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1  INTRODUCTION  

The focus in this thesis is to develop local and global parts of the motion-planning module 

for omnidirectional mobile robots. The robot is considered as a holonomic points operates 

in static or dynamic workspace. The rapidly exploring random tree algorithm (RRT) and its 

developments are reviewed, and tested to estimate their efficiency and completeness. Then 

statistical studies on RRT variants have been done, in order to find alternatives to the 

methods that have low probabilistic completeness. We tested the RRT performance, and 

introduced a new method for RRT’s path shortening, in addition, we utilize a smoothing-

out technique to improve the generated path. The shortening algorithm reduces the number 

of redundant points in the path, and reduces the detours edges, in order to make the path 

more suitable for omnidirectional mobile robot. 

We have developed new motion planners based on cell-decomposition (CD) algorithms. 

They generate a plan that keeps a safety distance between the robot and the obstacle 

boundaries, and, at the same time, push the robot to perform its maneuvers in large free 

regions in the workspace. Moreover, new planning-algorithms were proposed and 

developed in order to build efficient planners. The first category of these approaches 

combines RRT algorithms and CD methods. It overcomes the drawbacks of RRT 

algorithms in narrow areas and cluttered workspaces, what is more, it overcomes the CD 

downsides in dynamic workspaces. Another work has been done using CD and minimum 

spanning tree (MST) to identify the narrow passage and the important regions from 

sampling-based algorithms point of view. 

The second category of the planning algorithms uses an expert rule-based, with the aim 

of utilizing the collected experience, and available knowledge to generate a better solution 

in an efficient way. 

1.1 THESIS OBJECTIVES 

The aims of the thesis are to improve the mobile robot strategy for path planning, by 

proposing new approaches to improve the completeness and efficiency of planning 

algorithms, which in consequence improve the robot’s autonomy. Then assert the results 

statistically, and compare it to other methods.  

The clear aims of the thesis can be summarized in the following points:  

 Review the state of the art. 

 Design new approaches for path planning based on RRT and cell decomposition. 

 Use knowledge base and expert system in the path planning methods. 

 Design simulation environment that conducts simulations of the experiments, 

and evaluates the results statistically. 
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2  STATE OF THE ART 

In this section, the used motion planning concepts are reviewed concisely. We start with 

basic concepts of cell decomposition approaches, then the rapidly-exploring random tree 

principle is described, and in the final part, a summary of expert system and fuzzy rule-

based is presented. 

 

2.1 CELL DECOMPOSITION 

Cell decomposition algorithms (CD) extracts the obstacles and the free regions, and build a 

graph of adjacency for the free ones [1, Ch. 6], [2]. The idea of dividing the space into 

manageable sections is presented in many researches. In general, the cell decomposition 

algorithms are classified into two categories; the exact cell decomposition methods and the 

approximation methods [3]. 

The first category uses geometric algorithms to determine the free areas and build free 

cells explicitly [4], [5] . The union of all generated cells is exactly equal to the free space. 

However, finding exact free cells is not an easy task, especially in higher dimension 

spaces. That leads to the second category, which uses the approximation techniques to 

divide the workspace, e.g. quad-tree, octree division, and voxel grid, etc., [6], [7]. 

 

 

 

 
a b 

Figure 2-1: Path planning using trapezoidal cell decomposition. a: The generated free cells, 

b: The graph of adjacency which corresponding to paths between cells, the shaded boxes 

represent the path between initial and goal cells 

In motion planning applications, the CD is utilized by dividing the free robot's 

workspace into smaller regions called cells. Then it builds a connectivity graph according 

to the adjacency relationships between the free cells. The graph's nodes represent the cells, 

while the graph's edges represent the adjacency relations between these cells. From this 

connectivity graph, a continuous path can be found by following the adjacent free cells. 

 

2.2 RAPIDLY-EXPLORING RANDOM TREE (RRT) 

Rapidly-exploring random tree is a probabilistic algorithm introduced in [8]. The algorithm 

builds a space-filling tree that is constructed incrementally using samples drawn randomly 

from the search space, as shown in Figure 2-2. RRT is designed for efficient search in 

environments that have nonconvex obstacles. In addition, it works directly with a set of 

admissible inputs. This feature makes the algorithm applicable to complex and dynamic 
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systems. This algorithm also, has the ability to use holonomic or non-holonomic 

movement, and respect algebraic and differential constraints. The key idea of the RRT is to 

bias the exploration toward unexplored regions of the space, where the sampler takes 

points from these regions, and incrementally pulling the search tree outward of the initial 

position. 

 

 

Figure 2-2: RRT expansion in 2D and 3D workspace 

RRT algorithm proofed to be probabilistically complete [9], and  resolution complete 

[10]. 

The algorithm, takes as inputs the initial and the goal locations, along with termination 

parameters, e.g. the maximum number of iterations to grow a branch, time limit, or other 

parameters based on the application. The output of the algorithms is a tree structure, where 

the nodes represent free samples of the workspace, and the edges represent feasible 

connections between these vertices.  

The principle of the basic RRT algorithm is shown in Figure 2-3. The algorithm places 

the tree’s root at the initial location. Then it takes a random sample from the configuration 

space, and finds the nearest tree’s vertex to this sample. A new point is created on the 

segments between the random point and the nearest point, it is located far from the nearest 

point by e distance, where e is the increamental step. If no collision is detected with the 

segment between the nearest and the new points, then the algorithm adds the new point as 

a vertex to the tree and the segments is added as an edge to the tree structure. These steps 

are repeated until a termination condition is satisfied or a path between the initial and the 

goal locations is found. 

  

Figure 2-3: RRT algorithm principle 
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2.3 EXPERT SYSTEM 

Expert system (ES) is “An intelligent computer program that uses knowledge and inference 

procedures to solve problems that are difficult enough to require significant expertise” 

[prof. Feigenbaum].  

Expert systems are designed to solve complex problems by reasoning about knowledge 

like an expert, they do not follow the procedure way as in conventional programming case, 

rather they act as an expert to solve a problem in a particular domain. ES processes the 

information in symbolic form, copes with errors in data, and with imperfect rules of 

reasoning. In addition, ES can answer why and how questions reasonably well, and 

explains how it arrived at a particular [11], [12].  

The terms of expert system and knowledge-based system are used interchangeably, 

even though there are small differences between them. These differences are based on the 

inference methods, data storage, and knowledge collecting methods. 

The expert system contains two main components, the knowledge base module, and the 

inference engine module. Other parts can be added based on the application [13]. For 

example, user interface, knowledge engineer interface, and explanation facilities, etc. 

The knowledge is a theoretical or practical understanding of a specific area. And the 

knowledge base in expert system contains the “domain-specific knowledge”, which is 

required to solve a problem. The knowledge can be represented in many ways, e.g. 

production rules (if-then rules), clausal logic, Object-Attribute-Value Triples, semantic 

networks, and frame. In if-then rules case, the rule consists of two parts: the “IF” part, 

called the condition, which is evaluated based on what is currently known about the 

problem; and, the “THEN” part, which is called the action. For example,  

IF pathExecTime is High, and pathFailure is High THEN collideTendency is High 

The variables in this example have symbolic value. In this case, uncertainty in 

variables’ values, can be handled using fuzzy expert system.  

