p. 73)

• The difference equation of an order k + 1

x(n+ 1) = ax(n) + F (x(n− k))
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is often used to study whale populations. Here x(n) represents the adult
breeding population, a ∈ [0, 1] is the survival coefficient, and F (x(n − k))
is the recruitment to the adult stage with a delay of k years. ([8], p. 77)

• In the study of the effects of selection and mutation in genetics a nonlinear
difference equation of the form

p(n+ 1) = (1− µ)
p(n)

1− s+ 2sp(n)− sp2(n)

has been developed. Here one particular gene which has two alleles, A
and a, is studied, and p(n) is the fraction of A-alleles among the adults
of generation n. It is assumed that all individuals with at least one A-
allele reach adulthood, but that only a certain fraction, say 1 − s, of the
a-homozygotes reach adulthood. Further assumption is that the alleles
mutate from A- to a-alleles and µ is the mutation rate (the fraction of
A-alleles that mutate). ([36], p. 143)

• Samuelson’s business cycle model is built on the following assumptions.
Current consumption C(t) is a linear increasing function of previous pe-
riod’s income Y (t − 1) and current investment I(t) rises with rising con-
sumption C(t)− C(t− 1). More precisely

C(t) = cY (t− 1), I(t) = v(C(t)− C(t− 1)),

where c ∈ (0, 1), v > 0 are parameters and Y (t) = C(t) + I(t) + G(t) is a
national accounting identity andG(t) = 1 is a fixed government expenditure
level. Substitution gives a typical second order difference equation for the
national income Y (t)

Y (t)− c(1 + v)Y (t− 1) + cvY (t− 2) = 1,

where Y (0), Y (1) are given. ([40], p. 54)

• The classical Hansen-Samuelson’s accelerator-multiplier model is given by
the same second order difference equation as before

y(n) = cy(n− 1) + α(y(n− 1)− y(n− 2)) + A0,

where the constant A0 = C0 + I0 +G0 represents the sum of the minimum
consumption, the autonomous investment and the fixed government spend-
ing, and y(n) is the national income in period n. The coefficient α > 0
is the accelerator and the constant c ∈ (0, 1) represents Keynes’ marginal
propensity to consume, while 1

1−c
is Keynes’ muiltiplier. ([37], p. 243)
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• International macroeconomic data exhibit substantial and persistent fluc-
tuations in the real exchange rates for currencies. In the model proposed
by S. Chen in 1999, the real exchange rate x(n) (defined as the ratio of the
domestic currency price to the price of domestic output) of a given country
is determined according to the second order nonlinear difference equation

x(n+ 1) = x(n) +
1

µ
(bx3(n− 1)− ax2(n) + cx(n)− d),

where a, b, c, d, µ are positive constants. ([37], p. 345)

• The system

x(n+ 1) = ax(n)e−by(n), y(n+ 1) = cx(n)(1− eby(n))

is known as the Nicholson and Bailey model (1935) for a host-parasite
system; x(n) denotes the number of hosts and y(n) the number of parasites.
([8], p. 79)

• A special case of the business cycles model by Botomazava and Touzé (1998)
is given by the second order equation

k(n+ 1) = (1− τ)βk(n)− (1− τ)
β

α
k2(n− 1),

where k(n) is the capital per household in period n, the constants α, β
satisfy α, β > 0 and a payroll tax rate τ belongs to [0, 1). ([37], p. 352)

• Consider the simplest example of the Fermi acceleration model: a point
mass moving between a fixed wall and an oscillating wall. We simplify the
setup of the model by assuming that the amplitude a of the wall oscillation
is very small compared to the distance L of the walls. When the particle
with a velocity v is reflected elastically from the massive wall moving with a
velocity V , it rebounds with a velocity ṽ = −v+2V . In the case considered
here, we register the particle velocity just before the n-th impact as vn > 0.
The particle hits the oscillating wall at a phase Φn and is reflected with a
velocity −vn + 2V (Φn), where V is a velocity of the oscillating wall. Then
it moves to the fixed wall, is reflected and returns with a velocity

vn+1 = vn − 2V (Φn),

after a time 2L/|vn+1|. If the wall velocity oscillates with period T , the
phase of the wall oscillation at the next impact is given by

Φn+1 = Φn +
2L

Tvn+1

.
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This system can be transformed to the second order difference equation

y(n+ 1) = y(n) + (y(n)− y(n− 1))
1

1− T
L
V (y(n))

.

