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1 INTRODUCTION

One of the biggest challenges in materials science and condensed matter physics
is to link the internal structure of materials with their physical properties
within a wide range of length and time scales. Due to the complexity of the
problem with spanning different scales, it is often convenient to develop a hi-
erarchy of theoretical models each of which is applicable to a certain range
of scales. Many such models have been developed in the past, ranging from
first principles based descriptions, via many flavors of mesoscopic models, to
macroscopic models used to make engineering predictions (see Fig. 1). While
each of these models may represent a more or less accurate description of the
material at the scales corresponding to its domain of applicability, their pre-
dictions quickly deteriorate beyond these limits. The mismatch of predictions
arising from different models is a manifestation of the break-down of the so-
called handshake paradigm that has to be established to develop a systematic
understanding of the structure-property relationships across scales.

Figure 1: Schematic view of the multiscale
hierarchy of materials modeling. Each the-
oretical model is applicable to a range of
length and time scales beyond which its pre-
dictions should be thoroughly tested. Source:
http://essenceofescience.se/nobel-2013

A classical example of the coarse-
graining process is the develop-
ment of an interatomic potential
for known reference crystal struc-
ture. The mathematical expres-
sion of the potential is obtained by
intuition/experience (empirical po-
tentials) or based partially on in-
sight gained through more accurate
schemes such as ab initio methods
(semi-empirical potentials). Once the
mathematical description of the po-
tential is formed, it remains to deter-
mine the values of its adjustable pa-
rameters. These are obtained by fit-
ting to experimental data and/or to
results of first principles calculations.
If the functional form of the po-

tential describes relevant aspects of
the underlying physics, a small number of adjustable parameters is needed
to describe the atomic environments that deviate from the reference struc-
ture. We say that the potential is transferable to other atomic environments.
This transferability provides some confidence that the potential may describe
correctly the energies of point defects, structures of dislocation cores, surface
reconstructions, structures of grain boundaries, and the like. On the other
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hand, if the form of the potential does not include the correct physics, many
adjustable parameters are typically needed to parametrize even the reference
crystal structure. It is then not surprising that those features included in the
parametrization are reproduced correctly, whereas the transferability to other
atomic environments is often quite poor.
The predictive value of a theory often decreases with increasing number

of adjustable parameters. Perhaps a slight exaggeration will make this point
clear: “If too many inputs are used to parametrize the theory, we don’t learn
anything new by using it”. Similar problems are encountered at all levels of
modeling. The first step is always to develop the functional form that repre-
sents the crucial aspects of the governing physics, while leaving behind a set of
variables that will parametrize (or specialize) the model to a certain group of
materials. These parameters are then determined using a combination of ex-
perimental measurements and lower levels of modeling, such as first principles.
This process can be illustrated most straightforwardly for inert gases (group
VIIIA materials), all of which have full outer electron shells. In these materials,
the potential energy of a pair of interacting atoms separated by the distance
r is a consequence of the competition of long-range van der Waals attraction
(proportional to −1/r6) and short-range repulsion due to the Pauli exclusion
principle (1/r12 term). This simple idea gave rise to the (6-12) Lennard-Jones
potential,

V = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

, (1)

where ǫ and σ set the energy and length scales, respectively. Owing to the
correct physics embodied in the mathematical form of this potential, it has
been shown to reproduce accurately a wide range of physical properties of
inert gases.
However, this formulation is not applicable to ionic materials (e.g. NaCl),

covalent solids (e.g. semiconductors such as Si or Ge), metals and semi-metals,
and to materials with mixed bonding (metallic-covalent, covalent-ionic). Dif-
ferent descriptions of bonding have been developed for these materials that
are based on a simple electrostatic interaction (ionic materials), Embedded
Atom Method (EAM) and Modified Embedded Atom Method (MEAM) po-
tentials (metals), Tersoff potential (semiconductors), Tersoff-Brenner poten-
tial (covalent-ionic solids), and semi-empirical Bond Order Potentials (BOP)
and Modified Generalized Pseudopotential Theory (MGPT) (covalent-metallic
bonding). The development of interatomic potentials is sometimes more of an
art than a science and often requires inputs from first principles (quantum-
mechanical) calculations.
While atomistic simulations using empirical and semi-empirical potentials

have been indispensable to gain insight into the internal structure of nanoma-
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terials and nanosized defects, they are not practical (and sometimes possible)
for large systems. One obvious limitation is the available computational power.
However, a much less accented drawback of these models is that all degrees of
freedom are taken at the same footing. For example, if we study a network of
dislocations, most of the atoms are displaced by the superposition of linear-
elastic strain fields of all dislocation segments, while only a small fraction
corresponds to dislocation cores. This suggests to subdivide the simulation
domain into two regions: (i) atomistic region, where the positions of atoms
are determined by the interatomic potential, and (ii) the region between de-
fects, which can be described using continuum methods. This approximation
is employed in the Quasicontinuum method (qcmethod.org) developed origi-
nally by Ellad Tadmor (U. Minnesota) and Rob Phillips (Caltech). Another
possible coarse-graining scheme is to represent the dislocation cores by a series
of piecewise linear segments whose interaction is assumed to be governed by
linear elasticity. This concept was developed by Kubin et al. and originally im-
plemented in the code Micromégas; for a recent review, see the book of Kubin
[47]. Among the most widely used implementation of this Discrete Disloca-
tion Dynamics (DDD) method is the ParaDiS code (paradis.stanford.edu)
developed at the Lawrence Livermore National Laboratory (LLNL). Our work
mentioned further in this text used the code developed by Daniel Weygand at
Karslruhe Institute of Technology.

The transition betwen different scales is often made quite abrupt by adopt-
ing a different theoretical description. This is most evident when going from
atomistic models that are based on the positions and momenta of particles
to mesoscopic models formulated using continuous fields. One of the latter
examples is the Landau-Ginzburg theory which has been immensely successful
at predicting the microstructural changes in materials undergoing structural
phase transitions. It replaces the discrete view of the crystalline lattice by
smooth order parameter fields and the interatomic potential by the free energy
functional formulated in terms of these fields. Although there are only three
adjustable parameters needed to describe the first-order cubic-to-tetragonal
phase transition (four if the lowest order gradient of the order parameter is
considered), this theory can describe self-organizations and phase transitions
in materials at the length scales down to a few atomic unit cells and up to
macroscopic length scales [44]. Similar mesoscopic theories have provided great
insights into many diverse critical phenomena, such as superconductivity [23],
ferroelectricity [11], damping in ferromagnetic materials [22] and twinning [3].

In a similar spirit, Langer [48] formulated a continuum model that can be
used to model interfaces between different materials. This gave rise to the
phase field crystal (PFC) model, which has been applied successfully to the
studies of viscosity, evolution of fracture, dynamics of vesicles, and others [60].
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The field-theoretical approach of Landau is unique in the sense that it de-
scribes a wide range of scales using a single mathematical formula. Another
representative of this class is the block scaling proposed by Kadanoff in 1966.
This was further developed into the renormalization group theory by Wilson
for which he received the 1982 Nobel Prize in Physics; for a popular presen-
tation, see [77]. Instead of choosing a different theoretical description of the
problem when changing the scale, the mathematical form is kept fixed and the
adjustable parameters (coupling constants) are varied. For example, consider
the ferromagnetic Ising model defined by the Hamiltonian

