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1 INTRODUCTION

The Ph.D. thesis is focused on the investigation of asymptotic properties of solu-
tions of some nonlinear differential equations with delayed argument and their dis-
crete analogues (the corresponding difference equations). The content of this thesis is
formed by three scientific papers which have been published (or submitted) in inter-
national mathematical journals.

1.1 RESEARCH MOTIVATION

Delay differential equations play an important role in the research field of vari-
ous applied sciences such as control theory, electrical networks, population dynamics,
environment science, biology and life science. Mathematical models employing de-
lay differential equations turn out to be useful especially in the situation, where the
description of investigated systems depends not only on the position of a system in
the current time, but also in the past. In such cases the use of ordinary differential
equations turns out to be insufficient. The presence of a delayed time argument in the
investigated system may frequently influence properties of solutions. The survey of
the theory related to delay differential equations can be found e.g. in books [3], [6],
[17], [27] or [40].

It is known that the exact solution of delay differential equations can be found just
in some special cases. There is no unified approach to solve the delayed differential
equations, even in the linear case. The theory of ordinary differential equations gives
various methods to obtain analytical solution (e.g. the variation of constants method,
the separation of variables method and others). But these methods are inapplicable
dealing with delay differential equations. Hence qualitative and numerical analysis of
these equations gather great importance.

The importance of numerical solutions of delay differential equations has still been
stated in the first chapter. Problems of numerical methods for (linear as well as non-
linear) delay differential equations have been investigated in many papers (see e.g. [7],
[23], [24], [35], [37] or [43]). General reference is [6], where the overview of basic
results from numerical analysis for differential equations with delayed argument can
be found. In particular, numerical investigations of the θ-method for some linear delay
differential equations are the subject of papers [5], [12], [19], [20], [32] and [44]. It can
be stated that the analysis of the θ-method for nonlinear delay differential equations is
just at its beginning.

For successful implementation of numerical methods it is often necessary to have
general information about qualitative behaviour of solutions of the corresponding
exact equation. In this sense the qualitative and numerical analysis of solutions of
delay differential equations influence each other. As an example we can mention a
simple initial value problem

x′(t) = −x(0.99 t), t ≥ 0, x(0) = 1.
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Its solution (exact or numerical) takes within a long time interval almost zero values
(e.g. x(t) ≈ 10−10 for t ∈ (100; 200)), consequently the numerical solution gives the
identically zero solution after some critical instant due to the rounding errors. But it
is contrary to qualitative behaviour of the exact solution, which is not stable (for more
details see [35] and [31]). From this point of view, the simultaneous qualitative and
numerical investigation of delay differential equations seems to be desirable.

1.2 OBJECTIVES OF THE THESIS

The aim of the thesis is to investigate qualitative (especially asymptotic) properties
of some nonlinear delay differential and difference equations.

The thesis deals with the behaviour of all solutions of the differential equation

x′(t) = a(t)x(t) + f(t, x(τ(t))), t ∈ I := [t0,∞), (1.1)

where x(t) represents a given state value, τ(t) is representing delayed argument and
the function f(t, x) fulfills the relation

|f(t, x)| ≤ |b(t)||x|r + |g(t)| (1.2)

for suitable continuous functions b(t), g(t) and a positive real scalar r.
The first goal is to analyse asymptotic properties of this equation. The second aim of

the thesis concerns asymptotic properties of solutions of the delay difference equation

∆y(n) = p(n)y(n) +
k∑
i=1

qi(n)|y(τ̄i(n))|ri sgn y(τ̄i(n)) + d(n), n ∈ N(n0), (1.3)

where 0 < ri ≤ 1 are real scalars, p(n), qi(n), d(n) are sequences of reals and τ̄i(n)
are suitable sequences of integers. This difference equation has been obtained via
the numerical discretization of the studied differential equation, where several delays
instead of one delay have been considered. For this purpose, we utilized the Euler
method as the probably simplest convergent numerical schema. Also other studied
discrete equations correspond to selected numerical formulae, which can be used for
approximate solutions of analysed equation.

Another task consists in comparisons of the results following from qualitative analy-
sis of studied delay differential equations and corresponding difference equations. Due
to these comparisons, we set up conditions on numerical parameters (the stepsize)
preserving specific qualitative properties of underlying equations (stability solutions,
asymptotic estimates, etc.).

1.3 SOME PRELIMINARIES

In the thesis the problem of the asymptotic bounds of all solutions for the nonlinear
delay differential equation (1.1) is studied, where a : I → R is a continuous function,
f : I × R → R is a given continuous function and τ : I → R is a real continuous,
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increasing and unbounded function on I , which fulfills conditions τ(t) < t for all t >
t0 and τ(t0) ≤ t0. In particular, it also involves some special cases, e.g. τ(t) = t− κ,
κ > 0 (constant delay) or τ(t) = λt, 0 < λ < 1, t ≥ 0 (proportional delay).

Further we assume that the function f(t, x) fulfils the relation (1.2) for a suitable
real number r > 0, where x ∈ R and b(t), g(t) are continuous functions on I .

We discuss two cases of studied equations: sublinear delay differential equations
(0 < r ≤ 1, note that r = 1 corresponds to the linear case) and superlinear delay
differential equations (r > 1). The example of a sublinear equation is

x′(t) = a(t)x(t) + b(t)|x(τ(t))|r sgnx(τ(t)) + g(t), t ∈ I, 0 < r ≤ 1. (1.4)

Similarly, as an example of a superlinear equation we can mention the equation

x′(t) = a(t)x(t) + b(t)|x(τ(t))|r sgnx(τ(t)) + g(t), t ∈ I, r > 1.

By a solution of (1.1) we understand a real valued function x(t) which is continuous
on [τ(t0),∞), continuously differentiable on I and satisfies (1.1) on I .

