
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Mechanical Engineering

Institute of Solid Mechanics

Ing. Roman Gröger

CHARACTERIZATION OF FRACTURE-MECHANICAL

BEHAVIOR OF BIMATERIAL V-NOTCHES USING BEM

POPIS LOMOVĚ-MECHANICKÉHO CHOVÁNÍ

BIMATERIÁLOVÝCH V-VRUBŮ POMOCÍ BEM

SHORT VERSION OF PH.D. THESIS

Study field: Engineering Mechanics

Supervisor: Prof. RNDr. Zdeněk Knésl, CSc. (ÚFM AV ČR, Brno)

Opponents: Prof. RNDr. Michal Kotoul, DrSc. (ÚMT, FSI, VUT Brno)

Prof. RNDr. Vladimír Sládek, DrSc. (ÚSTARCH SAV, Bratislava)

Presentation date:    August 27, 2003



KEYWORDS

V-notch, bimaterial interface, boundary elements, layered structure, generalized stress intensity

factor, T-stress, stability criterion.

KLÍČOVÁ SLOVA

V-vrub, bimateriálové rozhraní, hraniční prvky, vrstvený materiál, zobecněný faktor intenzity

napětí, T-napětí, kriterium stability.

PLACE OF STORAGE

The Dissertation is stored at the Department of Science and Research, Faculty of Mechanical

Engineering, Brno University of Technology, Technická 2, 616 69 Brno.

© Roman Gröger, 2000-2003

Institute of Solid Mechanics, Faculty of Mechanical Engineering Brno University of Technology,

Technická 2, 616 69 Brno, Czech Republic

and

Institute of Physics of Materials, Academy of Sciences of the Czech Republic

Žižkova 22, 616 62 Brno, Czech Republic

ISBN 80-214-2473-7

ISSN 1213-4198



CONTENTS

1 INTRODUCTION 5

2 PRESENT STATE OF THE RESEARCH 6

3 MAIN AIMS OF THE WORK 6

4 ANALYTICAL EXPRESSION OF THE STRESS FIELD 7
4.1 Stress field around a V-notch tip . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Fracture-mechanical parameters and their physical meaning . . . . . . . . . . 10

5 QUANTIFICATION OF THE FRACTURE-MECHANICAL
PARAMETERS 11
5.1 Extrapolation of the GSIF and T-stress . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Integral approach to the calculation of the GSIF . . . . . . . . . . . . . . . . . 13
5.3 On the calculation of T-stresses using the contour integrals . . . . . . . . . . . 14
5.4 Assessment of the stability of bimaterial V-notches . . . . . . . . . . . . . . . 15

6 INTRODUCTION TO THE BOUNDARY ELEMENT METHOD 17
6.1 Governing equation of elastostatics . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Calculation of internal displacements . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Integral representation of internal stresses . . . . . . . . . . . . . . . . . . . . 19
6.4 Numerical treatment at corner points . . . . . . . . . . . . . . . . . . . . . . . 20

7 EXAMPLES 22
7.1 Simulation of the tension experiment . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 A notch perpendicular to bimaterial interface . . . . . . . . . . . . . . . . . . 24
7.3 Inclined notch terminating at the interface . . . . . . . . . . . . . . . . . . . . 28

8 CONCLUSION 31

REFERENCES 32

AUTHOR’S CURRICULUM VITAE 33

3



Abstrakt

Předložená práce uvád́ı teoretický model pro hodnoceńı stability bimateriálových V-vrub̊u
vznikaj́ıćıch na povrchu křehkých materiál̊u. V d̊usledku zvýšených napět́ı v okoĺı těchto
koncentrátor̊u napět́ı je možná iniciace mikrotrhliny a jej́ı daľśı š́ı̌reńı v závislosti na charakteru
vněǰśıho namáháńı. Dosáhne-li hustota deformačńı energie hodnoty potřebné pro r̊ust trhliny,
docháźı v př́ıpadě křehkých materál̊u téměř okamžitě k nestabilńımu r̊ustu trhliny a delaminaci
zbytkového pr̊uřezu. V opačném př́ıpadě je nestabilitě zamezeno; rozhrańı pak p̊usob́ı jako
překážka k š́ı̌reńı trhliny a v některých př́ıpadech lze dokonce pozorovat i zastaveńı trhliny na
tomto rozhrańı.

Uvažujeme-li lineárně-elastické chováńı všech oblast́ı modelu, lze pro popis napěťově-
deformačńıch stav̊u použ́ıt lineárně-elastickou lomovou mechaniku. Pole napět́ı v okoĺı obecně
orientovaného bimateriálového V-vrubu lze analyticky vyjádřit ve tvaru nekonečné řady, tzv.
Williamsova řešeńı. Každý člen tohoto rozvoje je jednoznačně definován svým vlastńım č́ıslem
λ, vlastńı funkćı f(λ, θ) a radiálńım členem tvaru rλ−1. V bĺızkosti kořene V-vrubu tak
zřejmě vymiźı ty členy rozvoje, kterým př́ısluš́ı vlastńı č́ıslo λ > 1. Naopak napěťové členy
odpov́ıdaj́ıćı λ ≤ 0 zp̊usobuj́ı divergenci energie napjatosti, v d̊usledku čehož je nutné tyto
členy vyjmout z Williamsova rozvoje. Pole napět́ı v okoĺı obecného bimateriálového V-vrubu
je tak zřejmě možné popsat konečným počtem člen̊u Williamsova rozvoje, z nichž napěťové
členy odpov́ıdaj́ıćı vlastńım č́ısl̊um 0 < λ < 1 jsou nazývány jako singulárńı a pro λ = 1
mluv́ıme o nesingulárńım členu rozvoje napět́ı. Hodnoty př́ıslušných koeficient̊u, až na ampli-
tudy napěťových člen̊u, které se př́ımo vztahuj́ı k tzv. lomově-mechanickým parametr̊um, je
možné stanovit řešeńım systému algebraických rovnic.

Pro kvantifikaci zbývaj́ıćıch lomově-mechanických parametr̊u je zapotřeb́ı znalosti celého
pole napět́ı, které je v obecném př́ıpadě źıskáno numericky. Výpočtový model byl sestaven
z konečného počtu tzv. hraničńıch prvk̊u, které jednoznačně určuj́ı tvar modelované součásti.
Deformačńı a silové okrajové podmı́nky byly předepsány pouze na hranici a s použit́ım izopara-
metrických tvarových funkćı transformovány do uzl̊u jednotlivých prvk̊u. Hledané posuvy
a napět́ı v uzlech hranice lze pak určit s využit́ım př́ıslušné hraničńı integrálńı rovnice.

Výpočet lomově-mechanických parametr̊u ze znalosti pole napět́ı je možný buď př́ımou
nebo integrálńı cestou, přičemž obě metody jsou v Disertačńı práci modifikovány pro ap-
likaci na bimateriálové V-vruby. Integrálńı model výpočtu je založen na platnosti Bettiho
recipročńıho teorému definovaného mezi dvěma nezávislými elastickými stavy, z nichž jeden
odpov́ıdá dané úloze a druhým je analyticky vyjádřitelné pomocné řešeńı splňuj́ıćı stejné okra-
jové podmı́nky jako řešená úloha.

Posuzováńı stability obecného koncentrátoru napět́ı je třeba provádět na základě vhodného
kriteria stability trhliny. Jedńım z možných a fyzikálně podložených př́ıstup̊u je známé Si-
hovo kriterium hustoty deformačńı energie. Toto kriterium bylo v předložené práci modi-
fikováno tak, aby zahrnovalo všechny singulárńı a také nesingulárńı napěťové členy př́ıtomné
ve Williamsově rozvoji. Bimateriálový V-vrub je pak chápán jako stabilńı v př́ıpadě, kdy je
hodnota Sihova faktoru menš́ı než jeho kritická velikost, která je materiálovou charakteristikou.

Konkrétńı výpočty byly provedeny na homogenńıch i bimateriálových tělesech porušených
ostrou trhlinou i r̊uzně orientovanými V-vruby dosahuj́ıćımi bimateriálového rozhrańı. Ukázáno
je také kvantitativńı srovnáńı integrálńıho př́ıstupu s hodnotami źıskanými př́ımou extrapo-
lačńı metodou. U bimateriálových těles je nav́ıc vyjádřen modifikovaný Sih̊uv faktor a směr
š́ı̌reńı mikrostrukturálńı trhliny, iniciované v kořeni V-vrubu, do ćılového materiálu.
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1 INTRODUCTION

Many successful wear resisting materials consist of a thin layer of ceramic on a thicker metallic
substrate. These layered structures are conveniently made using the laser beam with the
high energy density, which is capable of melting the metallic substrate and partly also the
ceramic powder resulting in solid bonding between the ceramic and the metal. However,
as the physical properties between ceramic and metallic materials are vastly different, e.g.
coefficient of thermal expansion and crystallographic structures, cracks usually develop at the
interface as well as inside the rapidly solidified layer. This process of thermal bonding was
previously used by De Hosson et al for the study of coating a duplex steel SAF 2205, stainless
steel 304 and Fe-22 wt% Cr. Similar analysis of interface made of a mixture of SiO2 and Al
powder injected in the laser-melted surface of aluminium was published recently [4].

Mathematical description of the stress field and associated theories dealing with the stabil-
ity of cracks in layered structures are rather well investigated. Although this continuum-level
description cannot explain the processes and interactions in the micro-level, such results are
still very important for engineering practice. Because the associated mathematical apparatus
quantifying the stability of the crack-like flaws in homogeneous materials is widely accepted,
this so-called limit analytical solution becomes very popular among engineers and materials
scientists.