H = −J
∑

〈ij〉

sisj , (2)

where si = ±1 are the up/down spins, respectively. When passing to larger
scales, the individual spins are grouped into blocks and replaced by “block
spins” [77]. Since the mathematical form of the Hamiltonian remains fixed,
the coupling constant J has to be renormalized so as to represent different
interactions of these block spins. Repeating this process brings the system
through many length scales to the point where only one spin remains. The
coarse-graining process is thus viewed as a flow of the coupling constant,
J(φ) → J(φ′), where φ and φ′ represent two successive scales. The snapshots
of the system taken at different scales represent possible realizations of the sys-
tem at these scales. The results of this scaling are critical fixed points (stable
or unstable) that represent the macroscopic properties of the system. The sta-
ble fixed point determines the properties of the system at high temperatures,
where the microstructure is spatially disordered (i.e. the correlation length is
zero). On the contrary, the unstable fixed point describes the behavior of the
system near the critical temperature (T = 0 K), where the correlation length
diverges. This is the key observation that allows to sort seemingly unrelated
systems into a finite number of universality classes, where each class includes
systems with the same critical behavior. While many other renormalization
group transformations have been developed over the years, there are some in
which divergences present at small scales proliferate through all length scales
and thus the model becomes nonrenormalizable [69].
There are many theoretical and experimental studies that investigate scal-

ing phenomena in crystal plasticity. However, it is often quite difficult to
determine the corresponding universality class because the glide of disloca-
tions is an inherently rare, thermally activated event. While this problem can
be to some extent circumvented by artificially increasing the applied load (or
increasing temperature), these changes are not easily accepted because they
may alter the behavior of the system. The correct approach would be to use
large systems and study their behavior over long time scales to acquire good
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statistics and determine the scaling exponents. This has been accomplished
recently by Tsekenis et al. [73], who showed that the critical behavior of the in-
teracting system of parallel edge dislocations belongs to the same universality
class as the mean-field interface depinning model.
It should be evident from above that there are two distinct approaches

to developing multiscale models of any kind. One is based on formulating
a hierarchy of models, where each represents only a certain range of scales.
The problem with these models is that their predictions often do not match
at intermediate scales. The second approach is to construct a single theoret-
ical model and vary (renormalize) their adjustable parameters so as to bring
the system through a wide range of scales. The former is often adopted by re-
searchers who view the problems from the discrete perspective, i.e. they model
the material as a collection of interacting atoms with perhaps an underlying
electronic structure. On the other hand, the renormalization methods are the
workhorse of field theorists. The importance of these methods in materials
science was demonstrated by Goldenfeld [25].
The purpose of this thesis is to summarize our past bottom-up develop-

ments of the multiscale theory of plasticity of body-centered cubic (BCC)
metals. These have been made during my Ph.D. study at the University of
Pennsylvania (2002-2007), my postdoctoral fellowship at the Los Alamos Na-
tional Laboratory (2007-2009), and continue to be at the forefront of my re-
search at the Institute of Physics of Materials of the Academy of Sciences of the
Czech Republic and the Central European Institute of Technology (CEITEC)
(2009-present). The first part of this document is focused on gaining a deep in-
sight into the properties of isolated 1/2〈111〉 screw dislocations in BCC metals
and representing these results mathematically using a relatively simple form of
an effective yield criterion. Both atomistic results and the yield criterion are
then employed to construct a thermodynamic model of slip whose predictions
can be correlated with experiments to verify the accuracy of this multiscale
framework. Besides our previous work, I briefly introduce our current efforts
and outline the most interesting problems that remain at the top of our to-do
list for the near future.

2 ATOMISTIC STUDIES OF DISLOCATIONS

Since the work of Taylor and Elam [71, 72], the plastic deformation of BCC
metals has been known to be very different from that of close-packed metals
such as Cu or Au, which are often used to explain plasticity in undergraduate
courses. Moreover, BCC metals (now primarily W and α-Fe) are promising
materials for use as plasma divertors in nuclear fusion power plants. The
purpose of this section is to provide a brief historical account of the most
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important descriptions of atomic interactions in these materials. A large part
of this section summarizes our recent atomistic studies of the structure and
properties of 1/2〈111〉 screw dislocations in BCC metals.

2.1 Interatomic potentials and the density of states

It was proposed already by Friedel [20] that the strength of bonding is inti-
mately linked with the density of states. The number of moments needed to be
employed in the description of atomic interactions depends on the complexity
(curvature) of the density of states. This is rather simple for materials with
nearly free (or nearly full) outer electron shells, such as simple metals of the
group I and II and face-centered cubic (FCC) metals Cu, Au or Al. All these
materials have almost flat density of states near the Fermi energy and thus
the second moment approximation of the density of states suffices to describe
bonding in these materials. This approximation is at the core of all potentials
of the Embedded Atom Method (EAM) family [10] that are widely used to
carry out molecular simulations of both elemental metals and alloys.
The second moment approximation of the density of states treats each ma-

terial in the nearly-free electron approximation, i.e. as if the bonding was
purely metallic. This is not the case in refractory metals, where the density of
states has a bimodal character and, therefore, the bonding is partially covalent
and partially metallic. Nevertheless, there have been early attempts to extend
the second moment approximation of the density of states also to refractory
BCC metals [1]. These provided important qualitative insights into the struc-
ture and stability of dislocations in these materials [15, 16, 18, 42]. However,
the presence of the drop in the density of states near the Fermi energy calls
for potentials that employ higher moments of the density of states.
One such approach, that was developed around the 1990s at the University

of Oxford, is based on the tight binding formalism of Pettifor [59] and uses
the concept of bond order to describe directional many-body interactions in
transition metals. This scheme was successfully employed to develop accurate
semi-empirical potentials for Ti and TiAl [24, 78], which were followed by po-
tentials for Mo [54, 56], Mo-Si [9, 54], Ir [9] and, with my partial contribution,
also for W [55]. The most recent contribution to this field was the develop-
ment of BOPs for all refractory metals [50] which substantially speed up the
minimization of energy (molecular statics) and numerical integrations of the
equations of motion (molecular dynamics).
The importance of BOPs stems from the fact that they are derived self-

consistently by coarse-graining the electronic structure within the tight-binding
formalism [40]. Keeping this link not only allows their accurate parametriza-
tions using first principles data but it also guarantees that the potential is
transferable to quite different atomic environments than the reference BCC
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structure. Indeed, this transferability has been demonstrated for all refrac-
tory metals and α-Fe by calculating the energies of crystals deformed along
characteristic transformation pathways (tetragonal, orthorhombic, hexagonal,
trigonal) and comparing these with first-principles data. All calculations on
BCC metals discussed in the following text were made using these BOPs.

2.2 Atomistic studies of 1/2〈111〉 screw dislocations in BCC metals

The early studies of the structure and energetics of isolated 1/2〈111〉 screw
dislocations using the BOP for Mo were published in Ref. [75]. Here, we deter-
mined how pure shear stress parallel to the slip direction acting in a range of
the so-called maximum resolved shear stress planes (MRSSP) of the [111] zone
depends on the angle χ between the MRSSP and the (1̄01) plane that is the
most highly stressed {110} plane of the [111] zone. The critical stress to move
the dislocation, the so-called critical resolved shear stress (CRSS), was shown
to depend on the orientation of the MRSSP. This violates the predictions of
the Schmid law [67], which asserts that CRSS ∝ 1/ cosχ, i.e. that CRSS(χ) is
symmetric about χ = 0. In particular, for Mo, it is shown to increase steeply
for positive χ but more steadily for negative χ. This twinning-antitwinning
asymmetry has been known for a long time [35] but its origin was not known.
Our calculations revealed that this twinning-antitwinning asymmetry is a prop-
erty of a single dislocation and it is a direct consequence of the shear stresses
that are parallel to the slip direction but acting in planes other than the most
highly stressed (1̄01) plane (the so-called non-glide stresses).
In parallel, we have developed a simple theoretical argument which may