As far as the existence and uniqueness of solutions of (1.1) are concerned, assum-
ing τ(t0) < t0 we can apply the method of steps to show that there exists a unique
solution of this equation coinciding with a given initial function on the initial interval
[τ(t0), t0]. But if τ(t0) = t0 is valid, then the initial set degenerates to {t0} and in-
stead of the initial function we prescribe the initial condition x(t0) = x0. To show the
existence and uniqueness of the solution of the corresponding initial value problem,
we can mention the following result issuing from Theorem 1 and Corollary 6 of [18].

Theorem 1.1. Consider the equation (1.1) subject to the inequality (1.2). Then (1.1)
has a solution on I for any initial value x0. Furthermore, if f(t, x) is Lipschitz con-
tinuous, then this solution is unique.

The asymptotic properties of solutions of (1.1) depend on the sign of the coefficient
a(t). To describe the asymptotic behaviour of solutions of (1.1) with a(t) negative, we
introduce the following functional relations, namely the Abel functional equation

ψ(τ(t)) = ψ(t)− 1, t ∈ I, (1.5)

the auxiliary nonlinear functional equation

|b(t)|ωr(τ(t)) = |a(t)|ω(t), t ∈ I (1.6)

and corresponding functional inequality

|b(t)|ωr(τ(t)) ≤ |a(t)|ω(t) t ∈ I. (1.7)

The question of the existence and uniqueness of solutions of equations (1.5) and
(1.6) can be found, e.g., in the monograph [29]. Here we recall the statement ensuring
the existence of solutions of (1.5) which has some differential properties.
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Proposition 1.2. Let τ ∈ C1(I), τ(t) < t and τ ′(t) > 0 for all t ∈ I . Then there
exits a solution ψ ∈ C1([τ(t0),∞)) of (1.5) such that ψ′(t) > 0 for all t ∈ I .
Remark 1.3. Because of the assumption of Proposition 1.2 throughout the thesis we
assume that τ(t) < t for all t ∈ I (the case τ(t0) = t0 does not enable to solve
(1.5) on the whole I). However, we note that all the results presented in the thesis are
valid (with some minor modifications) also for lags vanishing at t0 because we are
interested in the asymptotic behaviour of solutions as t→∞.

Now we discuss properties of the nonlinear functional equation (1.6) which will be
relevant in Section 2.2.
Proposition 1.4. Consider the functional equation (1.6), where a, b, τ ∈ C1(I), a(t) <
0, b(t) 6= 0, |b(t)|

|a(t)| is nondecreasing on I , τ(t) < t for all t ∈ I , τ(t) is increasing on
I and let M > 0 be arbitrarily large. Then there exists a positive and nondecreasing
solution ω ∈ C1(I) of (1.6) such that ω(t) > M for all t ∈ [τ(t0), t0].

2 MAIN RESULTS

This chapter brings the overview of the main results presented in the Ph.D. thesis.

2.1 ASYMPTOTIC PROPERTIES OF SOLUTIONS OF SUBLINEAR DELAY
DIFFERENTIAL EQUATIONS

Sublinear differential equation is an equation of the form (1.1) satisfying condition
(1.2) for a suitable 0 < r ≤ 1. The results presented in this section appeared in the
paper [10].

First, we mention theorems which yield asymptotic estimates of solutions of (1.1),
(1.2), where we distinguish the cases a(t) positive and negative. Secondly, we formu-
late consequences of these estimates in some particular cases.
Theorem 2.1. Consider the equation (1.1) subject to the condition (1.2) for a suitable
real 0 < r ≤ 1, where a, b, g, τ ∈ C(I), f ∈ C(I × R), τ(t) < t for all t ∈ I , τ(t)
is increasing and unbounded on I and let both the integrals∫ ∞

t0

|b(t)| exp{−(1− r)

∫ τ(t)

t0

a(u) du−
∫ t

τ(t)
a(u) du} dt,

∫ ∞

t0

exp{−
∫ t

t0

a(u) du} |g(t)| dt

converge. Then for any solution x(t) of (1.1) there exists a constant L ∈ R such that

lim
t→∞

x(t) exp{−
∫ t

t0

a(u) du} = L.

Remark 2.2. The positivity of the coefficient a(t) is not strictly required in the pre-
vious theorem. However, the convergence requirement put on both integrals would be
too strict constraint in the opposite case.
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Now we presented the asymptotic properties of solutions of (1.1), (1.2) provided
a(t) is negative.
Theorem 2.3. Consider the equation (1.1) subject to the condition (1.2) for a suitable
real 0 < r ≤ 1, where a ∈ C(I) is negative and nonincreasing on I , f ∈ C(I × R),
b, g ∈ C(I), τ ∈ C1(I), τ(t) < t, τ ′(t) > 0 for all t ∈ I and τ(t) → ∞ as
t→∞. Let ψ(t) be a solution of (1.5) with the properties guaranteed by Proposition
1.2 such that

∫ ∞
t0

ψ′(t)
−a(t) dt < ∞. Further assume that there exists a positive function

ω ∈ C2(I) fulfilling the inequality (1.7) such that ω′− ωa > 0 on I , ω′∗/(ω
′− ωa) is

nonincreasing on I and∫ ∞

t0

ω′∗(t)

ω′(t)− ω(t)a(t)
ψ′(t) dt <∞,

where ω′∗(t) = (|ω′(t)| − ω′(t))/2, t ∈ I . If g(t) = O(ω(t)) as t→∞, then

x(t) = O(ω(t)) as t→∞

for any solution x(t) of (1.1).
Remark 2.4. The previous theorem essentially says that, under certain constraints,
the solution x(t) of the delay differential equation (1.1) can be estimated by a solution
ω(t) of the functional nondifferential equation (1.7). However, finding such a solution
is not a simple matter, in general.
Remark 2.5. It follows from the proof of Theorem 2.3 that considering (1.2) with
g(t) identically zero on I we can omit the assumptions that a(t) is nonincreasing and∫ ∞
t0

ψ′(t)
−a(t) dt <∞. Similarly, if g(t) is not identically zero on I and both the mentioned

assumptions are replaced by a(t) ≤ a < 0 for all t ∈ I , then using the same line of
arguments as given in the proof of Theorem 2.3 we can modify the result of Theorem
2.3 as

x(t) = O(ω(t)ψ(t)) as t→∞
for any solution x(t) of (1.1).

