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1 Introduction
In modern differential geometry [45, 42] affected by Klein’s Erlangen programme [63, 40, 41],
the theory of Cartan connections [40] together with the theory of semisimple Lie algebra
representation [19, 56, 61] makes the foundations of the theory of parabolic geometries [71].
Shortly, Cartan geometries can be understood as curved versions of homogeneous bundles
G→ G/H and parabolic geometries as Cartan geometries with G a semisimple group, g a |k|–
graded algebra and the adjoint action of H preserving the filtration g. In our considerations,
the fact that parabolic geometries are endowed with a particular class of Weyl connections is
crucial, because it makes the research of projective transformations with respect to this class
sensible.

The core of the presented thesis is the continuation of the research handled in the PhD
thesis [24] and papers [32, 23], in which we established the notions of A–structures, A–planar
curves and proved that under certain additional conditions, the morphisms preserving the
appropriate A–structures are exactly the morphisms preserving the class of A–planar curves
for fixed connection with covariant derivative preserving A. For example, almost quaternionic
geometries, which were also our motivation, have this property and as it is also a parabolic
geometry, we proved that the only possible choice of corresponding Connection class is that
of Weyl connections. But as the class of Weyl connections share the same A–planar curves,
no additional choice is needed and the morphisms preserving the A–planar curves are the
morphisms of almost quaternionic geometry.

Among parabolic geometries there exist some other structures based on affinors. An ex-
ample is almost complex projective structure (M,J,∇) with affinor J s.t. J2 = −idM = −E
and an almost product projective structure (M,J,∇) with affinor J s.t. J2 = E for more
details see our papers [25, 31]. While almost quaternionic structure is the parabolic geometry,
an almost complex and almost product are not parabolic and become parabolic geometries
just after the choice of a special class of connections [39, 6, 79]. Thus, in certain sense, we
obtain the projective versions of both structures called almost complex projective and almost
product projective. Using this definition, our structures can be seen as parabolic geometries
and, similarly to almost quaternionic after normalization, they are endowed with a class of
Weyl connections playing the role of the special class of connections. As our main result,
we have shown that the morphisms of these projective structures are exactly the morphisms
preserving the class of geodesics of Weyl connections, i.e. the generalized projective transfor-
mations with respect to the class of Weyl connections [∇]. Proofs of these claims for almost
quaternionic structure can be found in [32, 23], for almost complex structure in [25] and for
almost product structure in [31]. Note that important fact for our calculations is that our
examples are |1|–graded (irreducible) parabolic geometries. To see the impact of our results
one can find the papers [44, 22].

Next group of new results is described in our papers [30, 28, 26, 27], where the theory of A–
structures is developed and used for classification of some less known structures such as almost
quaternionic of the second kind (para–quaternionic) and more generally the triple structures
containing apart from the almost quaternionic and almost para–quaternionic one also their
analogues for commuting affinors. We partially discussed even the case of distributions which
can be defined also by means of affinors. All these cases share the property that the subbundle
A is locally isomorphic to an algebra. In this case we proved that the additional conditions
can be significantly simplified. For these geometries we characterized the classes of projective
transformations with respect to a given class of connections.

The notion of A–planar curves, in other words the notion of generalized geodesics, is widely
studied for structures based on generally one affinor [46, 47, 48, 50, 49] and is known as F–
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planar curves, in case of almost hypercomplex structure [52, 51, 23, 22] this is referred to as
4–planar or H–planar curves. Let us note that in case that A is a commutative algebra, we
obtain so–called spaces over algebras [64].

As a next step in our research we focused on the A–structures where A is locally isomorphic
to a Clifford algebra. This leads to the definition of a subclass of A–structures called Cliffordian
structures. All important structures such as almost quaternionic (based on Clifford algebra
Cl(0, 2)), almost para–quaternionic (based on Clifford algebra Cl(2, 0)) or almost complex
projective (based on Clifford algebra Cl(0, 1)) are Cliffordian. If A is finitely generated algebra,
the A–structures and thus also the Cliffordian structures, areG–structures, where the structure
group G is the group of automorphisms preserving the subbundle A. From the theory of G–
structures we know that there exists a class of distinguished connections sharing the same
torsion. Such connections are called D–connections and their uniqueness is given by G–
invariant decomposition of the appropriate cohomologic component. Motivated by the fact
that the choice of the projective structure corresponds to the choice of the class of connections
sharing geodesics and the choice of ”complex” projective structure corresponds to the choice of
connections sharing the J–planar curves, we define the projective A–structures as A–structures
together with the choice of connection class sharing A–planar curves. If A is a Clifford algebra,
we obtain a class of so–called Cliffordian projective structures. In our papers [35, 29, 33] we
proved that every Cliffordian structure admits Cliffordian projective structure and we found
explicit description of the appropriate class of D–connections preserving planar curves and
described several properties.

2 Almost quaternionic manifolds
In this chapter, we provide basic definitions and results which form the foundations of the
theory of A–structures, and we use the case of almost quaternionic geometry to interpret
them. Almost quaternionic geometry [60, 14] is widely studied geometric structure based on
quaternions H. Let us note that from our point of view the almost quaternionic structure is
determined by a subbundle Q ⊂ Γ(TM⊗T ∗M), which is locally isomorphic to quaternions H.
Historically, the notion of almost quaternionic structure is used even for a smooth manifold
endowed with three affinors F,G and H, which, together with the identity, satisfy the prop-
erties of quaternions. In modern literature, this is strictly referred to as almost hypercomplex
and we use this notation, too. Almost quaternionic structure is determined by the following
definition.

Definition 2.1. Let M be a manifold of dimension n = 4m, and assume that there is a
3–dimensional vector bundle Q consisting of affinors (tensors of type (1, 1)) over M satisfying
the following condition: On any coordinate neighbourhood of x ∈ M , there is a local basis
{F,G,H} of Q such that F 2 = G2 = H2 = −E, FG = −GF = H, GH = −HG = F ,
HF = −FH = G, where we denote by E the identity affinor on M. Then the bundle Q→M
is called an almost quaternionic structure (or geometry) on M and (M,Q) is called an almost
quaternionic manifold .

Note that almost quaternionic geometry is both a G–structure, an A–structure, Cliffordian
and parabolic geometry and that is why we refer to it in all following chapters.

2.1 Q–connections
The theory of Q–connections was established by pioneer work of Mario Obata [54, 53, 55].
The first article [54] was published in 1958 in Journal of the Mathematical society of Japan.
The theory was developed by plenty of mathematicians during next twenty years, for example
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in articles [43, 68, 37, 38] and finally in the work of Shigeyoshi Fujimora which was published
in papers [14, 15, 16, 17] and work of Vasile Oproiu in papers [57, 58]. By Q-connections
we understand special classes of connections complying with quaternionic geometry and, as
we find out later, the automorphisms preserving their geodesics are exactly the morphisms of
quaternionic geometry. Let us recall the basic facts.

Definition 2.2. Let Γ be an affine connection on an almost quaternionic manifold (M,Q)
which will be called a Q–connection if it satisfies the following conditions:

∇F = α⊗G− β ⊗H,
∇G = −α⊗ F + γ ⊗H,
∇H = β ⊗ F − γ ⊗G,

where ∇ denotes the operator of covariant differentiation with respect to Γ and α, β, γ are
certain 1–forms and {F,G,H} is a local basis of Q.

The Definition 2.2 does not depend on the choice of the basis F,G and H of Q and the
expression of terms on the right hand side came from nature of Q (for more details see [57]).
Note that Γ is a Q–connection if and only if it preserves cross-sections ϕ of bundle Q → M ,
which is equivalent to the condition that (2, 2)–tensor

A = I ⊗ I − F ⊗ F −G⊗G−H ⊗H
is covariantly constant with respect to Γ, see [14].

Let F,G and H be a basis of Q. A Q–connection is called a V –connection if α = β = γ = 0,
i.e. affinors F,G and H are covariantly constant with respect to an affine connection Γ. This
suggest that the V –connection should rather be thought of as the property of hypercomplex
structures a quaternionic.

In particular, M. Obata proved that on an almost quaternionic manifold with an affine
connection, there always exists a V –connection (which is called Obata connection), i.e. there
always exists a Q–connection with α = β = γ = 0. In fact, for an affine connection Γ and
arbitrary 1–forms α, β and γ, if we put in coordinates

Γ̄hij = Γhij −
1

4
(F h

a F
a
i;j +Gh

aG
a
i;j +Hh

aH
a
i;j) +

1

2
(γjF

h
i + βjG

h
i + αjF

h
i ),

then Γ̄ is a V –connection. It is not hard to see the existence of Q–connection including
V –connection on an almost quaternionic manifold with a connection.

Finally on an almost quaternionic manifold with a connection Γ, a curve xh = xh(t) is
called a Q–planar curve if it satisfies the system of the ordinary differential equations

∂2xh

dt2
+ Γhab

∂xa

∂t

∂xb

∂t
= (ϕ1(t)I

h
a + ϕ2(t)F

h
a + ϕ3(t)G

h
a + ϕ4(t)H

h
a )
∂xa

∂t
,

where ϕs(t) are certain functions of the parameter t.
One can find the following theorems on Q–plannar curves, Q–plannar connections, their

properties and transformations in [14]. In fact, we will see that in [32], more general results
were presented.

