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Estimation of solutions of differential systems

1 Introduction

Dynamical processes are those whose state depends on the prehistory and are described
by differential equations with deviating argument, i.e. by such equations in which the
unknown function of one scalar argument (time) and its derivatives are at different values
of the argument.

Such equations are widely used in mathematical modeling of processes in control the-
ory, economics, population dynamics, and medicine. Processes taking place in these
systems depend both on the current time, and on the prehistory.

One of the main characteristics of system dynamics is the stability of the process. We
will investigate the stability of given problems. Emphasis is placed on the second (direct)
method of Lyapunov (see [25]).

Mathematical models described by the functional-differential equations more ade-
quately describe the bulk of dynamic objects. In real objects, almost always, there are
elements that cause delayed effects.

Natural and technical causes of the delay may be transportation delays, delays in trans-
mission of information received by the delay in decision-making, etc. There may be other
factors. These mostly include natural delay in the simulation of economic objects, objects
in the environment, medicine, population dynamics, etc. In the chemical-technological
processes, the delay is caused by the fact that the reactions required for the passage of
time determined by the properties of the reactants, [1, 2, 4, 7, 9]. Dynamics of vehicles on
the water is very different from the dynamics on the ground. Features can be taken into
account by introducing a delay. There are other physical and technical interpretations.
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Estimation of solutions of differential systems

2 Preliminaries

There exists the following simple classification of equations with constant delay [7]. Let
us consider a scalar differential equation with one constant delay
ẋ (t) =

f
(
t, x (t) , x′ (t) , x′′ (t) , ..., x(n) (t) , x (t− τ) , x′ (t− τ) , x′′ (t− τ) , ..., x(m) (t− τ)

)
.

1. Let n > m. Then the equation is called differential equation with delay.

2. Let n = m. Then the equation is called differential equation of neutral type.

3. Let n < m. Then the equation is called differential equation with an advancing
argument.

For systems of ordinary differential equations of the first order without delay the basic
initial problem (Cauchy problem) is as follows. We need to find the solution x (t) of the
system ẋ (t) = f (t, x (t)) , satisfying the initial condition x (t0) = x0.

For the differential equation with one constant delay, i.e. ẋ (t) = f (t, x (t) , x (t− τ)) ,
τ > 0, t > t0, Cauchy problem consists in finding of a solution x (t), satisfying the initial
condition x (t) = ϕ (t), t0 − τ � t � t0, where ϕ (t) is an arbitrary continuous function,
also called the initial function. Set Et0 = {t : t0 − τ � t � t0} is called initial set. The
“condition of gluing” ϕ (t0) = x (t0 + 0) is a natural condition.

Consider an initial problem

ẋ (t) = f (t, x (t) , x (t− τ)) , x (t) = ϕ (t) , t0 − τ � t � t0. (1)

Theorem 2.1 (Existence and uniqueness of solutions of the Cauchy problem) Let in the
parallelepiped D = {(t, y, z) : |t− t0| � a, |y − ϕ (t0)| � b, |z − ϕ (t0 − τ)| � b} be defined
function f (t, y, z) satisfying the properties

1. Function f (t, y, z) is continuous for all variables in D.

2. Function f (t, y, z) satisfies the Lipschitz condition for variables y, z with constant L,
i.e. |f (t, y1, z)− f (t, y2, z)| � L |y1 − y2| , |f (t, y, z1)− f (t, y, z2)| � L |z1 − z2| .

Then for t0 � t � t0+h, where h = min

{
a,

b

N
,
1

2L

}
, N = max {|f (t, y, z)| , (t, y, z) ∈ D}

there is only one solution of the differential equation (1) satisfying x (t) = ϕ (t), t0 − τ �
t � t0.

3 Current State

One can hardly name a branch of natural science or technology in which problems of
stability do not attract the attention of scholars, engineers, or experts who investigate
natural phenomena or operate designed machines or systems. If for a process or a phe-
nomenon, for example, atom oscillations or a supernova explosion, a mathematical model
is constructed in the form of a system of differential equations, the investigation of the
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latter is possible by a direct (numerical as a rule) integration of the equations or by its
analysis by qualitative methods.

Dynamics of systems is a branch of science that studies actual equilibriums and mo-
tions of natural or artificial real objects. However, it is known that hardly every state of
a really functioning system as observed in practice corresponds to a mathematically strict
solution of either equilibrium or differential motion equations. It has been found out that
only those equilibriums and motions of real systems are evident which possess certain
“resistance” to outer perturbations. The equilibrium states of this kind are referred to as
stable, while the other ones are called unstable.

The notion of stability is intuitivelly clear, but difficult to formulate and only Lyapunov
(see [25]) attempted to formulate it.

Direct Lyapunov method based on scalar auxiliary function proved to be a powerful
technique of qualitative analysis of the real world phenomena.

The most frequently used method for investigating the stability of functional-differential
systems is the method of Lyapunov-Krasovskii functionals [20, 21]. Usually, it uses posi-
tive definite functionals of a special quadratic form and the integral (over the interval of
delay [19]) of a quadratic form.

Literature on the stability and estimation of solutions of neutral differential equations
is enormous. Tracing previous investigations on this topic, we emphasize that a Lyapunov
function v(x) = xTHx has been used to investigate the stability in [9] (see [16] as well).

The stability of linear neutral systems, yet with different delays h1 and h2, is studied
in [14].

In [15, 17], functionals depending on derivatives are also suggested for investigating the
asymptotic stability of neutral nonlinear systems. The investigation of nonlinear neutral
delayed systems with two time-dependent bounded delays in [22] to determine the global
asymptotic and exponential stability uses special functionals as well.

Delay independent criteria of stability for some classes of delay neutral systems are
developed in [13]. The stability of systems with time dependent delays is investigated
in [29]. For recent results on the stability of neutral equations, see [22]–[24], [27] and the
references therein. Papers [23, 27] deal with delay independent criteria of the asymptotical
stability.

3.1 Studying the stability of solutions. Second Lyapunov method.

The problem of the stability of movement is a problem of technical origin. The problems
of the stability of the balance of bodies or of mechanical systems were the first ones that
were solved in kinetics. Once equilibrium has been determined, the question of its stability
arises. Only stable states are of practical importance. These states are characterized by
the fact that when such a system deflects from its equilibrium, it is automatically returned.

Stability has different meanings for different researchers. We draw the reader’s atten-
tion to the following concepts of stability:

1. The notion of stability movement system which is associated with the behavior of its
solutions (of the bundle of solutions). Generally accepted definition of stability in
Lyapunov sense as well as asymptotic stability, stability with regard to some of the
variables, and all the combinations and modifications of these definitions belongs to
this class.
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2. Definition of stability that is characterized by the behavior of one individual trajec-
tory of the motion. Such is the concept of stability according to Poisson, Lagrange,
and others.