Now we give some applications of Theorem 2.1 and Theorem 2.3. Particularly, we
consider the equation (1.4) under various assumptions on a(t), b(t) and show that the
previous assertions can yield effective asymptotic results.
Corollary 2.6. Consider the sublinear delay differential equation

x′(t) = a(t)x(t) + b(t)|x(τ(t))|rsgnx(τ(t)) + g(t), t ∈ I, 0 < r < 1, (2.1)

where a, b, g ∈ C(I), τ ∈ C1(I), 0 < |b(t)| ≤ K|a(t)|, τ(t) < t, τ ′(t) > 0 for all
t ∈ I and a suitable real K > 0 and τ(t) →∞ as t→∞.
(i) If a(t) is positive on I and

∫ ∞
t0

exp{−
∫ t

t0
a(u) du}|g(t)| dt < ∞, then for any

solution x(t) of (2.1) there exists a constant L ∈ R such that

lim
t→∞

x(t) exp{−
∫ t

t0

a(u) du} = L.
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(ii) If a(t) is negative and g(t) is identically zero on I , then any solution x(t) of (2.1)
is bounded on I .

(iii) If a(t) is negative and nonincreasing on I , g(t) is bounded on I and
∫ ∞
t0

ψ′(t)
−a(t) dt

converges, where ψ(t) is a solution of the Abel equation (1.5) with the properties
guaranteed by Proposition 1.2, then any solution x(t) of (2.1) is bounded on I .

Further we consider only the cases when a(t) is negative and g(t) is identically zero
on I in (1.4). The extension of the next results also to a(t) positive and g(t) nonzero
can be easily done by use of Theorem 2.1 and Theorem 2.3.

Corollary 2.7. Consider the equation without forcing term

x′(t) = a(t)x(t) + b(t)|x(τ(t))|r sgnx(τ(t)), t ∈ I, 0 < r < 1, (2.2)

where I = [t0,∞) with t0 > 0, a, b ∈ C(I), τ ∈ C1(I), a(t) < 0, b(t) 6= 0,
τ(t) < t, τ(t0) > 0, τ ′(t) > 0 for all t ∈ I , τ(t) → ∞ as t → ∞ and assume that
0 < |b(t)| ≤ K|a(t)|tα(τ(t))−rα for suitable K,α ∈ R, K > 0 and all t ∈ I .

(i) If α ≥ 0, then
x(t) = O(tα) as t→∞ (2.3)

for any solution x(t) of (2.2).
(ii) If α < 0, a(t) < α

t for all t ∈ I , a(t)t is nonincreasing on I and∫ ∞

t0

ψ′(t)

α− a(t)t
dt <∞,

where ψ(t) is a solution of (1.5) with the properties guaranteed by Proposition
1.2, then (2.3) holds for any solution x(t) of (2.2).

2.2 ASYMPTOTIC PROPERTIES OF SOLUTIONS OF SUPERLINEAR DELAY
DIFFERENTIAL EQUATIONS

We derive the asymptotic properties of the solution of the superlinear differential
equation (1.1) satisfying condition (1.2) for a suitable r > 1. The results stated in this
section were presented in the paper [15].

Comparing with the sublinear case we impose two restrictions. We assume that the
function g(t), appearing in (1.2), is identically zero, and, furthermore, a(t) is negative.

Theorem 2.8. Let x(t) be a solution of (1.1) and (1.2) holds for a suitable real r > 1,
where g(t) ≡ 0, a(t), b(t) are continuously differentiable functions on I such that a(t)
is negative, b(t) is nonzero on I . Further, let τ ∈ C1(I), τ(t) < t and τ ′(t) > 0 for all
t ∈ I and let ψ(t) be a solution of (1.5) with the properties guaranteed by Proposition
1.2. Finally assume that ω ∈ C1(I) is a positive and nondecreasing function satisfying

(1.6) and let M0 = sup
{
|x(t)|
ω(t) , t ∈ [τ(t0), t0]

}
.

(i) If M0 ≤ 1, then |x(t)| ≤ ω(t) for all t ≥ t0.
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(ii) If M0 > 1, then |x(t)| ≤ ω(t)M rψ(t)+1−ψ(t0)

0 for all t ≥ t0.

Remark 2.9. It follows from the proof of Theorem 2.8 that the functional equation
(1.6) can be replaced by the functional inequality (1.7) and the assertion of Theorem
2.8 remains valid. Moreover, in this case it is not necessary to require the differentia-
bility of a(t), b(t) and we can omit the monotonic assumption on |b(t)|

|a(t)| .

Remark 2.10. The conclusions of Theorem 2.8 can be modified in the following
way. By Proposition 1.4, we are able to make the function ω(t) arbitrarily large on
[τ(t0), t0]. This implies, among others, that we can choose a solution ω(t) of (1.6)
such that M0 ≤ 1. However, it does not mean that this procedure automatically yields
the ”better” estimate than the original result of Theorem 2.8 (corresponding to the
case M0 > 1) yields. More details concerning this question will be discussed in the
next text.