([21], p. 137)

• Finally, two models arising in the theory of shallow membrane caps and
in the hydrodynamics, which have forms of nonlinear second order differ-
ence equations, are derived and investigated in details in Chapter III and
Chapter IV of the habilitation dissertation, respectively.

Main objectives of this work

1. To prove new existence results for Dirichlet problems and for singular mixed
problems with p-Laplacian.

2. To investigate the connection between singular difference and differential
boundary value problems on compact intervals and to derive an approxi-
mation principle.

3. To construct a mathematical model describing a radial stress of shallow
membrane caps and to find conditions for its solvability and for the solv-
ability of its generalization.

4. To construct a mathematical model describing a density profile of a gas in
bubbles in some liquid and to find conditions which guarantee the existence
of homoclinic solutions of the model.

II. Discrete boundary value problems on com-

pact intervals

In many areas, for example in the study of solid state physics, chemical reaction or
population dynamics, we can find difference equations subject to some boundary
conditions. Such problems are called discrete boundary value problems. They
have been investigated in several monographs. See R. P. Agarwal [1], R. P.
Agarwal, D. O’Regan, P. J. Y. Wong [5], R. P. Agarwal, P. J. Y. Wong [6] and
W. G. Kelley, A. C. Peterson [19]. We can find also a lot of papers dealing with
discrete boundary value problems. Here we investigate Dirichlet and singular
mixed discrete problems.
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1 Dirichlet problem

For fixed T ∈ N we define the discrete interval [1, T ] = {1, 2, . . . , T} and study a
difference equation of the form

∆(p(t)∆u(t− 1)) + f(t, u(t)) = g(t), t ∈ [1, T ] (1.1)

subject to the boundary conditions

u(0) = 0, u(T + 1) = 0. (1.2)

The discrete boundary value problem (1.1), (1.2) is called the Dirichlet problem.
Here

p: [1, T + 1] → R is positive, g: [1, T ] → R

f : [1, T ]× R → R is continuous.

}

(1.3)

Recall that f(t, x) is continuous on [1, T ] × R if for each t ∈ [1, T ], f(t, x) is
a continuous function of x.

Definition 1.1 By a solution u of problem (1.1), (1.2) we mean u: [0, T +1] → R

such that u satisfies the difference equation (1.1) on [1, T ] and the boundary
conditions (1.2).

The following results are based on the paper [27]. We were motivated by the
paper [23] by Yongjin Li, where he used the variational approach and proved
the existence result for problem (1.1), (1.2). Here we use a completely different
approach based on the lower and upper functions method. By means of this we
generalized the result in [23].

Theorem 1.2 (Existence)
Assume that (1.3) and

∃r > 0 such that xf(t, x) ≤ 0 for t ∈ [1, T ] and |x| ≥ r, (1.4)

hold. Then problem (1.1), (1.2) has at least one solution.

Corollary 1.3 Assume that (1.3) holds. Let

g(t) < 0, f(t, 0) ≥ 0 for t ∈ [1, T ], (1.5)

∃r > 0 such that f(t, x) ≤ 0 for t ∈ [1, T ] and x ≥ r. (1.6)

Then problem (1.1), (1.2) has a solution u such that

u(t) > 0 for t ∈ [1, T ]. (1.7)

Corollary 1.4 Assume that (1.3) holds. Let

g(t) > 0, f(t, 0) ≤ 0 for t ∈ [1, T ], (1.8)

∃r > 0 such that f(t, x) ≥ 0 for t ∈ [1, T ] and x ≤ −r. (1.9)

Then problem (1.1), (1.2) has a solution u such that

u(t) < 0 for t ∈ [1, T ]. (1.10)
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2 Singular mixed problem with p-Laplacian

Problem (1.1), (1.2) studied in the previous sections is regular, because function f
in equation (1.1) is continuous (see (1.3)). Otherwise the corresponding problem
is singular (see e.g. (2.3)). Most existence results in literature concern regular
problems. Singular discrete problems have received less attention. We refer to
[3], [4] and [5] where the solvability of the singular Dirichlet discrete problem was
studied. Existence theorems for singular higher order discrete problems can be
found in [6].