To make this theory applicable to a broader class of stress concentrators, let us start with
the simpler two-parameter linear-elastic fracture mechanics. The stress field around a sharp
crack can be analytically expressed by using the so-called Williams eigenfunction expansion
that is a solution to the biharmonic partial differential equation of elastostatics. Some of the
resulting stress terms included in the Williams series exhibit a strong singular dependence
on the radial distance as the internal point approaches the crack tip. Moreover, also the
stress term independent of the radial coordinate is always solution to the this differential
equation. The two-parameter description then states that a reasonably accurate continuum
description of the stress field around such a crack tip should involve all the singular stress
terms proportional to r−p (p is the stress singularity exponent) and also the nonsingular field
(p = 0). Once the amplitudes of the stress fields are quantified, the stress field around the
analyzed flaw is uniquely mapped. These unknown coefficients are commonly called as the
fracture-mechanical parameters. Particularly, the coefficients belonging to the singular stress
fields are referred to as the stress intensity factors (SIF), whereas the nonsingular stress term is
governed by the elastic T-stress. It is then assumed that the sudden brittle failure occurs when
the combined effect of the SIF and T-stress falls into the so-called fracture toughness locus [6].
This locus can be measured experimentally on a set of specimens and we can therefore regard
the fracture toughness locus as the material characteristic.

Since the mechanical parts are made of two or more layers of elastic materials, e.g. hard,
wear-resistant ceramic coating deposited on a more compliant substrate, it is necessary to
investigate the conditions under which these bimaterials failure. The interface between the
two layers is mostly modeled as bonded with the continuity of displacements and equilibrium
of tractions along the joint. Therefore, one should be careful with applying this method to
materials, where a significant slip between coating and substrate can be expected. Apparently,
in these cases the real behavior and also the nature of crack propagation is affected mainly by
the microstructural properties of the interface.

A further generalization can be made if a crack emanating from an arbitrarily open V-notch
is assumed. This can be practically observed in almost every area of engineering. The surface
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scratches or cracks give birth to an elevated stress field in a vicinity of their tips and, if the
strength of the stress field is high enough, the growth of the microscopic cracks initiated within
the plastic zone ahead of the V-notch tip is allowed. The crack growth can be very rapid and
the consequences of the brittle failure are often catastrophic. It is therefore paramount to
understand the processes associated with such a failure and introduce a sufficiently accurate
numerical procedure for the prediction of the onset of brittle failure.

2 PRESENT STATE OF THE RESEARCH

In the ceramic coating, the cracks are usually observed in thermally-affected zone just outside
the laser track [4] and often aligned perpendicularly to the interface. To maintain the structural
integrity of such bimaterials, it is necessary to predict how these cracks will interact with the
interface. i.e. whether they propagate into the substrate or will cause a delamination of the
interface itself.

Analytical theory describing the stress and displacement field around an arbitrarily oriented
crack meeting an interface was introduced by Fenner [5] and Bogy [3]. They showed that the
Williams eigenfunction expansion has generally two singular stress terms corresponding to
two different eigenvalues λ. Since the stress singularity exponent defined as p = 1 − λ is now
variable and falls into 0 < p < 1, the corresponding amplitudes of the singular stress terms
are called as the generalized stress intensity factors (GSIF). Methods for the quantification of
such parameters can be distinguished as:

• extrapolation methods – stress or displacement field is determined numerically, mostly
using the Finite Element Method (FEM) or by the Boundary Element Method (BEM).
The known stress or displacement components are then substituted into their analytical
expressions and the corresponding SIF or GSIF is extrapolated into the crack tip as the
intercept of the regression line [12].

• contour integral methods – based on the path-independent integrals, where two
configurations satisfying the same boundary conditions are used. First state is the
actual stress state in the body with unknown SIF or GSIF, whereas the latter is the
auxiliary solution that has to be known analytically. The equilibrium between these two
configurations is attained in the sense of the Betti reciprocal theorem [13].

Similar methods are also applicable to the calculation of the elastic T-stress. However,
several differences should be recognized between the quantification of the amplitudes of the
singular stress fields and nonsingular fields. Firstly, the extrapolation of the T-stress is often
carried out on the basis of the singular stress terms. This apparently means that, to be able
to obtain the extrapolated value of the T-stress, one has to first determine the corresponding
SIFs or GSIFs. Secondly, despite its great applicability to cracks in homogeneous bodies and
also to interface cracks [15], the contour integral method was not yet fully developed for the
quantification of the T-stress for cracked bimaterials, where the crack or V-notch type flaw
terminates at the interface joining the two elastic layers.

3 MAIN AIMS OF THE WORK

Although, much work has been already done in attempt to predict the behavior of V-notches
under external loading, some parts of the theory are still not fully consistent. The main
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problem is associated with the quantification of the fracture-mechanical parameters that are
directly related to the stability of the notches. The first goal of this Dissertation is therefore
associated with the development of a sufficiently accurate numerical procedure that would
be capable of determining the fracture-mechanical parameters for any type of geometry and
orientation of the V-notch towards the bimaterial interface.

Another problem is the decision on the stability of the bimaterial cracks and V-notches.
Since the GSIFs calculated for a particular configuration are not appropriate for direct compar-
ison due to their dimensional dependence on the magnitude of the corresponding eigenvalues
(H [MPa.m1−λ]), one has to make this assessment on indirect basis. One of the feasible and
physically consistent ways to attain this goal is to generalize the standard Sih’s strain energy
density criterion to account for both the GSIFs and the T-stress. The modified strain energy
density factor Σ would then be an unambiguous quantity that could be directly compared
with its critical value ΣC to decide on the stability of the analyzed flaw.

The common feature of every continuum model of linear-elastic fracture mechanics is the
necessary knowledge of the stress and displacement field around the analyzed defect. This is
often achieved by using the Finite Element Method that calculates the stress tensor at every
node inside the model and on the boundary. However, since we are primarily interested in the
neighborhood of the crack or notch tip, a vast majority of information obtained from FEM
is redundant in our fracture-mechanical considerations. To obtain the stress field of a large,
geometrically complex model, the finite element mesh would need to be reasonably refined to
reflect the nature of wedges, corners, notches, cracks, etc. The number of algebraic equations
and the computational difficulty associated with the numerical solution of these huge systems
is obvious.

To make the decisions on the stability of flaws more compact, one can use for example the
Boundary Element Method that discretizes only the boundary of the model. In this method,
the unknown magnitudes of displacements and tractions at the boundary are determined
exactly. Furthermore, the internal stresses and displacements are calculated only at the points
of interest by using the appropriate integral representation. In comparison to the linear FEM,
the elastostatic Boundary Element Method is more mathematically complex, which is probably
the reason why it has not been as widely accepted as the FEM. Nevertheless, the advantage
of BEM over other methods for the solution of fracture-mechanical problems is undoubted.
The study and thorough understanding of the underlying theory of BEM and algorithms of
the calculation of internal stresses and displacements were therefore the other steps to the
successful application of this method.

4 ANALYTICAL EXPRESSION OF THE STRESS FIELD

4.1 Stress field around a V-notch tip

To present the analytical description of the stress and displacement field around a V-notch tip
arbitrarily oriented towards the bimaterial interface, let us assume that both layers are homo-
geneous, isotropic and with linear-elastic behavior. We are interested here in two-dimensional
problems with either plane strain or plane stress condition.

According to the Theory of elasticity [17] the equilibrium in a 2-D elastic body is governed
by the biharmonic partial differential equation

∆∆Φi = 0 , (1)
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where ∆ is the Laplace operator and Φi is a particular stress function corresponding to domain
i of the model. Let us assume that the model consists of three elastic domains, as shown in
Fig. 1, addressed by i = 1, 2, 3 with generally dissimilar elastic properties. The solution to this
differential equation is expressed in the form of the Williams eigenfunction expansion:

Φi =
∞∑

k=1

Akr
λk+1Fik(θ, λk) , (2)

where Ak are the unknown coefficients, λk are eigenvalues, Fik are eigenfunctions, and r, θ are
the usual polar coordinates. Although the expression (2) is not terminated, the only term
Φi = Arλ+1Fi(θ, λ), where λ ∈ (0; 1), is usually taken into account for the so-called limit
analytical solution (subscript index k = 1 is omitted when referring to this first term).

�

1

E ,1 1�

3

E ,1 1� 2

E ,2 2�

�

�

�

��

�1

�3

Figure 1: A notch terminating at interface between two dissimilar materials.

Differentiating the stress function Φi and substituting into (1), one can achieve the fourth-
order ordinary differential equation for the calculation of eigenfunction Fi:

F
(4)
i + 2(1 + λ2)F ′′

i + (1 − λ2)2Fi = 0 , (3)

where prime denotes the derivative with respect to the angular coordinate θ. The characteristic
equation of (3) has two complex-conjugate roots. The overall solution can then be expressed
as a sum of two even cosine functions and two odd sine functions as

Fi(θ, λ) = ai sin (λ + 1)θ + bi cos (λ + 1)θ + ci sin (λ − 1)θ + di cos (λ − 1)θ , (4)

where ai,bi,ci,di are unknown constants. Now, in view of Eq. (2), we have thirteen unknown
parameters, twelve of them ai, bi, ci, di for i = 1, 2, 3 and the eigenvalue λ. It will subsequently
be shown that the numerical analysis of the entire model with prescribed boundary conditions
is needed to fully describe the stress state in the body.