explain the factor of 2 to 3 (sometimes even 4) discrepancy between the calcu-
lated CRSS and the experimentally measured yield stresses [30]. This discrep-
ancy is shown to disappear if one takes into account the interactions between
dislocations ahead of the Frank-Read source. Such a view is consistent with
previous experiments made on BCC metals by Louchet [51], which suggest
that the plastic deformation of these materials is governed by screw disloca-
tions moving in groups. Interestingly, no such collective motion of dislocations
is observed in recent in situ TEM studies of Caillard [8] on α-Fe. At the time, it
is not clear what fraction of the above-mentioned yield stress discrepancy can
be attributed to the presence of magnetism in α-Fe and what part is inherent
to the BCC crystal structure. More recently, Proville, Rodney et al. [4, 61]
have argued that the origin of this discrepancy in materials with large Debye
temperatures (such as BCC metals) can be the neglect of quantum zero-point
motion of atoms. While this leads to some reduction of the yield stress, their
model does not explain how random oscillations of atoms lead to the collective
motion of many atoms in the activated segment of the dislocation. The origin
of this discrepancy thus remains elusive.
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Further work focused on investigating the role of shear stresses perpendicu-
lar to the slip direction. Their importance was predicted already by Duesbery
[15] and investigated to some extent using the Finnis-Sinclair potential for Mo
and Ta [1] by Ito and Vitek [42]. This stress component does not exert any
Peach-Koehler force on the dislocation and the dependence of the CRSS on
this stress component was initially quite surprising. In our work, we define
this load by the stress tensor

Σ
τ =





−τ 0 0
0 τ 0
0 0 0



 , (3)

where τ imposes the shear stress perpendicular to the slip direction. We have
demonstrated [28] that these stresses modify the structure of the dislocation
core and thus promote the slip on that {110} plane into which the core is
predominantly extended. This is shown in Figs. 2a,b for negative and posi-
tive applied shear stresses perpendicular to the slip direction (τ), respectively,
where the “+” signs represent extensions and the “–” signs contractions of the
dislocation core. For positive τ (Fig. 2b), the dislocation core extends on the
most highly stressed (1̄01) plane. The dislocation then moves preferentially
by normal slip on this (1̄01) plane. Negative shear stresses τ (Fig. 2a) extend
the dislocation core into one of the two low-stressed planes, either (01̄1) or
(1̄10). When the shear stress parallel to the slip direction reaches the CRSS,
the dislocation moves on one of these planes despite the fact that they have low
Schmid factors. This is the mechanism of the so-called anomalous slip, which
is predicted by these atomistic simulations to occur only in compression, where
the shear stress perpendicular to the slip direction is negative.

(a) (b)

Figure 2: Difference plots showing the changes in the core structure of a 1/2[111] screw
dislocation in BCC metals relative to the unstressed crystal. Here, (a) corresponds to negative
and (b) to positive applied shear stresses perpendicular to the slip direction (τ) applied using
the stress tensor (3). There is a clear extension of the dislocation along (01̄1) and (1̄10) planes
in (a) and on the (1̄01) plane in (b).
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The anomalous slip was observed originally in Nb [7, 17]. Since then, it has
been encountered in almost all BCC transition metals with the exception of α-
Fe and Cr, where magnetism is believed to suppress core transformations. Our
results imply that the anomalous slip is a property of a single 1/2〈111〉 screw
dislocation and occurs as a consequence of core transformations induced by the
shear stress perpendicular to the slip direction. This view has been recently
challenged by Marichal et al. [52] who argue that the anomalous slip is not the
property of a single dislocation but occurs as a consequence of interactions of
screw dislocations in two {110}〈111〉 systems with the highest Schmid factors.
However, the activity of the low-stressed system in their work is quite weak
because it contributes only 9% to the total plastic strain. This provides some
evidence that the mechanism studied in their work may not be the anomalous
slip observed originally by Duesbery [14] and Bolton & Taylor [7] but, instead,
normal slip on the two most highly stressed systems. Apparently, the origin
of the anomalous slip is still far from being understood and it seems to attract
renewed interest [41, 52]. It should be also emphasized that the anomalous slip
is not specific to BCC metals but is frequently encountered also in hexagonal
metals deforming by non-basal slip in conjunction with pronounced twinning.

2.3 Yield criterion taking into account non-glide stresses

The dependence of the CRSS on the two kinds of non-Schmid (or non-glide)
stresses above suggests that the onset of plasticity in BCC metals cannot be
described by a simple flow rule such as those formulated by von Mises or
Tresca [38], as it is common in close-packed metals. Instead, the von Mises
equivalent stress or Tresca’s stress intensity represent only one contribution to
the effective stress, whereas the dependence of the CRSS on the orientation of
the MRSSP and the effects of shear stresses perpendicular to the slip direction
need to be accommodated using additional terms.
One of the simplest ways to accomplish this was the approach suggested by

Qin and Bassani [63, 64] which was originally applied to L12 intermetallics, in
particular Ni3Al. We have used this methodology to develop a yield criterion
for single crystals of BCC metals, in which the effective yield stress (τ ∗α) for
each slip system α = 1 . . . 24 depends linearly on the Schmid stress and three
non-glide stresses,

τ ∗α = τα0 + a1τ
α
1 + a2τ

α
2 + a3τ

α
3 ≤ τ ∗αcr . (4)

If the orientation of the crystal is x = [1̄21̄], y = [1̄01] and z = [111], the
stress component τα0 = mα

Σ
cnα is the Schmid stress σ(1̄01)

23 , τ
α
1 = mα

Σ
cnα

1

the shear stress σ(01̄1)
23 parallel to the slip direction acting in the (01̄1) plane,

τα2 = (nα×mα)Σcnα the shear stress σ(1̄01)
12 perpendicular to the slip direction

13



acting in the (1̄01) plane and τα3 = (nα
1 × mα)Σcnα

1 the shear stress σ
(01̄1)
12

perpendicular to the slip direction acting in the (01̄1) plane. Here, Σc is
the stress tensor expressed in the 〈100〉 cube orientation, mα the unit vector
parallel to the slip direction, nα the unit vector perpendicular to the slip
plane, and nα

1 the unit vector perpendicular to the non-glide plane in zone of
the slip direction mα. The coefficients a1, a2, a3 and the yield stress τ ∗cr are
parametrized using the results of atomistic simulations [29].

(a) (b)

(c)

Figure 3: Slip activity in Mo and W predicted by the yield
criteria developed in Refs. [28] and [29]. The figure (a) corre-
sponds to loading in tension (both Mo and W), (b) to com-
pression in Mo, and (c) to compression in W. Each point
in these stereographic triangles represents a different loading
direction and colors distinguish the regions of different slip
activity.

The tensorial form (4)
is particularly useful for
predicting the onset of
slip activity of all 24 slip
systems in BCC metals.
For loading in tension,
the calculations made on
Mo and W predict that
the slip occurs primar-
ily on the (1̄01)[111] sys-
tem that has the highest
Schmid factor (yellow re-
gion in Fig. 3a). How-
ever, the predictions are
very different in compres-
sion for both these met-
als, as shown in Fig. 3b
for Mo and in Fig. 3c
for W. In the former,
there is a large region of
slip activity on the sys-
tem (1̄01)[1̄1̄1̄] (yellow),
which has the highest
Schmid stress in compres-
sion. However, the pri-
mary slip system for W
predicted for a wide range
of orientations within the
standard stereographic triangle is (1̄10)[1̄1̄1̄] (blue). This is one of the two
{110} slip systems of the [1̄1̄1̄] zone into which the dislocation can cross-slip,
and its Schmid factor is typically around a half of that for the (1̄01)[1̄1̄1̄] sys-
tem. These results support our earlier argument that the anomalous slip is
predicted to occur in both Mo and W but only in compression. Unlike Mo,
where it is operative only for loading directions close to the [001] corner and
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the [011]-[1̄11] edge of the stereographic triangle, it seems to be dominant for
a broad range of orientations in W.
While for Mo we observed a very good agreement of our theoretical pre-

dictions with experiments, there are much fewer measurements that could be
used for W [2, 21, 45, 66]. There is a clear need for more experiments that will
identify the order of activation of individual slip systems. The most promising
ongoing experiments together with our recent efforts to fill this gap will be
presented in Section 4.