Theorem 2.3 ([15]). On an almost quaternionic manifold, affine connections Γ and Γ̄ share
the same Q–planar curves if and only if there exist 1–forms η, λ, µ and ν satisfying

1

2
Sh(ij) = η(iI

h
j) + λ(iF

h
j) + µ(iG

h
j) + ν(iH

h
j),

where Shij = Γ̄− Γ and T(ij) = 1
2
(Tij + Tji) for an arbitrary tensor field T .

Now, we will say that affine connections Γ and Γ̄ are Q–projectively related if and only if
there exist such 1–forms as in Theorem 2.3.
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Theorem 2.4 ([14]). Symmetric Q–connections Γ and Γ̄ are Q–projectively related if and only
if there exists a 1–form η such that Γ̄hij = Γhij + Aha(ij)ηa.

It is easy to see that Q–projectively related symmetric connection share the same torsion
and in the case of a symmetric connection the class of Q–projectively related connections is
parametrized by one–forms. A symmetric Q–connection may not exist on any almost quater-
nionic manifold but we later show that on almost quaternionic manifold, there exists a class
of connections with, in certain sense, minimal torsion. This class is determined uniquely and
is parametrized by one–forms, too. We shall use exactly such class and show that Theorem
2.4 is a consequence of our results.

If a transformation f of M to itself leaves the bundle invariant, then f is called Q–
transformation of (M,Q). S. Ishihara proved [37, 38] that f is a Q–transformation if and
only if it preserves the tensor field A. If f maps any Q–planar curve with respect to Γ into
another one with respect to Γ then f is called Q–projective transformation. The following
theorem compares the Q–transformations and Q–projective transformations.

Theorem 2.5 ([15]). Let (M,Q) be an almost quaternionic manifold of dimension m > 4
with an affine connection Γ. Then, a transformation f of M onto itself is a Q–projective
transformation of (M,Q) with respect to Γ if and only if

1. f is Q–transformation of (M,Q).

2. Γ and the affine connection induced by f from Γ are Q–projectively related.

The above Q–projective transformations are exactly those transformations of our interest
and we will call them Q–planar. In fact, one of our results is a modification of Theorem 2.5.

2.2 Integrability of almost quaternionic structures
Let us say a few words about integrability of an almost quaternionic structures. If a manifold
M can be covered by a system of coordinate neighbourhoods in which the components of F , G
and H are all constant, we say that the almost quaternionic structure {F,G,H} is integrable
and call it a quaternionic structure. The results on integrability of an almost quaternionic
structure are based on Kentaro Yano and Mitsue Ako papers, mainly the paper [80] which
was published in Hokkaido mathematical journal in 1972.

Concerning integrability, the proper tool in case of quaternionic geometry is the Nijenhuis
tensor. Let P and Q be two affinors on a differentiable manifold. The expression

N(P,Q)(X, Y ) = [PX,PY ]− P [QX, Y ]−Q[X,PY ]

+ [QX,PY ]−Q[PX, Y ]− P [X,QY ] + (PQ+QP )[X, Y ],

where X and Y are arbitrary tensor fields of suitable type, defines a tensor field of type (2, 1)
and is called a Nijenhuis tensor of P and Q.

Theorem 2.6 ([80]). Let Q = 〈F,G,H〉 be an almost quaternionic structure. If two of six
Nijenhuis tensors

N(F, F ), N(G,G), N(H,H), N(G,H), N(H,F ), N(F,G)

vanish, then the others vanish too.

Note that the torsion of the Obata connection is given by the structure tensor

T =
1

12
(N(F, F ) +N(G,G) +N(H,H))

and then it is easy to see the following theorem.
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Theorem 2.7 ([80]). Let (M,Q) be an almost quaternionic manifold. There exists a symmet-
ric affine connection ∇ on M such that ∇F = 0, ∇G = 0, ∇H = 0 if and only if two of six
Nijenhuis tensors:

N(F, F ), N(G,G), N(H,H), N(G,H), N(H,F ), N(F,G)

vanish.

As we show later, in our paper [29] we generalized these properties for the classes of some
geometries.

2.3 Almost para–quaternionic manifolds
An almost quaternionic geometry is the best known example of geometry based on affinors,
but there exists a plenty of other structures based on one or more affinors. For example, an
almost complex geometry or an almost para–quaternionic geometry. We will shortly discuss
the almost para–quaternionic one.

Definition 2.8. Let M be a manifold of dimension n = 4m, and assume that there is a 3–
dimensional vector bundle Q consisting of affinors over M satisfying the following condition:
On any coordinate neighbourhood of x ∈ M , there is a local basis {F,G,H} of Q such that
F 2 = −E, G2 = H2 = E and F = −GH = HG, G = HF = −FH, H = FG = −GF ,
where we denote by E the identity affinor on M. Then the bundle Q→M is called an almost
para–quaternionic structure and the differentiable manifold with an almost para–quaternionic
structure an almost para–quaternionic manifold.

Theorem 2.9 ([81]). In order that there exists, on an almost para–quaternionic manifold
(M,Q = 〈F,G,H〉), a symmetric affine connection ∇ such that ∇F = 0, ∇G = 0, ∇H = 0,
it is necessary and sufficient that two of six Nijenhuis tensors N(F, F ), N(G,G), N(H,H),
N(G,H), N(H,F ), N(F,G) vanish.

Note that the proof of Theorem 2.9 is based on special connection, such that torsion of
this connection is given by the structure tensor

T =
1

6
([F, F ] + [G,G] + [H,H]).

Remark 2.10. Similar results for almost product structures, i.e. differential manifold with one
affinor P , such that P 2 = E, can be found in papers [82, 36, 18]. More generally in Walker’s
papers [76, 77] the author claims that for any system of distributions there exists an affine
connection with respect to which the distributions are parallel and which is symmetric if the
system is integrable. Walker’s work is summarized in paper [78]. If D, D̄ form a complete
system of distributions (i.e. they are disjoint and D + D̄ = TM) then there are two affinors
P, P̄ associated with them such that

P 2 = P, P̄ 2 = P̄ , P P̄ = P̄P = 0 and P + P̄ = E,

where rank P = r and rank P̄ = r̄.
The representation of distributions by affinors can by extended to any complete system Di

such that the affinors Pi satisfy the properties

P 2
i = Pi, PiPj = 0 for i 6= j, and

∑
i

Pi = E.

Let Γijk be Christoffel symbols of a symmetric connection ∇ on M then the connection ∇̄
based on Christoffel symbols Γ̄ijk

Γ̄ijk = Γijk − P
p
k∇jP

i
j − P

p
j∇kP

i
p + P p

kP
q
j∇qP

i
p

makes D parallel [78].
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2.4 D–connections
An almost quaternionic geometry can be understood as a G–structure and on any G–structure
there is a possibility of choosing the class of D–connections, i.e. those connections with, in cer-
tain sense, distinguished torsion. Furthermore, as almost quaternionic geometry is parabolic,
it is possible to choose the class of D–connections canonically. In terms of parabolic geome-
tries, these are called Weyl connections (see chapter 4). Let us remind some basic facts from
the theory of G–structures.

The theory of G–structures belongs to the modern differential geometry [40, 41, 63] which
is based on so called Felix Klein’s Erlangen Programme [63]. From the definition, G–structures
are reductions of the bundle of frames P 1M with respect to the structure group G, for more
details see [40, 41, 63]. In our example, it is very well known (see [60]) that the structure
group of an almost quaternionic geometry is

GL(n,H)×Z2 Sp(1),

where Sp(1) are the unit quaternions in GL(1,H).
In fact, we are interested in structure preserving connections and classes of connections

on G–structures. In D. V. Alekseevsky and S. Marchiafava paper [2] Quaternionic structures
on a manifold and subordinated structures which was published in Annali di Mathematica
pura ed applicata at 1996, the theory of so called D–connections was developed. The class
of D–connections preserves the structure, shares the same torsion and the connections are
parametrized by the first prolongation of Lie algebra g.

The structures of our interest can be understood as G–structures. We shall study the
generalized projective transformations and thus the classes of geodesics of suitable connections,
i.e. connections with the same (in certain sense distinguished) torsion. In case of G–structures,
D–connections are such sensible choice, but the choice of the complement D is needed.

In Chapter 4 we will see that concerning irreducible parabolic geometries this class coincides
with the unique class of connections which are called Weyl connections. But not all geometries
of our interest are parabolic.

Briefly from structural theory, let G ⊂ GL(V) be a linear reductive group with Lie algebra
g ⊂ gl(V) = V ⊗ V∗. If we fix a G–invariant complement D to the subspace ∂(g ⊗ V?) in
V⊗∧2V?, where ∂ is the Spencer operator of alternations, then we shall investigate the theory
of D-connections.