The polar stress components of the stress field around a V-notch tip can be obtained by
differentiating the stress function Φi. For a specific domain i of the model, the stress field can
be written as

σirr = Arλ−1 [F ′′
i + (λ + 1)Fi]

σiθθ = Arλ−1 [λ(λ + 1)Fi] (5)

σirθ = Arλ−1 [−λF ′
i ] .
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It is apparent that the stress field resembles a singular behavior with respect to radial distance
r for all eigenvalues 0 < λ < 1 and nonsingular behavior for λ = 1. Applying the Hooke’s law
on the set (5), the corresponding polar displacements can be expressed as

uir = A
rλ

2µi

{
−(λ + 1)Fi +

1 − ν̄i

λ

[
F ′′

i + (λ + 1)2Fi

]}

uiθ = A
rλ

2µi

{
−F ′

i −
1 − ν̄i

λ(λ − 1)

[
F ′′′

i + (λ + 1)2F ′
i

]}
, (6)

where ν̄i = νi for plane strain, ν̄i = νi/(1 + νi) for plane stress, and νi is the Poisson’s ratio of
domain i.

Now we focus on the solution of the thirteen unknown parameters introduced above. Let
us denote γ the half notch angle and ξ = π − γ the complement angle, as shown in Fig. 1.
Providing that the notch faces are traction-free, the following set of constraints along the
notch faces has to be satisfied:

σ1θθ(r, ξ) = σ1rθ(r, ξ) = σ3θθ(r,−ξ) = σ3rθ(r,−ξ) = 0 , (7)

where the first subscript denotes the material to which a particular component corresponds.
Consider that the interface between material 1 and 2 and also between 3 and 2 is perfectly
bonded or welded, in other words. The following set of displacement pairs is then required
along the interface:

u1r(r, θ1) = u2r(r, θ1)

u1θ(r, θ1) = u2θ(r, θ1)

u3r(r, θ3) = u2r(r, θ3)

u3θ(r, θ3) = u2θ(r, θ3) (8)

For the same reason, we also have to consider the continuous variation of the shear and hoop
stress components across the interface. Additional four constraints are thus imposed on the
problem:

σ1θθ(r, θ1) = σ2θθ(r, θ1)

σ1rθ(r, θ1) = σ2rθ(r, θ1)

σ3θθ(r, θ3) = σ2θθ(r, θ3)

σ3rθ(r, θ3) = σ2rθ(r, θ3) (9)

It is clear that the system of constraints [A(λ)]12×12{x} = {0}, where [A(λ)] is the matrix
of the system, is underdetermined and cannot be solved directly. The nontrivial solution of
this system requires that

det [A(λ)] = 0 , (10)

from which the eigenvalues λ can be obtained. However, it is necessary to note that the
analytical expression of the determinant is complex and therefore the only feasible way is to
solve the system numerically.

The remaining twelve unknown constants ai, bi, ci, di for i = 1, 2, 3 depend on particular
eigenvalue λ. However, the solution should be performed carefully, because the only pro-
portions of eleven constants to the twelfth one can be obtained due to nonuniqueness of the
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solution. In the literature, one row of the mentioned system of the algebraic equations is
usually eliminated and the column corresponding to the chosen constant moves into the right-
hand side of the system with the opposite sign. This procedure can sometimes yield coefficients
that correspond to very small values of the associated amplitude of the stress field. Neglecting
these values that are related to fracture-mechanical parameters can erroneously predict the
onset of crack propagation. Conditions of uniqueness of the fracture-mechanical parameters
are discussed in the Dissertation.
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Figure 2: Variation of the real parts of eigenvalues λ with the angle φ for notch. Two distinct
configurations, namely crack (solid line) and 30◦ notch (dotted line) are shown in the figure.
Both materials have the same Poisson’s ratio ν1 = ν2 = 0.3. Plane stress condition used.

Once the coefficients ai, bi, ci, di are determined, the only unknown constants are Ak intro-
duced in (2). As was mentioned above, these parameters cannot be quantified directly from
the analytical approach, because they depend on loading, geometry, and boundary conditions
usually applied far away from the notch faces. Instead, a modeling of the specimen with the
prescribed boundary conditions has to be used to quantify these parameters.

4.2 Fracture-mechanical parameters and their physical meaning

We already know that the limited number of coefficients Ak is needed to fully describe the
stress state of the cracked body. The amount of these coefficients equals to the number
of eigenvalues λk taken for the description of the stress state. For example, a notch with
nonzero angle 2γ perpendicular to the interface has three essential eigenvalues, two of them
0 < (λ1, λ2) < 1 defining the singular stress terms and the last one corresponding to λ3 = 1
with a regular stress distribution around the notch tip.

For eigenvalues in the region 0 < λk < 1 we define the generalized stress intensity factor Hk

such that Ak = Hk/
√

2π. On the other hand, eigenvalue λ3 = 1 refers to the nonsingular term
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of the Williams eigenfunction expansion (2). The coefficient A3 is expressed as the so-called
T-stress given by A3 = T/4.

In homogeneous material, the T-stress is directly equal to the radial stress component
along the crack faces or equivalently to the difference σrr − σθθ ahead of the crack tip, i.e. for
θ = 0. Physically, the T-stress is often regarded as a measure of the so-called constraint or
triaxiality of stresses ahead of the crack tip [10].

Under the proposed assumptions, the Williams’ solution (2) in the neighborhood of the
V-notch tip can be written in terms of the fracture-mechanical parameters as

Φi =
max. 2∑
k=1

Hk√
2π

rλk+1Fik(θ, λk) +
T

4
r2Fi3(θ, 1) . (11)

Expressing the polar stress components related to the stress function Φi, one can obtain the
following set of equations defining the polar stress field around the notch tip in terms of the
chosen fracture-mechanical parameters:

σiab =
max. 2∑
k=1

Hk√
2π

rλk−1f
(k)
iab (θ, λk) +

T

4
f

(3)
iab (θ, 1)

uia =
max. 2∑
k=1

Hk√
2π

rλkg
(k)
ia (θ, λk) +

T

4
rg

(3)
ia (θ, 1) , (12)

where a, b correspond to polar coordinates r, θ. Note that the entire series (11) and (12)
contain either two or three terms depending on the number of eigenvalues in 0 < λk < 1.

Both the generalized stress intensity factors Hk and T-stress are to be quantified from the
numerical analysis of the whole body subjected to applied loading and prescribed boundary
conditions. It was discovered in the past that these parameters can serve as criteria of the
crack/notch stability based on the assumptions of the linear-elastic fracture mechanics. For a
crack in homogeneous body (γ = 0), the generalized stress intensity factor H merges with the
usual stress intensity factor K. In this case, the crack instability occurs when K reaches its
critical value KC known as the fracture toughness.

The more recent works, however, showed that also T-stress has a significant influence on
the crack stability and the two-parameter fracture mechanics based on both parameters K
and T was introduced. According to this theory, the crack instability occurs when the crack
state defined by these two factors falls into the so-called fracture toughness locus. In the two-
parameter fracture mechanics, the fracture toughness is therefore not a material characteristic,
but depends on the magnitude of T-stress as a measure of constraint ahead of the crack tip.

5 QUANTIFICATION OF THE FRACTURE-MECHANICAL
PARAMETERS

5.1 Extrapolation of the GSIF and T-stress

The process of direct calculation of the GSIFs immediately follows from the expression of the
stress field (5). The approximation can be done on the basis of any stress component; here we
choose σθθ, for instance. Writing the analytical expression of the hoop stress components under
two different angles θ1 and θ2 and neglecting the effect of the T-stress, one can conveniently
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write the two conditions for the calculation of the GSIFs in matrix form as
 rλ1−1λ1(λ1 + 1)F

(1)
2 (θ1, λ1) rλ2−1λ2(λ2 + 1)F

(2)
2 (θ1, λ2)

rλ1−1λ1(λ1 + 1)F
(1)
2 (θ2, λ1) rλ2−1λ2(λ2 + 1)F

(2)
2 (θ2, λ2)




{
H1

H2

}
=

{
σ2θθ(θ1)

√
2π

σ2θθ(θ2)
√

2π

}
(13)

Numerically, we have a set of internal points aligned radially at angles θ1 and θ2. The points
lying in immediate neighborhood of the notch tip have to be excluded from our analysis,
because the stress field ahead of the notch tip contains both the elastic and plastic parts.
Similarly we should not also take into account the internal points far away from the notch tip
that are influenced by the finiteness of the sample. The sought generalized stress intensity
factors are then determined as the intercepts of the obtained regression lines, see Fig. 3.
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Figure 3: Extrapolation of the GSIF for a 30◦ notch, E1/E2 = 2, ν1 = ν2 = 0.3, φ = 105◦,
plane strain condition. The unknown magnitudes of the GSIF are equal to intercepts of the
regression lines.

This method of quantification of the GSIF takes into account only the singular stress fields,
whereas the rest of the Williams expansion is neglected. In contrast, the numerically obtained
values of the stress components involve the whole Williams series without any conceivable
separation of one term from another. Since the two expressions are not fully compatible
due to different number of terms taken into account, also the GSIFs are determined only
approximately.

Similar method can also be used to determine the magnitude of the T-stress. Because of
the significant influence of plastic stresses at the notch tip, we have to again exclude a few of
the internal points lying very close to the notch tip. Due to the finiteness of our numerical
model, the points very far from the tip are excluded accordingly. The T-stress can then be
simply expressed by taking into account both the singular and nonsingular stress terms. One
of the possible and the simplest schemes for evaluation of the T-stress is to express the stress
difference σrr − σθθ along angle θ = 0◦ resulting in

T =
4

F
(3)′′
2

lim
r→0

{
σ2rr − σ2θθ −

n∑
k=1

Hk√
2π

rλk−1
[
F

(k)′′
2 + (1 − λ2

k)F
(k)
2

]}
, (14)
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where F
(3)
2 is the eigenfunction corresponding to eigenvalue λ3 = 1 calculated for domain 2

(see Fig. 1). Similarly, F
(k)
2 is the eigenfunction for eigenvalue λk valid for domain 2. Once the

generalized stress intensity factors are determined, one can use (14) to obtain the variation of
T with the radial distance. The approximated magnitude of the T-stress is then determined
by extrapolating the regression line to r = 0.