3 THERMALLY ACTIVATEDDISLOCATIONGLIDE

In order to extend the atomistic results to finite temperatures and plastic strain
rates, one has to develop a thermodynamic model of slip in these materials.
A particularly useful approach to do that is the variational formulation de-
veloped by Dorn and Rajnak [13], where they consider that the dislocation is
confined to move in a single (and known) slip plane. As our previous atomistic
simulations show, this is not the case for BCC Mo and W and, therefore, an
extension of this model was needed to allow for cross-slip of these dislocations.
A similar framework will be needed for all materials in which the plastic flow
is not governed by the Schmid law.

3.1 Thermodynamics of dislocation glide

We have generalized the formalism in Ref. [13] as follows (for details, see
Ref. [31]). Firstly, we consider that the 1/2[111] screw dislocation is a straight
line that is parallel to the z direction and its intersection with the perpendicular
(111) plane is the point [x0, y0]. It is convenient to define the shape of the
dislocation line parametrically as ξ(z) = [x(z), y(z)], i.e. the position of the
straight dislocation is denoted as ξ0 = [x0, y0]. The line energy of the straight
dislocation is then E0 =

∫∞

−∞ V (ξ0)dz, where V is the two-dimensional Peierls
potential, defined in the (111) plane, that opposes the dislocation glide. We
consider that the endpoints of the dislocation are fixed and thus the dislocation
moves by bowing out a part of its length into the direction of the applied shear
σ. For an arbitrary shape of the dislocation, ξ(z), its associated line energy
can be written as E =

∫∞

−∞ V [ξ(z)]ds, where ds =
√

dx2 + dy2 + dz2. Finally,
the work done by the applied stress during the transformation of the shape of
the dislocation from ξ0 to ξ(z) is W (σ) = σb

∫∞

−∞[ξ(z)− ξ0]dz. The activation
enthalpy to move the dislocation is defined as H(σ) = E −E0 −W (σ), which
can be easily put into the following form

H(σ) =

∫ ∞

−∞

{

V [ξ(z)]
√

1 + [ξ′(z)]2 − V (ξ0)− σb[ξ(z)− ξ0]
}

dz , (5)
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Figure 4: Schematic illustration of
the activated shape of the dislocation
at a finite applied shear stress σ. The
middle panel shows a curved transition
pathway of the dislocation between two
potential minima in the (111) plane.
This is calculated, for example, us-
ing the Nudged Elastic Band (NEB)
method. The lower panel shows the
Peierls barrier along this curved path.
The activated shape of the disloca-
tion is a three-dimensional curve be-
tween the positions ξ0 and ξc along this
curved path. The activation enthalpy
corresponds to the area between the
Peierls barrier and its tangent at the
point ξ0 (gray).

where we have used the identity dξ2 = dx2 + dy2.
We are looking for the shape of the dislocation, ξ(z) = [x(z), y(z)], that

corresponds to the minimum of the activation enthalpy H(σ) for the given
applied shear stress σ. Recognizing that the activation enthalpy (5) is of
the form H =

∫∞

−∞ L[ξ(z), ξ′(z)]dz and since the integrand L[ξ(z), ξ′(z)] does
not depend explicitly on z, the associated Euler-Lagrange equation reduces to
the Beltrami identity, which is an autonomous ordinary differential equation.
The slope of the dislocation, ξ′(z), is obtained by direct integration with the
Dirichlet boundary conditions ξ(±∞) = ξ0 and ξ(0) = ξc. Here, ξ0 is the
position of a straight dislocation at the stress σ and T = 0 K. This is obtained
from σb = (dV/dξ)ξ=ξ0. The limit ξc also corresponds to the position of a
straight dislocation, but obtained from the condition of vanishing activation
enthalpy (5). This is defined implicitly as V (ξc)− V (ξ0) = σb(ξc − ξ0). Upon
employing the slope of the dislocation back in (5) and changing the integration
variable, we obtained the following expression for the stress dependence of the
activation enthalpy:

H(σ) = 2

∫ ξc

ξ0

√

[V (ξ)]2 − [σb(ξ − ξ0) + V (ξ0)]
2 dξ . (6)

Here, ξ0 and ξc define the range of positions along the curved path of the
dislocation ξ traced by all segments of the activated dislocation, and V (ξ)
is the Peierls barrier that represents a cross-section of the two-dimensional
Peierls potential along the curved dislocation path. The Peierls potential is a
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theoretical concept that quantifies the changes of the dislocation line energy
as the dislocation moves through the crystal.
It is important to emphasize that the concept of the Peierls barrier is

not as simple as, for example, the migration barrier of point defects. While
the latter affects the kinetics of diffusion of point defects only through the
energy difference ∆E between the initial and maximum-energy configurations
along the migration path, the whole shape of the Peierls barrier is needed
to determine the activation enthalpy (6) and its dependence on the applied
stress. Therefore, the shape of the Peierls barrier V (ξ) is considered to be a
function of non-glide stresses, whereas the dislocation overcomes this barrier
by the action of the Schmid stress.

3.2 Model predictions and their correlations with experiments

In principle, (6) can be used to obtain the stress dependence of the activation
enthalpy for any applied stress. This nevertheless relies heavily on two ingredi-
ents: (i) knowledge of the minimum energy path of the dislocation ξ(z) in the
perpendicular (111) plane between the two positions in the lattice represented
by ξ0 and ξc, and (ii) the associated Peierls barrier V (ξ).
In our previous work [31], we have constructed the Peierls barrier empir-

ically based on the suggestion of Edagawa et al. [19], where an additional
distortion of the maxima had to be introduced to reproduce the curvature of
the temperature dependence of the flow stress (originally suggested by Suzuki
et al. [70]). The minimum energy path ξ(z) was then calculated by employing
the Nudged Elastic Band (NEB) method [37, 43].
KnowingH(σ), the temperature dependence of the flow stress was obtained

using the Arrhenius law γ̇ = γ̇0 exp[−H(σf)/kT ], where k is the Boltzmann
constant and σf the flow stress (it coincides with the yield stress σ for T =
0 K and quasistatic loading). For typical engineering conditions, this means
that H(σf) = (20 . . . 40)kT , which can be inverted numerically to arrive at
σf(T, γ̇). This thermodynamic model predicted for the first time both the
temperature and strain rate dependencies of the yield stress in Mo and W at
low temperatures (Fig. 5). Simultaneously, the model reproduces the complex
character of the tension-compression asymmetry in these materials [26].

3.3 Impact of our theoretical framework

Our theoretical model was quickly picked up by the group of Peter Gumb-
sch at the Karlsruhe Institute of Technology to develop a discrete dislocation
dynamics model for BCC metals [68]. This model is now one of the most
attractive tools used to investigate plasticity of these materials at mesoscopic
length scales (see also [52]).
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Figure 5: Temperature dependence of the flow stress in Mo for loading in tension along [1̄49]
(approx. in the middle of the stereographic triangle). The symbols are data obtained from
macroscopic tensile tests of Hollang et al. [39] and the curves are predictions of our thermo-
dynamic model outlined here. Data for two different strain rates are shown to demonstrate
the accuracy of our theoretical model for a range of loading conditions. The part of the curve
labeled “model of dislocation bow-out” corresponds to the model outlined here. The minor
part “elastic interaction of fully developed kinks” is explained in Ref. [31].