Corollary 2.11. Consider the superlinear delay differential equation

x′(t) = a(t)x(t) + b(t)|x(τ(t))|rsgnx(τ(t)), t ∈ I, r > 1, (2.4)

where a, b ∈ C(I), τ ∈ C1(I), a(t) < 0, 0 < |b(t)| ≤ K|a(t)|, τ(t) < t and
τ ′(t) > 0 for all t ∈ I and a suitable real K > 0. Let x(t) be a solution of the
equation (2.4) and let X0 = sup{|x(t)|, t ∈ [τ(t0), t0]}.

(i) If X0 ≤ K
1

1−r , then |x(t)| ≤ K
1

1−r for all t ≥ t0.

(ii) If X0 > K
1

1−r , then |x(t)| ≤ K
1

1−r

(
X0K

−1
1−r

)rψ(t)+1−ψ(t0)

for all t ≥ t0, where

ψ(t) is a solution of (1.5) with the properties guaranteed by Proposition 1.2.

Example 2.12. Consider the superlinear delay differential equation with a propor-
tional delay, i.e. the equation

x′(t) = ax(t) + b|x(λt)|rsgnx(λt), t ≥ t0 > 0 , (2.5)

where r > 1, 0 < λ < 1, a < 0, b 6= 0 are real constants.
In the case of the proportional delay, the function ψ(t) = log t

log λ−1 is a solution of the
Abel equation (1.5) and fulfills assumptions described in Proposition 1.2. If K = | ba|,
then, by Corollary 2.11,

|x(t)| ≤
∣∣∣∣ ba

∣∣∣∣ 1
1−r

[
X0

∣∣∣∣ ba
∣∣∣∣ −1

1−r
]r log t−log t0

log λ−1 +1

, t ∈ I

for any solution x(t) of (2.5). Moreover, if X0 ≤
∣∣ b
a

∣∣ 1
1−r , then |x(t)| ≤

∣∣ b
a

∣∣ 1
1−r for all

t ∈ I .
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Remark 2.13. Consider the equation (2.4) under assumptions of Corollary 2.11. Sub-
stituting into (1.7), we can easily verify that the system

ω(t) = K
1

1−r exp{αrψ(t)}, t ∈ I, r > 1, (2.6)

where α is a real parameter and ψ(t) is a solution of the Abel equation (1.5), forms the
one-parameters family of solutions of (1.7). Hence (2.6) satisfies the auxiliary func-
tional inequality (1.7). Moreover, choosing α large enough we can fulfill the required
inequality ω(t) > M for all t ∈ [τ(t0), t0] and M being arbitrarily large (see also
Proposition 1.4). In particular, if

α = r1−ψ(t0) log
(
X0K

− 1
1−r

)
, X0 = sup{|x(t)|, t ∈ [τ(t0), t0]},

then M0 = sup
{
|x(t)|
ω(t) , t ∈ [τ(t0), t0]

}
≤ 1 and, by Theorem 2.8, the estimate

|x(t)| ≤ ω(t) = K
1

1−r

(
X0K

−1
1−r

)rψ(t)+1−ψ(t0)

t ∈ I

holds for any solution x(t) of (2.4). It may be interesting to note, that this estimate
coincides with the result obtained in Corollary 2.11 (ii).

Remark 2.14. The term ψ(t)−ψ(t0) appearing in the previous asymptotic estimates
will be further studied. It holds that if ψ(t) is a solution of the Abel equation (1.5),
then ψ(t) + α, α ∈ R is also a solution of (1.5). This implies that without the loss of
validity we can choose the solution ψ(t) of (1.5) with the property ψ(t0) = 0 and then
omit ψ(t0) in all formulae involving the term ψ(t)− ψ(t0).

2.3 ASYMPTOTIC ESTIMATES OF SOLUTIONS OF LINEAR OR SUBLINEAR
DIFFERENCE EQUATIONS

The results presented in this section will appear in the paper [11]. We discuss some
asymptotic properties of the delay difference equation (1.3), where n0 ∈ Z, n0 ≥ 0,
N(n0) = {n0, n0 + 1, n0 + 2, . . . }, 0 < ri ≤ 1 are real scalars, p(n), qi(n), d(n)
are sequences of reals and τ̄i(n) are nondecreasing unbounded sequences of integers
such that τ̄i(n) < n for all n ∈ N(n0) (i = 1, . . . , k). The equation (1.3) is a discrete
analogue of the delay differential equation

x′(t) = a(t)x(t) +
k∑
i=1

bi(t)|x(τ(t))|ri sgnx(τ(t)) + g(t), t ≥ t0.

This differential equation with k = 1 has been discussed in Section 2.1. Consider-
ing the discrete case, we consider k ∈ N to generalize some known results of the
qualitative theory of difference equations. Note that the extension of the results of
Section 2.1 for the case of several delays is only a technical matter.
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Let n−1 = min{τ̄i(n0) : i = 1, . . . , k}. By a solution of (1.3) we mean a sequence
y(n) of real numbers which is defined for n ≥ n−1 and satisfies (1.3) for n ≥ n0,
n ∈ Z. It is easy to see that for any given n0 ∈ N(0) and initial conditions y(n) =
y0(n), n−1 ≤ n ≤ n0, the equation (1.3) has a unique solution satisfying these initial
conditions.

Consequently, we formulate an upper bound for solutions y(n) of (1.3). Before
doing this, we introduce some necessary notations and auxiliary relations. Put

σ−1 = n−1,

σ0 = n0,

σm+1 = max{n ∈ N(n0) : τ̄i(n) ≤ σm for all i = 1, . . . , k}, m = 0, 1, 2, . . .

and consider two difference inequalities

ψ̄(σm+1) ≥ ψ̄(σm) + 1, m = 0, 1, 2, . . . (2.7)

and
k∑
i=1

|qi(n)|(ω̄(τ̄i(n)))ri ≤ (1− |1 + p(n)|)ω̄(n), n ∈ N(n0) . (2.8)

Note that previous inequalities correspond to the auxiliary relations imposed in Sec-
tion 1.3. More precisely, the relation (2.7) is an analogue of the Abel equation (1.5)
and the inequality (2.8) is consistent with the auxiliary functional relation (1.7). In
addition, sequences ψ̄(n), ω̄(n) are discrete analogues of functions ψ(t), ω(t), re-
spectively.