5.2 Integral approach to the calculation of the GSIF

The reciprocal work contour integral method follows from the validity of the Betti reciprocal
theorem. Since we have two independent configurations with the absence of body forces and
assuming that they both satisfy the same boundary conditions, it is stated that:

The work of forces of the first system done on displacements of the second system equals to
the work done by the forces of the second system on displacements of the first one.

Figure 4: Contour paths for the calculation of the GSIFs

Let us have a closed contour Σ surrounding a V-notch tip defined by continuous segments
ΓC−, Γ0, ΓC+, and Γε such that Σ = ΓC− ∪ Γ0 ∪ ΓC+ ∪ (−Γε), as seen in Fig. 4. The reciprocal
work theorem can then be written in integral form [14], [13] as∮

Σ
(σiju

∗
i − σ∗

ijui)nj ds = 0 , (15)

where nj is positive unit outward normal of integration path Σ, σij and ui are components of
the stress and displacement field, respectively, obtained from numerical analysis of the whole
body with applied boundary conditions. In contrast, σ∗

ij and u∗
i are the stress and displace-

ment components pertaining to analytical solution of the auxiliary problem that satisfies the
same boundary conditions as the actual problem. For the time being, let us assume that
this auxiliary solution corresponds to a specific eigenvalue λ∗

l = −λl. Hence, the stress and
displacement field for the two states can be expressed as

σij =
n∑

k=1
Akr

λk−1fij(λk) σ∗
ij = A∗

l r
−λl−1f ∗

ij(−λl)

ui =
n∑

k=1
Akr

λkgi(λk) u∗
i = A∗

l r
−λlg∗

i (−λl) .
(16)
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Integrating (15) over a closed contour depicted in Fig. 4, one can easily see that the in-
tegration along the traction-free notch faces vanish. Hence, the integral identity between a
near-tip field integration along Γε and far field integration along Γ0 is achieved:

∫
Γ0

(σiju
∗
i − σ∗

ijui)nj ds = lim
ε→0

∫
Γε

(σiju
∗
i − σ∗

ijui)nj ds . (17)

Since the stress field of both states is known analytically, it is possible to rewrite the
near-tip field integration in the limit neighborhood of the notch tip as

r.h.s. =
n∑

k=1

AkA
∗
l Mkl lim

ε→0
ελk−λl

Mkl =
∫ π−γ

−(π−γ)

[
fij(λk)g

∗
i (−λl) − f ∗

ij(−λl)gi(λk)
]
nj dθ (18)

Here Ak is the unknown amplitude of the actual stress field, A∗
l is the amplitude of the

auxiliary field and ε is the radial distance of contour Γε. One can directly see, from the
previous equation, that the interaction terms between the actual and auxiliary field vanish for
λk > λl, where the corresponding component of the series vanishes in the limit neighborhood
of the notch tip. When the eigenvalue of the auxiliary field λ∗

l is chosen to be a negative
counterpart of λk, i.e. λk = λl, the corresponding term is of the form AkA

∗
kMkk. The only

interaction can thus follow from the terms, where λk < λl. Here, the right-hand side contains
a diverging component. This nonphysical behavior can be removed only when Mkl is strictly
orthogonal, i.e. when Mkl ∼ δkl

1.
Since the amplitude of the auxiliary field can be chosen arbitrarily, one can artfully define

A∗
k = 1/Mkk. The unknown parameter Ak can then be evaluated as

Ak =
∫
Γ0

(σiju
∗
i − σ∗

ijui)nj ds , (19)

where all entries have been already explained above. This integration should be, in general
case, carried out numerically, so that the accuracy of computation monotonously increases
with increasing number of integration points. Furthermore, the notation (19) is symmetrical,
which simplifies the integration process for symmetrical bodies. Consequently, the sought
magnitude of the generalized stress intensity factor corresponding to a particular eigenvalue
λk can be apparently obtained from the conventional relation Hk = Ak

√
2π.

Unfortunately, this algorithm could not be used equally well to determine the magnitude
of the T-stress. This was so, because for every λ = 1, the Mkk integral was equal to zero and
thus the corresponding magnitude of A∗

k was infinite. Since A∗
k is also used in the right-hand

side of (19), this method is not useful for the quantification of the magnitude of T-stress.

5.3 On the calculation of T-stresses using the contour integrals

Although the J-integral is path-independent for cracks, where it measures the strain energy
of the singular stress field, it is not equally well applicable to V-notches, where it lacks its

1Orthogonality of Mkl has been proven numerically for a set of eigenvalues 0 < (λk, λl) ≤ 1. However, for
greater eigenvalues λl the orthogonality is not attained strictly. This can cause serious problems in evaluating
of the amplitude of the corresponding actual field and thus the method requires an extensive mathematical
analysis.
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path-dependence. A generalization of the concept of contour integrals to V-notches led to the
formulation of the so-called M-integral [7]:

M =
∫
Σ
(Wnj − tiui,j)xj ds (20)

Superimposing two independent linear-elastic solutions, one of them called the actual field
(A) and the other being the auxiliary field (B), one can express the interaction M-integral
between these two states as follows:

M (A,B) = M (A+B) − MA − MB , (21)

where M (A+B) is the superimposed M-integral and MA,MB denote the two M-integrals cor-
responding to actual and auxiliary field, respectively.

Substituting the expressions for the M-integral, rearranging, and realizing that the elastic
moduli of both actual field and auxiliary field are identical, one obtains the fundamental
formula for the quantification of the interaction M-integral:

M (A,B) =
∫
Γ0

(
σB

ikε
A
ik − σA

iju
B
i,j − σB

iju
A
i,j

)
njxj ds , (22)

Note that the parameters corresponding to the actual field (A) are determined numerically,
whereas the auxiliary solution has to be known analytically. This is clearly the major compli-
cation associated with such a method. So far, the auxiliary field has been derived only for a
crack in homogeneous material and interface crack [15]. The auxiliary solution is often taken
as the solution to a concentrated point force f = (f1, f2) applied at the crack tip.

To make the methodology valid for an arbitrarily oriented V-notch terminating at a bima-
terial interface, the two states (A) and (B) have to satisfy the same boundary conditions along
the notch faces and also along the interface between the two layers. Moreover, to maintain the
path-independence of the mutual M-integral, also the partial derivatives of the displacement
components must be continuous in both states A,B along the interface between domain a and
b, i.e.:

u
A|a
i,j = u

A|b
i,j ∧ u

B|a
i,j = u

B|b
i,j . (23)

Unfortunately, this cannot be generally achieved, as is proved in the Dissertation.
Consequently, an attempt to exceed this type of calculation to a general case of a V-notch

terminating at the interface between two elastic materials was not successful. To quantify
the magnitude of T-stress for further considerations about its importance, one has to use the
extrapolation technique briefly discussed in the previous chapter.

5.4 Assessment of the stability of bimaterial V-notches

One of the most logical and computationally feasible ways of the assessment of the stability of
cracks and notches is to make use of the Sih’s criterion of the strain energy density. According
to this criterion, the further crack propagation is assumed in a direction of minimum strain
energy density. Since we use the well-known expression for the energy density of a small
volumetric element and express the stress tensor using its components, we immediately obtain
the fundamental expression of the strain energy density

Σ

r
=

dW

dV
=

1

4µ

[
κ + 1

4
(σrr + σθθ)

2 − 2(σrrσθθ − σ2
rθ)

]
, (24)
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where Σ is the generalized strain energy density factor, µ is shear modulus of the target
material (uncracked material towards which the crack is going to propagate), κ = 3 − 4ν for
plane strain and κ = (3 − ν)/(1 + ν) for plane stress is the elastic constant of the target
material and σij are components of the stress tensor field.

Now let us take into account all the singular stress terms corresponding to 0 < λ < 1 and
also the nonsingular term derived for λ = 1. Substitution of the polar stress components (5)
into (24) then yields a more appropriate expression of the generalized strain energy density
factor Σ:

Σ = A11H
2
1 + 2A12H1H2 + A22H

2
2 + A13H1T + A23H2T + A33T

2 , (25)

where H1, H2 are the generalized stress intensity factors corresponding to the particular eigen-
values λ1, λ2 and T is the T-stress corresponding to eigenvalue λ = 1. The remaining coeffi-
cients Aij can be easily derived and are written in expanded form in the Dissertation.
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Figure 5: Variation of the modified Sih’s strain energy density factor Σ with different choices
of the radial distance r0 at which it is evaluated. These results were obtained for a 30◦ notch
perpendicular to the interface, E1/E2 = 2, ν1 = ν2 = 0.3, yield stress σ0 = 350 MPa, plane
strain condition used.

From the condition that the crack propagation occurs in the direction of minimum strain
energy density, one can easily obtain the initial crack propagation direction θ0 by minimizing
the generalized strain energy density factor:

(
∂Σ

∂θ

)
θ=θ0

= 0 ,

(
∂2Σ

∂θ2

)
θ=θ0

> 0 . (26)

Note, that this minimization has to be carried out at a certain radial distance r0 centered
at the notch tip. Choice of such a value is crucial in determining the factor Σ. According
to Knésl [9] and Náhĺık [12], this parameter can be conveniently chosen such that it reflects
some physical property like the radius of the plastic region, average grain size, etc. However,
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different choices of the radius r0 can yield very different magnitudes of the Sih’s factor Σ, as
seen for a particular notch configuration in Fig. 5.