Let T ∈ N be fixed. We define the discrete interval [1, T+1] = {1, 2, . . . , T+1}
and consider a singular mixed problem which has a form of the following second
order difference equation with the p-Laplacian

∆
(

φp(∆u(t− 1))
)

+ f(t, u(t),∆u(t− 1)) = 0, t ∈ [1, T + 1] (2.1)

subject to the mixed boundary conditions

∆u(0) = 0, u(T + 2) = 0. (2.2)

We denote φp(y) = |y|p−2y, p > 1 and investigate the solvability of problem (2.1),
(2.2).

Definition 2.1 By a solution u of the mixed problem (2.1), (2.2) we mean
u: [0, T + 2] → R such that u satisfies the difference equation (2.1) on [1, T + 1]
and the boundary conditions (2.2). If u(t) > 0 for t ∈ [1, T + 1], we say that u is
a positive solution of problem (2.1), (2.2).

Let D ⊂ R
2. We say that f is continuous on [1, T + 1] × D, if f(t, ·, ·) is

continuous on D for each t ∈ [1, T + 1].
If D = R

2, problem (2.1), (2.2) is regular. If D 6= R
2 and f has singularities

on ∂D, then problem (2.1), (2.2) is singular.
We will assume that

D = (0,∞)× R, f is continuous on [1, T + 1]×D
and f has a singularity at x = 0, i.e.
lim sup
x→0+

|f(t, x, y)| = ∞ for each t ∈ [1, T + 1]

and for some y ∈ R.























(2.3)

Problem (2.1), (2.2) where f is continuous and has the form f(t, x) = a(t)g(x)
has been investigated by Zhimin He in [15]. Here we extend the existence results
of [15] onto the singular problem (2.1), (2.2) where f depends both on u and on
∆u. These results have been published in [26].

The next theorem provides sufficient conditions for the solvability of the sin-
gular problem (2.1), (2.2). The proof is based on the construction of a sequence of
approximating auxiliary regular problems and on the lower and upper functions
method.
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Theorem 2.2 (Existence)
Assume (2.3) and let the following conditions hold:

there exists c ∈ (0,∞) such that f(t, c, 0) ≤ 0 for t ∈ [1, T + 1], (2.4)

f is nonincreasing in y for t ∈ [1, T + 1], x ∈ (0, c], (2.5)

lim
x→0+

f(t, x, y) = ∞ for t ∈ [1, T + 1], y ∈ [−c, c]. (2.6)

Then problem (2.1), (2.2) has a solution u satisfying

0 < u(t) ≤ c for t ∈ [0, T + 1]. (2.7)

III. Discretization of differential boundary value

problems

In this chapter, which is based on the papers [28]–[30], we study a connection
between discrete (difference) and continuous (differential) boundary value prob-
lems. Particular significance of our investigation lies in the fact that strange and
interesting distinctions can occur between the theory of differential equations and
the theory of difference equations. For example [2], properties such as existence,
uniqueness and multiplicity of solutions may not be shared between the theory
of differential equations and the theory of difference equation, even though the
right hand side of the equations under consideration may be the same. Questions
about difference problems associated with regular differential problems have been
also discussed for example in [13], [16], [19], [38], [39].