3. The stability of the system as a whole, i.e. its “rigidity” with regard to the pertur-
bations, or stability in all the trajectories of the system. The concepts such as “stiff
dynamical systems”, workable, Ω−stability, “robust” belong to this class.

In the classical theory of the stability of movement in the first sense (as described
above), A. M. Lyapunov developed two approaches.

The first (analytic) method of Lyapunov consists in expressing the solutions of the
systems in terms of power series with the given initial deviations and with the theory of
eigenvalues of solutions of a system of linear approximations. This approach was used
also for problems in the theory of oscillations and it has wide application in mechanics,
physics, and technology.

The second (direct) Lyapunov method is based on introducing a special auxiliary
function (or a functional) and on obtaining the results about the stability on the basis
of the behavior of this function (or a functional) along trajectories of solutions of this
system.

In the following, we will use the first concept of stability as listed above. We will
consider the system of ordinary differential equations

ẏ = F (y, t) , y ∈ Rn, t � t0. (2)

Vector function F (y, t) is such that conditions of existence and uniqueness of solutions
of Cauchy problem hold for t0 � t < +∞, y ∈ Rn. Let us denote by y = ϕ (y0, t0, t) the
solution of the system passing in t = t0 through the point y0 ∈ Rn, and by y = y (y∗0, t0, t)
another (perturbed) solution, which for t = t0 goes through the point y∗0 ∈ Rn.

In the following we define norm |·| of the vector y = (y1, y2, ..., yn)
T , as |y| =

√
n∑

i=1

y2i .

Definition 3.1 Solution y = ϕ (y0, t0, t) is called stable in Lyapunov sense if for arbitrary
ε > 0 and t0 there exists δ (ε, t0) > 0 such that for every other solution y = y (y∗0, t0, t) of
the system holds the following: if only |y∗0 − y0| < δ (ε, t0), then

|y (y∗0, t0, t)− ϕ (y0, t0, t)| < ε,

for t > t0.

Definition 3.2 Let Definition 3.1 be valid and let

lim
t→+∞

|y (y∗0, t0, t)− ϕ (y0, t0, t)| = 0.

Then the solution y = ϕ (y0, t0, t) is called asymptotically stable.

Usually, we substitute for y = ϕ (y0, t0, t) + x in the source system and we get the
system ẋ = f (x, t) of equations for the perturbed movements. Then we study not the
stability of the solution y = ϕ (y0, t0, t) of the source system, but the stability of the zero
solution x (t) ≡ 0 of the system of perturbed equations.

For definitions of the basic theorems on stability, see [25], [26].
Let D ⊂ Rn be a domain containing the origin of coordinates. R+ = {t ∈ R, T > 0}.
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Theorem 3.3 (The first Lyapunov’s theorem on stability). Let in D×R+ a continuously
differentiable function V (x, t), satisfying the following conditions be given:

1. Function V (x, t) is positive definite, i.e. there exist a continuous function w (x),
w (0) = 0, such that for (x, t) ∈ D×R+\{(0, t0)}, V (x, t) � w (x) > 0, V (0, t) ≡ 0.

2. The total derivative of a function V (x, t) along trajectories of the system (2)

d

dt
V (x, t) =

∂V (x, t)

∂t
+ 〈gradVx (x, t) , f (x, t)〉 � 0,

i.e., is a non-positive function.

Then the zero solution of the system is stable in Lyapunov sense.

Theorem 3.4 (Second Lyapunov’s theorem on asymptotical stability). Let in D × R+ a
continuously differentiable function V (x, t), satisfying the following conditions be given:

1. Function V (x, t) is positive definite, i.e. there exist a continuous function w (x),
w (0) = 0, such that for (x, t) ∈ D×R+\{(0, t0)}, V (x, t) � w (x) > 0, V (0, t) ≡ 0.

2. For function V (x, t), the upper limit is infinitesimal, i.e. there exists a continuous
function W (x), W (0) = 0, such that V (x, t) � W (x).

3. The total derivative of a function V (x, t) along trajectories of the system (2)

d

dt
V (x, t) =

∂V (x, t)

∂t
+ 〈gradV (x, t) , f (x, t)〉

is negative definite.

Then the zero solution is asymptotically stable.

3.2 Stability of solutions of equations with delay

Formal transfer of direct Lyapunov method onto a system with delay does not pose
difficulties. Analogous theorems to the ones above can be formulated as follows:

- If the differential-functional equation of perturbed movement is such that we can
find a positive definite function V (x, t), the total derivative of it along the trajectories of
the system is a functional which is always negative or identically equals to zero, then the
non perturbed movement is stable on Lyapunov.

- If the differential-functional equation of perturbed movement is such that we may
find a positive definite function V (x, t) with the infinitesimal upper limit and the total
derivative of V (x, t) along the trajectories of the system is negative definite, then the
non-perturbed movement is asymptotically stable.

The problems of the applicability of the above-stated claims are essential for even the
simplest scalar equations.

It was suggested that the studying solution of problem of stability of functional dif-
ferential equations can be developed in two directions.

1) Method of functionals of Lyapunov-Krasovskii. [20, p157]. Is is advisable to
take as an element of the trajectory x (x0 (θ0) , t0, t) not the vector {x (x0 (θ0) , t0, t)}, itself
but a vector-interval of this trajectory {x (x0 (θ0) , t0, t+ θ)}, −h � θ � 0.
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Theorem 3.5 [20, p.172] If a differential equation with delay is such that it is possible to
find a functional V (x (θ) , t) which is positive definite, has infinitesimal upper limit, and
such that the value

lim
Δt→+0

sup
V (x (x0 (θ) , t0, t+Δt+ θ) , t+Δt)− V (x (x0 (θ0) , t0, t+ θ) , t)

Δt

is negative definite along trajectories of the equation, then the solution x = 0 is asymp-
totically stable.

2) Method of Lyapunov functions with Razumikhin condition .

Theorem 3.6 [28, p.36]. If the differential-functional equation of perturbed movement is
such that we may find a positive definite function V (x, t) such that the function

R (x, t) = sup
{
V̇ (xt,h, t) |V (x (θ) , θ) � V (x (t) , t) , t− h � θ � 0, x (t) = x

}
is always negative or identically equals to zero, then the non perturbed movement is stable
according to Lyapunov.

Theorem 3.7 [28, p.40]. If the differential-functional equation of perturbed movement is
such that we may find a positive definite function with infinitesimal upper limit V (x, t)
such that

R (x, t) = sup
{
V̇ (xt,h, t) |V (x (θ) , θ) � V (x (t) , t) , t− h � θ � 0, x (t) = x

}
is negative definite on the domain t � T � t0 + h, then the non-perturbed movement is
asymptotically stable.