More precisely, the vertical bundle V P := ker (Tp) is trivialized as a vector bundle G–
structure p : P →M by the principal action. So

ω(Xu) := Te(r
−1
u )Ψ(Xu) ∈ g, (2.1)

where the principal connection Ψ : TP → V P is a fibre projection viewed as a 1-form in
Ψ ∈ Ω(P, TP ) and in this way we get a g-valued 1-form ω ∈ Ω(P, g), which is called connection
form of the principal connection Ψ.

Definition 2.11. Let V = Rn and G be a Lie group of linear transformations of V, and the g
be a Lie algebra of G. The first prolongation g(1) of g is a space of symmetric bilinear mappings
t : V× V→ V such that, for each fixed v1 ∈ V, the mapping v ∈ V 7→ t(v, v1) ∈ V is in g.

Definition 2.12. We say that the connected linear Lie group G with Lie algebra g is of type
k if its k-th prolongation vanishes, i.e. g(k) = 0 and g(k−1) 6= 0. In this case, any G-structure
is called to be a structure of type k.

From the theory of G–structures, we can define a principal bundle P̄ → P in such way that
the sections of this bundle are in 1–1 correspondence with connections ω of G-structure. This
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bundle is called the bundle of the derivation of the G-structure. On the bundle P̄ → P there
is a canonical V⊗ ∧2V?–valued torsion function on the manifold P̄ of horizontal subspaces:

t : P̄ → V⊗ ∧2V?.

We construct a torsion tensor and subbundle of bundle of derivation which includes only
connections with special torsion. This subbundle is called the first prolongation, for more
detail see [2].

Definition 2.13. Let π : P → M be a G-structure and let D be a G–invariant complement
to the subspace ∂(g ⊗ V?) in V ⊗ ∧2V?, where ∂ is the Spencer operator of alternations. A
connection ω is called a D–connection if its torsion function

tω = t ◦ sω : P → P̄ → ∂(g⊗ V?)⊕D ⊂ V⊗ ∧2V?,

where sω : p 7→ Hp is a section of the bundle P̄ → P that defines connection ω, has values in
D.

Theorem 2.14 ([1, 2]). Let π : P →M be a G-structure and let D be a G–invariant comple-
ment to the subspace ∂(g⊗ V?) in V⊗ ∧2V?.

1. G-structure π : P →M admits a D-connection ∇.

2. Let ω, ω̄, be D-connections. Then the corresponding operators of covariant derivative
∇, ∇̄ are related by

∇̄ = ∇+ S

where S is a tensor field such that for any x ∈M,Sx belongs to the first prolongation
g
(1)
x of the Lie algebra gx ⊂ gl(TxM).

Theorem 2.14 reads that the class of appropriate D–connections is parametrized by the
first prolongation of the Lie algebra. Classical result (see [3]) reads that the Lie algebra of
an almost quaternionic structure is isomorphic to gl(n,H)⊕ sp1 and the first prolongation is
g(1) ∼= V? with respect to the identification V? 3 ξ 7→ Sξ ∈ g(1) described by

Sξ = 2 Sym
[
ξ ⊗ 1− (ξ ◦ I)⊗ I − (ξ ◦ J)⊗ J − (ξ ◦K)⊗K

]
. (2.2)

Thus it is a structure of type 2 in the sense of Definition 2.12. Furthermore, we see that
the difference of two D–connections in (2.2) is the same as the difference of two Q–related
symmetric connections, see Theorem 2.4. We will see in Chapter 4 that in the case of parabolic
geometries there exists a canonical choice of such torsion that the mentioned Theorem 2.4 can
be generalized.

Finally note that the Lie algebra of an almost hypercomplex structure is gl(n,H) and it is
easy to show that g(1) = 0, i.e. an almost hypercomplex structure is a structure of type 1.

3 A–structures
The notion of an A–structure was established in [32] as a natural generalization of almost
quaternionic structure, which is determined by a subbundle Q ⊂ Γ(TM ⊗ T ∗M) (see Defini-
tion 2.1). An A–structure is determined by a choice of a subbundle A ⊂ Γ(TM⊗T ∗M), which
admits the definition of generalized geodesics, so called A–planar curves as a natural gener-
alization of Q–planar curves. As an analogy of Q–related connections we establish A–related
connections, i.e. connections sharing the class of A–planar curves, and we study the transfor-
mations preserving the A–planar curves of the connection in question. We prove that, with
some additional conditions, the morphisms preserving the geodesics of the class of A–related
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connections [∇]A are exactly the morphisms of the appropriate A–structure. If we restrict to
the case of A being an algebra, we can analyse the appropriate structure quite effectively. We
present results known in several special geometries in a general formulation.

3.1 General theory
The general theory of A–structures was developed in our articles [30, 28, 26, 27, 24]. The
A–structures applications in almost complex projective geometry one can find in paper [25].
The A–structures applications in almost product geometry one can find in paper [31].

Definition 3.1. Assume that we have given a smooth manifold M , such that dim(M) = m.
Let A be a smooth `-dimensional (` < m) vector subbundle in T ∗M ⊗ TM, such that the
identity affinor E = idTM restricted to TxM belongs to AxM ⊂ T ∗xM ⊗ TxM at each point
x ∈M. We say that M is equipped with an `-dimensional A–structure.

Definition 3.2. Let M be a smooth manifold equipped with an A–structure and ∇ be a
linear connection preserving A. We define the class of A–related connections :

[∇]A = {∇+ Υ1 � F1 + · · ·+ Υ` � F`}, (3.1)

where 〈F1, . . . , F`〉 = A as a vector space and Υi are one forms on M .

By the choice of the connection ∇ in such way that ∇A ⊂ A, it turns out that ∇̄A ⊂ A
for all ∇̄ ∈ [∇]A and the whole connection class shares the same torsion. To be able to treat
A–structures effectively, it is useful to require an additional condition for the A–structure
to have generic rank, see Definition 3.3. It is a technical condition forced by the proofs in
[32]. In Theorem 3.4 we show that, if we restrict to structures with A being an algebra,
this property is, in appropriate dimension, a consequence of weak generic rank with obvious
geometric meaning, and the cases, where A is an algebra, cover all structures of our interest.

Definition 3.3. Let (M,A) be a smooth manifold M equipped with an `–rank A–structure.
We say that the A–structure has

1. generic rank ` if for each x ∈ M the subset of vectors (X, Y ) ∈ TxM ⊕ TxM , such
that the A–hulls

A(X) = {F (X), F ∈ A} and A(Y ) = {F (Y ), F ∈ A}
generate a vector subspace A(X) ⊕ A(Y ) of dimension 2`, is open and dense in
TxM ⊕ TxM .

2. weak generic rank ` if for each x ∈M the subset of vectors

V := {X ∈ TxM | dimA(X) = `}
is open and dense in TxM .

One immediately checks that any A–structure which has generic rank ` has weak generic
rank `. Indeed, if U ⊂ TxM is an open subset of vectors X with A(X) of dimension lower
than `, then U × U is an open subset with too low dimension, too.

The following Theorem contains the properties of generic and weak generic rank. Results
(3), (4) are quite obvious, (1) reads that in appropriate dimension and A being an algebra,
generic rank is a consequence of weak generic rank. Result (2) shows an effective way of
checking the property of weak generic rank if A is an algebra. The following result summarizes
them both. Proofs of all claims can be found in [30]. Finally, the results (1) and (2) lead to
Corollary 3.5.
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Theorem 3.4 ([30]). Let M be a smooth manifold of dimension at least two.

1. Let (M,A) be a smooth manifold of dimension m equipped with A–structure of rank
`, such that 2` ≤ m. If Ax is an algebra (i.e. for all f, g ∈ Ax, fg := f ◦ g ∈ Ax)
for all x ∈M , and the A–structure has weak generic rank ` then the A–structure has
generic rank `.

2. Let (M,A) be a smooth manifold of dimension m equipped with A–structure of rank
`, such that ` ≤ m. Let X1, . . . , Xm be a basis of A–module TxM . If there exists
X ∈ TxM such that dim(A(X)) = n, for all x ∈ M , then the A–structure has weak
generic rank at least n.

3. Let F be an affinor and let (M,A) be a smooth manifold of dimension m ≥ 2 equipped
with A–structure, where A = 〈E,F 〉. If F 6= qE, q ∈ R then the A–structure has
weak generic rank 2.

4. Let (M,A) be a smooth manifold with A–structure of rank `, such that ` ≤ dimM .
If Ax ⊂ T ?xM ⊗ TxM is an algebra with inversion, for all x ∈ M , then A has weak
generic rank. Moreover, if 2` ≤ dimM than A has generic rank `.

Let us note that the result (3) from Theorem 3.4 led to rich theory of F–planar curves and
F–planar transformations. One can see papers [46, 47, 48, 50, 49] for more details.

Corollary 3.5 ([30]). Let (M,A) be a smooth manifold with A–structure of rank `, such that
2` ≤ dimM and let A be an algebra. If there exists X ∈ TxM such that dim(A(X)) = n then
the A–structure has generic rank at least n.

In this section, assume that (M,A, [∇]A) is an A–structure with generic rank `, where
A = 〈F1, . . . , F`〉 is an algebra on m–dimensional manifold M , where 2` ≤ m, equipped with
the class of A-related connections [∇]A (see Definition 3.2).

