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1 INTRODUCTION

During last decades, the fast growth in wirelessiooinication and electronics
generally has enabled the development of microsendw@t can interface with
surroundings cordless. Since the price of thesé&edgvs decreasing, huge number
of them concentrated in the wireless control nekwdireless Sensor Network
(WSN), or a general wireless communication netwoak be deployed to cover
outdoor, urban, or indoor areas.

Ubiquitous computing and growing usage of informaél and electronic
technologies in every-day life brings the needochltion of things and persons. The
terms like ubiquitous services, pervasive computmgworks convergence can be
heard frequently nowadays. The fast developmetitarfield of electronics has also
enabled the practical realizations of ideas, wHiththe smart city concept. The
services are directed at the persons, inhabitantsage locally dependent. So the
localization of the person is again a crucial featf such system.

The Global Navigation Satellite System (GNSS) orrengpecifically Global
Positioning System (GPS) does not fit very well floese applications. The main
disadvantages of GNSS are: vulnerability to distades, high energy consumption,
relatively high price of quality receivers, and @adr usage restriction. Although the
last drawback can be partially overcome with théoor GNSS repeaters [1], the
solution accuracy and the installation costs ateoncan applicable level yet. Many
efforts have been concerned on development of LBoaitioning System (LPS)
during last years.

Seen from the perspective of wireless networksdassitioning, the LPS layout
consists of Reference Nodes (RN) and Blindfoldedié¢éo(BN). RNs know their
actual position, which can be set up by administrat the installation of network or
acquired by supreme positioning system (for exar@##& in outdoor installations)
and can be called beacons or anchor nodes. BNsil&actheir location from
measurements of ranges of RNs or other BNs anthea@alled moving nodes.

There must be solved sequent tasks to locate thed&#kce. Firstly the
measurement/ communication technology must be ahddewadays, these RF
technologies are most commonly used: RF identiboa(RFID), ZigBee (ZB),
Ultra Wideband (UWB) or Wi-Fi. Then there must éx&\s with prior knowledge
of their location, independent on used LPS. Theltkiep is to obtain the estimated
ranges to neighboring RNs and in cooperative lonatnges to other BNs, too. The
range estimation can be based on different measurgsical variables: Received
Signal Strength (RSS), Time of Arrival (TOA), Tirbefference of Arrival (TDOA),
or Angle of Arrival (AOA).

Next, Localization Algorithm (LA) needs to be invedd to compute all the
required coordinates of BNs. There have been pezpatany LAsS: Triangulation -
usually used Least Mean Squares (LMS) approach wkiendefined condition [2,
3], Maximum Likelihood Estimation (MLE), CooperaWILE [4, 5], Signpost -
Nearest neighbor method, Signal fingerprinting, etc



Since the range measurement typically gives vemghodata and also the
deployment of various LAs do not return satisfagtoutcomes, there has been paid
a lot of attention to utilization of several lo@tion improving techniques to
precise the LA’'s estimation. Among them belongsrageg (done in time,
frequency or reciprocal channel level), or Bayeseshniques (Bayesian Filters —
BF: Kalman filter - KF, Grid-based method, Partitileer - PF, multiple use of BFs,
etc.) [6].

The available computational resources (modern sptanhes are equipped with
powerful processors and sufficient amount of memawyable the use of more
complex, precise and reliable LAs. On the othedhéme demand to be independent
on the wireless standard and low cost requiredmsihg the efforts to received
signal strength (RSS) range measurement methoahwhigiving back only very
perturbed data. IEEE 802.15.4a, an amendment t& BfR.15.4, which extends the
physical layers with UWB and chirp spread specttaohniques was introduced in
2006. Although these techniques enables deploymEAtOA and TDOA based
range estimation, the market with available devisesather small, the price is
higher as compared to other technologies and threntmication is very unreliable,
which excludes such devices to be deployed inagglications.

The fusion with other sensors readings is a logapgdroach how to increase the
positioning accuracy. Since the emphasis is pw mw cost solution the sensor set
IS quite narrow: inertial sensors (gyro, acceler@meand magnetometer. Because
the navigation algorithm must be applicable in mdcenvironment, where
significant magnetic disturbances shall be assurthexl focus was put on inertial
sensors only.