Further, for m = 0, 1, 2, . . . we denote

u(m) = min{ ∆ω̄(ν)

1− |1 + p(ν)|
: σm ≤ ν ≤ σm+1} (2.9)

v(m) = max{ |d(ν)|
(1− |1 + p(ν)|)ω̄(ν)

: σm ≤ ν ≤ σm+1} . (2.10)

Theorem 2.15. Consider the equation (1.3), where |1 + p(n)| < 1 for all n ∈ N(n0).
Further, let ω̄(n) be a positive monotonous sequence satisfying (2.8), let ψ̄(n) be a
positive increasing sequence satisfying (2.7) and let u(m), v(m) be given by (2.9) and
(2.10), respectively.
(i) If ω̄(n) is nondecreasing, then for any solution y(n) of (1.3) there exists a con-

stant L > 0 such that

|y(n)| ≤
(
L+

bψ̄(n)c∑
i=0

v(i)
)
ω̄(n) (2.11)

for all n ∈ N(n0). (The symbol b c means an integer part.)
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(ii) If ω̄(n) is decreasing, then for any solution y(n) of (1.3) there exists a constant
L > 0 such that

|y(n)| ≤
(
L+

bψ̄(n)c∑
i=0

v(i)
)
ω̄(n)

bψ̄(n)c∏
s=0

(
1− u(s)

ω̄(σs+1)

)
(2.12)

for all n ∈ N(n0).

Remark 2.16. By Theorem 2.15, any solution y(n) of the delay difference equation
(1.3) with a forcing term d(n), can be estimated in terms of solutions of difference
inequalities (2.7) and (2.8). Moreover, if d(n) is identically zero, then v(i) is also
identically zero and both the estimates (2.11) and (2.12) are significantly simplified.

Further we apply our general asymptotic result to some important particular cases
to demonstrate, how it can be turned into effective asymptotic criterions.

Corollary 2.17. Consider (1.3), where d(n) ≡ 0 and let r = max{r1, . . . , rk}. Then
any solution y(n) of (1.3) is bounded if either

r = 1, |1 + p(n)| < 1 and |1 + p(n)|+
k∑
i=1

|qi(n)| ≤ 1, n ∈ N(n0)

or

0 < r < 1 and 0 <

∑k
i=1 |qi(n)|

1− |1 + p(n)|
< K, n ∈ N(n0),

where K is a suitable scalar.

As another consequence, we discuss the sublinear difference equation

∆y(n) = p(n)y(n) + q(n)|y(bλnc)|r sgn y(bλnc), n ∈ N(n0) , (2.13)

where 0 < λ, r < 1, originating from the numerical discretization of the sublinear
pantograph equation. We present conditions under which all its solutions tend to zero
and derive also the rate of this convergency.

Corollary 2.18. Consider (2.13), where |1 + p(n)| ≤ p̄ < 1 for all n ∈ N(n0) and
q(n) = O(nα(1−r)) as n→∞ for a real scalar α. Then

y(n) = O(nα) as n→∞

for any solution y(n) of (2.13).
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2.4 ASYMPTOTIC ESTIMATES FOR THE EULER DISCRETIZATION OF (1.4)

Applications of qualitative results derived in Section 2.3 to the Euler discretization
are presented in this section.

First we mention the derivation of the Euler formula of the equation (1.4). We set
the discretization equidistant grid tn := t0 + nh, where n ∈ N and h > 0 is the
stepsize. We denote τ̄(n) :=

⌊
τ(tn)−t0

h

⌋
, where symbol b c means an integer part.

Then the explicit Euler discretization of (1.4) yields

∆y(n) = p(n)y(n) + q(n)|y(τ̄(n))|r sgn y(τ̄(n)) + d(n), n ∈ N(0) , (2.14)

where 0 < r ≤ 1,

p(n) := ha(tn), q(n) := hb(tn), d(n) := hg(tn). (2.15)

The replacement y(n) ≈ x(tn) is provided as usually. The replacement y(τ̄(n)) ≈
x(τ(tn)) is performed by the piecewise constant interpolation with the left grid point.

We can easily check that the assumptions imposed on τ(t) in Section 1.3 ensure
that properties assumed in Section 2.3 are valid. Then (2.14) is a particular case of the
difference equation (1.3) considered in the previous section.

Our aim is to show that asymptotic bounds of solutions valid in the continuous case
holds (under some restrictions) also in the corresponding discrete case. Doing this,
we formulate an upper bound for solutions y(n) of (2.14), which corresponds to the
results mentioned in Theorem 2.3.

Now we state some notes on the initial conditions and necessary auxiliary relations.
Similarly to Section 2.3, we set n−1 := τ̄(0). The equation (2.14) has a unique solu-
tion satisfying initial conditions

y(n) = y0(n), n−1 ≤ n ≤ 0, n ∈ Z.

These initial conditions originates from the prescribed initial functions defined on the
initial interval [τ(t0), t0]. This is obvious that if τ(t0) = t0, then n−1 = 0 and the
initial condition is y(0) := x(t0) (= x0).