In recent years, there were several attempts to develop crystal plasticity
finite element models (CPFEM) of BCC metals based on the results of our
atomistic simulations and the activation enthalpies obtained from our thermo-
dynamic model. In particular, Weinberger et al. [76] used our effective yield
criteria [29] to study the large-scale (grain size) response of Mo and W. Lim et
al. [49] further extended this model by adding additional terms into the yield
criterion (not present in [29]) that were thought to be missing in our work.
Their argument is based on the work of Koester et al. [46], who suggest that
also normal stresses affect the onset of glide of isolated screw dislocations in
BCC metals (in their case α-Fe). However, already the work of Duesbery [15]
implies that their conclusions cannot be correct. This is demonstrated clearly
in Ref. [27], where I show that the CRSS does not depend on the component
σ33 that is parallel to the dislocation line. Moreover, the effect of the remaining
two normal stresses, σ11 and σ22, in the plane perpendicular to the dislocation
line arises as a consequence of the shear stresses that are already included in
our effective yield criterion. The extra terms in Refs. [46] and [49] are thus
redundant. On the other hand, the paper of Weinberger et al. [76] may be
taken as a starting point for the development of macroscopic CPFEM models
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for random and textured polycrystals. The first step in this direction was made
already by us [31] and was extended further by Bassani and Racherla [5].

3.4 Recent developments

In principle, the Peierls barrier can be obtained using the NEB method [36,
37, 43]. These calculations were indeed made in Refs. [12, 31, 62, 65, 74].
However, we have shown in Ref. [32] that a straightforward application of the
NEB method to all degrees of freedom (DOF) in the crystal leads to clustering
of the states of the system towards potential minima, which also overestimates
the Peierls stress to move the dislocation.
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Figure 6: Dependence of the Peierls barrier of an isolated 1/2[111] screw dislocation in W cal-
culated by the NEB+r method [32] on the shear stress perpendicular to the slip direction (τ).
The colors correspond to the three possible slip planes of this dislocation shown in the legend.
The lower panels show the derivatives of these barriers (curves) along the minimum energy
paths. The horizontal lines are predictions of max(dV/dξ) obtained by direct application of
stress in molecular statics simulations.

In the paper [32], we suggest an elegant solution that uses the NEB method
only for a limited number of DOF around the dislocation, while all other DOF
are relaxed by the interatomic potential. This procedure has two significant
advantages. Firstly, it introduces atomic relaxations into the calculation of
the energy barrier. The second is that it avoids clustering of the dislocation
positions into the nearest minimum energy configurations at the beginning and
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end of the transition pathway. Interestingly, the Peierls stress determined by
differentiating the Peierls barrier obtained from this new NEB+r method de-
viates only 8% from its value obtained by direct molecular statics calculations.
We have used this method to calculate the shape of the Peierls barrier and its
changes under the two non-glide stresses identified above when the MRSSP is
the (1̄01) plane [33]. These are the shear stresses parallel to the slip direction
acting in different {110} planes of the [111] zone than the most highly stressed
(1̄01) plane, and (ii) shear stresses perpendicular to the slip direction. These
results are reproduced for W in Fig. 6, where the upper panels show the Peierls
barriers for the glide of the dislocation on the three {110} planes and the four
values of the shear stresses perpendicular to the slip direction (τ). The lower
panels are then derivatives of these barriers along the dislocation pathway (ξ).
Similar calculations are now under way for a number of other orientations of
the MRSSP and for all BCC metals od the VB and VIB groups.
Further improvement of the accuracy of the Peierls barrier is only possible

by accounting for curvature of the transition path of the dislocation between
the neighboring minimum energy configurations in the lattice. There have been
some models proposed by the French group that purport to account for these
details [12, 65, 74]. However, all these are based either on purely geometrical
arguments or on a combination of geometry with linear elasticity, without
explicitly accounting for the nonlinear reconstructions of the dislocation cores.
Recently, we have formulated a very different approach to identify the curved
transition pathway, which is based directly on the displacements of atoms
around the dislocation core [34]. This model is similar to the Peierls-Nabarro
model [57, 58], but takes into account the fact that the dislocation can move
on any of the three {110} planes in the [111] zone.

4 EXPERIMENTAL STUDIES OF PLASTICITY

Virtually all studies of slip traces in W under stress stopped around the 1970s,
which makes it one of the least studied structural materials of high technolog-
ical importance. This is also one of the few materials for which experimental
work starts to seriously lag behind the computational studies.

4.1 New studies of slip traces in compressed tungsten

About a year ago, we have started a small experimental program at IPM that
combines high-precision testing of W single crystals in compression with optical
and electron microscopy and computer simulations to elucidate the puzzling
mechanism of plasticity in this material. The high purity tungsten single
crystals were obtained by electron beam floating zone method in the group of
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(a)

(b)

Figure 7: Comparison of the slip traces on the side A of sample #4 compressed to 4.4% plastic
strain (Nomarski contrast, figure in the background) with theoretical predictions (lines in the
foreground): (a) prediction of the Schmid law, (b) prediction of the τ ∗ criterion developed in
Refs. [28, 29]. The applied load is parallel to the horizontal axis.
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Vadim Glebovsky at the Center for Scientific Research “Chernogolovka” and
purchased by us through Calipso BV in Eindhoven. A large piece of metal
was cut into near center-triangle orientation by spark erosion and polished.
The EBSD analysis of the sample has provided the orientation of the sample,
which is [10 11 99]. The sample had a nearly tetragonal geometry with the
length 5.168 mm and the two shorter sides approx. 2.5 mm edge length. Two
perpendicular longer sides were polished (OP-S using colloidal silica for 15
min, Vibromet for 5 hrs), chemically etched and cleaned to remove surface
contamination. The sample was compressed along the longitudinal axis in the
testing machine MTS 809 using the displacement 0.1 µm/s to the final length
4.941 mm; the total loading time was 51:40 min. This resulted in 4.4% plastic
strain and the engineering strain rate of 1.4×10−5 s−1. The sample was cleaned
in acetone before the following steps.
The two polished surfaces were examined using the Nomarski contrast in

an optical microscope, which is extremely sensitive to the variation of the
surface relief. One surface of the sample was found to contain very fine slip
traces, while these traces were almost invisible on the perpendicular polished
surface due to a large density of etch markings. Interestingly, no slip traces
were visible in SEM on any surface, which is consistent with the work of Argon
and Maloof [2], where slip traces were observed under electron microscope only
after 8% of plastic strain!
In Fig. 7 we show a comparison of slip traces on the side A of the sam-

ple obtained by Nomarski contrast in an optical microscope with theoretical
predictions. The lines in Fig. 7a correspond to the traces of four {110}〈111〉
systems that are predicted to be most operative by the Schmid law. The thick-
ness of each line is proportional to the visibility g · b, where g is the viewing
direction and b the Burgers vector of the dislocation (i.e. the thicker the line
the more visible the slip trace should be). According to the Schmid law, the
directions of slip traces should correspond to the green and/or cyan thick lines,
which is in clear disagreement with the optical micrograph in the background.
In Fig. 7b, we carry out a similar analysis but now the slip traces are predicted
using the effective yield criterion developed in Refs. [28, 29]. The thick lines
colored blue and magenta have the same orientation and correspond to the
slip systems with the largest values of τ ∗ and, at the same time, the largest
visibility among all slip systems. Their directions are in excellent agreement
with the orientation of one family of slip traces obtained by optical microscopy.
At the time, it seems that the second family of slip traces is not produced by
a single slip but rather it is a product of cross-slip of the dislocation between
two {110}〈111〉 systems.
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4.2 Experiments on free-standing pillars