There exist two basic approaches for inertial sensased pedestrian navigation.
Firstly, a strap-down inertial navigation systentiNS) [7, 8] can be used. Since the
sensors must be of low grade (cost and weight rexneints) and the pedestrian
motion is very complex to implement pedestrian gatron system based on SINS is
a challenging task. The reason is that the aidmgces for such system (LPS or
GNSS) won't be accurate enough to estimate inesgiasors errors with their given
grade and pedestrian motion in play. There exiges wery popular solution: the
inertial sensors are attached to the pedestrian [89010]. Then a zero velocity
update [7] can be used during stance phase otdwidalibrate observable inertial
sensor's biases.

The second approach is based on the pedestriamgaticomotion [11, 12, 13]
and fits to the concept of this work better theNSbecause the inertial sensors can
be attached to the body of pedestrian or be wora pocket (some smart phones
already includes inertial sensors and can be easiiged). The accelerometer
measurements are used to detect the steps (thkestgh can be estimated, too) and
together with gyro measurement constitutes a petiyme

Another sensors, which can be used for pedest@argation are: camera [11]
and LIDAR [14]. Since these sensors are eitheretquensive or the post processing



Is computationally too intensive, they won't be sidered as an option for proposed
navigation algorithm.

Since most of the measurement errors in the RS&llrasge estimation methods
are due to the indoor environmental effects likesimdowing and multipath a
technique to estimate the values and associateertamties of these effects can
significantly increase the localization accuracyha proposed solution.

2 OBJECTIVES

The main objective of this work is to develop aigation algorithm, which will
be implementable in the low-cost pedestrian nawgatystem and the assumption
of preinstaled RF communication network can beriake

This work aims at a selection of appropriate seasdrenvironment models, their
effective and novel application in the navigatiask, and favorable fusion of all
available information. The motivation was to deyebpset of top-notch navigation
algorithms rather than focus on thorough implem@&naand real time (e.g.
hardware in the loop) evaluation of a simpler solut The objective is to increase
the positioning accuracy or in other words lowes flosition estimation error of the
navigation algorithm.

The selection of proper sensor and environmentaletsas to be done based on
the literature survey, derived thesis requiremeats] via simulations. Since the
inertial sensors error modeling has a long historgt has been widely assessed also
for modern MEMS (Micro-Electro-Mechanical Systensgnsors, the real data
model evaluation is not required. The pedometeigdesan be based on solid
grounds of multiple research activities, too. Betéuse there exist multiple RF
channel propagation models the absence of real matiel evaluation shall be
balanced by selection of model which is most siatébr indoors and some model
optimization approach shall be deployed, too.

In the end, the evaluation methodology which asstinat not only the fusion
algorithms but also the models selected in thetisoluare assessed independently
shall be proposed.

3 STATE OF THE ART
3.1 WIRELESS NETWORK BASED POSITIONING
3.1.1 Problem Definition

In this subsection, the first task - wireless netwoased positioning - is briefly
described. There are two types of coordinatesmastid BN (sometimes called
anchor nodes) and known RN (sometimes called beaoodes).

The distance between nodesind j (in 2-D) could be obtained with the use of

triangulation (eq. 1):

d, :\/()9 ~ X F+ly ~Y; j 1)




3.1.2 Wireless Channel Model

There are described three types of variationsarrakio propagation channel [15,
16]:

* Small-scale variations (fast fading): Since thencteh structure does not
change markedly, impulse responses in the samd ameal are changing
only very small. Measured parameter statistic isretated random
variable; these variations are caused by multipagitacter of the channel.

» Mid-scale variations (slow fading): They are maionbused by shadowing
and terrain contours and may exhibit great diffeesn the distance
between nodes is equal.

» Large-scale variations (path loss): The increadiatance between nodes is
dramatically changing the channel’'s structure arehsured parameters
statistic. RSS location technologies are basedhigrfdct.

3.1.3 Range Measurement Methods

The choice of range measurement method is theatrdecision point; there can
be found many comparisons in the literature [4]e TFOA method is based on
measuring the time, which needs the signal to tténeedistance between transmitter
and receiver. In networks where the clocks aresgnthronized is commonly used
the TDOA technique, where the first device transmaitsignal to the second, which
replays on its receive. The time interval measwedhe first device consists of
twice TOA and the second device replay delay, winscgither known or measured
by the second device and then transmitted to teedevice. TOA claims the use of
accurate (expensive) clocks and the main sourcesrofs are the non-line of sight
signals, which travels longer way then the maie i sight signal.