4 Estimation of solutions

Dynamical systems with inaccurately defined parameters have been studied for quite a
long time. A.M. Lyapunov studied in great detail the stability of solutions of differential
equations with perturbation of initial data [25]. Further was introduced the notion of
“stability, with permanent perturbations” [26]. Next, mathematicians began to study
dynamic systems subjected to stochastic perturbations [8], [3]. Theory of stability of
stochastic differential equations began to develop as a separate scientific direction (see ,
e.g. I.A. Dzhalladova [5], [6]).

At the end of the last century, mathematicians began to consider systems of differential
equations whose parameters change in predefined intervals. A sub-discipline of the so-
called interval’s stability emerged. The results of V.L. Kharitonov, known as “big and
small” Kharitonov’s theorem [12, 13] are rather important. Unfortunately, the results
for linear stationary differential equations have not been as effective in other classes of
dynamical systems.

In this work we consider dynamical systems described by linear differential-difference
equations of neutral type [10, 11, 14]. The study uses the second Lyapunov method, which
is essentially a “robust”, in the sense that if the total derivative of the Lyapunov function
(or functional Lyapunov-Krasovskii) is negative definite, then a whole class of systems
with allowed perturbations is stable [17]-[19].

The main findings presented in this part were published in the papers [30]-[33].
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4.1 Equation of neutral type. The estimation of dynamics of
solutions

We will consider differential-difference equations of neutral type with constant coefficients

d

dt
[x(t)− dx(t− τ)] = f (x (t) , x (t− τ)) , (3)

t � 0, τ > 0, x(t) ∈ R1. We assume that the initial conditions are of the form x(t) = ϕ(t),
x′ (t) = ϕ′ (t), −τ � t � 0, where ϕ (t)− is a continuously differentiable initial function.
The solution of equation (3) is in parts continuously differentiable function x (t), which
might have jumps in derivation at points t = kτ , k = 0, 1, 2, ..., and satisfies initial
conditions x(t) = ϕ(t), x′ (t) = ϕ′ (t), −τ � t � 0.

Here and later we will use the following vector and matrix norms

‖x(t)‖ :=
√√√√ n∑

i=1

x2
i (t), ‖x(t)‖τ = max

−τ�s�0
{|x(s+ t)|} ,

‖x(t)‖τ,β =

⎧⎨
⎩

t∫
t−τ

e−β(t−s)x2 (s)ds

⎫⎬
⎭

1
2

, ‖ẋ(t)‖τ,β =

⎧⎨
⎩

t∫
t−τ

e−β(t−s)ẋ2 (s)ds

⎫⎬
⎭

1
2

,

where β is a parameter.
One of the commonly used methods of obtaining estimations of perturbation solutions

of functional-differential equations is Lyapunov-Krasovskii functionals method [20]. The
most commonly used functional is

V [x(t)] = [x(t)− dx(t− τ)]2 +

t∫
t−τ

gx2(s)ds.

The constant g > 0 is selected on the basis of conditions for negative definiteness of the
functional along the trajectory of solutions to the equation. However, this functional will
only allow us to arrive to the assertion on asymptotic stability of the solution [19, 20].
At the same time, the estimate of the solution is a significant part of the task. Therefore
we will use Lyapunov-Krasovskii functional of the quadratic form both from the current
coordinates and from its derivatives [30]-[32], [34]-[37]. The study of unstable systems
will use the exponential multiplier.

Definition 4.1 A zero solution of the equation of neutral type is called exponentially
stable in the metric C0 if there exist constants Ni > 0, i = 1, 2 and γ > 0 such that for
any solution x(t) of equation for t > 0 the following inequality holds

|x (t)| � [N1 ‖x (0)‖τ +N2 ‖ẋ (0)‖τ ] exp
{
−1

2
γt

}
, t > 0.

Since the derivative ẋ(t) of the solution at zero can have a jump of the first kind, the
derivative at zero means a right-hand derivative.
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Definition 4.2 A zero solution of the equation of neutral type is called exponentially
stable in the metric C1 if it is stable in metric C0 and there exist constants Ri > 0,
i = 1, 2 and ς > 0 such that for any solution x(t) of equation for t > 0, the following
inequality holds

|ẋ (t)| � [R1 ‖x(0)‖τ +R2 ‖ẋ (0)‖τ ] exp
{
−1

2
ςt

}
, t > 0.

4.2 Estimations of convergence of solutions of scalar equations

Consider a linear scalar equation

d

dt
[x(t)− dx(t− τ)] = −ax(t) + bx(t− τ), t � 0, (4)

defined on interval 0 � t � mτ , where m > 1 is an integer, and a, b ∈ R. For the study
we will use the functional of the type

V0 [x(t), t] = x2 (t) +

t∫
t−τ

e−β(t−s)
{
g1x

2 (s) + g2ẋ
2 (s)

}
ds, g1 > 0, g2 > 0, β > 0. (5)

We denote

S [β, g1, g2] =

⎡
⎣ 2a− g1 − a2g2 −b (1− ag2) −d (1− ag2)
−b (1− ag2) e−βτg1 − b2g2 −bdg2
−d (1− ag2) −bdg2

(
e−βτ − d2

)
g2

⎤
⎦ .

Theorem 4.3 Let parameters a, b, d of equation (4) and constants g1 > 0, g2 > 0, β > 0
be such that the matrix S [β, g1, g2] is positive definite. Then the zero solution of equation
(4) is exponentially stable in the metric C1.

At the same time, the following estimates of the convergence hold for the solution x (t),
(m− 1)τ ≤ t ≤ mτ :

|x (t)| � [(1 + τ
√
g1) ‖x (0)‖τ + τ

√
g2 ‖ẋ (0)‖τ ] e−

1
2
γt,

|ẋ (t)| �
[( |b|
|d| +M (1 + τ

√
g1)

)
‖x (0)‖τ + (1 +Mτ

√
g2) ‖ẋ (0)‖τ

]
e−

1
2
ςt,

where M =
|ad− b|

1− |d| e 1
2
γτ
e

1
2
γτ

[
1−

(
|d| e 1

2
γτ
)m−1

]
,

γ = min {λmin (S [β, g1, g2]) , β} , ς = min

{
2

τ
ln

1

|d| , γ
}
.