The inference engine is another part of ES, it tries to derive new information about a 

given problem using the knowledge base. In rule-based systems, it is used to decide which 

rules should be executed based on the satisfaction of the antecedents and priorities of the 

rules. Inference engines in the rule-based systems use different strategies to derive the 

goal. The most common strategies are the forward chaining, and the backward chaining 

[11]. The expert systems can use either one of these strategies or a combination of them.  

Forward chaining is a data driven reasoning. It starts from antecedent parts of the rules, 

and evaluates these rules based on the available facts, until the goal is reached or the 

inference process requires other facts to find a goal. 

Backward chaining is the goal-driven reasoning, where, the expert system has the goal 

(a hypothetical solution) and the inference engine attempts to find the evidence to prove it 

[12]. 

2.3.1 Fuzzy Expert System 

Fuzzy-logic deals with approximate reasoning rather than fixed and exact one. Fuzzy-logic 

handles the concept of partial truth, where the truth-value may range between completely 

true and completely false. 
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Many attempts introduced to improve the robotic motion planner using the previous 

experience [14]–[20]. Fuzzy expert system is used in robotics applications frequently as a 

fuzzy controller to steer robots based on sensor data, also in motion-planning, navigations 

problems, and in location estimation [21]–[28].  

 

3  CONTRIBUTIONS, TESTS AND RESULTS 

In this section, the contributions to the motion-planning problem using RRT algorithm, 

CD, and the fuzzy expert system are presented. We re-implement the algorithms to fit the 

applications of omnidirectional mobile robot. This section is divided into sub-chapters. In 

the first two ones, we review many RRT developments and made an evaluation of them, in 

addition to statistical analysis. We also proposed a new algorithm to shorten the RRT path. 

In the third and fourth parts, new methods to enhance the RRT navigation in small and 

narrow areas are presented. Then the fifth part presents our proposal using the combination 

of RRT, CD, and the fuzzy expert system. The last two sections present the use of CD 

approaches on safe path planning, and the narrow passage identification. 

 

3.1 RRTS REVIEW AND STATISTICAL ANALYSIS 

In this work [29] statistical tests were done, to make a better decision for using a variant of 

RRT. This work is based on the previous results in [30], where the tested methods give a 

variety of results, some of them are very close and some are very diverse. For that, a 

statistical analysis is done to build some confidence of using one RRT variation instead of 

another one in some situations. 

 

3.1.1 Test and Results 

We made the tests for 13 RRT variations in four workspaces, i.e. low-density of obstacles, 

T-trap, high obstacles density, and the doors workspace. Figure 3-1 shows the high 

obstacle density and T-trap workspaces 

The test is applied on every workspace separately; we test 13 variants of RRT, 100 

times. The fails occurs when RRT variation attempted to extend a branch 2000 times 

without reaching the goal. The implementation of RRT variations is developed in Matlab 

and the statistical results are done using Minitab. The comparison between the tests results 

is done based on the time of execution, the success rate of reaching the goal and the path 

length. 

 

Execution Time, and probabilistic completeness results 

The tests results show that the best variation in T obstacle workspace is Vlrrt, it has the 

best result regarding to the time of execution, however, it also has one fail of reaching the 

goal. The time average is (0.3740) and the median is (0.3713). The second result achieved 

by the bidirectional-Vlrrt(2) which has the average time of (0.3984) and median of 

(0.3849), and without any fail. The numerical results are presented in Table 3-1. And 

Figure 3-2 shows the boxplot representation of the execution time results (a), and the 

completeness results (b). 
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(a) (b) 

Figure 3-1: The testing workspaces, a: High obstacles density workspace, b: T-trap 

workspace 

  
(a) (b) 

Figure 3-2: T obstacle workspace tests, (a) Boxplots representation of the execution time 

results, (b) unsuccessful attempts to find a path 

Table 3-1: Tests results of T-trap obstacle. The bold numbers correspond to the best two 

results, the best results marked by (*), the (2) indicate a bidirectional method 

Method Mean StDev Variance Median Success 

BIAS 0,5968 0,0736 0,0054 0,6121 71 

BLOSSOM 0,7482 0,1068 0,0114 0,7476 35 

BLOSSOM (2) 0,9371 0,1852 0,0343 0,9198 100 

CON 0,5320 0,2062 0,0425 0,5017 81 

CON(2) 0,3996 0,1024 0,0105 0,3948 100 

ConExt(2) 0,4484 0,1433 0,0205 0,4326 100 

EXT 0,5592 *0,0721 *0,0052 0,5521 97 

EXT(2) 0,6696 0,1211 0,0147 0,6712 100 

ExtCon(2) 0,4502 0,1303 0,0170 0,4388 35 

DVLRRT 0,5188 0,0887 0,0079 0,5109 100 

DVLRRT(2) 0,6250 0,1235 0,0153 0,6369 100 

VLRRT *0,3740 0,0984 0,0097 *0,3713 99 

VLRRT(2) 0,3984 0,1224 0,0150 0,3849 100 

 

The tests show that unidirectional methods have more tendencies to fail, more than the 

bidirectional versions. 

A statistical test was done on Vlrrt and Vlrrt(2). The aim of this test is to validate the 

hypothesis of using the second best method instead of the first one. Which means, if we 
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use the second best option Vlrrt(2) without any fail, it will give the same result in 

confidence level of 95%.  

This hypothesis implies that we can replace the method that has more probabilistic 

completeness, with the method that has a less completeness ratio; Figure 3-3 shows the 

tested hypothesis. 

Based on the P-Value, which is >5%, the hypothesis of “Vlrrt and Vlrrt(2) are not 

equal” is rejected, which means, there is no sufficient difference between the two 

variations, and the Vlrrt(2) variant can be used instead of Vlrrt, using the confidence level 

of 95%. The others performance and statistical tests, in addition to the graphical and 

numerical results are presented in the full version of this thesis. 

 

Two-sample T for Vlrrt vs Vlrrt(2) 
 N    Mean   StDev   SE Mean 

Vlrrt       99   0.3740   0.0984    0.0099 

Vlrrt(2)    100   0.398    0.122     0.012 

Difference = mu (Vlrrt) - mu (Vlrrt(2)) 

Estimate for difference:  -0.0244 

95% CI for difference:  (-0.0554; 0.0067) 

T-Test of difference = 0 (vs not =) 

T-Value = -1.55   

P-Value = 0.123  DF = 189 

Figure 3-3: T-test for the hypothesis “H1: Vlrrt and Vlrrt(2) not equal” in T workspace 

3.2 RAPIDLY-EXPLORING RANDOM TREES: 3D PLANNING 

In this work [31] the RRT algorithm is applied in three-dimensional workspace to find a 

path for a holonomic system. We also developed an algorithm for path shortening. This 

algorithm shortens the path by omitting unnecessary points from the original path. 

Furthermore, we present a smoothing-out technique for real dynamic behavior. 

The result of this work can be applied in many applications, e.g. the robot arms, the 

flying objects, CNC machine, 3D laser cutting machines, and other machines that work in 

3D dimension. 