Now, define a critical value of the generalized strain energy density factor ΣC as a value
corresponding to a state in which an unstable crack propagation, i.e. brittle failure, occurs.
Following the modification of the usual Sih’s strain energy density criterion, we can now state
that the propagation of a microcrack at the tip of the V-shaped notch towards the target layer
will not occur if the following stability criterion is satisfied:

Σ(r0, θ0) < ΣC (stability) . (27)

It is rather trivial to prove that the dimension of Σ is now independent of the geometrical
properties of notch and also of the ”strength” of its singularity. Consequently, the critical value
ΣC can be regarded as a material characteristic and Eq. (27) provides us with an unambiguous
condition for the assessment of stability of our general stress concentrators.

6 INTRODUCTION TO THE BOUNDARY ELEMENT METHOD

6.1 Governing equation of elastostatics

Boundary Element Method (BEM) as a computational tool for an exact description of real
behavior of the modeled bodies is based on the validity of the Betti reciprocal work theorem
between two independent states of equilibria. One of the main features of BEM is the necessary
knowledge of the fundamental solution of the given problem.

It is known from the theory of elasticity that the system at equilibrium has to satisfy the so-
called Cauchy relations. Assume the theory of small deformations that requires a sufficiently
small deflections, so that the higher order terms of the strain tensor can be neglected comparing
to the leading term. The Cauchy relations can then be written in terms of the displacement
derivatives as

µui,kk + (λ + µ)uk,ki + Xi = 0 , (28)

where µ is the shear modulus and λ = Eν/[(1 + ν)(1 − 2ν)] is the Lame constant.

Equation (28) is the governing partial differential equation of the two dimensional linear-
elastic problems, which are of interest in this Dissertation. For the use in the Betti reciprocal
work theorem, we define two independent elastic configurations. One of the systems involved
in the method will be our numerical model with the boundary conditions that are now pre-
scribed only on the boundary. The second system corresponds to an infinite plane with the
fundamental solution obtained as a real space solution of the following partial differential
equation:

µUik,jj + (λ + µ)Ujk,ji = −δikδ(x − y) , (29)

where Uik(x, y) can be understood as the i-th component of the displacement at point x of an
infinite plane in response to a concentrated force on the body, acting in the k-th direction at
point y, i.e. Xl(x) = δklδ(x − y).

Applying the Fourier transform, the equation (29) can be converted into a system of
algebraic equations, from which we can directly express the Fourier images Ūik(k). Now, per-
forming the inverse Fourier transform one obtains the fundamental displacements as solutions
of (29) in the real space called the Kelvin solutions. The corresponding fundamental traction
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on the boundary of the model can be expressed from the relationship between traction and
stress components. Finally, the Kelvin solutions are as follows:

Uik(x, y) =
1

8πµ(1 − ν̄)
[−(3 − 4ν̄)δik ln r + r,ir,k]

Tik(x, y) =
1 − 2ν̄

4π(1 − ν̄)r

[
r,kni(x) − r,ink(x) −

(
δik +

2

1 − 2ν̄
r,ir,k

)
r,jnj(x)

]
, (30)

where the points x, y introduced above are separated by r = |x − y|, further r,i is the partial
derivative of r with respect to the i-th Cartesian component and cijml is the elastic stiffness
tensor. Note that both the Kelvin solutions Uik and Tik are singular with respect to the
distance r.

Applying the Betti reciprocal theorem onto these two systems, we can derive the basic
relation between the forces and displacements of both systems in the form of the well-known
Somigliana identity :

uk(y) =
∫

S

[
ti(x)Uik(x, y) − ui(x)Tik(x, y)

]
dSx , (31)

where y is an internal point, ui(x) and ti(x) are boundary displacements and tractions and the
tensorial components Uik(x, y), Tik(x, y) were defined in Eq. (30). The integration has to be
carried out along the entire boundary S. Note that the equation (31) is valid only for internal
points. Moving the internal point y onto the boundary, the Somigliana identity transforms to
a constraint equation and the integral containing Tik must be performed in the CPV-sense.

In the subsequent text, we will use a designation hypersingular when referring to a term
proportional to r−2, strongly singular for the terms proportional to r−1 and weakly singular
for the singularities of the type ln r, as suggested by Mukherjee [11].

6.2 Calculation of internal displacements

The strongly singular representation of internal displacements (31) gives a reasonable compu-
tational accuracy in the case when the internal point lies sufficiently far from the boundary.
Consequently, the distance between the source point and field point is larger and the strong
singularity of the kernel Tik does not decay the accuracy of the regular Gaussian quadrature.
However, when the internal point lies close to the boundary, or more accurately in the so-called
boundary layer , the singularity of the kernel deteriorates the accuracy of calculation the more
the closer the internal point is to the boundary2. Apparently, the displacements at internal
points lying inside this boundary layer cannot be assumed to be correct [16] and therefore a
more appropriate scheme should be used.

One of the available methods that can be used to overcome the difficulty associated with
the evaluation of the integral (31) introduces the effect of the boundary point ζ that is closest
to the internal point y at which we determine the displacements. The point ζ generally lies
somewhere within a particular element and thus the displacement components uk(ζ) can be
approximated using the shape functions as usual.

2The thickness of the boundary layer depends on the strength of singularity, length of the element over
which the integration is being performed and the number of Gauss points.
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Figure 6: Selection of the nearest boundary point for the computation of displacements at
internal point y using the regularized integral formula (33).

Let us now subtract and add back to (31) the displacement of the nearest boundary point
ζ, so that the integral equation modifies to

uk(y) = ui(ζ)δik +
∫

S
ti(η)Uik(η, y) dSη −

[∫
S

ui(η)Tik(η, y) dSη − ui(ζ)
∫

S
Tik(η, y) dSη

]
. (32)

Although this computational trick is rather straightforward, it should be noted that the last
integral transforms to −δik for the points sufficiently far from the boundary, i.e. essentially
behind the boundary layer. In this case, however, the integral representation (32) simplifies
back to the initial form (31). On the other hand, for the internal point y located within the
boundary layer, the equation (32) can be written more appropriately as

uk(y) = uk(ζ) +
∫

S
ti(η)Uik(η, y) dSη −

∫
S

[
ui(η) − ui(ζ)

]
Tik(η, y) dSη . (33)

This expression remains nonsingular for any internal point y, even if this point lies on the
boundary and is called the regularized integral representation of internal displacements.

To convince ourselves that the statement above is justified, let us assume the two points
η, y, where η is a particular boundary node and y lies generally anywhere around η including
the case where the two points coincide. Require also that the boundary is sufficiently smooth
at any boundary point or more precisely it is a Lyapunov boundary at any η [1]. Then the so-
called Hölder condition must be satisfied in order to remove the singularity from the integral
(33). Mathematically this condition is written as

|u(η) − u(y)| ≤ A|η − y|α , (34)

where 0 < A < ∞ and 0 < α ≤ 1 determine the smoothness of the boundary. The elements in
BEM are regarded as Cα continuous, where α is usually zero. For these simpler elements the
continuity of shape functions is preserved, but the first derivatives are already discontinuous
at the junction of the two neighboring elements. Several attempts have been made to use the
more elaborate C1 elements, but because of the tremendous mathematical difficulty of the
underlying mathematics, the vast majority of them were not widely adopted by engineers.

6.3 Integral representation of internal stresses

According to the Hooke’s law, the stress is proportional to the first derivative of displacements
via the fourth-order tensor of elastic constants. From the Somigliana identity (31) we already
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know that the displacements of any particular internal point y in the BEM are determined on
the basis of knowledge of the Kelvin solution Uik, Tik (30) obtained by solving the fundamental
equation of elastostatics. Differentiating the displacement components (31) with respect to
a general coordinate xl and substituting them into the Hooke’s law via the expressions for
strains, one can see that the stress tensor at the particular internal point y can be expressed
as

σkl(y) =
∫

S

[
ti(η)Dkli(η, y) − ui(η)Skli(η, y)

]
dSη . (35)

This is the so-called hypersingular boundary integral representation of internal stresses, because
the integral kernel Skli is hypersingular with respect to the distance between η and y. Particular
expressions for both Dkli and Skli are given in [1] and reviewed also in this Dissertation.

If the distance between the internal point and the nearest boundary point is sufficient,
the accuracy of calculation is good and the hypersingular stress representation (35) can be
reasonably used. In contrast, if this distance is less than a half of the smallest boundary
element [2], the accuracy of the calculation again fails very quickly within this boundary
layer. In comparison to the nonregularized calculation of the internal displacements (31), the
hypersingular kernel Skli causes the accuracy to decay much faster and also the boundary layer
zone is wider in this case.

The hypersingularity present in the kernel Skli can be weakened by integrating the term
associated with Skli in (35) by parts. The hypersingular kernel thus transforms to a strongly
singular tensorial operator T̂kli. Particular expression of this operator is again given in [1] and
also discussed in this Dissertation. The hypersingular integral representation of the internal
stresses (35) can be more conveniently written in the partly regularized strongly singular form

σkl(y) =
∫

S

[
ti(η)Dkli(η, y) + T̂kli(η, y)ui(η)

]
dSη , (36)

where T̂kli is the introduced tensorial operator. This approach yields a much narrower bound-
ary layer, so that more accurate computation of stresses at internal points closer to the bound-
ary can be achieved.

6.4 Numerical treatment at corner points

In the case where the model contains internal corners, a special care must be devoted to the
treatment at the nodes associated with these corners. One of the most mechanically consistent
procedures was recently published by Beer [2].