3 Discrete and continuous singular mixed prob-

lems

We investigate discrete mixed problems as approximations of continuous mixed
problems. Therefore we choose T ∈ (0,∞), n ∈ N, n ≥ 2 and introduce a step
h = T

n
. Using this notation we consider the singular discrete mixed boundary

value problem

1

h2
∆2uk−1 + f(tk, uk) = 0, k = 1, . . . , n− 1, (3.1)

∆u0 = 0, un = 0, (3.2)

where f : [0, T ]× (0,∞) → R is continuous and f(t, x) has a singularity at x = 0,
i.e. we assume

f ∈ C([0, T ]× (0,∞)), lim sup
x→0+

|f(t, x)| = ∞ for each t ∈ (0, T ). (3.3)
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Here
t0 = 0, tk = hk, ∆uk−1 = uk − uk−1 for k = 1, . . . , n. (3.4)

Definition 3.1 A vector (u0, . . . , un) ∈ R
n+1 satisfying equation (3.1) and the

mixed boundary conditions (3.2) is called a solution of problem (3.1), (3.2). If
uk > 0 for k = 0, . . . , n− 1, the solution is called positive.

The continuous version of problem (3.1), (3.2) has the form

y′′(t) + f(t, y(t)) = 0, (3.5)

y′(0) = 0, y(T ) = 0. (3.6)

Definition 3.2 A function y ∈ C[0, T ] ∩ C2[0, T ) satisfying equation (3.5) for
t ∈ [0, T ) and fulfilling the mixed boundary conditions (3.6) is called a solution
of problem (3.5), (3.6). If y(t) > 0 for t ∈ [0, T ), the solution is called positive.

Following the paper [28], we assume that there exist functions

α, β ∈ C[0, T ], 0 < α(t) ≤ β(t) for t ∈ (0, T ) (3.7)

and denote
αk = α(tk), βk = β(tk), k = 0, . . . , n. (3.8)

Using this we provide conditions which imply that for each n ∈ N, n ≥ 2, the
singular discrete problem (3.1), (3.2) has a positive solution (u0, . . . , un) in the
sense of Definition 3.1. Then we construct an approximate function S[n] ∈ C[0, T ]
by

S[n](t) = uk + vk(t− tk), t ∈ [tk, tk+1], k = 0, . . . , n− 1, (3.9)

where hvk = ∆uk. Having the sequence {S[n]} we prove that, under proper
conditions, there is a subsequence {S[m]} locally uniformly converging on [0, T )
for m → ∞ to a positive solution y of the singular continuous problem (3.5),
(3.6). This is so-called Approximation principle, which is contained in Theorem
3.3.

Theorem 3.3 (Approximation principle)
Assume that conditions (3.3), (3.7) and (3.8) hold. Let for each n ≥ 2 the vectors
(α0, . . . , αn) and (β0, . . . , βn) be a lower function and an upper function of problem
(3.1), (3.2) and let α0 > 0, βn = 0. Then for each n ≥ 2 problem (3.1), (3.2) has
a solution (u0, . . . , un), a sequence {S[n]} can be given by (3.9) and there exists
a subsequence {S[m]} ⊂ {S[n]} which converges locally uniformly on [0, T ) to a
solution y ∈ C[0, T ] ∩ C2[0, T ) of problem (3.5), (3.6).

If, in addition,

|f(t, x)| ≤ g0(t, x) + g1(t, x) for t ∈ [0, T ], x ∈ (0,∞), (3.10)
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where g0 ∈ C([0, T ]× (0,∞)) is nonincreasing in its second variable with

∫ T

0
g0(t, α(t))dt < ∞ (3.11)

and g1 ∈ C([0, T ]× [0,∞)), then moreover y ∈ C1[0, T ].

Remark 3.4 The singular discrete problem (3.1), (3.2) has not been studied
before. Assumptions (3.10) and (3.11) are forced from a singularity of this prob-
lem. We point out that these assumptions are needed neither for the solvability of
problem (3.1), (3.2) nor for the convergence of the sequence {S[m]} to a solution
y ∈ C[0, T ] ∩ C2[0, T ) of problem (3.5), (3.6). They are used just in order to
prove that y′(t) is continuous also at t = T .