Furthermore we put σ−1 = n−1, σ0 = 0, σm+1 = max{n ∈ N(0) : τ̄(n) ≤ σm},
m = 0, 1, 2, . . . . We consider the following auxiliary difference inequality

|q(n)|ω̄(τ̄(n))r ≤ (1− |1 + p(n)|)ω̄(n), n ∈ N(0) . (2.16)

This relation is a simplification of difference inequality (2.8). In addition, note that
here we have to use relation (2.7) mentioned in the previous section, too. The se-
quences u(m), v(m) given by (2.9) and (2.10), respectively, for m = 0, 1, 2, . . . are
also used.
Theorem 2.19. Let p(n), q(n), d(n) be given by (2.15) and let |1 + p(n)| < 1 for
all n ∈ N(0). Further, let u(m), v(m) be given by (2.9) and (2.10), respectively. Let
ω̄(n) be a positive monotonous sequence satisfying (2.16) and ψ̄(n) a positive and
increasing sequence satisfying (2.7). Finally let y(n) be a solution of (2.14).
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(i) If ω̄(n) is nondecreasing, then there exists a constant L > 0 such that

|y(n)| ≤
(
L+

bψ̄(n)c∑
i=0

v(i)
)
ω̄(n) for all n ∈ N(0).

(ii) If ω̄(n) is decreasing, then there exists a constant L > 0 such that

|y(n)| ≤
(
L+

bψ̄(n)c∑
i=0

v(i)
)
ω̄(n)

bψ̄(n)c∏
s=0

(
1− u(s)

ω̄(σs+1)

)
for all n ∈ N(0).

Corollary 2.20. Consider the equation (2.14), where d(n) ≡ 0, p(n), q(n) be given
by (2.15) and |1 + p(n)| < 1 for all n ∈ N(0).

(i) Let r = 1 and
|1 + p(n)|+ |q(n)| ≤ 1, n ∈ N(0).

Then any solution y(n) of (2.14) is bounded.
(ii) Let 0 < r < 1. Assume that there exists an arbitrary K ≥ 0 such that

0 <
|q(n)|

1− |1 + p(n)|
≤ K, n ∈ N(0). (2.17)

Then any solution y(n) of (2.14) is bounded.

Remark 2.21. Note that condition (2.17) is a discrete analogue of the condition
0 < |b(t)| ≤ K|a(t)| from Corollary 2.6 formulated for the exact delay differential
equation.

Example 2.22. Now we consider the sublinear delay differential equation with con-
stant coefficients

x′(t) = ax(t) + b|x(τ(t))|r sgnx(τ(t)) + g(t), t ≥ t0, 0 < r < 1 . (2.18)

Assume that a < 0 and g(t) is bounded on I . Then, by Theorem 2.3 with respect to
Remark 2.5,

x(t) = O(ψ(t)) as t→∞ (2.19)

for any solution x(t) of (2.18), where ψ(t) is a solution of the Abel equation (1.5).
In particular, if τ(t) = λt, 0 < λ < 1 (the proportional delay), then the Abel

equation (1.5) admits the solution ψ(t) = log t
log λ−1 and from (2.19) we get

x(t) = O(log t) as t→∞. (2.20)

The Euler discretization of (2.18) is

∆y(n) = hay(n) + hb|y(τ̄(n))|r sgn y(τ̄(n)) + d(n), n ∈ N(0), (2.21)
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where 0 < r < 1, d(n) = hg(tn) and y(n) is an approximation of x(t) at t = tn.
We set the stepsize h such that |1 + ha| < 1. It is clear that the sequence d(n)

is bounded. Then from (2.10) the sequence v(m) is bounded too. From (2.9) the se-
quence u(m) is zero. Then Theorem 2.19 implies that

y(n) = O(ψ̄(n)) as n→∞ (2.22)

for any solution y(n) of (2.21), where the sequence ψ̄(n) satisfies (2.7).
If we consider the proportional delay, then τ̄(n) = bλnc, 0 < λ < 1 and σm =

bσm−1

λ c. We can choose ψ̄(n) = log(n−λ/(1−λ))
log λ−1 . This sequence satisfies (2.7) and the

estimate (2.22) becomes

y(n) = O(log n) as n→∞ . (2.23)

Comparing (2.20), (2.23), we can observe the resemblance of the asymptotics of
solutions of (2.18) and (2.21) provided that |1 + ha| < 1.

2.5 ASYMPTOTIC ESTIMATES FOR THE θ-METHOD DISCRETIZATION OF
(1.4)

The popular discretization of (1.4) is the θ-method involving e.g. Euler methods
and trapezoidal rule as particular cases. Similarly as in the previous section we set
tn := t0 + nh, n ∈ N, h > 0 is the stepsize and we denote τ̄(n) :=

⌊
τ(tn)−t0

h

⌋
. In our

case, we consider the θ-method in the form

∆y(n) = h
(
(1− θ)a(tn)y(n) + θa(tn+1)y(n+ 1) + (1− θ)b(tn)|yh(τ̄(n))|r

× sgn yh(τ̄(n)) + θb(tn+1)|yh(τ̄(n+ 1))|r sgn yh(τ̄(n+ 1))

+ (1− θ)g(tn) + θg(tn+1)
)
,

where 0 ≤ θ ≤ 1, 0 < r ≤ 1 and the values yh(τ̄(n)), yh(τ̄(n + 1)) are given by
the linear interpolation utilizing the left and right neighbours of τ̄(n) and τ̄(n + 1),
respectively. Namely

yh(τ̄(n)) := (1− sn)y(τ̄(n)) + sny(τ̄(n) + 1),

where sn := τ(tn)−t0
h −

⌊
τ(tn)−t0

h

⌋
. The interpolation value of point τ(tn+1) is per-

formed analogously.
Let 1 − θha(tn+1) 6= 0. Then the previous equation can be also rewritten as the

difference equation

∆y(n) = p(n)y(n) + q(n)
∣∣µ(n)y(τ̄(n)) + η(n)y(τ̄(n) + 1)

∣∣r
× sgn

(
µ(n)y(τ̄(n)) + η(n)y(τ̄(n) + 1)

)
+q̂(n)