Assume that the model consists of three elastic domains with isotropic behavior. Since
these domains are welded together, the internal interface is defined by three joints, namely
horizontal interface I-II and two vertical interfaces I-III, II-III, where the numbers denote the
two domains in contact - see Fig. 7. By “welding” we will mean the continuity of displacements
and equilibrium of tractions along the interface. The following set of constraints is thus
required:

uI
k − uII

k = 0 , uI
k − uIII

k = 0 , uII
k − uIII

k = 0

tIk + tIIk = 0 , tIk + tIIIk = 0 , tIIk + tIIIk = 0 , (37)

where uα
k is a displacement component along the xk axis on the boundary of domain α.

Apparently, for n interface nodes, we now have 2(n + 2) conditions, but only 2n tractions at
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these points are unknown. The system of equations is therefore overdetermined and cannot be
solved without additional treatment. An elegant way of overcoming this problem is to work
with equivalent nodal forces , as proposed by Beer [2]. These forces are computed using the
principle of virtual work step by step in all directions k.

corner - j

I

I

II

"corner" element
e=1 of domain I

"corner" element
e=2 of domain I

k=1

k=2

II

Figure 7: An internal corner formed at a joint of three domains.

Once we apply a virtual displacement δuk = 1 at a corner point, the work done by tractions
must be equal to that done by the equivalent nodal forces, i.e. the following identity is ensured:

Fk · 1 =
∫

S
tkδuk dS , (38)

where Fk is the equivalent nodal force, tk and δuk are traction component and small displace-
ment in the direction xk, respectively. The integration is carried out over the two common
elements connected to the corner. The traction force for any point along a particular element
e and the virtual displacement can be further expressed as

tek =
n∑

a=1

Nat
ae
k , δuk = N e

j δuk = N e
j · 1 , (39)

where N e
j is the shape function of the corner in local (element) numbering and e counts

the two elements that contain the corner j as their edge node. The equivalent nodal force
corresponding to the virtual shift δuk is then given by substituting Eq. (39) into (38):

Fk =
2∑

e=1

∫
Se

N e
j

n∑
a=1

Nat
ae
k dSe . (40)

We further assume that the virtual forces are in equilibrium at each corner node. Consequently,
instead of writing the six equilibrium conditions for tractions (37) in 2-D, we require only the
equilibrium of the virtual forces given as

F I
k + F II

k + F III
k = 0 . (41)

By using the concept of virtual forces, we decreased the number of additional equations
from six to two, i.e. we impose four less constraints for each corner node. Finally, for those n
interface nodes quoted above, we now have 2n equations for 2n unknown tractions, where two
traction conditions follow from each two coinciding nodes on the smooth part of the interface
and two equilibrium constraints (41) are prescribed at each corner point in 2-D.
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7 EXAMPLES

To justify the use of the proposed algorithms, several practical applications will be shown
in this chapter. Although the stress and displacement field needed to quantify the fracture-
mechanical parameters and the overall behavior of the cracks emanating from a macroscopic
flaw of the V-notch type were mainly calculated using the Boundary Element Method, some
of the earlier results obtained by the Finite Elements from the commercial system ANSYS 5.7
are also included.

7.1 Simulation of the tension experiment

The single-edge notched tension (SENT) specimen will be used in this first analysis because
of its relatively simple geometry and capability to directly relate the experimental data with
the results from our analysis. A homogeneous specimen shown in Fig. 8 was weakened by a
macroscopic V-notch perpendicular to the edge of the specimen. The notch depth was constant
a = 12 mm, the specimen width was W = 50 mm and full length L = 250 mm. Model was
subjected to external tension σappl = 100 MPa acting perpendicularly to the notch axis. The
edge opposite to the applied external loading was fixed in all directions to prevent the rotation
and/or translation of the model.

To apply the linear-elastic fracture mechanics, the material of the specimen was regarded
as brittle with the plane strain condition prescribed. Elastic properties of the model were
fixed by Young’s modulus E = 2.105 MPa and Poisson’s ratio ν = 0.3.

Although this example seems to be rather trivial, it was important for us from two rea-
sons. Firstly, the more general theory based on the reciprocal work contour integral method
introduced in this work can be compared with the previously published results by Klusák and
Knésl [8] obtained using the direct extrapolation technique. Secondly, since this homogeneous
specimens are relatively easy to fabricate, the results of this numerical simulation can be sub-
sequently used to verify the computational procedure by carrying out a set of experimental
tests. However, this verification is not a goal of this work and will be left for the future.
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Figure 8: Model of a V-notch oriented perpendicularly to the edge of the specimen.

The SENT specimen was modeled without applying the symmetric boundary conditions
to be consistent with the more complex cases that will follow. Obviously, the symmetry is not
satisfied strictly in this case, because the two opposite edges behave differently due to distinct
character of the boundary conditions.

Conservation integral method outlined in this Thesis was used to calculate the GSIF for
various notch angles 2γ. The forty integration points were located alongside a circular arc of
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radius R = 5 mm centered at the notch tip. Simpson’s method was used for the numerical
evaluation of the contour integrals.

Consider now a V-notch with angle 2γ > 0◦ and analyze the stress field in more detail.
From the solution of the eigenvalue problem, we can clearly see that in this case we have
two different eigenvalues in the region 0 < λ < 1 and thus also two, generally different,
values of the generalized stress intensity factors H. It can be easily proved that stress field
in mainly affected by stronger singularities. Since the power of the singularity is expressed
as p = 1 − λ, the major contribution is done by the stress terms involving the larger stress
singularity exponent p or smaller eigenvalue λ.

Separating the cosine and sine terms of (4), one can define the opening stress intensity
factor KI corresponding to symmetric fields and in-plane shear stress intensity factor KII

corresponding to the antisymmetric fields. These two components can be calculated directly
from the displacements in the vicinity of the crack tip, for example using the ANSYS command
KCALC. However, it should be pointed out that the accuracy of such a calculation strongly
depends on the smoothness of the mesh and also on the size of the notch tip element whose
nodal displacements are used for the approximation of KI and KII . The magnitudes of the
SIFs obtained from the finite element model of a crack embedded in a homogeneous domain
were, in our case:

φ = 90◦ : KI = 28.59 MPa.m1/2 , KII = 0 MPa.m1/2

φ = 120◦ : KI = 25.27 MPa.m1/2 , KII = 8.10 MPa.m1/2 ,

where φ is the angle between the direction of loading and the crack.
Because the only generalized stress intensity factor pertaining to the smaller eigenvalue

was calculated in the earlier work [8], the rest of the eigenvalues following from the solution
of the eigenvalue problem are neglected at this point.
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Figure 9: Comparison of the magnitudes of the generalized stress intensity factor H calculated
using the direct method (13) in [8] and from the contour integral method.
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The constant d2 appearing in the eigenfunction (4) was taken as unity for further relevant
comparison with the stress intensity factors obtained from the separation of the symmetric
and antisymmetric parts of the solution published in [8]. As can be seen in Fig. 9, the SIFs
determined using ANSYS are in good agreement with the contour integral method. Similarly,
comparison of the direct and contour integral approach shows a rather promising agreement
of both methods.

As seen in Fig. 9, the relative comparison of the direct and integral method reasonably
correspond to each other with the maximum relative error of approximately 12 % for crack
(2γ = 0◦). In this case, the stress distribution in the vicinity of the notch tip is rather uniform
and also displacements at the internal points around the notch tip vary gradually without
steep gradients. It is therefore not surprising that both the direct method and contour integral
method yield very close results.

At this point, we cannot draw any conclusion about the stability of the notch, because the
dimension of the GSIF depends on the geometry of the notch. This is rather unfortunate in the
sense that for each notch opening, we would need to have a special critical value, somewhat like
generalized fracture toughness3. Clearly the only reasonable comparison between the actual
stress state given by the set of calculated GSIFs and the critical stress state is possible by
application of a suitable fracture-mechanical criterion.

7.2 A notch perpendicular to bimaterial interface

Let us assume that the crack had initiated at a surface scratch or microcrack left by the fabri-
cation or machining process. Under the external loading, the sharp tip of this flaw behaves as a
source of elevated stresses that lead in brittle materials to enhanced microcracking and further
formation of a dominant crack. In the layered materials with homogeneous microstructure of
both layers, the crack grows preferentially in the direction perpendicular to the maximum
applied stress. After approaching the interface the crack can either debond the two layers or
penetrate into the the target layer. Under certain circumstances, mainly when the target layer
is ductile, a significant blunting of the crack tip can result in the crack arrest, as was discussed
by De Hosson [4] on the basis of experimental observations.

Here we are particularly interested in the situation, where the microcrack emanating from
a larger bimaterial crack or notch penetrates the interface and propagates towards the target
layer. Full numerical model was again used to be consistent with further results obtained for
an inclined crack terminating at the interface. The geometry of the specimen was defined by
the widths of the two layers W1 = 12 mm, W2 = 38 mm and full length L = 250 mm. Various
Young’s moduli of both materials were used to model the distinctive levels of inhomogeneity
of the interface, Poisson’s ratio ν1 = ν2 = 0.3 was constant for both materials. Plane strain
case was used as in the previous analysis.

The vector of coefficients {x} in eigenfunction (4) was always chosen such that the coeffi-
cients merged with the standard values for a crack in homogeneous material. This was achieved

3The term generalized fracture toughness is not widely accepted. The reason for this is hidden in the physical
character of the problem, where for any geometry of a V-notch embedded in a homogeneous linearly-elastic
material, we would need to measure the critical value of the GSIF. This is even more apparent if we remember
that for a general V-notch, two generalized stress intensity factors are present. Obviously, the experiments
that would be needed to investigate the variation of this hypothetical generalized fracture toughness would be
rather complex.
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by dividing the vector corresponding to the lesser of the two eigenvalues by d2. However, this
adjustment cannot be done for the remaining greater eigenvalue, where d2 is close to zero.
Instead, in all these cases the coefficient vector {x} was normalized. Since the same vector
of coefficients is always used together with the generalized stress intensity factor calculated
from it, there is no inconvenience associated with the different approach to the choice of the
coefficient vector.
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Figure 10: Model of a bimaterial V-notch normal to the interface between two elastic layers.