On a smooth manifold endowed with an A–structure and a linear connection, we can
generalize the notions of Q–planar curves , Q–transformations and a Q–projective transfor-
mation known for almost quaternionic structure. We talk about so–called A–planar curves,
A–transformations and A–planar transformations (A–projective transformations).

Definition 3.6. Let (M,A) be a smooth manifold equipped with an A–structure of generic
rank ` and a linear connection ∇.

• A smooth curve c : R→M is said to be A–planar curve if ∇ċċ ∈ A(ċ).

• If a diffeomorphism f of M to itself leaves the bundle A invariant, then f is called
an A–transformation of (M,A).

• A diffeomorphism f : M → M is called A–planar map if each A–planar curve on M
is mapped onto the A–planar curve f?c on M .

• Let M̄ be another manifold with a linear connection ∇̄ and B–structure. A diffeo-
morphism f : M → M̄ is called (A,B)–planar map if each A–planar curve c on M
is mapped onto the B–planar curve f?c on M . In the special case, where A is the
trivial structure given by 〈E〉, we talk about B–planar maps.
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The following Theorem shows that if the class of A–related connections is chosen properly,
the class contains the connections sharing the A–planar curves and the geodesics of all con-
nections are exactly the A–planar curves of every one of them. Instead of A–planar curves,
we refer to them as to the geodesics [∇]A. The next Theorem shows that all connections with
this property and having the same torsion lie already in [∇]A.

Theorem 3.7 ([26, 24, 32]). Let (M,A, [∇]A) be an A–structure of rank `, such that 2` ≤
dimM equipped with the class of A–related connections [∇]A preserving A. A curve c : R→M
is A–planar with respect to at least one connection ∇̃ ∈ [∇]A on M if and only if c : R→M is
a geodesic of some connection from [∇]A. Moreover this happens if and only if c is A–planar
with respect to all connections from [∇]A.

Theorem 3.8 ([26, 24, 32]). Let (M,A, [∇]A) be an A–structure of rank `, such that 2` ≤
dimM equipped with the class of A–related connections [∇]A preserving A. Let ∇̄ be a linear
connection on M preserving A, such that ∇ and ∇̄ have the same torsion. If any geodesic of
∇̄ is A–planar for any ∇̃ ∈ [∇]A, then ∇̄ lies in the class of connections [∇]A.

The following claims summon the results obtained for the A–structure morphisms, see e.g.
papers [32, 26]. In the sequel, we will find the following results quite useful. Indeed, Theorem
3.9 from [32] describes the morphisms of A–structures generally and the last Corollary 3.10 of
this chapter translates this result into the terms of generalized projective A–structures.

Theorem 3.9 ([26, 24, 32]). Let (M,A,∇), (M ′, A′,∇′) be smooth manifolds of dimension
m equipped with A–structure and A′–structure of the same generic rank `, such that 2` < m,
and with a linear connection. Assume that the A–structure satisfies the property

∀X ∈ TxM, ∀F ∈ A, ∃cX | ċX = X, ∇ċX ċX = β(X)F (X), (3.2)

where β(X) 6= 0. If f : M → M ′ is an (A,A′)–planar mapping, then f is a morphism of the
A–structures, i.e f ∗A′ = A.

The following Corollary 3.10 deals with A–projective transformations, i.e. projective trans-
formation maps with respect to all connection from the class of A–related connections [∇]A.

Corollary 3.10 ([26, 24, 32]). Let (M,A, [∇]A) be a smooth manifold of dimension m equipped
with A–structure of the generic rank `, such that 2` < m, together with class of connections
[∇]A, such that [∇]A preserves A and satisfies the property

∀X ∈ TxM, ∀F ∈ A, ∃cX | ċX = X, ∇ċX ċX = β(X)F (X), (3.3)

where β(X) 6= 0. Then a diffeomorphism f : M → M is an A–transformation of (M,A) if
and only if it preserves the class of unparametrized geodesics of all A–related connections [∇]A
on M .

But the connection class [∇]A is parametrized by the space of one–forms on M . In case of
almost quaternionic geometry we can prove directly that for the corollary to hold it is enough
to use the connection class parametrized by one–forms.

3.2 Cliffordian projective geometries
In the sequel we focus on the class of A–structures where A is an algebra. For checking the
generic rank we can thus use Corollary 3.5 and for the description of the appropriate projective
transformations Corollary 3.10. All considerations are made for algebras over R and thus in
case of commutative algebra A it is possible to diagonalize A and apply the theory easily, some
of examples one can see for example in papers [13, 27]. The case of anticommutative algebra A
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is more interesting. In this chapter we focus on the case of A–structures, where A is a Clifford
algebra. As shown in the previous chapter, A being an algebra leaves us to check easily the
property of a generic rank and use the notion of A–planar curves for the description of the
geometry morphisms. General results for arbitrary Clifford algebra can be derived inductively
by means of Bott periodicity.

We shall call such structures almost Cliffordian in order to distinguish them from almost
Clifford structures, which are determined locally by the choice of the basis of A. This is the
same difference as between the almost quaternionic and almost hypercomplex structure. Our
aim is to define Clifford projective structure as a generalization of the quaternionic one. This
is done by the choice of a class of A–related connections, i.e. connections sharing the A–planar
curves and torsion.

It is the existence of the connection class that leads us to the claim that the homoge-
neous model of almost quaternionic geometry is a quaternionic projective space PnH, while on
contrary, the homogeneous model of almost hypercomplex geometry is the space Hn.

Motivated by these facts, we described some of these connections and their properties for
almost Cliffordian G–structures based on Clifford algebra Cl(3, 0) in paper [33] which was
motivated by paper [8], and Clifford algebras Cl(s, t) generally in papers [35, 29]. As we shall
see an almost Clifford structures and almost Cliffordian structures are G–structures based on
Clifford algebras and we can work with the class of D–connections.

We use the following notation. We focus on the Clifford algebra O := Cl(s, t), i.e. the free
unitary anti commutative algebra generated by elements Ii, i = 1, . . . t (called complex unities),
and elements Jj, j = 1, . . . , s (called product unities), which are anti commuting, i.e. I2i = −E,
J2
j = E and KiKj = −KjKi, Ki 6= Kj, where K ∈ {Ii, Jj}. On the other hand, we can see

the Clifford algebra O as a 2s+t–dimensional vector space and the algebra O is generated by
elements Fi, i = 1, . . . , k as a vector space. We choose a basis Fi, i = 1, . . . , k = 2t+s, such
that F1 = E, Fi = Ii−1 for i = 2, . . . , t + 1, Fj = Jj−t−1 for j = t + 2, . . . , s + t + 1 and by
all different multiples of Ii and Jj of length 2, ..., s + t. Let us note that both complex and
product unities can be found among these multiple generators.

The following Lemma 3.11 deals with so–called full matrix representation of a Clifford
algebra, i.e. special representation of the appropriate Clifford algebra Cl(s, t) on a vector
space R(2s+t)p for p ∈ N. The construction of such representation can be found in [35]. On the
other hand, one can see that there is a matrix representation of any Clifford algebra O on the
vector space R(2s+t)p, where p ∈ N, such that the following lemma holds. We will work with
this representation in sequel.

Lemma 3.11 ([35]). Let F1, . . . , Fk denote the k = 2s+t elements of the full matrix represen-
tation of Clifford algebra Cl(s, t) on Rkp, where p ∈ N. Then there exists a real vector X ∈ Rkp

such that the dimension of a linear span 〈FiX|i = 1, . . . , k〉 equals to k.

Definition 3.12. Let O = Cl(s, t) be a Clifford algebra. If M is an km–dimensional manifold,
where k = 2s+t and m ∈ N then an almost Clifford manifold is given by a reduction of the
structure group GL(km,R) of the principal frame bundle of M to

GL(m,O) := {A ∈ GL(km,R)|AIi = IiA,AJj = JjA},
whereO is an arbitrary Clifford algebra and Ii, i = 1, . . . , t, I2i = −E and Jj, j = 1, . . . , s, J2

j =
E is the set of anticommuting affinors such that the free associative unitary algebra generated
by 〈Ii, Jj, E〉 is isomorphically equivalent to O.

It is easy to see that an almost Clifford structure is not an A–structure, because the basis
F0, . . . , F` ∈ O has to be chosen.
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Definition 3.13. The A–structure where A is isomorphically equivalent to a Clifford algebra
O is called an almost Cliffordian manifold.

The following Theorem and Corollary, for more details see paper [29], generalizes classical
properties of Nijenhuis tensor for geometries based on Clifford algebras. By a choice of suitable
coordinate system for almost quaternionic geometry, it is possible to introduce D–connections
in such way that the torsion can be expressed in the form of a linear combination of Nijenhuis
tensors. If N(I, I) and N(J, J) are vanished, a torsion free connection is induced (see section
2.2). We intend to formulate to similar results in our future research. Nevertheless, the
geometry of Nijenhuis tensors is an important part of any geometry based on affinors and thus
we are going to mention several properties.