We will get the estimation of the behavior of solutions to the equation (4) without any
assumptions about its stability. To obtain these estimates, we will use non-autonomous
Lyapunov-Krasovskii functional of the following type

V [x(t), t] = eγt

⎧⎨
⎩x2(t) +

t∫
t−τ

e−β(t−s)
[
g1x

2 (s) + g2ẋ
2 (s)

]
ds

⎫⎬
⎭ .
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This functional includes an exponential multiplier, which allows us to assess the estimate
of the “divergence” of the solution even in the case of instability. Denote

S [β, g1, g2, γ] =

⎡
⎣ 2a− g1 − a2g2 − γ −b (1− ag2) −d (1− ag2)
−b (1− ag2) e−βτg1 − b2g2 −bdg2
−d (1− ag2) −bdg2

(
e−βτ − d2

)
g2

⎤
⎦ .

Theorem 4.4 Let there exist constants β > 0, g1 > 0, g2 > 0, γ such that the matrix
S [β, g1, g2, γ] be positive definite. Then for any solution x(t), (m− 1)τ � t � mτ , the
following estimates hold

|x(t)| �
[
(1 + τ

√
g1) ‖x (0)‖τ + τ

√
g2 ‖ẋ (0)‖τ,β

]
e−

1
2
(ξ+γ)t,

|ẋ (t)| �
[( |b|
|d| +M (1 + τ

√
g1)

)
‖x (0)‖τ + (1 +Mτ

√
g2) ‖ẋ (0)‖τ

]
e−

1
2
ςt,

M =
|ad− b|

1− |d|e 1
2
γτ
e

1
2
γτ

[
1−

(
|d|e 1

2 γτ
)m−1

]
,

ξ = min {λmin (S [β, g1, g2]) , (β − γ)} , ς = min

{
2

τ
ln

1

|d| , γ
}
.

4.3 Systems of neutral type

We will consider linear systems of neutral differential equations with constant coefficients
and a constant delay

ẋ(t) = Dẋ(t− τ) + Ax(t) + Bx(t− τ) (6)

where t ≥ 0 is an independent variable, τ > 0 is a constant delay, A,B and D are n× n
constant matrices, and x : [−τ,∞) → R

n is a column vector-solution. The sign “ · ”
denotes the left-hand derivative. Let ϕ : [−τ, 0] → R

n be a continuously differentiable
vector-function. The solution x = x(t) of problem (6), (7) on [−τ,∞) where

x(t) = ϕ(t), ẋ(t) = ϕ̇(t), t ∈ [−τ, 0] (7)

is defined in the classical sense (we refer, e.g. to [14]) as a function continuous on [−τ,∞),
continuously differentiable on [−τ,∞) except for points τp, p = 0, 1, . . . , and satisfying
the equation (6) everywhere on [0,∞) except for points τp, p = 0, 1, . . . .

Let F be a rectangular matrix. We will use the matrix norm ‖F‖ :=
√

λmax(FTF)
where the symbol λmax(FTF) denotes the maximal eigenvalue of the corresponding square
symmetric positive semi-definite matrix FTF .

The most frequently used method for investigating the stability of functional-differential
systems is the method of Lyapunov-Krasovskii functionals [20, 21].

We will use Lyapunov-Krasovskii quadratic type functionals of the dependent coordi-
nates and their derivatives

V0[x(t), t] = xT (t)Hx(t) +

t∫
t−τ

e−β(t−s)
[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds (8)

13
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and V [x(t), t] = eptV0[x(t), t], i.e.,
V [x(t), t]

= ept

⎡
⎣xT (t)Hx(t) +

t∫
t−τ

e−β(t−s)
[
xT (s)G1x (s) + ẋ2 (s)G2ẋ

2(s)
]
ds

⎤
⎦ (9)

where x is a solution of (6), β and p are real parameters, the n× x matrices H, G1 and
G2 are positive definite, and t > 0.

To the best of our knowledge, the general functionals (8), (9) have not yet been applied
as suggested to the study of stability and estimates of solutions of (6).

Definition 4.5 The zero solution of the system of equations of neutral type (6) is called
exponentially stable in the metric C0 if there exist constants Ni > 0, i = 1, 2 and μ > 0
such that, for an arbitrary solution x = x(t) of (6), the inequality

‖x(t)‖ ≤ [N1 ‖x (0)‖τ +N2 ‖ẋ(0)‖τ ] e−μt

holds for t > 0.

Definition 4.6 The zero solution of the system of equations of neutral type (6) is called
exponentially stable in the metric C1 if it is stable in the metric C0 and, moreover, there
exist constants Ri > 0, i = 1, 2 and ν > 0 such that, for an arbitrary solution x = x(t)
of (6), the inequality

‖ẋ(t)‖ ≤ [R1 ‖x(0)‖τ +R2 ‖ẋ(0)‖τ ] e−νt

holds for t > 0.

We will give estimates of solutions of the linear system (6) on the interval (0,∞) using
the functional (8).

We will use an auxiliary 3n× 3n-dimensional matrix

S = S (β,G1, G2, H)

:=

⎛
⎝−ATH −HA−G1 − ATG2A −HB − ATG2B −HD − ATG2D

−BTH − BTG2A e−βτG1 − BTG2B −BTG2D
−DTH −DTG2A −DTG2B e−βτG2 −DTG2D

⎞
⎠

depending on the parameter β and the matrices G1, G2, H. Next we will use the numbers

ϕ (H) :=
λmax(H)

λmin(H)
, ϕ1 (G1, H) :=

λmax(G1)

λmin(H)
, ϕ2 (G2, H) :=

λmax(G2)

λmin(H)
.

Theorem 4.7 Let there exist a parameter β > 0 and positive definite matrices G1, G2,
H such that matrix S is also positive definite. Then the zero solution of system (6) is
exponentially stable in the metric C0. Moreover, for the solution x = x(t) of (6), (7) the
inequality

‖x(t)‖ ≤
[√

ϕ (H)‖x(0)‖+
√
τϕ1 (G1, H) ‖x (0)‖τ +

√
τϕ2 (G2, H) ‖ẋ(0)‖τ

]
e−γt/2

holds on (0,∞) where γ ≤ γ0 := min

(
β,

λmin (S)

λmax(H)

)
.
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Theorem 4.8 Let the matrix D be nonsingular and ‖D‖ < 1. Let the assumptions of
Theorem 4.7 with γ < (2/τ) ln(1/‖D‖) and γ ≤ γ0 be true. Then the zero solution of
system (6) is exponentially stable in the metric C1. Moreover, for a solution x = x(t)
of (6), (7), the inequality

‖ẋ(t)‖ ≤
[(‖B‖
‖D‖ +M

(√
ϕ(H) +

√
τϕ1(G1, H)

))
‖x (0)‖τ

+
(
1 +M

√
τϕ2 (G2, H)

)
‖ẋ(0)‖τ

]
e−γt/2

where
M = ‖A‖+ ‖DA+B‖eγτ/2(1− ‖D‖eγτ/2)−1 (10)

holds on (0,∞).