 

Proposed methods 

We try to shorten the RRT path and make it as smooth as possible by removing useless 

points. We introduce an algorithm in [29], it generates a shortened path based on the 

original one. A new version is proposed in this work.  

The proposed algorithm makes the path shorter in the length by omitting the useless 

points. It tries to replace multi-segments by one straight segment when it is possible. The 

generated path is not the optimal, neither the shortest one, but, it has fewer vertices and 

much more straightforward 

The algorithm tries to connect vertices from both path’s edges and delete the midpoints 

between them. The updated version tests the path from two directions and returns the 

shortest one. 
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Figure 3-4-a shows the original tortuous path that is generated by RRT, in addition to 

the first shortened path that starts from first toward the last point, and the second shortened 

path, which start from last toward the starting point of the original path.  

A smoothing-out technique is applied to the shortened path using Catmul-Rom spline 

[32], as shown in Figure 3-4-b.  

A problem rises up because of spline algorithm; the smoothed line sometime collides 

the near obstacles, and that is because the smoothing algorithm does not check the 

generated path if it collide or not, moreover the Catmull-Rom method generate 

uncontrollable curves. Because of this problem, the algorithm is re-implemented and the 

local-spline is proposed. It smoothes the path around the corners, which means the path 

will be kept straightforward, but only sharp edges will be smoothed.  

 

  
(a) (b) 

Figure 3-4: (a) The shorten algorithms results, the (black - -) line represent the first 

shortened path, and the ( blue - .) line represent the second shortened path, (b) the 

smoothed path (bold ...), the solid red line represents the original RRT path,  

To implement the local spline, two points on the path near the corner are used. These 

points are taken far from the corner by d distance, where d is chosen depending on the 

kinematic and dynamic constraints. These points in addition to the corner point are passed 

to the smoothing algorithm to generate a path around the corners. Figure 3-5 shows how 

the normal spline collides with walls and how the new local-spline works. However, this 

method reduces the collided points, but it still needs more checking for collision. 

 

 

Figure 3-5: Local spline. The dashed line represents the spline path, the (.-) line represents 

the local-spline path 
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Testing Environments 

We have constructed four testing scenarios for simulating the RRT performance in 3D 

workspaces. The first one involves a wall has a passage as shown in Figure 3-6-a. This 

obstacle evaluates the RRT efficiency in simple narrow passage scenario. The second 

workspace involves two walls where each one has a window. The third workspace has 

three walls with windows in different. The last scenario has vertical and horizontal 

obstacles with different locations of the windows as shown in Figure 3-6-b. 

We have tested six variations of RRT, i.e. the basic RRT (Ext), Blossom, Vlrrt and the 

bidirectional versions of them. The tests were executed for every method 100 times per 

scenario. The algorithms have been implemented in Matlab environment. We consider the 

RRT failed to reach the goal after 2000 attempts to grow a branch. 

  
(a) (b) 

Figure 3-6: (a) Narrow passage scenario (Wall 1), (b) horizontal and vertical workspace 

(Wall 4) 

The numerical results represent the average of execution time for successful tries to find 

a path. The boxplot representation is shown in Figure 3-7-a for the narrow passage 

scenario. 

The results show that using bidirectional-trees are better than unidirectional methods 

where these methods has the lowest average of execution time to find a result, they also 

more probabilistically complete. The tested algorithms have some difficulties to find a 

solution in a narrow passage, where even the bidirectional approaches failed to find a 

solution in some tests, as shown in in Figure 3-7-b. 

  
(a) (b) 

 

Figure 3-7: Wall 1, (a) boxplot for RRT variations based on an average time of executing, 

(b) the unsuccessful attempts to find a path. 
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3.3 SPATIAL GUIDANCE TO RRT PLANNER USING THE CELL-

DECOMPOSITION ALGORITHM 

In this work [33], we made a comparison between the probabilistic path-planning method, 

i.e. RRT and the spatial planner, i.e. exact cells-decomposition algorithm (CD).  

A new method is tested to make some tradeoff between the efficiency of planning using 

CD in 2D space and the planning in dynamic space using RRT. The proposed method uses 

the path’s points of the CD inside the RRTs planner as a spatial guidance. 

 

3.3.1 Problem formulation and proposed solution 

The RRTs as example of randomized algorithms, has a good performance in high 

dimensional workspace. In general, the limitation of these algorithms is the planning in 

small areas. In cell-decomposition case, it is efficient in low dimensions planning, even in 

small areas; however, the building of its graph could be hard in some cases.  

The available spatial information and the randomize approaches is combined to 

overcome the drawbacks in narrow area. The CD is used to produce a primitive path over 

2D or 3D workspace and provide this path to the RRTs planner as bias-path. This approach 

will keep some reasonable balance between dynamic and uncertainties from one side, and 

optimality, efficiency in spatial planning from the other side.  

In order to show the difference between these two planners we make some tests in two 

scenarios. The first one is a simulation of offices and corridors architecture-schema and the 

other is the typical issue for RRTs, which is a small area and narrow passage. 

 

3.3.2 Results 

We repeat the test 100 times for RRTs in every scenario and take the mean of the results 

for the successful tries to reach the goal. In each run, RRTs planner is setup as follows. The 

extending length set to (e = 0.5). The tests are repeated based on the RRT iteration, where 

the RRT is considered failed to reach the goal after {3000, 5000, 10000, and 100000} tries 

to grow a branch. 

In the first workspace (building-like scenario), a simulation was lunched for a path 

planning, and the results are listed in Table 3-2. In CD case the nodes number represents 

the number of graph’s nodes, which is constant. While in RRTs case, the node numbers are 

taken as an average of the results in a 100 times of repeated tests. 

Table 3-2: Test results in building-like scenario, the numbers in time fields (), represent the 

percent of RRT’s time comparing to CD’s time 

 
Nodes 

number 

Preparing 

Time 

Planning 

Time 

Total time 

when 

success 

Path 

Length 

Time 

when 

fail 

Successful 

CELL Dec. 33 0.3152 0.0056(1) 0.3208(1) 40.92 - 100 % 

RRTs(3000) 478.17 0 1.85(331.03) 1.85 (5.77) 43.46 2.0520 12% 

RRTs(5000) 547.17 0 2.46(493.17) 2.46(7.67) 41.77 3.2539 90% 

RRTs(10000) 540.48 0 2.44(435.55) 2.44(7.60) 42.71 - 100% 
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The preparing time is the time required to generate the graph in CD. However, it is not 

required in the RRT case. We can infer based on the planning time that the CD is an 

efficient planner comparing to RRTs in 2D workspace for non-holonomic movements. In 

consequence, for repeated task, the CD can be 436 times faster than RRTs. In addition, the 

graph size in the CD is constant, which makes it applicable for real-time planning.  

Figure 3-8 shows the testing workspace, which consists of rooms and corridors. The 

first part Figure 3-8-a shows the solution founded by RRTs planner. While Figure 3-8-b 

uses the CD planner to find a path. In order to enhance the RRT planner, a new method 

was proposed. It tries to exploit the spatial information that provided by CD and guide the 

RRT growth toward possible paths. The CD’s path points are considered as bias points to 

the RRT’s tree as shown in Figure 3-9, where the dots represent these points. 