Theorem 3.14 ([29]). Let O be a Clifford algebra Cl(s, t) and let F,G ∈ O such that F 6= G.
If the Nijenhus tensors N(F, F ) and N(G,G) vanish, then N(FG,FG) vanishes.

Corollary 3.15 ([29]). Let O be a Clifford algebra Cl(s, t). If the Nijenhuis tensors N(Ii, Ii)
vanish, where Ii are the algebra generators of O, then

N(Fi, Fj) = 0, where Fi are vector space generators.

In order to define also generalized projective geometry we have to choose an appropriate
class of connections. One can easily check that the class of A–related connections, where
A = O

[∇]O = ∇+
dimA∑
i=1

Υi � Fi, (3.4)

where Υi are one forms on M , share the same class of A–planar curves, but we have to describe
them more carefully for Cliffordian manifolds. As any A–structure is also a G–structure, we
can find the corresponding structure group and its Lie algebra with its first prolongation.

One can see that an almost Cliffordian manifold M is given as a G–structure provided that
there is a reduction of the structure group of the principal frame bundle of M to

G := GL(m,O)GL(1,O) = GL(m,O)×Z(GL(1,O)) GL(1,O),

where Z(G) is a center of G. The action of G on TxM looks like

QXq, where Q ∈ GL(m,O), q ∈ GL(1,O),

where the right action of GL(1,O) is blockwise. In this case the tensor fields in the form
F1, . . . , Fk can be defined only locally. It is easy to see that the Lie algebra gl(m,O) of a Lie
group GL(m,O) is of the form

gl(m,O) = {A ∈ gl(km,R)|AIi = IiA,AJj = JjA}
and the Lie algebra g of a Lie group GL(m,O)GL(1,O) is of the form

g = gl(m,O)⊕ gl(1,O).

Let us note that the case of Cl(0, 3) was studied in a detailed way in [7] and the case of Cl(0, 2)
for example in [60].

We are looking for a class of A–related D–connections. The difference of two such con-
nections then lies in the first prolongation of the appropriate Lie algebra g(1). Theorem 3.16
describes the class of tensors belonging to the first prolongation of an arbitrary Clifford alge-
bra. A particular choice of coefficients εi and the proof that such coefficients always exist and
that the chosen connection class is in one–one correspondence with one–forms ξ on V, can be
found in [35]. These considerations lead us to Definition 3.17.
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Theorem 3.16 ([35]). Let O be the Clifford algebra Cl(s, t). For any one–form ξ on V and
any X, Y ∈ V, the elements of the form

SξX(Y ) =
k∑
i=1

εi(ξ(FiX)FiY + ξ(FiY )FiX), k = 2s+t,

where the coefficients εi depend on the type of O, belong to the first prolongation g(1) of the
Lie algebra g of the Lie group GL(m,O)GL(1,O).

Definition 3.17. A Cliffordian projective structure (geometry) (M,A, [∇]O) is given by the
Cliffordian structure (M,A) and equivalence class of affine connections

[∇]O = ∇+
k∑
i=1

εi(Υ ◦ Fi)� Fi, (3.5)

where coefficients εi are from Theorem 3.16.

Finally, note that traditionally a projective structure is the set of all unparametrized
geodesics of a given affine connection. In fact, there are many affine connections with the
same unparametrized geodesics and the projective structure is often alternatively defined as
an equivalence class of affine connections with the same unparametrized geodesics (see [4, 5]).
In almost complex geometry (M,J), a generalized complex geodesics is a map ϕ : R→M such
that ∇ϕ̇ϕ̇ ∈ 〈ϕ̇, J(ϕ̇)〉 and a complex projective structure is given by the complex structure J
and equivalence class of affine connections with the same generalized complex geodetics.

As we shall see later, in case of almost quaternionic geometry the class of these connections
coincides with the class of so–called Weyl connections and thus the class of almost quaternionic
geometries is projective. Indeed, as one can find in [60], the homogeneous model of an almost
quaternionic geometry is nothing but a quaternionically projective space. Now, we can describe
projective transformation of Cliffordian structures as transformations of Cliffordian projective
structures.

Theorem 3.18 ([35]). Let (M,A, [∇]O) be a Cliffordian projective structure, such that there
is a local basis 〈Fi〉 = O such that ∇Fi = 0 for some ∇ ∈ [∇]O. Then a diffeomorphism
f : M → M is a morphism of Cliffordian projective structures if and only if it preserves the
class of unparametrized geodesics of all connections [∇]O on M .

To complete the description, let us show the first prolongation of Lie algebra of Clifford
structure.

Lemma 3.19 ([35]). Let M be a (km)–dimensional Clifford manifold based on Clifford algebra
O = Cl(s, t), k = 2s+t, s+ t > 1, m ∈ N, i.e. manifold equipped with G–structure, where

G = GL(m,O) = {B ∈ GL(km,R)|BIi = IiB, BJj = JjB},
where Ii and Jj are algebra generators of O. Then the first prolongation g(1) of Lie algebra g
of Lie group G vanishes.

4 Parabolic geometries
Some of the above structures are also parabolic geometries. This holds for some cases of
our interest: almost quaternionic, almost Cliffordian projective where O = Cl(1, 0) i.e. almost
projective product and almost Cliffordian projective where O = Cl(0, 1), i.e. almost projective
complex. A homogeneous model of all these geometries is an appropriate projective space and
as we shall see later, projective geometry itself is also parabolic. For our considerations, it is
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fundamental that there exists a canonical G–invariant complement necessary for the choice of
the class of D–connections and this class is determined uniquely. In the terms of parabolic
geometries this class is called the Weyl connections. We shall recall basic notions.

The homogeneous model (Klein geometry [63, 71, 40, 41]) is a homogeneous spaceM ∼= G/P
together with a transitive action on M by a Lie group G, which acts as the symmetry group
of the geometry. Cartan’s generalized spaces [71] are curved analogues of the homogeneous
spaces G/P defined by means of an absolute parallelism on a principal P -bundle. Let P ⊂ G
be a Lie subgroup in a Lie group G, and g be the Lie algebra of G. A Cartan geometry of
type (G,P ) on a manifold M is a principal fiber bundle p : G → M with structure group
P which is endowed with a g-valued one-form ω ∈ Ω1(G, g), called the Cartan connection
such that ω is P -equvariant, ω reproduces the fundamental vector fields and ω is an absolute
parallelism. The homogeneous model for Cartan geometries of type (G,P ) is the canonical
bundle p : G→ G/P endowed with the left Maurer–Cartan form ω ∈ Ω1(G, g).

Definition 4.1. [71] Let g be a |k|–graded semisimple Lie algebra. A parabolic geometry is a
Cartan geometry of type (G,P ), where G is a semisimple Lie group and P ⊂ G is the subgroup
of all elements of G whose adjoint action preservers the filtration associated to a |k|–grading
of the Lie algebra g of G

One can find the theory of parabolic geometries in the book “Parabolic geometries I,
Background and general theory” [71] by Andreas Čap and Jan Slovák published in 2009 in
AMS Publishing House. There are also many articles, for example [69, 74, 20, 72, 70, 65, 73,
66, 67]. The general idea of Cartan geometries is to model the individual tangent spaces by
the Lie algebra g/p, i.e. the tangent space to the homogeneous model in the origin inclusive
its algebraic structure. In the special case of parabolic geometries, this amounts to special
understanding of the corresponding |k|–gradings of semisimple Lie algebras. Note that a
parabolic geometry, after selecting the reductive part g0 of p, is canonically a split Cartan
geometry, since we always have the subalgebras g−, which is complementary to the subalgebra
p ⊂ g. This complement is however very far from being p–invariant.

Geometric structures of our interest are the examples of so–called |1|–graded parabolic
geometries, i.e. geometries determined by |1|–gradation. Let g = g−1⊕g0⊕g1 be a |1|–graded
semisimple Lie algebra, let G be a Lie group with Lie algebra g and let P ⊂ G be a parabolic
subgroup for the given grading with Levi subgroup G0 ⊂ P .

4.1 Torsions of Weyl connections
In the general theory, the classical prolongation procedure for G–structures starts with finding
a minimal available torsion for a connection belonging to the structure on the given manifold
M . Unlike the projective and conformal Riemannian structures where torsion free connections
always exist, the torsion has to be allowed for the almost quaternionic structures in general in
dimensions bigger than four, for the almost product and almost complex projective structures
in general in dimensions bigger than two.

The standard normalization comes from the general theory of parabolic geometries and
we shall not need this in the sequel. The details may be found for example in [70], [20], for
another and more classical point of view see [60]. The only essential point for us is that all
connections compatible with the given geometry sharing the unique normalized torsion are
parametrized by smooth one–forms on M . In analogy to the conformal Riemannian geometry
we call them Weyl connections for the given geometry on M .

In more detail, parabolic geometry (p : G → M,ω) is called normal if its curvature κ
satisfies ∂∗κ = 0, where ∂∗ is and adjoint for cohomology operator ∂ and in this case the
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harmonic curvature κH is defined to be the image of κ in the space of sections of the bundle
G0 ×G0 H

n(g−, g). The harmonic curvature of normal parabolic geometries is much simpler
object and the most important fact is that there is an algorithm to compute the harmonic
curvature [75, 71]. For normal parabolic geometries vanishing of κH implies vanishing of κ and
finally in the case |1|–graded parabolic geometries (κH)1 coincides with the torsion of Weyl
connections.