Now we will estimate the norms of solutions of (6) and the norms of their derivatives
in the case of the assumptions of Theorem 4.7 or Theorem 4.8 being not necessarily
satisfied. It means that the estimates derived will cover the case of instability as well.
For obtaining such type of results we will use a functional of Lyapunov-Krasovskii in the
form (9). This functional includes an exponential factor, which makes it possible, in the
case of instability, to get an estimate of the “divergence” of solutions. Functional (9) is a
generalization of (8) because the choice p = 0 gives V [x(t), t] = V0 [x(t), t].

We define an auxiliary 3n× 3n matrix

S∗ = S∗ (β,G1, G2, H, p)

:=

⎛
⎝−ATH −HA−G1 − ATG2A− pH −HB − ATG2B −HD − ATG2D

−BTH − BTG2A e−βτG1 − BTG2B −BTG2D
−DTH −DTG2A −DTG2B e−βτG2 −DTG2D

⎞
⎠

depending on the parameters p, β and the matrices G1, G2 and H. The parameter p
plays a significant role for the positive definiteness of the matrix S∗. Particularly, a
proper choice of p 0 can cause the positivity of S∗.

Theorem 4.9 A) Let p be a fixed real number, β a positive constant and G1, G2, H
positive definite matrices such that the matrix S∗ is also positive definite. Then a solution
x = x(t) of problem (6), (7) satisfies on (0,∞) the inequality

‖x(t)‖ ≤
[√

ϕ(H) ‖x (0)‖+
√
τϕ1 (G1, H) ‖x (0)‖τ +

√
τϕ2 (G2, H) ‖ẋ (0)‖τ

]
e−γt/2

where γ ≤ γ∗ := min

(
β, p+

λmin (S
∗)

λmax(H)

)
.

B) Let the matrix D be nonsingular and ‖D‖ < 1. Let all the assumptions of part
A) with γ < (2/τ) ln(1/‖D‖) and γ ≤ γ∗ be true. Then the derivative of the solution
x = x(t) of problem (6), (7) satisfies on (0,∞) the inequality

‖ẋ (t)‖ ≤
[(‖B‖
‖D‖ +M

(√
ϕ (H) +

√
τϕ1 (G1, H)

))
‖x (0)‖τ +

+
(
1 +M

√
τϕ2 (G2, H)

)
‖ẋ (0)‖τ

]
e−γt/2

where M is defined by (10).
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Example 4.10 We will investigate system (6) where n = 2, τ = 1,

D =

(
0.1 0
0 0.1

)
, A =

( −3 −2
1 0

)
, B =

(
0 0.6213

0.6213 0

)
,

i.e., the system

ẋ1(t) = 0.1ẋ1(t− 1)− 3x1(t)− 2x2(t) + 0.6213x2(t− 1), (11)

ẋ2(t) = 0.1ẋ2(t− 1) + 1x1(t) + 0.6213x1(t− 1), (12)

with initial conditions (7). Set β = 0.1 and

G1 =

(
0.5 0.1
0.1 0.1

)
, G2 =

(
0.1 0
0 0.1

)
, H =

(
0.6 0.4
0.4 0.6

)
.

For the eigenvalues of matrices G1, G2 and H, we get λmin(G1)
.
= 0.0764, λmax(G1)

.
=

0.5236, λmin(G2) = λmax(G2) = 0.1 λmin(H) = 0.2, λmax(H) = 1. The matrix S =
S (β,G1, G2, H) takes the form

S
.
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1.3000 1.1000 −0.3106 −0.1864 −0.0300 −0.0500
1.1000 1.1000 −0.3728 −0.1243 −0.0200 −0.0600

−0.3106 −0.3728 0.4138 0.0905 0 −0.0062
−0.1864 −0.1243 0.0905 0.0519 −0.0062 0
−0.0300 −0.0200 0 −0.0062 0.0895 0
−0.0500 −0.0600 −0.0062 0 0 0.0895

⎞
⎟⎟⎟⎟⎟⎟⎠

and λmin(S)
.
= 0.00001559. Because all eigenvalues are positive, matrix S is positive

definite. Since all conditions of Theorem 4.7 are satisfied, the zero solution of system (11),
(12) is asymptotically stable in the metric C0. Further we have

ϕ(H) =
1

0.2
= 5, ϕ1(G1, H)

.
=

0.5236

0.2
.
= 2.618, ϕ2(G2, H) =

0.1

0.2
= 0.5,

γ0
.
= min (0.1, 0.00001559) = 0.00001559,

‖A‖ .
= 3.7025, ‖B‖ .

= 0.6213, ‖D‖ = 0.1, ‖DA+B‖ .
= 0.8028, M

.
= 4.5945.

Since γ0 < (2/τ) ln(1/‖D‖) = 2 ln 10
.
= 4.6052, all conditions of Theorem 4.8 are satisfied

and, consequently, the zero solution of (11), (12) is asymptotically stable in the metric
C1. Finally, from (4.7) and (??) follows that the inequalities

‖x(t)‖ ≤
[√

5‖x(0)‖+
√
2.618 ‖x (0)‖1 +

√
0.5 ‖ẋ(0)‖1

]
e−0.00001559t/2

.
= [2.2361‖x(0)‖+ 1.6180 ‖x (0)‖1 + 0.7071 ‖ẋ(0)‖1] e−0.00001559t/2,

‖ẋ(t)‖ ≤
[(

6.213 + 4.5945
(√

5 +
√
2.618

))
‖x (0)‖1

+
(
1 + 4.5945

√
0.5

)
‖ẋ(0)‖1

]
e−0.00001559t/2

.
= [23.9206 ‖x (0)‖1 + 4.2488 ‖ẋ(0)‖1] e−0.00001559t/2

hold on (0,∞).
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4.4 Equations with special type of nonlinearity

We will consider nonlinear differential-differential equations of neutral type

d

dt
[x (t)− dx (t− τ)] = ax (t) + bx (t− τ) + f (x (t)) , t � 0, (13)

where f (x)− continuous function satisfying the Lipschitz condition and the so-called
“sector condition”

[kx− f (x)] σ > 0, k > 0. (14)

As a solution we will understand a piecewise continuously differentiable function x (t),
satisfying identically equation (13) and initial conditions x (t) = ϕ (t), x′ (t) = ψ (t),
where ϕ (t), ψ (t) are arbitrary continuous functions defined on interval −τ � t � 0.