 

  
(a) (b) 

Figure 3-8: Path planning in building-like workspace using (a) RRT,  (b) CD algorithm 

 .  

Figure 3-9: Path planning using RRTs with a bias toward CD path points, the dots 

represent points on CD path 

Table 3-3: Test results in the building-like workspace, the bias to CD-path’s points set to 

20%, and the numbers in (), in planning time fields represent the time reduction percent 

using the bias  

1st scenario 
Nodes 

Num. 

Planning Time 

(without bias) 
Planning Time  Successful  

Successful  

(without bias) 

RRTs(3000) 428.58 1.8538 1.8189 (-1.9%) 64% 12% 

RRTs(5000) 447.1 2.4594 2.0266 (-17.5%) 100% 90% 

RRTs(10000) 463.31 2.4391 2.1459 (-12%) 100% 100% 
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The RRT biases toward path’s points in probability of (0.2). The results are listed in 

Table 3-3, for the building-like workspace. The result shows that the bias enhances the 

RRT algorithm’s completeness significantly in all cases, in comparison with the previous 

results. The complete tests and results are presented in the full version of the thesis. 

This work was a first step to build a hybrid planner, which works efficiently in 

continuous, high dimension workspace using the available knowledge and spatial 

information, and overcome the drawback of randomized sampling-base algorithms. The 

future work will focus on using available information to speed up the complex motion 

planning for robots in uncertainty and dynamic environments. 

 

3.4 COLLIDED PATH REPLANNING IN DYNAMIC 

ENVIRONMENTS USING RRT AND CELL DECOMPOSITION 

ALGORITHMS 

In this work, the cell decomposition algorithm is used to find a spatial path in preliminary 

static workspaces, and then the RRT is used to validate this path in the actual workspace 

[34]. Two methods are proposed to enhance the omnidirectional robot’s navigation in 

partially changed workspace. First, the planner creates RRT tree and biases its growth 

toward the path's points in ordered form. The planner reduces the probability of choosing 

the next point if a collision is detected, which increases the RRT expansion in the free 

space. Second method uses a straight planner to connect the CD-path's points. If a collision 

is detected, the planner places RRT trees in the both sides of collided segment. The 

proposed methods are compared with others approaches. The simulation shows that the 

proposed methods have better results in terms of efficiency and completeness. 

 

3.4.1 Proposed Methods 

In this work, the RRT and approximation cell decomposition (ACD) algorithms are 

combined together in order to exploit the advantages of each of them. The new planners try 

to overcome the drawbacks, which effect the performance of the navigation process 

significantly, by complementing these two approaches.  

   
(a) (b) (c) 

Figure 3-10: (a) The drawback of ACD in dynamic environments, (b) the drawback of 

RRT in narrow passage and small regions, (c) the generated path using the combination of 

ACD and RRT 
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The RRT planner has relatively high tolerance to obstacles shapes and workspace 

changes. This feature is missing in the ACD planner as shown in Figure 3-10-a. However, 

the RRT is not efficient in small areas and narrow passage as shown in Figure 3-10-b, 

unlike the ACD planner, which does not face this problem. Based on that, the efficient 

spatial planner, ACD, is used to plan a primary path in stationary workspace. Then, this 

path is used to guide the RRT growth, as shown in Figure 3-10-c. 

The RRT planner validates the ACD’s path when a query is established in the actual 

workspace. If a collision is detected due to the change in the workspace, the planner re-

plans the path locally through the changed regions.  

Two approaches have been proposed to benefit from this combination. These planners 

focus on the enhancement of navigation problem for omnidirectional robots in partially 

dynamic workspace.  

 

a. RRT Validator Planner 

The RRT validator uses ACD’s path as a guidance to the RRT tree’s growth. It considers 

the CD-path’s points as an ordered set, and directs the bias toward these vertices. The 

RRT’s trees branching toward these set in the same order, point by point. In the initial 

state, the probability of choosing the next point of the path is set to the value of 100%. If a 

collision is detected, then this probability is reduced in order to allow the RRT explores the 

free space and attempts to reconnect to any point of the ordered set. 

If it reconnects, then the probability to choose the next point is reset again to the value 

of 100% to force the planner follows the original ACD’s path once again. 

This strategy forces the planner to follow the guiding path when it is possible, and at the 

same time, it gives the planner a freedom to find an alternative local path to the collided 

segments. 

  
(a) (b) 

Figure 3-11: Examples of the proposed methods. The dotted line represents the ACD path 

in stationary workspace. (a) The RRT validator method which creates two RRT trees from 

the initial and the goal location. (b) The local RRTs method which creates nine local RRT 

trees 

In our tests, two RRT validators are used to validate the path. The first one rooted at the 

initial position and the second one rooted at the goal position. They try to follow the ACD 

path, or find an alternative local path. The RRT trees are shown in Figure 3-11-a, where 

they try to follow the ACD’ path (the dotted line). 
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b. Local RRT Planners 

The second proposed planner uses simple straight-line planner to connect the ACD path’s 

points and test the collision. The planner tracks the valid points of the path and creates 

sequences of these points. In case that all points are valid, then the planner returns these 

points as a solution. In the other case when the workspace is changed, and a collision 

happened, the planner breaks the original path sequence in the collided locations and 

rebuilds sequences of the continuance valid points. It also excludes the points, which locate 

in the obstacle areas. 

Each of these sequences is associated with RRT tree. The trees later on explore the 

space freely with small bias toward the other tree’s nodes. If two trees are near to each 

other, they are merged to form one tree. When all trees are merged, they form a single tree, 

which include the initial, and goal locations. 

In this planner, our strategy is to generate augmented local RRTs, in order to navigate 

around the new obstacles locally. Figure 3-11-b shows the local RRTs planners method in 

simulation. In this example, it creates nine local RRT’s trees based on the original path, 

which is generated in the stationary workspace. 

 

3.4.2 Tests and Results 

The proposed approaches are tested in two different workspaces. The first one represents 

an office with one route between the rooms, and the second one represents offices, which 

have two possible routes between them.  

The robot in this work is considered as a holonomic point translates in the workspace. 

The results of the proposed methods are compared to the other methods, i.e. the basic RRT 

algorithm, GoalBias RRT, and the bias toward the other trees. 

 

Testing Parameters 

The bias values, which are given to the compared methods are set as follows, the basic 

RRT chooses a random point without any bias. The goal-bias RRT directs the growth of 

the tree toward the goal location by selecting this location in probability of 10%. In the 

tree’s nodes bias, the RRT chooses a point of the others trees by the probability of 30% 

that force the trees to merge more quickly. In our proposed methods, the bias value of the 

validator RRTs is set to 100% when no collision occurred. Else, in the collision case, the 

bias value has the value of 20% toward the next valid point in the ordered set, in addition, 

to the value of 10% bias toward any other points in those points set. The planner in this 

case has the probability of 70% to explore the workspace freely and biases the growth 

toward a randomly chosen sample. The last method, the local RRTs approach, uses the bias 

toward the other trees by the value of 30%. 