The almost quaternionic (or almost complex projective, or an almost product projective)
structures on a manifold M admitting a linear connection compatible with the structure
and without torsion are called quaternionic (or complex projective, or product projective)
geometries. In the case, the Weyl connections on M are just the connections without torsion
and compatible with the G–structure. In general, the Weyl connection are all compatible
connections sharing the unique normalized torsion.

Finally note, that |1|–graded parabolic geometries are normally completely given by certain
classical G–structures on the underlying manifolds, as we will see for an almost quaternionic.
In other two mentioned cases however the semisimple Lie algebra belongs to the series of
exceptions and only the choice of an appropriate class of connections defines the Cartan
geometry completely [70, 71]. Moreover in these two cases the Lie algebra g is a real form of
semisimple (not simple) Lie algebra gC = g′ ⊕ g′′. Note that in case of semisimple g = g′ ⊕ g′′

parabolic geometries, the appropriate cohomology is computed by the Künneth formula from
the classical Kostant’s formulae.

4.2 Projective geometries
Very well known example of |1|–graded parabolic geometry is projective geometry. Classically,
two connections are called projectively equivalent if they share the geodesics as unparametrized
curves. Let us remind that in both smooth and holomorphic settings this means

∇̃ξη = ∇ξη + Υ(ξ)η + Υ(η)ξ, (4.1)

for smooth or holomorphic one form Υ. A smooth manifold M equipped with a projective class
of connections (4.1) is called projective [4, 5]. In parabolic geometry language, the projective
geometry is the split real form of the complex Lie algebra gC = sl(n,C), i.e. g = sl(2n,R). In
the Satake diagram, we obtain the appropriate parabolic subalgebra p by setting |1|-gradation
by crossing the first root, i.e.

× ◦ · · · ◦ ◦ .
In matrix form, we can view elements of g as block matrices(

−tr(A) Z
X A

)
,

with X ∈ Rn, Z ∈ Rn∗ and A ∈ gl(n,R), such that(
0 0
Z 0

)
∈ g−1,

(
−tr(A) 0

0 A

)
∈ g0,

(
0 X
0 0

)
∈ g1.

The group SL(n,R) consists of all invertible linear endomorphisms of Rn with determinant
equal of one. We define G = PSL(n + 1,R) as the quotient of SL(n + 1,R) by its center
{±id}. Then subgroup P by definition is the stabilizer of the line generated by the first vector
in the standard basis and G/P ∼= PRn and the subgroup G0 is equal to GL(n,R).

In order to understand the latter formulae, we introduce the so called adjoint tractors.
They are sections of the vector bundle (called usually adjoint tractor bundle) over M

A = G0 ×G0 g.

The transformation formulae for the Weyl connections for |1|–graded geometries are gen-
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erally given by the Lie bracket in the algebra in question.

∇̂XY = ∇XY + [[X,Υ], Y ] (4.2)

where we use the frame forms X, Y : G → g−1 of vector fields, and similarly for Υ : G →
g1. Consequently, [Υ, X] is a frame form of an affinor valued in g0 and the bracket with Y
expresses the action of such affinor on the vector field. According to the general theory, this
transformation rule works for all covariant derivatives ∇ of Weyl connections. If we rewrite
the rule for the Weyl connection transformation, we obtain exactly (4.1) and if we realize that
G0 contains all invertible matrices n×n and thus the reduction of the principal frame bundle
is avoided, we find that parabolic geometry corresponds exactly to the choice of a projective
connection class.

We will see that for an almost complex projective geometry, the rule (4.2) coincides with
(4.3) and for an almost product projective geometry, the rule (4.2) coincides with (4.4).

4.3 Examples
In the last part we show the impact of the theory on three important examples which are
parabolic and Cliffordian projective simultaneously. In these cases we show that the class of
Weyl connections corresponds to the class of [∇]O–projective connections and that the ap-
propriate group G0 coincides with the group of morphisms preserving A. As the parabolic
geometry class of Weyl connections is given, both geometries are identical. Furthermore, we
know that the structure morphisms are exactly the generalized projective transformations.
We will do it in five steps:

1. Define an A–structure, where A = O is a Clifford algebra
2. Define an Cliffordian projective geometry (M,O, [∇]O)
3. Define parabolic geometry, such that G0 is a geometry from (2)
4. Proof the coincidence of class [∇]O and Weyl connections
5. Discus geometric interpretation of torsion
6. Formulate results on projective transformations

ad 4. The key is to compute the difference tensor of Weyl connections [[X,Υ], Y ]. The
computations are quite technical and can be found for particular geometries in [25, 31] and
[32].

4.3.1 Almost quaternionic structures
Almost hypercomplex structures [82, 2, 20, 14] are smooth manifolds equipped with a smooth
linear hypercomplex structure on each tangent space, but they do not possess any invariant
connection. An almost quaternionic structure is an A–structure on smooth manifold M , such
that the fibre Ax is isomorphic to hypercomplex numbers (quaternions) for any x ∈M .

1) Let M be a smooth manifold of dimension 4n. An almost hypercomplex structure on
M is a triple (I, J,K) of smooth affinors in Γ(T ∗M ⊗TM) satisfying I2 = J2 = K2 = −idTM ,
K = IJ = −JI. An almost quaternionic structure is an A–structure, where A is locally
generated by the identity E and and a hypercomplex structure.

2) These G–structures are of finite type. For an almost quaternionic structure there is a
class of D–connections parametrized also by all smooth one–forms Υ, but with the transfor-
mation rule

∇̃ξη = ∇ξη −Υ(Iξ)Iη + Υ(ξ)η −Υ(Iη)Iξ + Υ(η)ξ

−Υ(Jξ)Jη + Υ(ξ)η −Υ(Jη)Jξ + Υ(η)ξ

−Υ(Kξ)Kη + Υ(ξ)η −Υ(Kη)Kξ + Υ(η)ξ
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3) The structure group of an almost quaternionic structure is G0 = GL(n,H)×Z2 Sp(1),
where Sp(1) are unit quaternions in GL(n,H). Let us reformulate G0 ⊂ P as the subgroup of
SL(n+ 1,H):

G0 =

{(
a 0
0 A

)
: A ∈ GL(n,H),Re(a detA) = 1

}
,

P =

{(
a Z
0 A

)
: A ∈ GL(n,H),Re(a detA) = 1, Z ∈ (Hn)∗

}
.

Now, since P is an parabolic subgroup the Lie algebra g = sl(n + 1,H) carries G0–invariant
grading g = g−1 ⊕ g0 ⊕ g1, where

g0 =

{(
a 0
0 A

)
: A ∈ gl(n,H), a ∈ H,Re(a+ TrA) = 0

}
,

g1 =

{(
0 Z
0 0

)
: Z ∈ (Hn)∗

}
, g−1 =

{(
0 0
X 0

)
: X ∈ (Hn)

}
.

In other words, an almost quaternionic geometry corresponds to the real form sl(n+ 1,H)
of the complex algebra gl(2n+ 2,C) and we obtain the appropriate parabolic subalgebra p by
setting |1|-gradation by crossing the second (firs noncompact) root, i.e. corresponding to the
Satake diagram:

•—×— •— · · ·— •— ◦—•
5) The torsion has to be allowed for the almost quaternionic structures in general in

dimensions bigger than four. Essential point for us is that all connections compatible with the
given geometry sharing the unique normalized torsion are parameterized by smooth one–forms
on M . In analogy to the conformal Riemannian geometry we call them Weyl connections for
the given almost quaternionic geometry on M .

6.) Let f : M → M ′ be a diffeomorphism between two almost quaternionic manifolds of
dimension at least eight. Then f is a morphisms of the geometries if and only if it preserves
the class of unparametrized geodesics of all Weyl connections on M and M ′.

4.3.2 Almost complex projective structures

An almost complex structure [79, 6, 54, 44] is a smooth manifold equipped with a smooth
linear complex structure on each tangent space.

1) Let M be a smooth manifold of dimension 2n. An almost complex structure on M is
a smooth trace–free affinor J in Γ(T ?M ⊗ TM) satisfying J2 = −idTM . We can equivalently
define an almost complex structure (M,J) as a reduction of the linear frame bundle P 1M to
the structure group preserving this affinor J , i.e. for our choice of affinor J the group is

A1,1 · · · A1,n
...

...
An,1 · · · An,n

∣∣∣∣∣Ai,j =

(
ai,j −bi,j
bi,j ai,j

)
, det(A) 6= 0

 ∼= GL(n,C).