Definition 4.11 A zero solution to the equation (13) is called exponentially stable in the
metric C0, if there exist constant Ni > 0, i = 1, 2 and γ > 0 such that for arbitrary
solution x(t) of equation (13) for t > 0 the following inequality holds

|x (t)| � [N1 ‖x (0)‖τ +N2 ‖ẋ (0)‖τ ] exp
{
−1

2
γt

}
, t > 0.

Definition 4.12 A zero solution to the equation (13) is called exponentially stable in the
metric C1, if it is stable in metric C0 and there exist constants Ri > 0, i = 1, 2 and η > 0
such that for arbitrary solution x(t) of equation (13) for t > 0, the following inequality
holds

|ẋ (t)| � [R1 ‖x(0)‖τ +R2 ‖ẋ (0)‖τ ] exp
{
−1

2
ηt

}
, t > 0.

To obtain conditions of stability, we will be using the functional of Lyapunov-Krasovskii
of the quadratic type which will depend both on the current coordinates and the deriva-
tives

V [x(t)] = x2(t) +

t∫
t−τ

e−ς(t−s)
{
g1x

2 (s) + g2 (ẋ (s))
2} ds + β

x(t)∫
0

f (s) ds,

β > 0, g1 > 0, g2 > 0. (15)

We denote

S1 [β, ς, ν, g1, g2] =

⎡
⎢⎢⎣

s111 s112 s113 s114
s112 s122 0 s124
s113 0 s133 s134
s114 s124 s134 s144

⎤
⎥⎥⎦ ,

s111 = −2a− g1 − a2g2, s112 = −b− abg2, s113 = −d− (a+ b) d,

s114 = −1− abg2 − 1

2
(βa+ ν) , s122 = e−ςτg1 − b2g2, s

1
24 = −b

(
g2 +

1

2
β

)
, (16)

s133 = e−ςτg2 − d2g2, s134 = −d
(
g2 +

1

2
β

)
, s144 = −g2 − β +

1

k
ν,

where ν > 0 is a positive constant.
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Theorem 4.13 Let |d| < 1, and there exist constants g1 > 0, g2, β > 0, ς > 0, ν >
0, such that the matrix S1 [β, ς, ν, g1, g2] be positive definite. Then the zero solution of
equation (13) is asymptotically stable in the metric C1.

For arbitrary solution x (t), t > 0 the following estimates of convergence hold:

|x (t)| �
[√

1 +
1

2
βk |x (0)|+√g1 ‖x (0)‖τ,ς +

√
g2 ‖ẋ (0)‖τ,ς

]
e−

1
2
γt,

|ẋ (t)| �
{
M

√
1 +

1

2
βk |x (0)|+

[
Mτ

√
g1 +

|b|
|d|
]
‖x (0)‖τ (17)

+ (1 +Mτ
√
g2) ‖ẋ (0)‖τ

}
e−

1
2
γt,

M = [|a|+ |a| k] [|ad+ b|+ |d| k]
|d|

[
1− |d| e 1

2
γτ
] , γ < min

{
ς,
2

τ
ln

1

|d| ,
λmin (S1 [β, ς, ν, g1, g2])

1 + 1
2
βk

}
.

As a rule, in the practical problems we do not known precisely the parameters of the
model. We will study the equation

d

dt
[x (t)− dx (t− τ)] = (a+Δa) x(t) + (b+Δb) x(t− τ) + f (x(t)) , (18)

where parameters Δa and Δb take their values from intervals

|Δa| � α, |Δb| � β, α, β ∈ R+. (19)

Nonlinear function f (σ), as in the previous part, satisfies condition (14).

Definition 4.14 A zero solution of equation (13) is called intervals stable if it is expo-
nentially stable for an arbitrary function f (x), which satisfies the “sector condition” (15),
and perturbations Δa and Δb satisfy the condition (19).

Theorem 4.15 Let |d| < 1 and let there exist g1 > 0, g2 > 0, β > 0, ς > 0, ν > 0 such
that the matrix S1 [β, ς, ν, g1, g2] is positive definite and the following inequalities hold:

|Δa| � 1

R2

[√
[1 + |ag2|]2 + (1− ξ2) (1− η2)λmin (S1 [β, ς, ν, g1, g2])R2

− [1 + |ag2|]] ,

|Δb| � min

{√
1− ξ2

2

λmin (S1 [β, ς, ν, g1, g2])

|d| η,

1

R1

[√
|g2b|2 + (1− ξ2)λmin (S1 [β, ς, ν, g1, g2])R1 − |g2b|

]}
,

where

R1 =
|1 + g2b|+ 2ξ2

∣∣+1
2
β
∣∣2

ξ2λmin (S1 [β, ς, ν, g, g2])
+ |g2|

(
1 +

1

α2

)
,

18
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R2 =
|g2b|+ 2ξ2

(
|d|2 + ∣∣g2b+ 1

2
β
∣∣2)

ξ2λmin (S1 [β, ς, ν, g1, g2])
+ |g2|+ α2,

and 0 < ξ < 1, 0 < η < 1, α are arbitrary constants.
Then the zero solution of (18) is absolutely interval stable in the metric C1. For

arbitrary solution x (t), t > 0 the following estimates of convergence hold:

|x (t)| �
[√

1 +
1

2
βk |x (0)|+√g1 ‖x (0)‖2τ,ς +

√
g2 ‖ẋ (0)‖2τ,ς

]
e−

1
2
γt,

|ẋ (t)| �
{
M

√
1 +

1

2
βk |x (0)|+

[
Mτ

√
g1 +

|b+Δb|
|d|

]
‖x (0)‖τ

+ (1 +Mτ
√
g2) ‖ẋ (0)‖τ

}
e−

1
2
γt,

M = [|a+Δa|+ |d| k] + [|d (a+Δa) + (b+Δb)|+ |d| k]
|d|

[
1− |d| e 1

2
γτ
] ,

γ < min

{
γ,

2

τ
ln

1

|d| ,
θ [·]

1 + 1
2
βk

}
,

θ [·] � (
1− ξ2

) (
1− η2

)
λmin (S1 [β, ς, ν, g1, g2])− 2 [1 + |ag2|] |Δa|

−
⎡
⎣|g2|+ |g2b|

2 + 2ξ2
(
|d|2 + ∣∣g2 + 1

2
β
∣∣2)

ξ2λmin (S1 [β, ς, ν, g1, g2])
+ α2

⎤
⎦ |Δa|2 .

4.5 Estimates of convergence of solutions of systems of nonlin-
ear equations of neutral type

We will consider systems of nonlinear differential-difference equations with delayed argu-
ment of neutral type

d

dt
[x (t)−Dx (t− τ)] = Ax (t) + Bx (t− τ) + bf (σ (t)) , (20)

σ (t) = cTx (t) , t � 0.