The simulation repeated 100 times and the average of the successful attempts are taken 

for results comparison. The results include the execution time, the number of RRT 

iterations, which is corresponding to the number of RRT branching attempts, and the 

number of successful attempts to find a path.  
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The probabilistic completeness is estimated using the successful attempts result. While 

the efficiency is estimated using the time of execution and iterations results. The time of 

execution could be varied significantly based on the hardware and code optimization, 

while RRT iteration is independent of HW and the programmers skillful.  

The ACD’s path is constructed using the initial and the goal points, the free cells’ 

centers, and the barriers’ midpoint between the consequence cells. The RRT planner 

considered as failed if it cannot find a path after 2000 tries of branching. 

 

Results and Discussions 

In the first workspace, new obstacles are scattered in the original workspace. They are 

positioned to collided with the ACD path and add more difficulty to navigation process 

through the changed workspace. The workspace changes are shown in Figure 3-12-a, 

where the boxes represent the new obstacles. The ACD path is shown as a solid line 

between the initial and the goal locations. The cycle markers represent the bias points. The 

numerical results are shown in Table 3-4, where the proposed methods show more 

probabilistic completeness than the other methods do.  

  
(a) (b) 

Figure 3-12: (a) New obstacles in office-like workspace WS1, (b) new obstacles in offices-

like workspace WS2. ACD path is represented by a solid line, and the bias points 

represented as cycle markers 

In the second workspace, the partially changes are introduced by scattering new 

obstacles in the stationary workspace. The obstacles collided with ACD path and produce 

more narrow passages. Figure 3-12-b, shows the changes in the workspace, where the 

obstacles are represented by the boxes. The numerical results are presented in Table 3-5. 

As shown in this table the proposed methods give the best results; they are probabilistically 

complete as it is inferred from the success rate result. The local RRT’s trees method gives 

the best results in terms of efficiency; it has the lowest execution time, and the lowest 

iteration average. Figure 3-13-b condenses the iteration results for WS2 using the boxplots. 

The local RRT trees method gives the best results; it has the lowest execution time, and 

the lowest iteration to find a path. Moreover, the RRT validator method gives better results 

than the other competitor does. Figure 3-13-a sums up the iteration results for the first 

workspace WS1 using the boxplot representation. 
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(a) (b) 

Figure 3-13: RRT iteration boxplot for WS1 (a) and WS2 (b) 

Table 3-4: The result of the tested methods in WS1 

Method Mean Time Mean Iteration Success 

RRT 1.03 1137.11 96 

Goal Bias  1.12 1180.57 87 

Tree Node Bias  1.23 1365.34 80 

RRTs validator 0.45 270.19 100 

Local RRTs 0.19 95.20 100 

Table 3-5: The result of the tested methods in WS2 

Method Mean Time Mean Iteration Success 

RRT 0.92 817.13 96 

Goal Bias  0.98 871.06 94 

Tree Node Bias 1.076 1005.10 86 

RRTs validator 0.62 332.07 100 

Local RRTs 0.24 117.17 100 

 

3.5 HYBRID RULE-BASED MOTION PLANNER IN CLUTTERED 

WORKSPACE 

In this work, two new planners have been proposed. They depend on rules-based adviser. 

Each of these hybrid planners is composed of two-layers to enhance motion planning in 

heterogeneous, cluttered, and dynamic workspace. The first layer uses the exact cell 

decomposition algorithm, in order to find the free regions and the graph of adjacency in 

simple, static, and 2D workspace. Then, the second layer utilizes the rapidly exploring 

random trees approach, to find a path in cluttered and dynamic workspace. The 

information about free regions from the first layer and the exploration information from the 

second layer are combined to guide the growth of RRT trees. The combination is done 

using expert rules-based adviser that classifies the free regions and update their bias-

weights. The adviser of the first planner biases and pulls the trees growth toward the 

boundary areas between explored and unexplored regions. While the adviser of the second 

planner uses the collision information, and fuzzy rule-based set, to bias the trees growth 

toward low collision areas around the boundaries of the explored regions. 

These planners exploit and combine the advantages of the exact cell decomposition in 

simple, and low dimensional workspace, and the advantages of RRTs, which have a 

relatively higher tolerance to the changes in the environments. 
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The planners are tested in stationary workspaces, minor changes, and major changes 

scenarios. The proposed methods have been compared to other approaches, and the 

simulations results show that the proposed methods have better results, in terms of 

completeness and efficiency. 

 

3.5.1 Proposed methods 

The planner consists of two layers, the first one uses the trapezoidal cell decomposition 

method in static workspace to find the adjacency graph of free cells, while the second layer 

uses RRTs algorithm to find a path in the same workspace, but after new cluttered and 

dynamic obstacles are added. In order to enhance the RRTs ability to find a path, rules-

based advisers have been proposed also. The function of this adviser is to update the 

weights of free regions in order to pull the trees growth toward the most important regions 

in the workspace. 

The rules-based adviser in first planner uses the adjacency graph information and RRTs 

nodes’ location to update the regions’ weight. The rules-based adviser in second planner 

uses in addition to former information the collision information in the workspace regions. 

These resources of information are combined to bias the exploration toward the most 

important and low collision areas. 

The adjacency graph contains information about the free regions and the relations 

between them, while the information that comes from RRTs contains the location of trees' 

nodes in the free areas and the difficulty to reach these regions. 

To formulate this procedure the region state variable (stater) is defined to take one of 

these four values [boundary, neighbor, expanded, and far]. The value of this variable 

depends on the existence of any valid RRT node inside the corresponding region r, or in its 

neighbors. For any region r the variable stater takes the value of far when the region and its 

neighbors do not contain any sample belongs to RRT. It takes the value of neighbor when 

at least one sample of RRT is located in r's neighbor regions but not in r itself. The stater 

takes the value of boundary when at least one sample of RRT is located in region r and 

there is still at least one neighbor not explored yet. Lastly, the stater takes the value of 

expanded when at least one sample of RRT is located in region r and all neighbors are 

explored; i.e. their state is expanded or boundary.  

Based on these values, the regions’ weight are updated. Figure 3-15 shows the rules-

based adviser in the first planner. After each iteration of RRTs, the regions’ weight are 

updated to identify the most important ones. The weight variable could take one of these 

values [veryLow, low, high, veryHigh]. These values are translated into RRT bias. The 

RRTs is directed to grow trees to the boundaries of explored areas, by making the neighbor 

regions having the highest weights, and the boundary regions have less or equal 

importance. Figure 3-14 shows the RRTs' growth and the regions classifications. In 

explored areas, the algorithm blocks RRTs' trees from branching or selecting a new node 

inside them. However, a small amount of bias toward these regions is kept to avoid the 

situation where the planner works in small regions and block itself. 
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The trees grow and follow the free areas, and do more work to navigate through local 

workspace instead of the whole workspace. If a region is obstacle-free, then the planner 

passes through it rapidly, if not the RRTs tries to navigate around the local obstacles. 

The second proposed method uses fuzzy rules-based to update the weights as in 

previous version, in addition, the collision information is considered. The new fuzzy 

variable collisionRate is defined. This variable takes the values of [low, high]. The 

information about the collision is collected during the execution. 

The influence of collision rate is restricted to the most important areas. The weight 

variable in this case takes a value of [veryLow, low, high-, high+, veryHigh-, veryHigh+]. 