2) These G–structures are of infinite type but each choice of ∇ compatible with the affinor J ,
i.e. ∇J = 0, defines a geometry of finite type (with morphisms given by the affine maps)[40]

∇̃ξη = ∇ξη −Υ(Jξ)Jη + Υ(ξ)η −Υ(Jη)Jξ + Υ(η)ξ. (4.3)

3) The homogeneous model (Klein geometry) is a homogeneous space M ∼= G/P together
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with a transitive action on M by a Lie group G, which acts as the symmetry group of the
geometry [71]. In our example, the Lie group G is SL(n+ 1,C) and P is the usual parabolic
subgroup of all matrices of the form{(

c W
0 C

)
, where C ∈ GL(n,C), c ∈ GL(1,C), c · det(C) = 1

}
and C has positive real determinant. The Lie algebra of P is a parabolic subalgebra of the
real form g = sl(n+1,C) of the complex algebra gC = sl(n+1,C)⊕sl(n+1,C) corresponding
to the Satake diagram:

× tt **◦ · · · ◦ ◦ xx &&◦ ◦ · · · ◦ ×
The Maurer–Cartan form on G provides the homogeneous model by the structure of |1|-graded
parabolic geometries of type (G,P ). In the matrix form, we can illustrate the grading from
our example as:

g = g−1 ⊕ g0 ⊕ g1,

where

g−1 =


0 0 · · · 0
A2,1 0 · · · 0

...
Am,1 0 · · · 0

 , g0 =


A1,1 0 · · · 0

0 A2,2 · · · A2,m

0
... · · · ...

0 Am,2 · · · Am,m

 ,

g1 =


0 A1,2 · · · A1,m

0 0 · · · 0
...

... · · · ...
0 0 · · · 0

 .

5) In the our case, however the semisimple Lie algebra belongs to the the series of excep-
tions and only the choice of an appropriate class of connections defines the Cartan geometry
completely [70, 71]. For normal structures the torsion has to be of type (0, 2), but it is well
known that for a linear connection which preserves an almost complex structure the (0, 2)–
component of the torsion is a non–zero multiple of the Nijenhuis tensor.

6) Let f : M →M ′ be a diffeomorphism between two almost complex projective manifolds
of dimension at least four. Then f is a homomorphism (f ∗J = J) or an anti-homomorphism
(f ∗J = −J) of the almost complex projective structures if and only if it preserves the class of
unparametrized geodesics of all Weyl connections on M and M ′.

4.3.3 Almost product projective structures

An almost product structure [79, 6, 54] is a smooth manifold equipped with a smooth linear
product structure on each tangent space.

1) Let M be a smooth manifold of dimension 2m. An almost product structure on M is
a smooth affinor J in Γ(T ?M ⊗ TM) satisfying J2 = idTM . For better understanding, we
describe an almost product structure at each tangent space in a fixed basis, i.e. with the help
of real matrices:

J :=

(
Im 0
0 −Im

)
.
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The eigenvalues of J have to be ±1 and TxM = TLxM ⊕TRx M, where the subspaces are of the
form

TLM := J+ =

{(
c
0

)
| c ∈ Rm

}
, TRM := J− =

{(
0
c

)
| c ∈ Rm

}
.

Thus, we can equivalently define an almost product structure J on M as a reduction of the
linear frame bundle P 1M to the appropriate structure group, i.e. as a G–structure with the
structure group L of all automorphisms preserving the affinor J :

L :=

{(
A 0
0 B

)
|A,B ∈ GL(m,R)

}
∼= GL(m,R)×GL(m,R).

2) These G–structures are of infinite type, however each choice of a linear connection ∇
compatible with the affinor J , determines a finite type geometry similar to products of projec-
tive structures, which we shall study below. Instead, we shall consider a class of connections
parametrized also by all smooth one–forms Υ, but with the transformation rule

∇̂ξL+ξR(ηL + ηR) = ∇ξL+ξR(ηL + ηR) + ΥL(ξL)ηL + ΥL(ηL)ξL

+ ΥR(ξR)ηR + ΥR(ηR)ξR,
(4.4)

where the indices at the forms and fields indicate the components in the subbundles TLM and
TRM , respectively. Clearly such a transformed connection will make J parallel again.

3) Let us consider the homogeneous space M = G/P given as the product of two projective
spaces GL/PL ×GR/PR, i.e. GL = GR = SL(n+ 1,R) while P = PL × PR, where PR = PL is
the usual parabolic subgroup corresponding to the block upper triangular matrices of the block
sizes (1, n). Clearly, any product connection on M built of the linear connections ∇L and ∇R

from the two projective classes on the product components provides a homogeneous example
of an almost product projective structure. At the same time, the Maurer–Cartan form on G =
GL×GR provides the homogeneous model of the |1|-graded parabolic geometries of type (G,P ).
The Lie algebra of P ×P is a parabolic subalgebra of the real form sl(n+ 1,R)⊕ sl(n+ 1,R)
of the complex algebra sl(n+ 1,C)⊕ sl(n+ 1,C) corresponding to the Satake diagram:

×— ◦— · · ·— ◦ ◦— · · ·— ◦—× .
In the matrix form, we can illustrate the grading from our example as:

g =


gL0 gL1 0 0
gL−1 gL0 0 0
0 0 gR0 gR1
0 0 gR−1 gR0


5) In our case, the appropriate cohomology is computed by the Künneth formula from the

classical Kostant’s formulae and the computation [75] provides all six irreducible components of
the curvature, only two of which are of torsion type. Of course, the integrability obstructions of
the bundles TLM and TRM are just those two. Therefore, a normal almost product projective
structure (M,J, [∇]) has this minimal torsion. I.e. if (M,J, [∇]) is a normal almost projective
product structure on a smooth manifold M then the Weyl connections coincide exactly with
the distinguish class [∇].

6) Let f : M →M ′ be a diffeomorphism between two almost product projective manifolds
of dimension at least four. Then f is a morphism of the almost product structures if and only
if it preserves the class of unparameterized geodesics of all Weyl connections on M and M ′.
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5 Special geometric structures in engineering
In this chapter, we show a few common applications of Clifford algebras in engineering. In
the 21’ century, Clifford algebra engineering application are widely developed area. Our ap-
plications are mostly based on Euclidean Clifford algebras and conformal Clifford algebras.
Euclidean Clifford algebras represent rigid body motions of Euclidean space. Conformal Clif-
ford algebras cover projective transformations in addition. For more information one can see
the books [59, 21, 62]. In the last section we briefly show the impact of the jet theory in to
material sciences, for more details see [12, 10, 34].

5.1 Clifford Algebra for the Euclidean Group
To work with Euclidean geometry, we have to extend the basic definition of Clifford algebra
from section 3.2. The Clifford algebra Cl(s, t, r) is a free unitary anti commutative algebra
generated by elements fj, j = 1, . . . , s; ei, i = 1, . . . t, and gk, k = 1, . . . r such that f 2

j = E,
e2i = −E and g2k = 0. In particular, the Clifford algebras Cl(s, t, 0) are denoted as Cl(s, t).

On any Clifford algebra there is a conjungation ∗, we define c∗i = −ci for Clifford algebra
generators and (cicj)

∗ = c∗jc
∗
i for any pair of Clifford algebra elements. Finally, we can split

any Clifford algebra into even and odd degree subspaces

Cl(s, t, r) = Cl+(s, t, r)⊕ Cl−(s, t, r)

and define

Spin(n) = {g ∈ Cl+(0, n, 0)| gg∗ = 1, gxg∗ ∈ V, for all x ∈ V}
as a Spinor group of rotations, where V = 〈e1, , . . . , en〉 is a vector space isomorphically
equivalent to Rn.

Example 5.1. In the Clifford algebra Cl(0, 3, 0) we have four even elements

1, e1e2, e1e3, e2e3 ∈ Cl+(0, 3, 0).

One can see that (e1e2)
2 = e1e2e1e2 = −1, (e1e3)

2 = −1 and (e2e3)
2 = −1 and we can identify

Cl+(0, 3, 0) with quaternion numbers H. The conjugation of element

c = α0 + α1e1e2 + α2e1e3 + α3e2e3 ∈ Cl+(0, 3, 0), αi ∈ R
is

c∗ = α0 − α1e1e2 − α2e1e3 − α3e2e3 ∈ Cl+(0, 3, 0),

and our conjugation is natural quaternionic conjugation

(α0 + α1i+ α2j + α3k)∗ = α0 − α1i− α2j − α3k.

Finally, we can identify Spin(3) with unitary quaternions which are usually used to rotate
objects in R3.

In general dimension, one can represent the elements of Rn as the set

{1 + xe | x = x1e1 + · · ·xnen} ⊂ Cl(0, n, 1)

where e2 = 0, e2i = −1, and define the group of rotors

Rot(n) = {g +
1

2
tge | g ∈ Spin(n), t = t1e1 + · · ·+ tnen} ⊂ Cl(0, n, 1),

then the action of group Rot(n) on the Rn is given by conjugation

(g +
1

2
tge)(1 + xe)(g +

1

2
tge)∗ = 1 + (gxg∗ + t)e.

In fact, the group Rot(n) ∼= Spin(n) n Rn double covers the group of proper rigid motions
SE(n). For R3 we can identify Spin(3) with H (see Example 5.1) and then Rot(n) ∼= HnRn.
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5.1.1 Clifford algebra of Points, Lines and Planes in R3

The vector equation of the plane is given by n · r = d, where r is any point on the plane, n
is a unit normal vector and d ∈ R is a perpendicular distance from the origin. In Euclidean
Clifford algebra Cl(0, 3, 1) = 〈e1, e2, e3, e〉, plane can by represented by the elements of the
form

π = nxe1 + nye2 + nze3 + de

and the points [x, y, z] are represented by the elements of the form

p = e1e2e3 + xe2e3e+ ye3e1e+ ze1e2e.