Here, x (t) ∈ Rn, A, B, D are square matrices with constant coefficients, b, c ∈ Rn,
τ > 0, f (σ) is continuous function satisfying the Lipschitz condition, and f (0) = 0. As a
solution of the system we will understand a piecewise continuous differentiable function
x (t), that would identically satisfy the system (20) and initial conditions x (t) = ϕ (t),
x′ (t) = ϕ′ (t), where ϕ (t) is an arbitrary continuous function, defined on −τ � t � 0.

Definition 4.16 A zero solution of the system (20) of neutral type is called exponentially
stable in the metric C0, if there exist constants Ni > 0, i = 1, 2 and γ > 0 such that for
an arbitrary solution x(t) the following inequality holds

|x (t)| � [N1 ‖x (0)‖τ +N2 ‖ẋ (0)‖τ ] exp
{
−1

2
γt

}
, t > 0.
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Definition 4.17 A zero solution of the system (20) of neutral type is called exponentially
stable in the metric C1, if it is stable in metric C0 and if there exist constants Ri > 0,
i = 1, 2 and η > 0 such that for arbitrary solution x(t) for t > 0 the following inequality
holds

|ẋ (t)| � [R1 ‖x(0)‖τ +R2 ‖ẋ (0)‖τ ] exp
{
−1

2
ηt

}
, t > 0.

Definition 4.18 System (20) is called absolutely stable, if its zero solution is exponen-
tially stable for arbitrary function f (σ), satisfying the “sector condition”

[kσ − f (σ)] σ > 0, k > 0. (21)

In this part we will use Lyapunov-Krasovskii functional of the quadratic type from
the current coordinates as well as their derivatives

V [x(t)] = xT (t)Hx(t) +

t∫
t−τ

e−ς(t−s)
{
xT (s)G1x(s) + ẋT (s)G2ẋ (s)

}
ds

+β

σ(t)∫
0

f (σ) dσ, σ (t) = cTx (t) , β > 0

with positive definite matrices H, G1, G2.
Denote

S1 [β, ς, ν,H,G1, G2] =

⎡
⎢⎢⎢⎣

S1
11 S1

12 S1
13 S1

14

(S1
12)

T
S1
22 Θ S1

24

(S1
13)

T
Θ S1

33 S1
34

(S1
14)

T
(S1

24)
T

(S1
34)

T
S1
44

⎤
⎥⎥⎥⎦ ,

S1
11 = −ATH −HA−G1 − ATG2A, S1

12 = −HB − ATG2B,

S1
13 = −HD − (A+B)T D, S1

14 = −Hb− ATG2b− 1

2

(
βAT + νI

)
c,

S1
22 = e−ςτG1 − BTG2B, S1

24 = −BT

(
G2b+

1

2
βc

)
, S1

33 = e−ςτG2 −DTG2D,

S1
34 = −DT

(
G2b+

1

2
βc

)
, S1

44 = −bTG2b− βcT b+
1

k
ν,

ν > 0, Θ is n× n zero matrix,

ϕ11 (H) =
λmax(H) + 1

2
βk |c|2

λmin(H)
, ϕ12 (H,G1) =

λmax(G1)

λmin(H)
, ϕ13 (H,G2) =

λmax(G2)

λmin(H)
.

Theorem 4.19 Let |D| < 1 and there exist positive definite matrices H, G1, G2 and
parameters β > 0, ς > 0, ν > 0, such that the matrix S1 [β, ς, ν,H,G1, G2] is positive
definite. Then the zero solution of system (20) is absolutely stable in the metric C1.

For arbitrary solution x (t), t > 0 the following estimates of convergence hold:

|x (t)| �
[√

ϕ11 (H) |x (0)|+
√
ϕ12 (H,G1) ‖x (0)‖2τ,ς (22)
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+
√
ϕ13 (H,G2) ‖ẋ (0)‖2τ,ς

]
e−

1
2
γt,

|ẋ (t)| �
{
M
√
ϕ11(H) |x (0)|+

[
Mτ

√
ϕ12 (H,G1) +

|B|
|D|

]
‖x (0)‖τ

+
(
1 +Mτ

√
ϕ13 (H,G2)

)
‖ẋ (0)‖τ

}
e−

1
2
γt,

M = [|A|+ |D| |b| k |c|] + [|DA+B|+ |D| |b| k |c|]
|D|

[
1− |D| e 1

2
γτ
] ,

γ < min

{
ς,
2

τ
ln

1

|D| ,
λmin (S1 [β, ς, ν,H,G1, G2])

λmax (H) + 1
2
βk |c|2

}
,

Typically, the parameters of such systems are unknown. They take their values from
some of the predefined intervals. We will consider the system of direct control, which is
described by a system of differential-difference equations of neutral type with coefficients
given in the interval form

d

dt
[x (t)−Dx (t− τ)] = (A+ΔA) x(t) + (B +ΔB) x(t− τ) + bf (σ(t)) , (23)

σ(t) = cTx(t), x (t) ∈ Rn, t � 0.

Here, matrices ΔA and ΔB may have their values in certain defined fixed intervals

ΔA = {Δaij} , ΔB = {Δbij} , |Δaij| � αij, |bij| � βij, i, j = 1, 2, . . . , n. (24)

Systems of this type are called intervals systems. Non-linear function f (σ), as in the
previous part, satisfies the condition (21).

Denote
‖ΔA‖ = max

Δaij
{|ΔA|} , ‖ΔB‖ = max

Δaij
{|ΔB|} .

Definition 4.20 System (20) is called absolutely interval stable, if its zero solution is
exponentially stable for an arbitrary function f (σ) which satisfies “the sector condition”
(21) and for arbitrary matrices A, B satisfying the conditions (24).

We get conditions for absolute stability of interval system (20), similar to the ones for the
systems without interval perturbations.

Denote

S2 [β,H,G2] =

⎡
⎢⎢⎢⎣

S2
11 S2

12 S2
13 S2

14

(S2
12)

T
S2
22 Θ S2

24

(S2
13)

T
Θ Θ Θ

(S2
14)

T
(S2

24)
T

Θ Θ

⎤
⎥⎥⎥⎦ ,

S2
11 = −ΔATH −HΔA−−ATG2ΔA−ΔATG2A−ΔATG2ΔA,

S2
12 = −HΔB − ATG2ΔB −ΔATG2A−ΔATG2ΔB,

S2
13 = − (ΔA+ΔB)T D, S1

14 = −ΔATG2b− 1

2
βΔAT c,

S2
22 = −BTG2ΔB −ΔBTG2B −ΔBTG2ΔB, S2

24 = −ΔBT

(
G2b+

1

2
βc

)
.