The direct calculation of the generalized stress intensity factors (13) was carried out using
the extrapolation along two different angles ahead of the notch tip, namely θ1 = −5◦, θ2 = 5◦,
where zero corresponds to the direction towards the ligament. The character of the external
loading in this case causes a domination of one of the generalized stress intensity factors over
the second one. The T-stresses for these nonhomogeneous interfaces were calculated purely us-
ing the direct extrapolation technique. Because the contour integral method is applicable only
for the integration paths not crossing the nonhomogeneous interface, the relevant comparison
with the direct method can be made only between the homogeneous cases.

It should be also pointed out that we cannot generally assign any physical meaning to any
of the values H from the reasons that were explained at the end of the preceding chapter.
Since the plysical interpretation of the elastic T-stresses for general bimaterial V-notches has
not been given yet, we should regard the T-stress, for the time being, only as an amplitude
of the nonsingular stress field. This is a clear difference from the classical fracture-mechanical
theory of cracks in homogeneous bodies, where the T-stress is a measure of the triaxiality
of stresses ahead of the crack tip. Consequently, the only relevant comparison between the
actual state of the body and the critical state corresponding to the onset of unstable crack
propagation and delamination of the specimen can be made on the indirect basis.

Calculation of Σ at r0 = 0.01 mm

To reveal the influence of parameter r0 on the magnitude of the modified Sih’s strain energy
density factor Σ, we first choose r0 = 0.01 mm without any physical justification of this choice.
The obtained values of the factor Σ are summarized in Tab. 1. One can see that Σ significantly
varies with the mismatch of elastic properties of the bonded layers. In the case when the V-
notch lies in softer material and further propagation into the stiffer substrate is assumed
(E1/E2 < 1), the Σ factor is small in comparison to the case when the defect propagates from
stiff material to the more compliant one (E1/E2 > 1).
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From the obtained table we can also conclude that the magnitudes of the modified Sih’s
strain energy density factor Σ calculated using both singular and nonsingular stress terms, i.e.
accounting the GSIFs and T stress, only slightly differ from the values calculated purely from
the GSIFs. This means that the primary role in the assessment of the stability of bimaterial
V-notches play the singular stress fields, whereas the stress terms nonsingular with respect to
the radial distance can be regarded as unnecessary corrections in this particular case.

Sih’s modified strain energy density factor Σ calculated at r0 = 0.01mm
2γ = 0◦ 2γ = 30◦ 2γ = 60◦

E1/E2 Σ(H) Σ(H, T ) Σ(H1,H2) Σ(H1,H2, T ) Σ(H1,H2) Σ(H1,H2, T )
0.5 56.81 59.08 54.35 55.16 45.85 46.80
0.6̄ 128.32 130.51 114.74 115.17 95.58 96.63
1.0 328.14 323.22 315.59 314.63 267.63 268.46
1.5 488.67 484.73 541.06 538.89 480.73 480.70
2.0 617.03 615.29 756.20 753.98 699.77 699.32

Table 1: Magnitudes of the generalized strain energy density factor Σ for a notch perpendicular
to the interface (φ = 90◦) calculated purely from the GSIFs and also accounting for both GSIF
and T-stress. Dimensions: Σ [N/m]

Moreover, one can observe that for certain configurations highlighted in Tab. 1, the Σ factor
for notch is higher than the corresponding value for a crack. Note that this discrepancy is
associated only with the configurations of a notch that propagates from a stiff coating into
a more compliant elastic material of substrate. In this case the plastic region ahead of the
notch tip is significantly larger in comparison to the homogeneous case. Namely, radius of the
plastic region ahead of the notch tip was approximately 0.42 − 0.46 mm for E1/E2 = 1.5 and
0.50−0.53 mm for E1/E2 = 2. For comparison, the radius of the plastic region in homogeneous
body was approx. 0.28 − 0.35 mm and between 0.03 − 0.09 when E1/E2 = 0.5.

Since the plastic region is significantly larger for E1 > E2, one of the reasonable justifica-
tions of this discrepancy could be a possible breakdown of the linear elasticity, which requires
the plastic zone to be negligible in comparison to the size of the model. If the linear elasticity
is used, in spite of this fact, the results imply that in the current model there is a certain
critical angle of notch for which the factor Σ reaches a maximum value. From practical point
of view, this would apparently mean that for a notch perpendicular to the interface between
two elastic materials, where the coating is stiffer than substrate (E1/E2 > 1), the critical
configuration is not associated strictly with the sharp crack, but depends on the mismatch of
the elastic properties of both layers.

Calculation of Σ and θ0 at the plastic zone boundary

To learn more about the influence of r0 on the corresponding magnitudes of Σ and the crack
propagation direction θ0, we carried out another analysis with a more convenient choice of r0.
Here we choose r0 such that it will be equal to the radius of the plastic zone ahead of the notch
tip in the direction given by the notch axis. The yield stress was chosen as σ0 = 350 MPa, for
which the corresponding radii r0 are of measurable magnitude. Dependence Σ(r0) for different
yield stresses was already introduced for a particular configuration in Fig. 5.

The most important information included in Tab. 2 is again written in bold. Let us now
turn our attention to the first column containing the data obtained for a sharp crack (2γ = 0◦).

26



One can observe that with increasing ratio E1/E2, i.e. the material of substrate becomes in-
creasingly more compliant in comparison to the material of coating, the factor Σ monotonously
increases up to its maximum corresponding to E1/E2 = 1.5 and then it surprisingly falls below
this value. There is of course no physical reason for this decay.

Sih’s modified strain energy density factor Σ calculated at the plastic zone boundary
2γ = 0◦ 2γ = 30◦ 2γ = 60◦

E1/E2 Σ(H) Σ(H, T ) Σ(H1,H2) Σ(H1,H2, T ) Σ(H1,H2) Σ(H1,H2, T )
θ0(H) θ0(H, T ) θ0(H1,H2) θ0(H1,H2, T ) θ0(H1,H2) θ0(H1,H2, T )

r0 = 0.026 r0 = 0.048 r0 = 0.090
0.5 75.03 73.40 69.20 71.30 72.41 76.07

+18.73 +16.66 +0.55 +0.49 -0.04 -0.04
r0 = 0.127 r0 = 0.154 r0 = 0.209

0.6̄ 163.02 154.39 147.46 149.79 142.46 148.49
+12.92 +10.61 +0.44 +0.37 -0.05 -0.05

r0 = 0.286 r0 = 0.304 r0 = 0.354
1.0 328.14 304.06 318.74 314.46 292.00 297.96

0.00 +3.84 -0.02 -2.25 -0.01 -2.64
r0 = 0.421 r0 = 0.429 r0 = 0.466

1.5 354.81 333.67 392.90 381.36 357.44 357.42
-14.23 -12.70 -0.79 -0.67 +0.18 +0.16

r0 = 0.500 r0 = 0.502 r0 = 0.529
2.0 344.45 335.34 426.09 414.54 394.27 391.92

-21.67 -20.91 -1.47 -1.31 +0.45 +0.42

Table 2: Magnitudes of the generalized strain energy density factor Σ for a notch perpendicular
to the interface (φ = 90◦) calculated purely from the GSIFs and also accounting for both GSIF
and T-stress. In italics are the angles of the crack propagation into the material of substrate.
Dimensions: Σ [N/m], r0 [mm]

Now, compare the values obtained using both singular and nonsingular fields, i.e. account-
ing for both the GSIFs and T-stress. We can clearly see that by increasing the ratio E1/E2,
the magnitudes of Σ also monotonously increase. In other words, the more compliant the
material of substrate is in comparison to coating, the higher is the magnitude of Σ. The same
numerical trend holds also for V-notches with 2γ > 0◦. Apparently, in these cases it does not
matter if one uses only the GSIFs or both the GSIF and T-stress.

The conclusions drawn from the obtained data have one very important physical interpre-
tation. The larger is the generalized strain energy density factor Σ the less energy is required
for the propagation to the target layer. Similarly, the smaller is Σ the greater energy is needed
to keep the propagation process going. From this point of view the interface between two
elastic materials can be regarded as a barrier to further growth of the defect when the Σ
factor is small in comparison to its critical value ΣC .

Furthermore, for the assessment of the stability of bimaterial V-notches with the notch
angle 2γ > 0◦, the only necessary stress terms are those that are singular with respect to the
radial distance. The nonsingular stress field represented by the T-stress can be regarded as a
correction that is, however, not necessary in determining the factor Σ. This is not the case
for a sharp crack (2γ = 0◦) propagating from a stiff coating into a more compliant material
of substrate, where both the singular and nonsingular stress terms are necessary.

Since the dimension of both Σ and ΣC does not change with geometry of the V-notch, its
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orientation and elastic mismatch at the interface, such comparison between Σ and ΣC seems
to be very worthy in the decision on the stability of the crack emanating from the V-notch
tip. The critical value ΣC can be essentially fitted from the experimental data and thus we
can regard it as a material characteristic.

7.3 Inclined notch terminating at the interface

This analysis takes aim at the dependence of the fracture-mechanical parameters on the angle
between the notch axis and interface. The modeled configuration as well as the angles used
to describe the notch orientation are showed in Fig. 11. The same geometrical properties as
in the previous analysis were used to compare the results obtained for a perpendicular and
generally inclined V-notch. The external loading was again applied in the direction parallel
to the interface and so the inclined notch was exposed to the general mixed-mode of loading.