The AOA method is reporting the angle not the distaof neighbors and requires
costly antenna arrays. The RSS method appears thebeheapest one from all
named, but also the least accurate one. The bigggantage of RSS method is the
fact that a Received Signal Strength Indicator (lR&Jart of most communication
standard.

Received Signal Strength

The large-scale variations [17] in power path-los®r distanced,; between
nodesi and j is observing inverse-exponential pattern, forradah dBm (eq. 2).

P, (dBm=P,(dBm)-10n, Iog% (2)
0

Wheren, is path-loss exponenk, is received power at short reference distance

d,. There is typically used a log-normal (Gaussianexpressed in decibels)
distribution for modeling the range measuremerdrerr



3.1.4 Localization Algorithms

The LA computes from the measured ranges to RNpdbkgion of BN.
Maximum Likelihood Estimator

MLE maximizes of the probability of location soluti based on the statistical
character of the wireless propagation channel.aBing the negative logarithm and
assuming all available measurements have the samanee, the 2-D position can
be estimated as follows [4]:

[xl ..... Xos Yiseees yn]z argmin Hlnj—z'J} 3)

%X YY) i

Least Mean Squares

Least mean square (LMS) algorithm minimizes the mafadifferences squares
and assumes identical measurement error charaictris is a methodology, which
Is appropriate also for overdetermined tasks, whiegee exist more measurements,
than is needed for the task to be solvable. Wherettors in measurements have the
Gaussian distribution, the LMS solution tends toBVHolution.

Weighted Least Mean Squares (WLMYS)

When the assumption of identical measurement eligdribution does not hold
the truth, the LMS can be reformulated to WLMS.

3.2 BAYESIAN FILTERING IN POSITIONING

Since the *“traditional” LAs (described previouslgdmbined with RSS range
measurements does not carry out sufficient outcomes logical to proceed from
snap-solutions (represented by the MLE, LMS and VEBLMethods) to the filtered
solutions. In filtered solutions, also the pathdmg is used (for BFs only the actual
and previous step), not only current measurementsn fthe sensors. The
probabilistic relationships between variables emable utilization of conditional
probability techniques, e.g. BFs. These conditiomadbabilities usually express
both, the system dynamics (state evolution) andsoreaent models. These models
can be and in this work was used to describe th@aon system represented by
the pedestrian moving along an area covered bRREhgignal from multiple RNs.

The probabilistic approach used in BF means, thatstate is not represented
directly, by a numerical value, but by the bebef(x(t)), which assigns a probability
to each possible solution.

Bayes filter consists of two essential steps:

* Prediction (Control update) - There is predicte@ thext state vector
bel(x(t)) according to the previous statel(x(t-1)) and system dynamic
model p(x(t)|x(t-1)).



bel(x(t)) = | p(x(t) Ix(t ~L)pei(x(t ~1))ax(t 1) @

» Correction (Measurement update) - Sensor likelihGuoerceptual) model
p(y(t)| x(t)) is used for correction of the state predictechnfirevious step.

bel(x(t)) = p(y(t)] x(t)bel(x(t)) (5)

3.2.1 The Particle Filter

The PF represents the belief by a set of M weighdedom state samples (eq. 6)
drawn from this probability density function (eq: 7

X(t) = x¥(t), x2 (t),... x™(t) (6)

bel(x(t)) = iw“]d(x— x1) (7)
The basic variant of PF consists of these stegs [14
Om=[L...M]: samplex™ (t) = p(x(t) | ut), x™ (t - 1)) (8)
W (t) = ply(t) 1" (t) (©)
X(t) =X () + (x™ (£), w™ (1)) (10)
Om=1[1,..,.M]:drawi with probability 0w (t) (11)
add x1(t)to X(t) (12)

Initially, there is generated a set mf hypothetical states (eq. 8), each based on
the controlu(t), particles from the last stegt-1™ and system dynamic model
p(x(t)|u(t). x(t-1)). To include the measuremenft) into the particle set, the so-
called importance factox(t)™ is calculated in (eqg. 9) for each particle. Thepsis
called importance sampling. Eq. 11 and eq. 12 apgesenting the re-sampling
procedure. This procedure draws from the set afipted particlesx(t) a set ofv
new particlesx(t). Particles inX(t) are distributed according to theli(x(t)) and in
the setx(t) according to theel(x(t)) = 7p(y(t) | X™ (t)oel(x(t)) .