4 Problems arising in the theory of shallow mem-

brane caps

Consider a shallow membrane cap which is rotationally symmetric in its unde-
formed state and its shape is described in cylindrical coordinated by z = C(1−rγ),
where r ∈ [0, 1] and γ > 1. The undeformed radius is r = 1 and C > 0 is the
height at the center of the cap. When a radial stress is applied on the boundary
and a small uniform vertical pressure P is applied to the membrane, the shape
that the cap takes is described by a nonlinear model. Baxley and Robinson
[7], Dickey [11] and Johnson [17] showed that under the assumptions of small
strain and small constant vertical pressure, if the deformed membrane is also
rotationally symmetric, the rescaled radial stress Sr on a membrane satisfies the
differential equation

r2S ′′

r + 3rS ′

r =
λ2r2γ−2

2
+

βνr2

Sr

−
r2

8S2
r

. (4.1)

Here ν ∈ [0, 0.5) is the Poisson ratio while λ and β are positive constants de-
pending on the pressure P , the thickness of the membrane and Young’s modulus.
Dickey focused his attention on boundary conditions

lim
r→0+

r3S ′

r(r) = 0, Sr(1) = A > 0,

where the first (regularity) condition follows from the radial symmetry and the
second condition means that the stress boundary is specified. Motivated by 4.1 we
investigate the solvability of the singular discrete mixed boundary value problem

1

h2
∆(t3k∆uk−1) + t3k

(

1

8u2
k

−
a0
uk

− b0t
2γ−4
k

)

= 0, k = 1, . . . , n− 1, (4.2)
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∆u0 = 0, un = 0, (4.3)

where a0 ≥ 0, b0 > 0, γ > 1. The continuous version of problem (4.2), (4.3) has
the form

(t3y′)′ + t3
(

1

8y2
−

a0
y

− b0t
2γ−4

)

= 0, (4.4)

lim
t→0+

t3y′(t) = 0, y(T ) = 0, (4.5)

and it was studied for example in [18] and [25]. The next theorem provide the
existence result for the discrete membrane problem (4.2), (4.3) and its continuous
version (4.4), (4.5), which is contained in the paper [29].

Theorem 4.1 (Solvability of the membrane problem)
Let a0 ≥ 0, b0 > 0, γ > 1. Then for each n ≥ 2, the difference problem (4.2),
(4.3) has a positive solution (u0, . . . , un). Let y[n] ∈ C[0, T ] be a piece-wise lin-
ear function with y[n](tk) = uk, k = 0, . . . , n. Then there exists a subsequence
{y[m]} ⊂ {y[n]} such that

lim
m→∞

y[m](t) = y(t) locally uniformly on (0, T ),

and y ∈ C[0, T ] ∩C2(0, T ) is a positive solution of the differential problem (4.4),
(4.5).

Further generalization of singular mixed problems is proved in Sections 11–13
of the dissertation. These results are based on the paper [30].

IV. Boundary value problems arising in hydro-

dynamics

This chapter is based on the papers [31]–[34] and is devoted to the study of
difference and differential equations on the half-line. This study has been inspired
by some models arising in hydrodynamics.

5 Construction of bubble-models

We investigate singular boundary value problems originating from the Cahn-
Hilliard theory, which is used in hydrodynamics to study a behavior of non-
homogeneous fluids. The state of a non-homogeneous fluid is described by the
following system of partial differential equations (see [14], [20], [24])

̺t + div(̺~v) = 0 (5.1)
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d~v

dt
+∇(µ(̺)− γ∆̺) = 0, (5.2)

where ̺ is the density of the fluid, ~v denotes the vector-velocity of the particles of
the fluid, µ(̺) is the chemical potential of the fluid and γ is a constant parameter.
By considering the case where the motion of the fluid is zero, system (5.1), (5.2)
is reduced to a single equation of the form

γ∆̺ = µ(̺)− µ0, (5.3)

where µ0 is a constant depending of the state of the fluid. Equation (5.3) can
describe the formation of microscopical bubbles in a non-homogeneous fluid, in
particular, vapor inside a liquid. When we introduce the spherical coordinate
system in R