For a high value of collision rate, the weight of the boundary and Neighbor regions is 

reduced and the exploration is pulled toward more relax regions. Figure 3-16 shows the 

rules-based for this fuzzy planner. 

 

Figure 3-14: RRT growth and rules-based classification of the free regions; a: far regions. 

b: neighbor regions, c: boundary regions, d: expanded regions, S represents the initial 

position, G represents the goal position, and the blue regions represent the obstacles   

Adviser's rules in planner 1 

IF  stater  is far 

IF  stater  is expanded 

IF  stater  is boundary 

IF  stater  is neighbor 

THEN  weight  is veryLow 

THEN  weight  is low 

THEN  weight  is high 

THEN  weight  is veryHigh 

Figure 3-15: The adviser's rules of "bias toward boundaries" planner 

Adviser's rules in planner 2  

IF  stater is boundary   AND  collisionRate is low 

IF  stater is boundary   AND  collisionRate is high 

IF  stater is neighbor    AND  collisionRate is low 

IF  stater is neighbor    AND  collisionRate is high 

THEN  weight  is high+ 

THEN  weight  is high- 

THEN  weight  is veryHigh+ 

THEN  weight  is veryHigh- 

Figure 3-16: The adviser’s rules of fuzzy bias planner 

3.5.2 Simulations and Results 

The tests are made in four workspaces to simulate the holonomic robots movements in 

offices and cluttered or crowded areas. Every workspace is tested in three levels of 

changes. The first level is for stationary workspace. The second level includes workspace 

with minor changes, and the last one has major changes in the workspace. The major 

change means close some routes or cluttered obstacles in high density. 
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The results of the first proposed planner "biasTowardBoundaries" and the second 

proposed one "FuzzyBias" are compared with other methods, i.e. RRTs without bias; 

RRTs with a bias toward the goal; RRTs with a bias toward others RRTs’ nodes; RRTs 

with a bias toward the path that is generated by the cell decomposition algorithm.  

The results are organized in two tables for every scenario. The first table lists the 

completeness value of each planner on the three levels of changes, while the second table 

contains data about the RRTs iterations. The RRTs iterations mean the number of required 

steps to find the goal. The smaller the iteration, the efficient the planner is. 

 

Testing parameters 

The tests are repeated 100 times, in every workspace. The completeness comparison uses 

the percent of successful tries to reach the goal, while, the average of RRT’s iteration is 

used for efficiency comparison. 

The RRTs planner has extending-length (e = 0.3). The RRTs planning result is 

considered as failed, if it fails to reach the goal after 2000 tries of growing a branch.  

The bias value of every method is shown in Table 3-6. These values represent the 

probability of choosing the bias points. The complementary probability represents the 

choosing of a random sample from the workspace using a pseudo-random number 

generator. 

Table 3-6: Bias values in the testing methods 

Goal Other Trees CD path Fuzzy Boundaries 

0.1 0.3 0.5 1 1 

Results 

In the first scenario, the path-planning problem in the "WS1" workspace is simulated. 

Figure 3-17 shows the original workspace, the minor changes, and the major changes in the 

workspace. The thin line represents the generated path of cell decomposition, and the bold 

one is the shortened path of the original CD path. G and S points represent the goal and the 

initial locations, respectively.  

The probabilistic completeness results are presented in Table 3-7, while, the iterations 

values are shown in Table 3-8. In this scenario, the office-like workspace is simulated. The 

major changes test simulates the situation where the shortest path is closed and the robot 

should find an alternative route to the goal, and avoid the cluttered obstacles. 

In the second scenario, the highly cluttered obstacles situation is simulated, where the 

robot should pass through very small regions. While in the third scenario, we simulate the 

situation where some paths are closed and the robot should find an alternative route and 

avoid the cluttered obstacles. In the fourth scenario, the narrow passage and narrow area 

problems are simulated. The robot should pass through narrow and long corridors, which 

contains cluttered obstacles, and narrow connection between free regions. The graphical 

and the numerical results are present in the full version of this thesis. 
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(a) (b) (c) 

Figure 3-17: (a) The basic workspace WS1, (b) the minor changes in WS1, (c) the major 

changes in WS1. The thin line is a CD path, and the bold line is the shortened path. G and 

S represent the goal and the initial locations 

Table 3-7: Number of successful attempts to reach the goal in WS1 workspace 

 No bias Goal bias Other Trees bias CD path bias Fuzzy bias Boundaries bias 

Without change 98 96 97 99 100 100 

Minor change 94 90 90 95 100 99 

Major change 45 47 25 24 100 95 

Table 3-8: The average of RRTs branching attempts to reach the goal in WS1 workspace 

 No bias Goal bias Other Trees bias CD path bias Fuzzy bias Boundaries bias 

Without change 439 470 461 208 79 77 

Minor change 693 780 821 647 397 428 

Major change 1253 1302 1116 1404 590 669 

 

Discussions 

The results show that, the proposed planners work more efficiently than the other planners 

do in cluttered workspaces except in WS2 (the major change test). In all scenarios, the 

probabilistic completeness results, for both proposed planners, have a higher value in 

comparison to the other methods. Our planners navigate through all problems and find a 

path where the others competitors could not i.e. in WS4 tests. 

During the simulation, the high impact of the sampling strategy is noticed on the results. 

In this work, the pseudo-random number generator is used to generate samples inside 

regions. The sampling strategies need more review and research as future work. 

 

3.6 SAFE PATH PLANNING USING CELL DECOMPOSITION 

APPROXIMATION 

In this work [35], the cell-decomposition approximation is used to find a safe path in static 

workspace, for omnidirectional robot. The quad-tree approximation algorithm divides the 

workspace into manageable free areas, and builds a graph of adjacency between them.  

New methods have been proposed to keep the robot far away from the obstacle 

boundaries by a minimum safety-distance. They utilize the size of free cells to generate the 
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desire path, i.e. they give a lower cost to the graph’s edges between big free cells, and a 

higher cost to the connections between the smaller cells. After that, the planner searches 

for a path that has the lowest cost.  

 

3.6.1 Proposed Methods 

In this work, the path safety problem in static workspace is studied. The path is considered 

as safe if 1- It passes through obstacles without colliding with them. 2- It navigates and 

keeps a safety distance far from obstacles boundaries. 3- It follows the large open areas in 

the workspace when it is possible.  

We utilize the cell-decomposition approximation algorithm (ACD) to find an 

approximation of the free areas, and exploit the resolution feature to satisfy the minimum 

distance condition. The resolution of ACD corresponds to the smallest cell’s edge. We 

proposed that the robot passes through the center of the cell when it executes the path; 

based on that assumption the resolution is chosen to be (2 * safety distance). 

Three versions have been proposed to plan a safe path. These methods are based on the 

manipulating of the weights, which assign to the graph edges, in order to make the planner 

choose the largest cells when translating toward the goal position.  

The first approach uses equal weights for translating from one cell to another. The idea 

behind this proposal is to minimize the total number of cells in the path, which in 

consequence directs the planner to use bigger cells, when searching for a lower path cost.  

The second method introduces a penalty for translation between different cells size. 