Figure 11: Model of an inclined notch terminating at the bimaterial interface.

From the data summarized in the Dissertation, one can clearly see that the orientation
of the notch axis significantly influences both generalized stress intensity factors. From this
perspective, some of the earlier studies that neglected the influence of the GSIF H2 corre-
sponding to the higher of the two eigenvalues in 0 < λ < 1 essentially mathematically altered
the physics of the problem. The error in the description of the real growth of a crack initiated
at the V-notch tip must have increased with increasing magnitude of H2 in those analyses.

Remember that from the knowledge of the GSIFs we cannot directly say whether or not the
stress field for a particular geometrical configuration attains the critical state and the crack
suddenly delaminates the uncracked layer. Instead, we again used the previously derived
modification of the Sih’s strain energy density criterion accounting for all the generalized
stress intensity factors and also the T-stress. Similarly as in the last example, we were again
interested in the quantification of the effect of the nonsingular stress term and deciding on the
importance of this stress term in the prediction of unstable crack propagation.

Calculation of Σ at r0 = 0.01 mm

The strain energy density factors Σ calculated at the radial distance r0 = 0.01 mm are sum-
marized in Tab. 3. One can clearly see that if the target layer is stiffer than coating, Σ is small
and the substrate works as a barrier to further growth of the bimaterial defect. Conversely,
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if the substrate is more compliant than coating, the interface accelerates the growth of the
microcracks initiated at the V-notch tip.

Sih’s modified strain energy density factor Σ calculated at r0 = 0.01mm
2γ = 0◦ 2γ = 30◦ 2γ = 60◦

E1/E2 Σ(H1,H2) Σ(H1,H2, T ) Σ(H1,H2) Σ(H1,H2, T ) Σ(H1,H2) Σ(H1,H2, T )
0.5 53.97 52.32 51.01 51.37 44.09 44.30
0.6̄ 114.20 111.32 108.04 108.07 91.14 91.40
1.0 306.59 304.82 299.41 299.26 251.70 251.93
1.5 533.88 532.33 519.99 519.00 447.74 447.73
2.0 744.02 746.12 733.60 733.47 649.15 649.32

Table 3: Magnitudes of the generalized strain energy density factor Σ for a notch inclined
towards the interface (φ = 105◦) calculated purely from the GSIFs and also accounting for
both GSIF and T-stress. Dimensions: Σ [N/m]

Table 3 reveals an important feature of the model used in this analysis. Since the bimaterial
crack/notch is inclined towards the interface, maximum value of the modified Sih’s strain
energy density factor corresponds always to crack. It practically means that a crack inclined
towards the interface is more susceptible to brittle failure than the corresponding V-notch
having the same angle with interface.

Calculation of Σ and θ0 at the plastic zone boundary

In order to show the change in values of the strain energy density factor Σ, we also calculated
the radii of the plastic region corresponding to yield stress σ0 = 350 MPa. The magnitude of
Σ determined at the plastic zone boundary is then regarded as the representative value of the
strain energy density factor that characterizes the stability of the cracked model.
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Figure 12: Variation of the factor Σ with the mismatch of the elastic moduli.
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It is apparent that the results do not have so convincing trend as in the case of a notch
perpendicular to the interface. Comparing the data in each column, one can immediately see
that the factor monotonously increases with increasing ratio E1/E2, which is in agreement with
our expectations. Furthermore, the magnitudes of Σ for E1/E2 > 1 decrease with opening
of the V-notch. V-notches with larger openings are therefore, according to this model, less
susceptible to brittle failure than sharper notches.

Sih’s modified strain energy density factor Σ calculated at the plastic zone boundary
2γ = 0◦ 2γ = 30◦ 2γ = 60◦

E1/E2 Σ(H) Σ(H, T ) Σ(H1,H2) Σ(H1,H2, T ) Σ(H1,H2) Σ(H1,H2, T )
θ0(H) θ0(H, T ) θ0(H1,H2) θ0(H1,H2, T ) θ0(H1,H2) θ0(H1,H2, T )

r0 = 0.033 r0 = 0.046 r0 = 0.066
0.5 63.29 60.41 64.76 65.88 65.21 65.91

-15.62 -15.59 -11.93 -12.12 -7.54 -7.62
r0 = 0.131 r0 = 0.150 r0 = 0.176

0.6̄ 141.48 132.04 139.90 141.01 133.87 135.42
-17.09 -17.39 -14.59 -14.74 -9.92 -10.03

r0 = 0.281 r0 = 0.302 r0 = 0.328
1.0 306.60 297.67 305.60 304.73 278.80 280.04

0.00 +1.43 -15.82 -13.96 -11.84 -11.41
r0 = 0.410 r0 = 0.430 r0 = 0.453

1.5 386.62 377.95 381.26 375.96 341.28 341.26
-14.45 -14.76 -15.20 -15.38 -13.01 -13.03

r0 = 0.484 r0 = 0.503 r0 = 0.525
2.0 414.59 426.29 417.58 416.85 375.28 376.15

-12.57 -12.07 -13.89 -13.92 -13.30 -13.20

Table 4: Magnitudes of the generalized strain energy density factor Σ for a notch inclined
towards the interface (φ = 105◦) calculated purely from the GSIFs and also accounting for
both GSIF and T-stress. In italics are the angles of the crack propagation into the material of
substrate. Dimensions: Σ [N/m], r0 [mm]

This statement is strictly valid only in the case, when both the singular and nonsingular
stress terms are used in the analysis. Neglecting the effect of T-stress, one can see that for
2γ = 0◦ and E1/E2 = 2, the factor Σ is smaller than that for the corresponding notch with
angle 2γ = 30◦. Since this discrepancy is associated only with crack, we assume that the T-
stress should be included in the description of the stress field around such bimaterial cracks.
Variation of the factor Σ with the ratio E1/E2 is plotted in Fig. 12; the values of Σ were
calculated using both GSIFs and T-stress at the plastic zone boundary.

When analyzing the crack propagation angles written in Tab. 4, remember that the angle
θ0 is measured from the direction of the notch axis. Since the notch is now inclined 15◦ from
the normal to the interface, crack propagation direction θ0 = −15◦ essentially means that
the further propagation is assumed in the direction perpendicular to the interface. From the
experimental measurements, the crack propagating from a compliant coating into a stiffer
substrate feels a resistance that deflects the crack towards the direction of interface. On the
other hand, once the crack initiates in the stiffer material and propagates further into the more
compliant substrate, the crack is accelerated by the interface and propagates perpendicularly
to the maximum applied stress.
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8 CONCLUSION

The analytical description of the stress field around a generally oriented V-notch terminating
at interface between two elastic materials was investigated. Because the stress field is not
uniquely determined, but depends on the amplitude of the stress field corresponding to every
eigenvalue, it was crucial to introduce a sufficiently accurate numerical procedure for the
quantification of such parameters.

To achieve this goal, the interface was assumed to be perfectly bonded with continuous
displacements and equivalence of tractions along the interface. Providing that both materials
exhibit brittle behavior, the linear-elastic BEM was used to determine the stress and displace-
ment field around the V-notch tip. Subsequently the generalized stress intensity factors and
T-stresses were quantified using the contour integral method and direct extrapolation method.

To show the efficiency and accuracy of the integral method, three distinctive configura-
tions of a notch in homogeneous as well as inhomogeneous body were modeled. The results
obtained from the proposed methods were partly compared with our early work based on
the direct extrapolation method and partly compared with the improved direct extrapolation
technique derived in this Dissertation. The direct method strongly depends on the smooth-
ness of the stress distribution within the chosen region and so its application to homogeneous
bodies gives satisfactory results. In the case of steeper stress distribution ahead of the crack
tip, it is sometimes difficult to find a linear section along which the stresses could be interpo-
lated. The proposed integral method, on the other hand, yields a powerful mechanism for the
quantification of the GSIF related to a specific eigenvalue λ.

To quantify the T-stress, another method based on the application of the interaction M-
integral between two independent elastic states was introduced. The attempt to exceed this
methodology also for the quantification of the T-stress in cracked bimaterials was not success-
ful, because the analytical expression of the auxiliary field that would satisfy the conditions of
continuity of the displacement derivatives across the nonhomogeneous interface was not found.

Comparison of the actual stress state in the cracked bimaterial with the critical state was
done using the modified Sih’s strain energy density concept accounting for the effect of all
singular stress terms and also nonsingular stress field. The reason for considering the latter
was a belief that it can play an important role in the stability of the general bimaterial V-
notches. Validity of such a consideration was tested on several examples by comparing the
corresponding values of the modified Sih’s factor Σ.

The methods for the calculation of the fracture-mechanical parameters were successfully
used for the assessment of the stability of bimaterial V-notches. It was proven that the
dominant role in the description of the stability of the bimaterial V-notches with nonzero
opening angle and arbitrarily oriented towards the interface, is played by the singular stress
terms. On the other hand, in the case of bimaterial cracks, the stability estimates are generally
more accurate if the effect of the T-stress is taken into account. By comparing the intrinsic
value of the modified strain energy density factor Σ with its critical value ΣC , one can directly
conclude on the stability of the layered structures weakened by bimaterial cracks or V-notches.

Finally, the concepts and discussions involved in this work form a fundamental set of
knowledge required for a more sophisticated design of structural components made of brittle
materials, like PMMA, composite laminates, welded joints, etc. However, the experimen-
tal verification of the results presented in this Dissertation is necessary to fully justify the
underlying continuum approach.
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