Lines in R3 can by determined by a pair of vectors:

1. unit direction vector v,

2. momentum vector u = r × v, where r is the position of any point on the line.

In Euclidean Clifford algebra Cl(0, 3, 1) we will represent a line by the element of the form

l = (vxe2e3 + vye3e1 + vze1e2) + (uxe1e+ uye2e+ uze3e).

On the Clifford algebra there are algebraic operations of incidence, meets and joints. For
example, by direct computation of exterior product we have

π ∧ p :=
1

2
(πp− pπ) = (xnx + yny + znz − d)e1e2e3e

and this expression of exterior product vanishes if the point lies on the line. It is not difficult
to see that the same property holds for any combination of points, lines and planes. The
intersection of pair of linear subspaces can be found by taking their exterior product and then
dividing by a constant.

5.1.2 Robot Kinematics
Let us show the description of T 3 robot by means of a Clifford algebra. The acronym T 3 was
intended to stand for “The Tomorrow Tool“, the large industrial 6–R robot manufactured by
Cincinnati Milacron [62]. The following Clifford algebra elements `1, . . . , `6 ∈ Cl(0, 3, 1) are
joint axes of our robot in initial position.

`1 = e1e2,

`2 = e2e3,

`3 = e2e3 + l1e2e,

`4 = e2e3 + (l1 + l2)e2e,

`5 = e3e1 − (l1 + l2 + l3)e1e,

`6 = e1e2

where the numbers l1, l2 and l3 are the constant design parameters of the robot. The second,
third and fourth joint axes of this robot are parallel. One can work with the system in the
following way: to compute `1`

∗
1 = e1e2(e1e2)

∗ = e1e2(−e2)(−e1) = 1, it is easy to see that
`1 ∈ Spin(n) and one can define the element r1 = `1 + 1

2
t`1e, where t = t1e1 + · · · tnen.

Now, the conjugation by element `1 represents rotation around the axis `1 and conjugation by
element r1 represents screw motion around the axis `1.

In the book [62] on can see strength of our approach to verify assumption of very well
known Piper’s theorem which showed that any 6–R robot that has three consecutive joint axes
meeting at a point (or three consecutive joints axes parallel) has solvable inverse kinematics.
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5.2 Conformal Clifford Algebra
In optics, computer vision or neurogeometry we mostly work with projective geometry and usu-
ally use stereographic projection. In Clifford algebra language, we extend the space Cl(0, 3, 0)
by adding two base vectors, such that the extended Clifford algebra is Cl(1, 4, 0), i.e. it be-
comes mixed signature and is defined by the basis {e1, e2, e3, e, ē}, where e and ē are defined
so that

e2 = 1, ē2 = −1, e · ē = 0, e · ei = ē · ei = 0, i ∈ {1, 2, 3}.
Now, if we define so called null vectors as

n = e+ ē

n̄ = e− ē (n2 = n̄2 = 0)

then the transformation

F (x) =
1

2
(x2n+ 2x− n̄) ≡ X, (where F−1 = (X ∧ n) · e, X 6= n)

maps R3 to the null vectors, i.e. (F (x))2 = 0, x ∈ 〈e1, e2, e3〉. The origin is mapped approxi-
mately (multiple by scalar) to n̄ and we define n as the image of infinity, i.e.

F (0) ∼ n̄, F (∞) ∼ n.

One can see, that rotations and other natural transformations work on null space as a con-
jungation:

1. Rotations:

RF (x)R∗ = F (RxR∗)

2. Translations:

Ta = exp(
na

2
) = 1 +

na

2
, F (x+ a) = TaF (x)T ∗a

3. Dilations:

Dα = exp(
αeē

2
), F (e−αx) ∼ DαF (x)D∗α

4. Inversion x 7→ x2

x
may be represented as

F (x) 7→ eF (x)e,

Representation of geometric objects in conformal Clifford algebra is then the following:

generalized circles lines Xi ∧Xj ∧ n
circles Xi ∧Xj ∧Xk

generalized spheres planes Xi ∧Xj ∧Xk ∧ n
spheres Xi ∧Xj ∧Xk ∧Xl

For example, if

M : F (x1) ∧ F (x2) ∧ F (x3) ∧ F (x4)

is a generalized sphere which passes through the points x1, . . . x4, then

RMR̃ : RF (x1)R̃ ∧RF (x2)R̃ ∧RF (x3)R̃ ∧RF (x4)R̃

is sphere after an effect of rotor R and

RMR̃ : F (Rx1R̃) ∧ F (Rx2R̃) ∧ F (Rx3R̃) ∧ F (Rx4R̃)

is generalized sphere passing through the points RF (x1)R̃, . . . , RF (x4)R̃.
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5.2.1 Saccadic eye movement
There are several types of human eye movement but this note is concerned with sacadic eye
movement which is used to fix targets in the scene. In the brain sciences, the very well Listing’s
law asserts further that there is a unique gaze direction p, called the primary direction, such
that, for any g, S(g) is obtained by a parallel transport along a geodesic from p. Let p be a
reference gaze direction, a saccade from p to a new direction g can be described by saccade
spinor S satisfying

g = SpS−1

Listing’s law states that the actual orientation of the eye, as p is fixated is consistent with
rotation of the primary line of the sight z around a perpendicular axis w. It follows that,
although the axis of rotation depends on the target direction, it must lie in Listing’s plane,
which is itself perpendicular to the reference direction. Listing’s plane, which is determined
by experiment, is approximately parallel to the face.

In the visual analysis, we use the stereographic projection to describe the retinal projection
of the scene. This procedure is defined as follows. The eyeball is represented by the unit sphere
S and the stereographic center of projection s0 = (0, 0,−1) is fixed in the back of the eyeball.
A projection plane T is fixed in space, perpendicular to the z axis. Note that, in coordinates,
the axis is defined as Doner’s low asserts that gaze attitude S = S(g) for any gaze direction
is unique and independent of the path by which the eye arrived at g. Accordingly, Listing’s
law is expressed by the formula

S(g) = 1 + gp = 1 + g · p+ I(g × p),
where I := e1e2e3e is so called pseudoscalar. A saccade from p in a new direction g together
with stereographic projection can be described by a spinor G, such that

g = GF (p)G−1,

where G = eS by formula

G(g) = e+ egp = e+ e(g · p) + eI(g × p) =

= e+ (g · p)e+ eI(g × p) =

= e+ (g · p)e− e1e2e2e(g × p).

5.3 Material science
In continuum mechanics, a material body B is defined as a three–dimensional differentiable
manifold that can be covered with a single coordinate chart. We recall that a configuration of
material body B is an embedding

κ : B → E3

and the single coordinate chart κ0 : B → R3 is usually identified as a reference configuration.
Once a reference configuration has been fixed, one can associate with any given configuration
κ the deformation χ := κ ◦ κ−1 and the non–singular Jacobian matrix F = ∂χ

∂x
evaluated

in any point called deformation gradient. The constitutive equation of material body B is a
mathematical expression of thermomechanical behaviour. In the case of hyperelasticity, the
constitutive equation is of the form ψ = ψ(F, κ).

We define a Cosserat body as the principal frame bundle P1B of an ordinary material body
B. The physical meaning is that the underling body represents the macromedium and each
fiber P1

xB represents microparticle or grain at x ∈ B [11, 9].
In fact, the use of differential geometry in material science is based on 1-jet calculus. This

technique is described for example in [12, 10]. A material body endowed with a constitutive
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equation induces naturally a linear connection, and several important physical properties of
the material are described by means of its geodesics. The cited books handle one constitutive
equation and thus one appropriate linear connection. In case that a material is endowed with
more than one constitutive equation, that is, by more than one connection, the topic of higher
order connections appears. Note that the topic of higher order connections is widely studied;
see, for example, [42]. Such approach is not established so far in the material science, and
the paper [34] thus formulates introductory principles and problems of the theory of materials
endowed with more than one constitutive equation.
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[47] Josef Mikeš. Geodesic mappings of affine-connected and riemannian spaces. J. Math.
Sci., (3).
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Abstract
This thesis deals with Clifford algebras and geometric structures over them. Motivated by
the fact that the choice of the projective structure corresponds to the choice of the class of
connections sharing geodesics and the choice of ”complex” projective structure corresponds to
the choice of connections sharing the J–planar curves, we define the projective A–structures
as A–structures together with the choice of connection class sharing A–planar curves. If A is a
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Clifford algebra, we obtain a class of so–called Cliffordian projective structures. While almost
quaternionic structure is the parabolic geometry, an almost complex and almost product are
not parabolic and become parabolic geometries just after the choice of a special class of
connections. As our main result, we have shown that the morphisms of these projective
structures are exactly the morphisms preserving the class of geodesics of Weyl connections,
i.e. the generalized projective transformations with respect to the class of Weyl connections.
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