Very different experiments to understand the origin of plasticity in BCC met-
als are now under way in the group of Helena van Swygenhoven (Paul Scherrer
Institute). These are based on Laue diffraction measurements on in situ com-
pressed micropillars of W. The experiments on micropillars probe the plasticity
in volumes that are nearly free of dislocations, which deform by nucleation of
new dislocations and their immediate movement toward the surface of the sam-
ple. This is quite different from macroscopic samples, where the dislocation
has to overcome not only the intrinsic lattice friction (the Peierls barriers) but
also complicated interactions with the network of other dislocations.
These pillars have been prepared by focused ion beam (FIB) whose high-

energy gallium ions are known to amorphize about 5-10 nm surface layer of
the pillar. The results of these measurements have been used to test our
theoretical predictions of the activity of the 24 slip systems (see also Fig. 3).
In particular, Marichal et al. [53] show that for some loading directions, our
yield criterion predicts the correct order of slip activity, while this is worse for
orientations, where the slip takes place also on the low-stressed system. As
mentioned above, the contribution of this latter system to the total plastic
strain is very small and, despite the claims in Refs. [53] and [52], it is not clear
whether this constitutes the anomalous slip as defined by Duesbery [14] and
Bolton and Taylor [7]. Nevertheless, these experiments may play important
role in the parametrization of our yield criterion (4) for materials with strong
effects of shear stresses perpendicular to the slip direction (such as W but
not Mo). The reason is that the slip activity predicted by the yield criterion
depends strongly upon the parameter a2 in (4) whose precise value cannot be
obtained solely from atomistic simulations.
Since the typical distance between dislocations is in the micron range, the

surface effects in micron-sized pillars should be so strong that the pillar would
be effectively dislocation-free. Hence, the yield stress should equal the stress
needed to nucleate a new dislocation loop, which is approximately 1/30th
of the theoretical strength. However, Bei et al. [6] showed that these FIB-
prepared pillars yielded at much smaller stresses than expected for dislocation-
free samples. To understand this difference, they obtained a directionally
solidified NiAl-Mo eutectic and etched away the NiAl matrix. This way, they
obtained a series of free-standing Mo pillars without any surface damage that
were further compressed along their longitudinal axes. Interestingly, these
pillars yielded at stresses close to 1/30th of the theoretical strength, which is
three to four times higher than the yield stress of the pillars prepared by FIB.
This suggests that the surface damage caused by FIB may strongly influence
the plasticity of micron-sized pillars.

23



REFERENCES

[1] G. J. Ackland and R. Thetford. An improved n-body semi-empirical model
for body-centred cubic transition metals. Philos. Mag. A, 56(1):15–30,
1987.

[2] A. S. Argon and S. R. Maloof. Plastic deformation of tungsten single
crystals at low temperatures. Acta Metall., 14:1449–1462, 1966.

[3] G. R. Barsch and J. A. Krumhansl. Twin boundaries in ferroelastic media
without interface dislocations. Phys. Rev. Lett., 53(11):1069–1072, 1984.

[4] B. Barvinschi, L. Proville, and D. Rodney. Quantum Peierls stress of
straight and kinked dislocations and effect of non-glide stresses. Model.
Simul. Mater. Sci. Eng., 22:025006, 2014.

[5] J. L. Bassani and V. Racherla. From non-planar dislocation cores to non-
associated plasticity and strain bursts. Prog. Mater. Sci., 56:852–863,
2011.

[6] H. Bei, S. Shim, E. P. George, M. K. Miller, E. G. Herbert, and G. M.
Pharr. Compressive strengths of molybdenum alloy micro-pillars prepared
using a new technique. Scr. Mater., 57:397–400, 2007.

[7] C. J. Bolton and G. Taylor. Anomalous slip in high-purity niobium single
crystals deformed at 77 K in tension. Philos. Mag., 26(6):1359–1376, 1972.

[8] D. Caillard. On the stress discrepancy at low-temperatures in pure iron.
Acta Mater., 62:267–275, 2014.

[9] M. J. Cawkwell. Interatomic bonding and plastic deformation in iridium
and molybdenum disilicide. PhD thesis, University of Pennsylvania, 2005.

[10] M. S. Daw and M. I. Baskes. Embedded-atom method: Derivation and
application to impurities, surfaces, and other defects in metals. Phys. Rev.
B, 29(12):6443–6453, 1984.

[11] A. F. Devonshire. Theory of barium titanate – Part I. Philos. Mag.,
40:1040–1063, 1949.

[12] L. Dezerald, L. Ventelon, E. Clouet, C. Denoual, D. Rodney, and
F. Willaime. Ab initio modeling of the two-dimensional energy landscape
of screw dislocations in bcc transition metals. Phys. Rev. B, 89:024104,
2014.

[13] J. E. Dorn and S. Rajnak. Nucleation of kink pairs and the Peierls’
mechanism of plastic deformation. Trans. AIME, 230:1052–1064, 1964.

[14] M. S. Duesbery. The influence of core structure on dislocation mobility.
Philos. Mag., 19(159):501–526, 1969.

[15] M. S. Duesbery. On non-glide stresses and their influence on the screw
dislocation core in body-centered cubic metals. I. The Peierls stress. Proc.
R. Soc. Lond. A, 392(1802):145–173, 1984.

[16] M. S. Duesbery. On non-glide stresses and their influence on the screw

24



dislocation core in body-centered cubic metals. II. The core structure.
Proc. R. Soc. Lond. A, 392(1802):175–197, 1984.

[17] M. S. Duesbery and R. A. Foxall. A detailed study of deformation of
high-purity niobium single crystals. Philos. Mag., 20(166):719–751, 1969.

[18] M. S. Duesbery, V. Vitek, and D. K. Bowen. The effect of shear stress
on the screw dislocation core structures in body-centered cubic lattices.
Proc. R. Soc. Lond. A, 332:85–111, 1973.

[19] K. Edagawa, T. Suzuki, and S. Takeuchi. Motion of a screw dislocation
in a two-dimensional Peierls potential. Phys. Rev. B, 55(10):6180–6187,
1997.

[20] J. Friedel, G. Leman, and S. Olszewski. On the nature of magnetic cou-
plings in transitional metals. J. Appl. Phys., 32(3):325S–330S, 1961.

[21] R. G. Garlick and H. B. Probst. Investigation of room-temperature
slip in zone-melted tungsten single crystals. Trans. Metall. Soc. AIME,
230:1120–1125, 1964.

[22] T. L. Gilbert. A Lagrangian formulation of the gyromagnetic equation of
the magnetic field. Phys. Rev., 100:1243–1243, 1955.

[23] V. L. Ginzburg and L. D. Landau. On the theory of superconductivity.
Zh. Eksp. Teor. Fiz., 20(12):1064–1082, 1950.

[24] A. Girshick. Atomistic studies of dislocations in titanium and titanium-
aluminum compound. PhD thesis, University of Pennsylvania, 1997.

[25] N. Goldenfeld, B. P. Athreya, and J. A. Dantzig. Renormalization group
approach to multiscale modelling in materials science. J. Stat. Phys.,
125(5/6):1019–1027, 2006.

[26] R. Gröger. Development of physically based plastic flow rules for body-
centered cubic metals with temperature and strain rate dependencies. PhD
thesis, University of Pennsylvania, 2007.

[27] R. Gröger. Which stresses affect the glide of screw dislocations in bcc
metals? Philos. Mag., 94(18):2021–2030, 2014.

[28] R. Gröger, A. G. Bailey, and V. Vitek. Multiscale modeling of plastic
deformation of molybdenum and tungsten: I. Atomistic studies of the core
structure and glide of 1/2〈111〉 screw dislocations at 0 K. Acta Mater.,
56:5401–5411, 2008.