∣∣µ̂(n)y(τ̄(n+ 1)) + η̂(n)y(τ̄(n+ 1) + 1)
∣∣r

× sgn
(
µ̂(n)y(τ̄(n+ 1)) + η̂(n)y(τ̄(n+ 1) + 1)

)
+ d(n),

(2.24)
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n ∈ N(0), where 0 < r ≤ 1,

p(n) :=
(1− θ)ha(tn) + θha(tn+1)

1− θha(tn+1)
, q(n) :=

hb(tn)

1− θha(tn+1)
,

d(n) :=
(1− θ)hg(tn) + θhg(tn+1)

1− θha(tn+1)
, q̂(n) :=

hb(tn+1)

1− θha(tn+1)

(2.25)

and

η(n) := (1− θ)
1
r

(τ(tn)− t0
h

−
⌊
τ(tn)− t0

h

⌋ )
,

η̂(n) := θ
1
r

(τ(tn+1)− t0
h

−
⌊
τ(tn+1)− t0

h

⌋ )
,

µ(n) := (1− θ)
1
r − η(n), µ̂(n) := θ

1
r − η̂(n)

(2.26)

In this section, we derive conditions which imply that the solution sequence of the
θ-method discretization of (1.4) has asymptotic behaviour analogous to the behaviour
of the exact solution. These conditions depend on coefficients a(t), b(t), the stepsize
h and the parameter θ.

As in the previous section, we introduce a sequence σm and an auxiliary relation.
Put σ−1 = n−1 = τ̄(0), σ0 = 0, σm+1 = max{n ∈ N(0) : τ̄(n + 1) + 1 ≤ σm},
m = 0, 1, 2, . . . and consider a difference inequality

|q(n)| ·
∣∣µ(n)ω̄(τ̄(n)) + η(n)ω̄(τ̄(n) + 1)

∣∣r + |q̂(n)| ·
∣∣µ̂(n)ω̄(τ̄(n+ 1))

+ η̂(n)ω̄(τ̄(n+ 1) + 1)
∣∣r ≤ (1− |1 + p(n)|)ω̄(n)

(2.27)

for all n ∈ N(0). This relation corresponds to auxiliary inequality (2.8). The following
theorem is a direct consequence of Theorem 2.15.

Theorem 2.23. Let η(n), µ(n), η̂(n), µ̂(n) be given by (2.26), p(n), q(n), q̂(n), d(n)
begiven by (2.25) such that |1 + p(n)| < 1 for all n ∈ N(0). Further, let u(m), v(m)
be given by (2.9) and (2.10), respectively. Let ω̄(n) be a positive monotonous sequence
satisfying (2.27) and ψ̄(n) a positive and increasing sequence satisfying (2.7). Finally
let y(n) be a solution of (2.24).

(i) If ω̄(n) is nondecreasing, then there exists a constant L > 0 such that

|y(n)| ≤
(
L+

bψ̄(n)c∑
i=0

v(i)
)
ω̄(n) for all n ∈ N(0).

(ii) If ω̄(n) is decreasing, then there exists a constant L > 0 such that

|y(n)| ≤
(
L+

bψ̄(n)c∑
i=0

v(i)
)
ω̄(n)

bψ̄(n)c∏
q=0

(
1− u(q)

ω̄(σq+1)

)
for all n ∈ N(0).
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Using the notation q̄(n) := max(|q(n)|, |q̂(n)|) we get the following corollary.

Corollary 2.24. Consider the equation (2.24), where d(n) ≡ 0, p(n), q(n), q̂(n)
begiven by (2.25) such that |1 + p(n)| < 1 for all n ∈ N(0) and η(n), µ(n), η̂(n),
µ̂(n) be given by (2.26).

(i) Let r = 1 and
0 < |1 + p(n)|+ q̄(n) ≤ 1, n ∈ N(0).

Then any solution y(n) of (2.24) is bounded.
(ii) Let 0 < r < 1. Assume that there exists an arbitrary K ≥ 0 such that

0 <
q̄(n)

1− |1 + p(n)|
≤ K, n ∈ N(0).

Then any solution y(n) of (2.24) is bounded.

Example 2.25. We consider the sublinear differential equation

x′(t) = ax(t) + b|x(τ(t))|r sgnx(τ(t)), t ≥ t0, 0 < r < 1, (2.28)

where a < 0, b 6= 0 are real constants. By Corollary 2.6 (ii), any solution x(t) of
(2.28) is bounded.

Now we describe the asymptotic estimate of solutions of the corresponding θ-
method discretization (2.24), where p(n) ≡ ha

1−θha , q(n) = q̂(n) ≡ hb
1−θha and η(n),

µ(n), η̂(n), µ̂(n) are given by (2.26). By Corollary 2.24 (withK = h|b|
|1−θha|−|1+(1−θ)ha|),

the solution y(n) is bounded if |1 + ha
1−θha| < 1 and b is arbitrary.

2.6 STABILITY ANALYSIS OF THE θ-METHOD FOR THE SUBLINEAR
EQUATION

The aim of this section is to analyse the stability of the numerical method origi-
nating from the θ-method discretization of (1.4). This analysis substantially utilizes
qualitative properties of studied differential equations and their discretizations (from
related papers we refer to [25], [26], [36] and [38]).

We consider the test equation

x′(t) = ax(t) + b|x(τ(t))|r sgnx(τ(t)), t ≥ t0, 0 < r < 1, (2.29)

where a, b ∈ R, a, b 6= 0, and its θ-method discretization

∆y(n) = py(n) + q
(∣∣µ(n)y(τ̄(n)) + η(n)y(τ̄(n) + 1)

∣∣r sgn
(
µ(n)y(τ̄(n))

+ η(n)y(τ̄(n) + 1)
)

+
∣∣µ̂(n)y(τ̄(n+ 1)) + η̂(n)y(τ̄(n+ 1) + 1)

∣∣r
× sgn

(
µ̂(n)y(τ̄(n+ 1)) + η̂(n)y(τ̄(n+ 1) + 1)

))
,

(2.30)
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n ∈ N(0), where 0 < r < 1,

p =
ha

1− θha
, q =

hb

1− θha
, (2.31)

η(n), µ(n), η̂(n), µ̂(n) are given by (2.26) and h > 0 is the stepsize. We do not
consider the pure delayed case (a = 0) in this section.