This penalty is added to the edge's weight, and it is disproportional to the cells size, which 

means the weight of translating between the larger cells is smaller than the weight of 

translating between the small cells, while the weight of translating between the same size 

cells is kept fixed. This proposal guides the planner to do the translating in large cells when 

it is possible and at the same time keeping some trade-off between making the translation 

in large cells, and planning a path closer in length to the shortest path. 

The last proposed method is very similar to the second approach in spite of it introduces 

disproportional penalty not only with different cells size, but also with cells that have the 

same size. The benefit of these methods is to push the path toward large cells when it is 

possible by adding more penalties when translating between small cells, in addition to the 

benefits of the second approach. 

The proposed methods, lead the planners to use the large cells more than small cells for 

planning a path, at the same time they keep the safe distance far from obstacles. 

 

3.6.2 Result and Discussion 

In the first proposed method, the weights of the graph’s edges are uniformed to the cost of 

(1) unit, which corresponding to the cost of translating from one cell to another one, 

regardless of the cells' size. 

In the second proposed method, we associate to each cell of the free cells a level. This 

level is disproportional to cell size. The level is used when manipulating the weights of 

graph edges. The edges' weight between two cells is set to be equal to the biggest level 
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value between these cells, i.e. if cell1 has a level of (2), and cell2 is smaller and has the 

level of (4), the edge's weight between them has the value of max(2,4) which is (4). The 

translation between cells that have the same level is fixed to the weight of (1). 

The weights in the third proposed method are calculated in the same way as in the 

second method, but here the transition between same cells size is varied also based on 

cell's level. For example, the translation's weight between the cells that have levels of (3) 

will take the value of (3).  

Dijkstra’s algorithm is used as a graph search algorithm to find the path over the graph. 

Dijkstra’s algorithm finds the minimal cost of the path efficiently. The tests are done in 

two workspaces using three values of safety distance {0.1, 0.3, and 0.75}. The results for 

the first work space are shown in Figure 3-18. 

 

   
a b c 

Figure 3-18: Safe paths planning in WS1, the safety distance is set to be a: (0.1), b: (0.3), c: 

(0.75). The solid blue line represents the equal weights of translation method, the doted-red 

line represents the disproportional penalty to translating between different cells size, the 

dashed-green line represents the disproportional penalty to size of the cells method. S and 

G is the initial and the goal positions. 

We can infer from the results that the proposed methods generate a path that respects 

the safety distance condition. The first method (the solid blue line) tries to minimize the 

number of cells as shown in Figure 3-18-a, b. The path keeps the safety distance, but it 

does not follow the large areas. The second method (the dotted red line) is better in this 

criteria; it forces the planner to plan in the large cells. However, it follows the large cells, 

but not if smaller cells are adjacent to each other; in that case the algorithm plan through 

these adjacent cells. The last approaches solve this drawback (the dashed green line), and it 

plans in large open regions when it is possible. The results shows also that the algorithm 

does not find a path in the third test, the (0.75) due to the safety distance, where the 

collided cells is removed from the graph, and break the path between the initial position 

and the goal one. The other tests and results is presented in the full version of the thesis. 

 

3.7 NARROW PASSAGE IDENTIFICATION USING CD 

APPROXIMATION AND MINIMUM SPANNING TREE 

Narrow passage problem is a problematic issue facing sampling-based motion planners. In 

this work [36], a new approach for narrow areas identification is proposed. The quad-tree 
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cell-decomposition approximation is used to divide the free workspace into smaller cells, 

and build a graph of adjacency for them. The proposed method follows the graph edges 

and finds a sequence of cells, which have the same size, preceded and followed by a bigger 

cell size. The sequence, which has the pattern “bigger-smaller-bigger” cells size, is more 

likely to be located in a narrow area. The minimum spanning tree algorithm is used, to 

linearize adjacency graph. Many methods have been proposed to manipulate the edges cost 

in the graph, in order to make the generated spanning tree traverse through narrow 

passages in detectable ways. Five methods have been proposed, some of them give bad 

results, and the others give better one in simulations. 

 

3.7.1 Proposed methods 

Narrow passage problem faces most of sampling based approaches. The problem occurs 

when a uniform distribution is used to take samples from the workspace, because the small 

and narrow areas have low probability to get samples within their space.  

We exploit the information about the cells size to find the narrow area. Our proposal 

based on the idea of following the adjacent cells size. If the translation is done from a big 

cell to others smaller ones, which have the same size, then followed by a translation to 

another bigger cell, then this sequence of the small same-size cells is most likely to be a 

narrow passage or important area from motion planning point of view.  

To implement the proposed method, a preprocessing step should be applied to the 

adjacency graph. Since, the graph of adjacency has many loops and cycled connections 

between the nodes, for that, a linearization of the graph should be done before the narrow 

passage identification method is applied. The minimum spanning tree (MST) approach is 

used to build a new liner graph. The MST tries to build a spanning tree that has the lowest 

cost, and contains all nodes visited one time. This principle causes another problem, where 

the tree is planned in unpredictable regions in the workspace based on the edges costs. In 

order to solve this problem, the edges’ weight, which effect the spanning tree construction 

process, is updated and adapted. The weights are manipulated, in order to give a low cost 

for edges that placed within narrow and small areas, and at the same time, prevent the MST 

method of constructing the tree structure near to the obstacles boundaries. Many ideas for 

weights manipulation are tested to generate the desire spanning-tree. We propose and test 

five methods. The first method uses the real distance between cells. 

The second one uses the uniform cost for translating from one cell to another one. This 

method based on the idea that, the generated tree should minimize the path cost by using 

the minimal number of translations; in consequence it uses the bigger cells when it is 

possible.  

The third proposed method, the bias toward different cells size, updates the edges’ 

weight in such a way that it makes the cost of translation between different cells’ size 

lower than translation between cells that have the same size. This method makes the span 

tree uses the smaller cells as leaves for the tree, while it uses the bigger cells as roots. 

The fourth method, the bias toward equal cells size, suggests giving the lowest cost to 

the translation between the same size cells. It is the opposite of the previous method, the 

idea behind this proposal is to make the cells that have the same size, as a sequence does 
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not satisfy the narrow passage condition “bigger-smaller-bigger,” instead it will has the 

pattern “bigger-smaller”. The MST in this case constructs narrow passage pattern just 

when it is necessary. 

The last proposed method, the disproportional cost to the distance, gives the edges a 

cost based on the cells size, the smallest cost is given when translating between the bigger 

cells. We realize this proposal by finding the longest distance between cells then subtracts 

all translation distances from that distance. The result is given as a weight of the graph 

edges. This method gives the translation between the largest cells, which have the longest 

distance, the lowest cost, while the translation between smaller cells will have higher costs. 

 

3.7.2 Results and discussion 

The proposed methods are simulated and tested in two workspaces. The first one is an 

office-like workspace, where there is one route to connect any two rooms. The second 

workspace is generated in such a way that the connections between the free regions have 

multi-routes. 

The result is shown graphically using grading colors, where each color represents a 

narrow passage sequence. The size of the shaded sequence represents the size of the 

corresponding cells. 

 

  
(a) (b) 

Figure 3-19: Real distance cost, (a,c) show the identified narrow passages, each color 

represents one passage, the blue area represent the obstacles, this approach failed in 

detecting the correct passages. 