3 and search for radially symmetric strictly increasing solutions de-
pending only on the radial variable r, then equation (5.3) leads to an ordinary
differential equation of the form

γ
(

̺′′ +
2

r
̺′
)

= µ(̺)− µ(̺ℓ), (5.4)

with the boundary conditions

̺′(0) = 0, lim
r→∞

̺(r) = ̺ℓ > 0. (5.5)

The first condition in (5.5) follows from the central symmetry and it is also
necessary for the smoothness of solution ̺(r) of equation (5.4) at r = 0. The
second condition in (5.5) means that the bubble is surrounded by an external
liquid with the density ̺ℓ. If there exists a strictly increasing solution of problem
(5.4), (5.5) for some ̺(0) = ̺0 with 0 < ̺0 < ̺ℓ, then ̺0 is the density of the gas
at the center of the bubble and the solution ̺(r) determines an increasing mass
density in the bubble. Such solution are called bubble-type solutions and equation
(5.4) is known as the density profile equation. If the bubble-type solutions exist,
many important physical properties of the non-homogeneous fluid depend on
them, [10], [14], [24]. Note that boundary value problems of the same kind arise
in the nonlinear field theory, in particular, when describing bubbles generated by
scalar fields of the Higgs type in the Minkowski spaces [35], which can be treated
as the classical pattern of elementary particles [9].

6 Four types of solutions of non-autonomous

difference equations

In the simplest models for non-homogeneous fluids, the chemical potential µ in
equation (5.4) is a third degree polynomial with three distinct real roots. After
some substitution (see [24]), problem (5.4), (5.5) is reduced to the form

(t2u′)′ = 4λ2t2(u+ 1)u(u− ξ), (6.1)
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u′(0) = 0, u(∞) = ξ, (6.2)

where λ ∈ (0,∞) and ξ ∈ (0, 1) are parameters.

Now, we construct a discretization of problem (6.1), (6.2). Consider h > 0
and a sequence {tn}

∞

n=0 ⊂ [0,∞) such that

t0 = 0, tn = nh, n ∈ N. (6.3)

Then the discrete analogy of problem (6.1), (6.2) has the form of the following
difference problem

1

h2
∆(t2n∆x(n− 1)) = 4λ2t2n(x(n) + 1)x(n)(x(n)− ξ), n ∈ N, (6.4)

∆x(0) = 0, lim
n→∞

x(n) = ξ. (6.5)

Here tn = hn, n ∈ N and problem (6.4), (6.5) has an equivalent form

x(n+ 1) = x(n) +
(

n
n+1

)2 (

x(n)− x(n− 1)+

+4λ2h2(x(n) + 1)x(n)(x(n)− ξ)
)

, n ∈ N,
(6.6)

x(0) = x(1), lim
n→∞

x(n) = ξ. (6.7)

We will investigate the following generalization of the non-autonomous equa-
tion (6.6)

x(n+ 1) = x(n) +
(

n

n+ 1

)2 (

x(n)− x(n− 1) + h2f(x(n))
)

, n ∈ N, (6.8)

where f is supposed to fulfil

L0 < 0 < L, f ∈ Liploc(R), f(L0) = f(0) = f(L) = 0, (6.9)

xf(x) < 0 for x ∈ (L0, L) \ {0}, (6.10)

∃B̄ ∈ [L0, 0) such that
∫ L

B̄
f(z) dz = 0. (6.11)

A sequence {x(n)}∞n=0 which satisfies (6.8) is called a solution of equation
(6.8). We will work with the initial condition

x(0) = B, x(1) = B, B ∈ (L0, 0). (6.12)

Definition 6.1 Let {x(n)}∞n=0 be a solution of problem (6.8), (6.12) such that

{x(n)}∞n=1 is increasing, lim
n→∞

x(n) = 0. (6.13)

Then {x(n)}∞n=0 is called a damped solution.
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Definition 6.2 Let {x(n)}∞n=0 be a solution of problem (6.8), (6.12) which fulfils

{x(n)}∞n=1 is increasing, lim
n→∞

x(n) = L. (6.14)

Then {x(n)}∞n=0 is called a homoclinic solution.