[29] R. Gröger, V. Racherla, J. L. Bassani, and V. Vitek. Multiscale modeling
of plastic deformation of molybdenum and tungsten: II. Yield criterion
for single crystals based on atomistic studies of glide of 1/2〈111〉 screw
dislocations. Acta Mater., 56:5412–5425, 2008.

[30] R. Gröger and V. Vitek. Explanation of the discrepancy between the
theoretical and measured yield stresses in body-centered cubic metals.
Philos. Mag. Lett., 87(2):113–120, 2007.

[31] R. Gröger and V. Vitek. Multiscale modeling of plastic deformation of

25



molybdenum and tungsten: III. Effects of temperature and plastic strain
rate. Acta Mater., 56:5426–5439, 2008.

[32] R. Gröger and V. Vitek. Constrained Nudged Elastic Band calculation
of the Peierls barrier with atomic relaxations. Model. Simul. Mater. Sci.
Eng., 20:035019, 2012.

[33] R. Gröger and V. Vitek. Stress dependence of the Peierls barrier of
1/2〈111〉 screw dislocations in BCC metals. Acta Mater., 61:6362–6371,
2013.

[34] R. Gröger and V. Vitek. Determination of positions and curved transition
pathways of screw dislocations in bcc crystals from atomic displacements.
Mat. Sci. Eng. A, 643:203–210, 2015.

[35] F. Guiu. Slip asymmetry in molybdenum single crystals deformed in direct
shear. Scripta Metall., 3:449–454, 1969.

[36] G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged
elastic band method for finding minimum energy paths and saddle points.
J. Chem. Phys., 113(22):9978–9985, 2000.

[37] G. Henkelman, B. P. Uberuaga, and H. Jónsson. A climbing image nudged
elastic band method for finding saddle points and minimum energy paths.
J. Chem. Phys., 113(22):9901–9904, 2000.

[38] R. Hill. The mathematical theory of plasticity. Clarendon Press, 1998.
[39] L. Hollang, D. Brunner, and A. Seeger. Work hardening and flow stress of

ultrapure molybdenum single crystals.Mat. Sci. Eng. A, 319-321:233–236,
2001.

[40] A. P. Horsfield, A. M. Bratkovsky, M. Fearn, D. G. Pettifor, and M. Aoki.
Bond-order potentials: Theory and implementation. Phys. Rev. B,
53(19):12694–12712, 1996.

[41] L. Hsiung. On the mechanism of anomalous slip in bcc metals. Mat. Sci.
Eng. A, 528:329–337, 2010.

[42] K. Ito and V. Vitek. Atomistic study of non-Schmid effects in the plastic
yielding of bcc metals. Philos. Mag. A, 81(5):1387–1407, 2001.

[43] H. Jónsson, G. Mills, and K. W. Jacobsen. Classical and Quantum Dy-
namics in Condensed Phase Simulations, chapter 16. Nudged elastic band
method for finding minimum energy paths of transitions, pages 385–404.
World Scientific, Singapore, 1998.

[44] S. Kartha, J. A. Krumhansl, J. P. Sethna, and L. K. Wickham. Disorder-
driver pretransitional tweed pattern in martensitic transformations. Phys.
Rev. B, 52(2):803–822, 1995.

[45] L. Kaun, A. Luft, J. Richter, and D. Schulze. Slip line pattern and active
slip systems of tungsten and molybdenum single crystals weakly deformed
in tension at room temperature. Phys. Stat. Sol., 26(2):485–499, 1968.

[46] A. Koester, A. Ma, and A. Hartmaier. Atomistically informed crystal

26



plasticity model for body-centered cubic iron. Acta Mater., 60:3894–3901,
2012.

[47] L. P. Kubin. Dislocations, mesoscale simulations and plastic flow. Oxford
Publications, 2013.

[48] J. S. Langer. Instabilities and pattern formation in crystal growth. Rev.
Mod. Phys., 52(1):1–28, 1980.

[49] H. Lim, C. R. Weinberger, C. C. Battaile, and T. E. Buchheit. Application
of generalized non-Schmid yield law to low temperature plasticity in BCC
transition metals. Model. Simul. Mater. Sci. Eng., 21:045015, 2013.

[50] Y.-S. Lin, M. Mrovec, and V. Vitek. A new method for development of
bond-order potentials for transition bcc metals. Model. Simul. Mater. Sci.
Eng., 22:034002, 2014.

[51] F. Louchet, L. P. Kubin, and D. Vesely. In situ deformation of b.c.c. crys-
tals at low temperatures in a high-voltage electron microscope. Disloca-
tion mechanisms and strain-rate equation. Philos. Mag. A, 39(4):433–454,
1979.

[52] C. Marichal, K. Srivastava, D. Weygand, S. Van Petegem, D. Grolimund,
P. Gumbsch, and H. Van Swygenhoven. Origin of anomalous slip in tung-
sten. Phys. Rev. Lett., 113:025501, 2014.

[53] C. Marichal, H. Van Swygenhoven, S. Van Petegem, and C. Borca. {110}
slip with {112} slip traces in bcc tungsten. Sci. Rep., 3:2547, 2013.

[54] M. Mrovec. Bond order potentials for bcc transition metals and molybde-
num silicides. PhD thesis, University of Pennsylvania, 2002.

[55] M. Mrovec, R. Gröger, A. G. Bailey, D. Nguyen-Manh, C. Elsässer, and
V. Vitek. Bond-order potential for simulations of extended defects in
tungsten. Phys. Rev. B, 75:104119, 2007.

[56] M. Mrovec, D. Nguyen-Manh, D. G. Pettifor, and V. Vitek. Bond-order
potential for molybdenum: Application to dislocation behavior. Phys.
Rev. B, 69:094115, 2004.

[57] F. R. N. Nabarro. Dislocations in a simple cubic lattice. Proc. Phys. Soc.,
59(2):256–272, 1947.

[58] R. Peierls. The size of a dislocation. Proc. Phys. Soc., 52(1):34–37, 1940.
[59] D. G. Pettifor. New many body potential for the bond order. Phys. Rev.

Lett., 63(22):2480–2483, 1989.
[60] N. Provatas and K. Elder. Phase-field methods in material science and

engineering. J. Wiley & Sons, 2010.
[61] L. Proville, D. Rodney, and M.-C. Marinica. Quantum effect on thermally

activated glide of dislocations. Nature Mater., 11:845, 2012.
[62] L. Proville, L. Ventelon, and D. Rodney. Prediction of the kink-pair

formation enthalpy on screw dislocations in α-iron by a line tension
model parametrized on empirical potentials and first-principles calcula-

27



tions. Phys. Rev. B, 87:144106, 2013.
[63] Q. Qin and J. L. Bassani. Non-associated plastic flow in single crystals.

J. Mech. Phys. Sol., 40(4):835–862, 1992.
[64] Q. Qin and J. L. Bassani. Non-Schmid yield behavior in single crystals.

J. Mech. Phys. Sol., 40(4):813–833, 1992.
[65] D. Rodney and L. Proville. Stress-dependent Peierls potential: Influence

on kink-pair activation. Phys. Rev. B, 79:094108, 2009.
[66] R. M. Rose, D. P. Ferriss, and J. Wulff. Yielding and plastic flow in single

crystals of tungsten. Trans. Metall. Soc. AIME, 224:981–990, 1962.
[67] E. Schmid and W. Boas. Plasticity of crystals with special reference to

metals. F. A. Hughes & Co., 1950.
[68] K. Srivastava, R. Gröger, D. Weygand, and P. Gumbsch. Dislocation

motion in tungsten: Atomistic input to discrete dislocation simulations.
Int. J. Plast., 47:126–142, 2013.

[69] E. H. Stanley. Introduction to phase transitions and critical phenomena.
Oxford Science Publications, 1987.