3.3 SYSTEM DYNAMICS AND MEASUREMENT MODELS

System dynamics and measurements models are twartemp components of
BF.

3.3.1 Pedestrian Locomotion Model

There can be seen a typical pattern of verticalfanslard acceleration during the
human walking on a flat floor on Figure 1. The peatection can be deployed for
the step detection.

10
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Figure 1: Walking stage and acceleration pattern [1]

An approach for estimating the step length was @eg in [11]. The walking
speed can be estimated according to the differeateeen maximum and minimum
for vertical and/or forward acceleration; the nelaship can be easily linearized.

3.3.2 Sensor Models
I nertial Sensors Model

Inertial sensors comprise accelerometer and gypas¢gyro), which measure
specific force and angular rate, respectively. &i8eD navigation information is
usually required, triads of these sensors are amenbin an inertial measurement
unit (IMU). The general sensor error model, whieln be applied for both, gyro and
accelerometer measurements, is shown in eq. 13:

X=(-M)}x+b+w (13)

Wherel is identity matrix (3-by-3 for 3-dimensional coordte system)x is the
true value (true specific force or angular rates) & is measured value (sensor
output). b is the bias (typically the most remarkable error)is matrix of scale
factors and misalignment errors, andstates for the measurement noise, typically
assumed to be white (at least for frequency bandstcained by the vehicle
dynamics) and Gaussian.

RSS Based Range Measurement Model

The RF propagation channel model represents thesurezaent model in the
application with framework of RNs, which are tramgimg the RF signal and the
BNs measures the ranges by the RSS method. As béen said before, the range
measurement errors are typically described withganiormal (Gaussian if expressed
In decibels) distribution.

11



4 PROPOSED SOLUTION

4.1 PEDESTRIAN DEAD RECKONING TIGHTLY FUSED WITH RSS
BASED RANGE MEASUREMENTS

4.1.1 Frames Definition
Four coordinate frames will be used and are depiateFigure 2.

Figure 2: Coordinate frames

The IMU (IMU) frame is fixed to the IMU and the aterations and angular rates
are measured in this frame. The leveled (LVL) framas the same origin as IMU
frame but is rotated in order the z axis was pogtown; this rotation is defined by
two consecutive Euler rotations over two anglel &éod pitch). The forward-right-
down (FRD) frame is a local leveled frame, toostfriame has its origin in the
center of gravity of the pedestrian and the forwdnection is aligned with the
horizontal velocity vector projection. Although theveled and forward-right-down
frames are translated to each other, their relattegion can be defined by a single
vertical Euler rotation. The angle, which will balled IMU bearing, defines this
rotation and is not easy to be estimated. Althosgine methodologies were
proposed (i.e. [11]), the results of them are mdisgactory. In this work the IMU
bearing will not be estimated and only verticaledemtions and angular rates will
be further used. The fixed (FIX) frame is fixed ttee environment, where the
navigation should be resolved.

12



4.1.2 Proposed System Dynamics and Measurement Models

The system dynamics and measurement models are augadh in this
subsection. The state space is to be describeddgsl14):

[r fix rfix l// bfrd @gtep £step d:%) &]p]T (14)

X y ayr,z

The state space consists of: horizontal positigh,r(*), heading ¢), vertical
gyro bias ¢,,), errors of vertical acceleration and step lengjtrearized
relationship parameters (slope and intercept;, &8B,,,), error of received reference
power coarse valueX,) and error of path loss exponent coarse vaig) (

The proposed discrete time system dynamics modiggsribed in eq. 15:

n (1) =r,™ (t-2)+sinfp(t-1)+ (@ - b5, (-1 - Jat)s,,

Wlth Sen ( tep dA%tept 1X zfrgtax zfrr?nn)Atstep (step step(t 1))A step step
r™(t)=r,"(t-1) +cos((//t 1)+ ( @ —pi (t-1)- ;;‘:Z)At)sen

’Wlth Sen :(Agtep-i_do%tept_lxazﬂg]ax zfrr(iln)Atstep (Astep step(t 1))A step step
wlt) =@t -0+ (@ bt -1)-wi )t