Definition 6.3 Let {x(n)}∞n=0 be a solution of problem (6.8), (6.12). Assume
that there exists b ∈ N, such that {x(n)}b+1

n=1 is increasing and

x(b) ≤ L < x(b+ 1). (6.15)

Then {x(n)}∞n=0 is called an escape solution.

Definition 6.4 Let {x(n)}∞n=0 be a solution of problem (6.8), (6.12). Assume
that there exists b ∈ N, b > 1, such that {x(n)}bn=1 is increasing and

0 < x(b) < L, x(b+ 1) ≤ x(b). (6.16)

Then {x(n)}∞n=0 is called a non-monotonous solution.

Theorem 6.5 (On four types of solutions)
Assume that (6.9) and (6.10) hold. Let {x(n)}∞n=0 be a solution of problem (6.8),
(6.12). Then {x(n)}∞n=0 is just one of the following four types:

(I) {x(n)}∞n=0 is an escape solution;

(II) {x(n)}∞n=0 is a homoclinic solution;

(III) {x(n)}∞n=0 is a damped solution;

(IV) {x(n)}∞n=0 is a non-monotonous solution.

Theorem 6.6 (On the existence of non-monotonous or damped solutions)
Assume that (6.9), (6.10) and (6.11) hold. Let B ∈ (B̄, 0). Then there exists
hB > 0 such that if h ∈ (0, hB], then the corresponding solution {x(n)}∞n=0 of
problem (6.8), (6.12) is non-monotonous or damped.

Theorem 6.7 (On the existence of escape solutions)
There exists h∗ > 0 such that for any h ∈ (0, h∗] the initial value problem (6.8),
(6.12) has an escape solution for some B ∈ (L0, B̄).

Theorem 6.8 (On the existence of homoclinic solutions)
There exists h∗ > 0 such that for any h ∈ (0, h∗] there exists a homoclinic so-
lution {x∗(n)}∞n=0 of problem (6.8), (6.12), that is {x∗(n)}∞n=1 is increasing and
limn→∞ x∗(n) = L.

Theorems 6.5–6.8 have been proved in sections 16–19 of the habilitation. In
Section 15 of the habilitation the autonomous case of problem (6.8), (6.12) has
been investigated.
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[a8] L. Rach̊unek, I. Rach̊unková: Homoclinic solutions of non-autonomous
difference equations arising in hydrodynamics. Nonlinear Analysis: Real
World Applications 12 (2011) 14–23. IF: 2,381

[a9] L. Rach̊unek: On four types of solutions of a second-order difference equa-
tion. Journal of Difference Equations and Applications.
DOI: 10.1080/10236198.2010.531275. IF: 0,748
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Abstract

This habilitation dissertation is devoted to second order discrete boundary value
problems. Essentially, this is a collection of the papers [26]–[34], which provides
new or more general existence results for regular discrete problems. Singular
discrete problems studied here have not been solved before.

Chapter II of the dissertation deals with the discrete Dirichlet problem. In
particular, known existence results by Y. Li [23] are generalized. Then the discrete
mixed problem with the p-Laplacian, both in regular and in singular cases, is
investigated. The existence results proved here extend and generalize the previous
ones for the regular case by Z. He [15]. The singular case is new.

Chapter III of the thesis contains new results about the solvability of singular
difference and differential boundary value problems on compact intervals and
about their connections. The application on mathematical models describing a
radial stress of shallow membrane caps is given.

Chapter IV investigates difference and differential equations on the half-line
and provides new existence results of four types of their possible solutions: es-
cape, homoclinic, damped and non-monotonous solutions. The application on a
mathematical model describing a density profile of a gas in bubbles in some liquid
is given. Examples with numerical simulations illustrate the results of Chapter
IV.
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