The results of the first and second methods show that the algorithm finds many narrow 

passages. But the results are considered failed because it generates many sequences near 

the obstacles and far away from the narrow passage. 

The first method that uses the real distance as a cost, makes the MST constructs the tree 

near the obstacle and follows the smaller cells as shown in Figure 3-19. Where (a,b) show 

the tested workspaces, and the identified narrow passages. Each passage is denoted using a 

color. As seen from the figures the extracted narrow passages using this methods is not 

accurate. 

The uniform cost method generates a tree structure which uses more bigger cells as 

expected, and it generates a better solution, however the result still not good and 

unreliable. The third method directs the MST algorithm to use different cell size. The 
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generated trees translate between cells that have different size more than the translation 

between the cells that have the same size. This method generates a better solution. 

However, it also generates long sequences and undesired sequences, especially in the 

second workspace, which has un-alignment obstacle to the axis. 

The fourth method, which gives lower cost to the translation between equal cells size as 

shown in Figure 3-20, generates better results, it has the ability to find all narrow passage. 

But, it generates very long sequences. 

The last proposed method, which has disproportional cost to the distance, produces a 

relatively good solution. However, it is still has a problem with sequences generation, since 

it has some faults to find the correct narrow passages, in addition the generated sequences 

are long, and sometime they merge many narrow passages together. 

The graphical results of these methods are presented in the full version of this thesis. 

 

  

Figure 3-20: The identified narrow passages using the bias to the equal cells size method, 

each color represents one narrow passage, the blue area represent the obstacles 

We noticed that the first two methods which gave a bad results (real distance cost, 

uniform cost), can be updated to find obstacles boundaries cells, based on that, the non-

uniform distribution can be introduced to be used in the motion planning samplers, which 

improve the performance. 

We also notice that the minimum spanning tree has a drawback in this algorithm, where 

some routes are lost. That is happened when the workspace has multi-routes between free 

areas, where the MST does not distinguish between the loop around obstacle and the loop 

between cells. More studies and analysis to the cost manipulation process should be 

reviewed in the future work.  

 

4  CONCLUSION 

The aim of this dissertation was to improve the mobile robot path planning strategies, 

which, consequently, improves the robots autonomy and thus makes it more adaptable to 

our everyday life.  

The goals of this thesis are fulfilled as many motion-planning algorithms and their 

applications in mobile robot path planning have been reviewed and simulated. Then, some 

of these algorithms were tested in 2D and 3D workspaces and the performance results were 

evaluated using statistical analyses. Based on these tests, the advantages and drawbacks of 
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these methods were identified, and, new methods for path planning and path shortening 

were introduced to overcome the drawbacks and improve the performance. 

The new motion planning methods are classified in three types. First, the cell 

decomposition based planners which generate a path that keeps a safety distance between 

the robot and the obstacle boundaries. At the same time, they perform the maneuvers 

through the large free regions in the workspace. 

The second type uses hybrid two-layer planners which combine the advantages of RRT 

algorithms and CD approaches to overcome the difficulty when planning a path through 

narrow areas and dynamic workspaces. 

The third type, the hybrid rule-based planner, utilizes the collected experience and 

expert knowledge base to produce better solution in an efficient way. This type of planner 

is constructed using multi-planning layers, i.e. the fuzzy expert system, RRT, and CD 

algorithms.  

In this work, also new supportive methods were proposed to solve specific problems, 

for example the problem of navigation in a narrow area using sample-based algorithms. A 

combination of CD and minimum spanning tree has been proposed to identify the narrow 

passages and important regions in the workspaces. 

The objectives of this work are met and the simulations show the ability of these 

planning approaches to solve different problems in the motion-planning domain. The 

simulation environment has been developed using Matlab to conduct the simulations and 

generate the numerical and graphical results, while the statistical analyses were done using 

Minitab and Matlab. 

Naturally, the results open many new research questions. For example, determine the 

best sampling methods in the sampling-based algorithms. And, describe the impact of 

using different knowledge bases on path generating, i.e. the collision tendency, primitive 

local paths, etc. 
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ABSTRACT 

Motion planning is an active field in robotics domain, it is responsible for translating high-

level specifications of a motion task into low-level sequences of motion commands, which 

respect the robot and the environments constraints. 

In this work many path-planning approaches have been reviewed, mainly, the rapidly 

exploring random tree algorithm (RRT), the cell decomposition approaches (CD), and the 

application of fuzzy expert system (FES) in motion planning. These approaches have been 

adapted to solve some of mobile robots motion-planning problems efficiently, i.e. motion 

planning in small and narrow areas, the global path planning in dynamic workspace, and 

the improvement of planning efficiency using available information about the working 

environments. New planning approaches have been introduced based on exploiting and 

combining the advantages of cell-decomposition, and RRT, in addition to use other tools 

i.e. fuzzy expert system, to increase the efficiency and completeness of finding a solution. 

This thesis also proposed solutions for other motion-planning problems, for example the 

identification of narrow area and the important regions when using sampling-based 

algorithms, the path shortening for RRT, and the problem of planning a safe path. 

All proposed methods were implemented and simulated in Matlab to compare them 

with other methods, in different workspaces and under different conditions. Moreover, the 

results are evaluated by statistical methods using Matlab and Minitab environments. 

 

ABSTRAKT 

Metody plánování pohybu jsou významnou součástí robotiky, resp. mobilních robotických 

platforem. Technicky je realizace plánování pohybu z globální úrovně převedena do 

posloupnosti akcí na úrovni specifické robotické platformy a definovaného prostředí, 

včetně omezení. V rámci této práce byla provedena recenze mnoha metod určených 

pro plánování cest, přičemž hlavním těžištěm byly metody založené na tzv. rychle 

rostoucích stromech (RRT), prostorovém rozkladu (CD) a využití fuzzy expertních 

systémů (FES). Dosažené výsledky, resp. prezentované algoritmy, využívají dostupné 

informace z pracovního prostoru mobilního robotu a jsou aplikovatelné na řešení globální 

pohybové trajektorie mobilních robotů, resp. k řešení specifických problémů plánování 

cest s omezením typu úzké koridory či překážky s proměnnou polohou v čase. V práci jsou 

představeny nové plánovací postupy využívající výhod algoritmů RRT a CD. Navržené 

metody jsou navíc efektivně rozšířeny s  využitím fuzzy expertního systému, který zlepšuje 

jejich chování. Práce rovněž prezentuje řešení pro plánovací problémy typu identifikace 

úzkých koridorů, či významných oblastí prostoru řešení s využitím přístupů na bázi 

dekompozice prostoru. V řešeních jsou částečně zahrnuty sub-optimalizace nalezených 

cest založené na zkracování nalezené cesty a  vyhlazování cesty, resp. nahrazení trajektorie 

hladkou křivkou, respektující lépe předpokládanou dynamiku mobilního zařízení. Všechny 

prezentované metody byly implementovány v prostředí Matlab, které sloužilo k 

simulačnímu ověření efektivnosti vlastních i převzatých metod a k návrhu prostoru řešení 

včetně omezení (překážky). Získané výsledky byly vyhodnoceny s využitím statistických 

přístupů v prostředí Minitab a Matlab. 
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