[70] T. Suzuki, H. Koizumi, and H. O. K. Kirchner. Plastic flow stress of
b.c.c. transition metals and the Peierls potential. Acta Metall. Mater.,
43(6):2177–2187, 1995.

[71] G. I. Taylor. The deformation of crystals of β-brass. Proc. R. Soc. Lond.
A, 118(779):1–24, 1928.

[72] G. I. Taylor and C. F. Elam. The distortion of iron crystals. Proc. Roy.
Soc. Lond. A, 112(761):337–361, 1926.

[73] G. Tsekenis, J. T. Uhl, N. Goldenfeld, and K. A. Dahmen. Determination
of the universality class of crystal plasticity. Europhys. Lett., 101:36003,
2013.

[74] L. Ventelon, F. Willaime, E. Clouet, and D. Rodney. Ab initio investiga-
tion of the Peierls potential of screw dislocations in bcc Fe and W. Acta
Mater., 61(11):3973–3985, 2013.

[75] V. Vitek, M. Mrovec, R. Gröger, J. L. Bassani, V. Racherla, and L. Yin.
Effects of non-glide stresses on the plastic flow of single and polycrystals
of molybdenum. Mat. Sci. Eng. A, 387-389:138–142, 2004.

[76] C. R. Weinberger, C. C. Bataille, T. E. Buchheit, and Holm. E. A. In-
corporating atomistic data of lattice friction into BCC crystal plasticity
models. Int. J. Plast., 37:16–30, 2012.

[77] K. G. Wilson. Problems in physics with many scales of length. Sci. Amer.,
1979.

[78] S. Znam. Bond-order potentials for atomistic studies of dislocations and
other extended defects in TiAl. PhD thesis, University of Pennsylvania,
2001.

28



SELECTED IMPACT PUBLICATIONS

Fikar J., Gröger R.: Interactions of prismatic dislocation loops with free
surfaces in thin foils of body-centered cubic iron. Acta Mater. 99:392-
401 (2015).

Gröger R., Vitek V.: Determination of positions and curved transition path-
ways of screw dislocations in BCC crystals from atomic displacements.
Mat. Sci. Eng. A 643:203-210 (2015).

Gröger R., Leconte L., Ostapovets, A.: Structure and stability of threading
edge and screw dislocations in bulk GaN. Comp. Mater. Sci. 99:195–202
(2015).

Gröger R.: Which stresses affect the glide of screw dislocations in bcc met-
als? Philos. Mag. 94(18):2021–2030 (2014).

Ostapovets A., Gröger R.: Twinning disconnections and basal-prismatic
twin boundary in magnesium. Model. Simul. Mater. Sci. Eng. 22:025015
(2014).

Gröger R. and Vitek, V.: Stress dependence of the Peierls barrier of 1/2〈111〉
screw dislocations in BCC metals. Acta Mater. 61:6362–6371 (2013).

Srivastava K., Gröger R., Weygand D., Gumbsch P.: Dislocation motion
in tungsten: Atomistic input to discrete dislocation simulations. Int. J.
Plast. 47:126–142 (2013).

Gröger R. and Vitek V.: Constrained Nudged Elastic Band calculation of
the Peierls barrier with atomic relaxations. Model. Simul. Mater. Sci.
Eng. 20:035019 (2012).

Gröger R., Dudeck K. J., Nellist P. D., Vitek V., Hirsch P. B., Cockayne
D. J. H.: Effect of Eshelby twist on core structure of screw dislocations
in molybdenum: Atomic structure and electron microscope image simu-
lations. Philos. Mag. 91(18):2364–2381 (2011).

Gröger R., Lookman T., Saxena A.: Incompatibility of strains and its appli-
cation to mesoscopic studies of plasticity. Phys. Rev. B 82(14):144104
(2010).

Gröger R., Vitek, V.: Temperature and strain rate dependent flow criterion
for bcc transition metals based on atomistic analysis of dislocation glide.
Int. J. Mater. Res. 100(3):315–321 (2009).

Gröger R. and Vitek V.: Directional versus central-force bonding in studies
of the structure and glide of 1/2〈111〉 screw dislocations in bcc transition
metals. Philos. Mag. 89(34):3163–3178 (2009).

Gröger R., Lookman T., Saxena, A.: Atomistic studies of transformation
pathways and energetics in plutonium. Philos. Mag. 89:1779–1792
(2009).

29



Gröger R., Vitek V.: Multiscale modeling of plastic deformation of molyb-
denum and tungsten: III. Effects of temperature and plastic strain rate.
Acta Mater. 56:5426–5439 (2008).

Gröger R., Racherla V., Bassani J. L., Vitek V.: Multiscale modeling of
plastic deformation of molybdenum and tungsten: II. Yield criterion
for single crystals based on atomistic studies of glide of 1/2〈111〉 screw
dislocations. Acta Mater. 56:5412–5425 (2008).

Gröger R., Bailey A. G., Vitek V.: Multiscale modeling of plastic defor-
mation of molybdenum and tungsten: I. Atomistic studies of the core
structure and glide of 1/2〈111〉 screw dislocations at 0 K. Acta Mater.
56:5401–5411 (2008).

Gröger R., Vitek V.: Explanation of the discrepancy between the theoretical
and measured yield stresses in body-centered cubic metals. Philos. Mag.
Lett. 87(2):113–120 (2007).

Mrovec M., Gröger R., Bailey A. G., Nguyen-Manh D., Elsässer C., Vitek
V.: Bond-order potential for simulations of extended defects in tungsten.
Phys. Rev. B 75:104119 (2007).

Nguyen-Manh D., Cawkwell M. J., Gröger R., Mrovec M., Porizek R., Pet-
tifor D. G., Vitek V.: Dislocations in materials with mixed covalent and
metallic bonding. Mat. Sci. Eng. A 400-401:68–71 (2005).

Vitek V., Mrovec M., Gröger R., Bassani J. L., Racherla V., Yin L.: Effects
of non-glide stresses on the plastic flow of single and polycrystals of
molybdenum. Mat. Sci. Eng. A 387-389:138–142 (2004).

ABSTRACT

The plastic deformation of body-centered cubic (BCC) metals is not governed
by the same processes as in close-packed crystal structures. Over the past
12 years, we have developed a new description of plasticity in BCC metals
that is based on detailed understanding of the atomic-level processes affecting
the glide of 1/2〈111〉 screw dislocations at 0 K. These have been incorpo-
rated into thermodynamic models of dislocation glide at finite temperatures
and strain rates. To complement these theoretical efforts, we have recently
initiated a systematic experimental program whose objective is to provide di-
rect experimetal evidence of the activity of individual {110}〈111〉 slip systems,
conditions under which dislocations cross-slip between different systems, and
to assess the predictive capability of our theoretical models. Combining these
theoretical, computational and experimental results is expected to shed light
onto many puzzling phenomena such as the origin of the anomalous slip and
thus ultimately close the gap in understanding plasticity of all BCC metals.

30


	AUTHOR
	1 INTRODUCTION
	2 ATOMISTIC STUDIES OF DISLOCATIONS
	2.1 Interatomic potentials and the density of states
	2.2 Atomistic studies of 1/2(111) screw dislocations in BCC metals
	2.3 Yield criterion taking into account non-glide stresses

	3 THERMALLY ACTIVATED DISLOCATION GLIDE
	3.1 Thermodynamics of dislocation glide
	3.2 Model predictions and their correlations with experiments
	3.3 Impact of our theoretical framework
	3.4 Recent developments

	4 EXPERIMENTAL STUDIES OF PLASTICITY
	4.1 New studies of slip traces in compressed tungsten
	4.2 Experiments on free-standing pillars

	REFERENCES
	SELECTED IMPACT PUBLICATIONS
	ABSTRACT