At
bgf;or' Z( ) eXF - frd bgf;(: z(t 1) g];;/? z,GM
2Tgyr,z,GM

At
@Step(t) = eXF - 2 @Step(t _1) + WAS[epGM

dgstep(t)zext: - d-D’s,tep(t 1) B oBM

Py(t)=exp - jdbo(t —1)+ Wy

(15)

o, (t)=exp - Z?t Jmp(t—1)+w

P

Where @ is measured horizontal angular rate with correspancheasurement
noise @ ), At is system dynamics sampling tint, is estimated step length with

ayr,z
corresponding estimation noise.(), Astep and éstep are the slope and intercept of

step length linearized relationship coarse estisétefit the wide range of human
walk), &, andas,, are the low-pass filtered vertical acceleratiorximam and

minimum used to estimate the step length. Vertgab bias, errors of vertical
acceleration and step length linearized relatignglarameters (slope and intercept),
error of received reference power coarse value, eanol of path loss exponent

13



coarse value dynamics are modeled by first Gaug&dwa process with
corresponding time constants Y and driving noisesw ).

The model is non-linear, but all the noises are etextias white and Gaussian so
the sampling (representing PF prediction) fromghegposed system dynamic model
Is straightforward.

The number of available RSS ranging measurementisetdRN will define the
dimension of measurement vector. The measuremeaé¢lnwsimilar for the whole
measurement vector:

5i = I50 +d30(t)_ I:i -
(A, + an, Ologlr 2, ~1 7O # 15s ~r O 22w, + e

Wherer, s, andrs,; are the coordinates of RN Az is a constant to compensate
the difference in the RN and BN heigli, is the coarse value of reference receive
power, A is path loss exponent coarse value, agd is receiver noise. Finally,
is shadowing power loss with corresponding noigg)( both variables will be
discussed next.

(16)

4.1.3 Fusion Filter

The PF was selected to be used in proposed nawigatgorithm. Since there
exist many types of PF selected implementatiorescdbed. Sampling importance
re-sampling particle filter with systematic re-sdimg triggered by the estimated
effective sample size threshold is to be used &s qfathe proposed navigation
algorithm.

The sampling uncertainty is propagated based ost#te space noises as defined
in the system dynamics model (eq. 15) not basedarorartificial constants as
proposed in [14]. The flow chart shown on Figur@éepicts the simplified algorithm
of fusion filter.

The accelerometer measurements are filtered wihplass filter with long
(relatively to the system/pedestrian dynamics) tooestant to estimate the Gravity.
Then the specific force is filtered once again foass filter with short time
constant) to lower the noise and the Gravity istraudted next. Since the low-pass
filter is not able to differ Gravity from the aceebmeter bias, the bias is also
inherently suppressed via this subtraction.

The estimated Gravity is used to compute the rolpig&h angles and both,
accelerometer and gyro measurements are leveleadtirdinate frame is rotated to
have the x and y axis in the horizontal plane).sfsted in the previous paragraph,
the Gravity estimation includes also the acceletemigias and the roll & pitch will
be just coarse estimates, but will be sufficiemfimposed algorithms.

The vertical acceleration is used in the pedomaiedetect the step (which
triggers the new filter epoch) and to estimate dtep length. The vertical angular
rate and the distance traveled comprises the dosigmals used in the filter

14



prediction step, which is propagating the partisiet (representing the belief
estimates from previous step) due to the stateespaises. According to the RSS
based ranging and measurement model, the sam@esesghted. Afterwords, the
weighted particle set effective sample size is esmaed and if it is lower than a
predefined threshold the systematic re-samplingralgn is applied on this particle
set. In the end, the mean of estimated values @mguted using the weighted
average of the particle set.

Acceleration
Accelerometer Gravity o Filtering,
Measurements Filtering v Gravity
Subtraction
Roll & Measurements
Pitch Leveling
I
Filtered vertical accaleratian
¥ Pedometer
Gyro Measurements
Measurements Leveling T
Distance iraveled
Vertical angular rate—ps SRRl H——Frevious state
g (Prediction)
T
Predicted state
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Data Delay
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Systematic Is effective
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h 4
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»{ Samples Data
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Mean
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2-D Position
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Figure 3: Fusion filter flow chart

4.2 DUAL WIRELESS CHANNEL LOSS MAPPING

There was proposed (full/exhaustive) wireless ckhitomss mapping in the full
thesis but since it is a complex algorithm, the banof variables (representing the
hypothesis probabilities) can increase up to hudslne the real applications and the
solution of resulting system of equations can bg wemputationally demanding a

simplified/ approximative method is proposed next.