An important theoretical question on these numerical approximations is a problem
whether the numerical and exact solutions have the related asymptotic behaviour on
the unbounded domain. More precisely, if all solutions of a given differential equa-
tion have certain asymptotic properties, then we investigate if the solutions of corre-
sponding discretization have the same properties (regardless of the stepsize h and the
delayed argument τ(t)). We pay a special attention to boundedness property.

Corollary 2.6 (ii) implies
Theorem 2.26. Let x(t) be a solution of (2.29), where a < 0 and b 6= 0. Then x(t) is
bounded as t→∞.

The following property is taken from the standard notions of stability of numerical
methods for linear equations.
Definition 2.27. The numerical method (2.30) is called stable if any application of the
method to the equation (2.29), where a < 0, generates a numerical solution y(n) that
is bounded for any h > 0.

Procedures performed in Example 2.25 can be summarized as follows.
Theorem 2.28. Let y(n) be a solution of the θ-method discretization (2.30) with η(n),
µ(n), η̂(n), µ̂(n) given by (2.26), p, q given by (2.31), where a, b 6= 0 and

0 < |1− θha| − |1 + (1− θ)ha|. (2.32)

Then y(n) is bounded.
The condition (2.32) implies the following statement.

Theorem 2.29. Let a < 0, b 6= 0. The θ-method discretization (2.30) is stable if and
only if

1

2
≤ θ ≤ 1.

Example 2.30. Consider the initial value problem for the delay differential equation
with constant coefficients

x′(t) = −4x(t) +
√
|x(t/2)| sgnx(t/2), t ≥ 0, x(0) = 1. (2.33)

By Theorem 2.26, the solution x(t) of (2.33) is bounded.
Consider the θ-method discretization obtained from (2.30). We discuss the bouned-

ness of the corresponding discretization with respect to changing h > 0 and 0 ≤ θ ≤
1. By Theorem 2.28, the solution y(n) of (2.30) is bounded if the condition

0 < 1 + 4θh− |1− 4h(1− θ)| (2.34)

20



h\nh 50 150 500 1000
0.01 0.06419 0.06306 0.06267 0.06258
0.1 0.06482 0.06327 0.06273 0.06261
0.5 0.06787 0.06414 0.06301 0.06275
1 0.06992 0.06513 0.06321 0.06285
5 0.10704 0.07189 0.06484 0.06366
10 0.21264 0.08504 0.06626 0.06435
50 1 0.06832 0.11672 0.08539

Table 2.1: The solution x(nh) for a = −4 and θ = 0.8

holds.
First we consider 1/2 ≤ θ ≤ 1, e.g. θ = 0.8. In this case, by Theorem 2.29, the

solution y(n) is bounded for all h > 0 and the method (2.30) is stable. The situation
is illustrated by Table 2.1.

Further we assume 0 ≤ θ < 1/2, e.g. θ = 0.3. It follows from (2.34) that the
solution y(n) is bounded provided

h <
1

2(1− 2θ)
= 1.25.

Table 2.2 demonstrate the strictness of this stepsize condition.

h\nh 50 150 500 1000
0.01 -0.05831 0.06234 0.06244 -0.06247
0.5 -0.06773 -0.06388 -0.06203 0.06226
1 0.09807 -0.06138 -0.05605 -0.05931

1.24 0.9753 0.4786 0.09373 -0.02712
1.2499 1.3398 1.3434 1.3666 1.1991
1.255 -0.8951 -1.1907 2.7191 11.9956

2 -779.004 -2.857 E9 2.689 E32 1.776 E65

Table 2.2: The solution x(nh) for θ = 0.3

3 CONCLUSION

In the Ph.D. thesis, there are presented the results concerning with the asymptotic
behaviour of the nonlinear delay differential equation

x′(t) = a(t)x(t) + f(t, x(τ(t))), t ∈ [t0,∞),

where the right-hand side fulfills the relation

|f(t, x)| ≤ |b(t)||x|r + |g(t)|, t ∈ [t0,∞), r > 0.
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We derived two different types of asymptotics, which depends on the sign of the func-
tion a(t) provided that the studied equation is of the sublinear type (0 < r < 1).
Asymptotic estimates of the superlinear equation (r > 1) were provided only for neg-
ative values of a(t). Obtained results were demonstrated by several corollaries and
illustrating examples.

Since the searching for an analytical solution of studied nonlinear equations turned
out to be impossible, we need to discuss the numerical solution. The appropriate nu-
merical formulae are constructed as difference equations. Consequently, the second
part of the thesis is already concerned with problems of sublinear difference equations
(with one or more delays). Considering these equations, main qualitative properties
(especially asymptotic) were derived. Using these results we discussed the stability
property of the θ-method discretization. It was shown, that for 1

2 ≤ θ ≤ 1 this method
is stable. Further, in several examples we compared asymptotic estimates of both exact
and numerical solutions.

There are several directions, where the results obtained in this work can be further
developed. It can be useful to focus on improvement of some asymptotic estimates.
Some numerical experiments indicate that some of these estimates can be improved.
Another development may consist in considering the corresponding differential equa-
tions of neutral type. Finally, obtained results for differential and difference equations
can be unified and generalized in the frame of the time scale theory.
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[10] Čermák, J., Dvořáková, S., Asymptotic estimation for some nonlinear delay
differential equations, Results in Math. 51, 201–213, 2008.
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• Obor: Matematické inženýrstvı́
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