We get the following statement.
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Theorem 4.21 Let |D| < 1 and there exist positive definite matrices H, G1, G2 and
parameters β > 0, ς > 0, ν > 0 such that the matrix S1 [β, ς, ν,H,G1, G2] is positive
definite and the following inequalities hold:

‖ΔA‖ � 1

R2

[√
[|H|+ |ATG2|]2 + (1− ξ2) (1− η2)λmin (S1 [β, ς, ν,H,G1, G2])R2

− [|H|+ ∣∣ATG2

∣∣]] ,
‖ΔB‖ � min

{√
1− ξ2

2

λmin (S1 [β, ς, ν,H,G1, G2])

|D| η,

1

R1

[√
|G2B|2 + (1− ξ2)λmin (S1 [β, ς, ν,H,G1, G2])R1 − |G2B|

]}
,

R1 =
|H +G2B|+ 2ξ2

∣∣G2b+
1
2
βc
∣∣2

ξ2λmin (S1 [β, ς, ν,H,G1, G2])
+ |G2|

(
1 +

1

α2

)
,

R2 =
|G2B|+ 2ξ2

(
|D|2 + ∣∣G2b+

1
2
βc
∣∣2)

ξ2λmin (S1 [β, ς, ν,H,G1, G2])
+ |G2|+ α2,

where 0 < ξ < 1, 0 < η < 1, α are arbitrary constants.
Then system (20) is absolutely interval stable in the metric C1.
For arbitrary solution x (t), t > 0 the following estimates of convergence hold:

|x (t)| �
[√

ϕ11 (H) |x (0)|+
√
ϕ12 (H,G1) ‖x (0)‖2τ,ς

+
√
ϕ13 (H,G2) ‖ẋ (0)‖2τ,ς

]
e−

1
2
γt,

|ẋ (t)| �
{
M
√
ϕ11(H) |x (0)|+

[
Mτ

√
ϕ12 (H,G1) +

|B +ΔB|
|D|

]
‖x (0)‖τ

+
(
1 +Mτ

√
ϕ13 (H,G2)

)
‖ẋ (0)‖τ

}
e−

1
2
γt,

M = [|A+ΔA|+ |D| |b| k |c|] + [|D (A+ΔA) + (B +ΔB)|+ |D| |b| k |c|]
|D|

[
1− |D| e 1

2
γτ
] ,

γ < min

{
γ,

2

τ
ln

1

|D| ,
θ [·]

λmax (H) + 1
2
βk |c|2

}
,

θ [·] � (
1− ξ2

) (
1− η2

)
λmin (S1 [β, ς, ν,H,G1, G2])− 2

[|H|+ ∣∣ATG2

∣∣] |ΔA|

−
⎡
⎣|G2|+

|G2B|2 + 2ξ2
(
|D|2 + ∣∣G2b+

1
2
βc
∣∣2)

ξ2λmin (S1 [β, ς, ν,H,G1, G2])
+ α2

⎤
⎦ |ΔA|2 .
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5 Conclusions

In Part 4.3 we derived statements on the exponential stability of system (6) as well as
on estimates of the norms of its solutions and their derivatives in the case of exponential
stability and in the case of exponential stability being not guaranteed. To obtain these
results, special Lyapunov functionals in the form (8) and (9) were utilized as well as a
method of constructing a reduced neutral system with the same solution on the intervals
indicated as for the initial neutral system (6). The flexibility and power of this method was
demonstrated using examples and comparisons with other results in this field. Considering
further possibilities along these lines, we conclude that, to generalize the results presented
to systems with bounded variable delay τ = τ(t), a generalization of some auxiliary results
is needed. This can cause substantial difficulties in obtaining results which are easily
presentable. An alternative would be to generalize only the part of the results related
to the exponential stability in the metric C0 and the related estimates of the norms of
solutions in the case of exponential stability and in the case of the exponential stability
being not guaranteed (omitting the case of exponential stability in the metric C1 and
estimates of the norm of a derivative of solution). Such an approach will probably permit
a generalization to variable matrices (A = A(t), B = B(t), D = D(t)) and to a variable
delay (τ = τ(t)) or to two different variable delays. Nevertheless, it seems that the results
obtained will be very cumbersome and hardly applicable in practice.
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účast́ı. Brno, UNOB Brno. 2009. p. 139 - 146. ISBN 978-80-7231-667-0.
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Abstract

The Ph.D. thesis discusses the solutions to the differential equation and to systems of
differential equations. The main attention is paid to study of asymptotical properties of
equations with delay and systems of equations with delay.
In the first chapter are given physical and technical examples described by differential
equations with delay and their systems. The classification of equations with delay is
given and basic notions of theory of stability are formulated (mainly with the emphasis
on the Lyapunov second method).
In the second chapter estimates of solutions of equations of neutral type are studied.
The third chapter deals with systems of differential equations of neutral type. Asymptotic
estimates for solutions and their derivatives are proved. At the end of the chapter examples
and comparisons of our results and of other authors are given. The calculation were
performed with the MATLAB software.
Last, the fourth chapter deals with asymptotical properties of systems having a special
type of non-linearities, so called “sector nonlinearities”. Properties and estimations of
solutions and derivatives are derived. The basic tools used in the dissertation are the
Lyapunov second method and functionals of Lyapunov-Krasovskii type.

Abstrakt

Tato disertačńı práce pojednává o vlastnostech řešeńı diferenciálńıch rovnic a systémů
diferenciálńıch rovnic. Hlavńı pozornost je věnována asymptotickým vlastnostem rovnic
se zpožděńım a systémů rovnic se zpožděńım.
V prvńı kapitole jsou uvedeny fyzikálńı a technické př́ıklady popsané pomoćı diferen-
ćıálńıch rovnic a jejich systémů se zpožděńım. Je uvedena klasifikace rovnic se zpožděńım
a jsou zformulovány základńı pojmy stability s d̊urazem na druhou metodu Ljapunova.
Ve druhé kapitole jsou studovány odhady řešeńı rovnic neutrálńıho typu.
Třet́ı kapitola se zabývá systémy diferenciálńıch rovnic neutrálńıho typu. Jsou odvozeny
asymptotické odhady pro řešeńı i pro derivace řešeńı. V závěru kapitoly jsou uvedeny
př́ıklady a srovnáńı výsledk̊u s pracemi jiných autor̊u. Výpočty byly prováděny pomoćı
programu MATLAB.
Posledńı, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálńım
typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešeńı a derivace
řešeńı.
Zkladńı metodou pro d̊ukazy je v celé práci druhá Ljapunovova metoda a použit́ı funkcionál̊u
Ljapunova-Krasovského.
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