15



Firstly, list of all relevant RN to RN hypothes@s évery cell is constructed.
Secondly, when the RSS ranging is to be used, basd¢ke predicted pedestrian
(BN) and RNi positions, a setd([x,y])) of cells that intersects this measurement is

constructed. This set of cells is used to builded &f all relevant RN to RN
hypothesisH, (i, j) and the occurrenceM(,) of each RN to RN hypothesis in these

cells is enumerated. Only two (dual) hypothesexanstructed:
» There is a single loss with these characteristics:

P. :1_i]jﬂi%_MchNi,j) (17)

P = Zi,iDHi(i,i) M. Pruij PWRNi’j (18)

w,L
2 o ) Me P,

Ny 1 j
2 2
Op,. =| 1+ o, (29)
Pw,L ( EZMC RSS

e There is no loss:

an :1_ pL (20)
I:?W,nL = 0 (2 1)
a-lgw,nL = JliSS (22)

Where p_ and p,. are the probabilities/ weightg,,, andPp,, are power losses,
and o,,, and o,,, are standard deviations of noise of single los$ an loss
hypothesis, respectivelys,.. IS the standard deviation of receiver measurement

noise.
Because probabilities are only approximative, tloare occur a situation when the
approximated probability of single loss hypothasisp, > p,,,. Where p_,, is a

maximum probability assigned to single loss hypsithevhich can be set up to 0.6.
Then the single loss hypothesis is replaced byinagsis hypothesis:

a_ P

L= Ceil(pL - LpL,thr)+l (23)
IE\')W,nL = I:?w,nL(CeiI(pL - pL,thr)+1) (24)
OA-PW,nL = a-Fz’w,nL(CeiI(pL - pL,thr)+1) (25)

Where “ceil” stands for round towards plus infinity

There will be probably some cells in the navigatiarea, which are not
intersecting with any RN to RN measurement; anayewvalue is assigned to these
cells. The allocation of power into one cell wik somputed and linearly averaged
over all RN to RN measurements:
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- Zi,jDH4(i,j) pRNi,j PWRNi,j
avr N

r

L

(26)

Where H,(i,j) is a set of N, elements, which contains all RN to RN
measurements. If there exist, cells with no RN to RN hypothesis, both, the no-
loss and single (multi) loss hypothesis standaxdatiens are updated accordingly:

OA-IEW,L = (UPwL +N,, L )2 (27)

avr —avr
~AD _ ( )2
UPW,nL - UPW,nL + Naeravr (28)

Thought it might be considered also to update tbeep loss (increase it by
N.,L.) it will not be proposed in order to lower the Happroximation error. This

error is due to unmodeled correlations betweerRiddo RN hypotheses and causes
the single power loss to be higher.

—Wireless channel loss
Single loss hypothesis

o3k e ......... .......... S Mo loss hypothesis |

: : : Dwal wireless channel loss |:
025k .......... .......... .......... .......... .......... ......... ..........
0z

0.15

Frobability [-]

0.1

0.05

Shadowing power loss [dB]

Figure 4: Dual and full wireless channel loss mappg comparison

An example is used to compare the dual (approxieptivireless channel loss
mapping and the full (exhaustive) one. For duakless channel loss mapping, the
belief is represented by a sum of two weighted &Ganddistributions (Figure 4).

4.3 PARTICLE FILTER BASED PEDESTRIAN NAVIGATION
ALGORITHM WITH DUAL WIRELESS CHANNEL LOSS
MAPPING

The flow chart of the complete proposed algorithRarficle Filter Based
Pedestrian Navigation Algorithm with Dual WirelgSkannel Loss Mapping) can be
seen on Figure 5. Firstly, the wireless channed loap is off-line formed based on
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the RSS ranging between all RNs. The map needs pydressed and stored in one
central point of RNs.

Computations
Wireless done off-line in the
RN to RN RSS /
: Channel Loss network of RNs
/ Based Ranging / Map Forming j
. / Inertial : )
Mealsnl.lerr;f'l:snbs » Measurements Computa hgns
/ Preprocessing done ondine
in the BN
Wireless
Distance raveled & channal
‘ertical angular rate Inss map
- Filter Predicted
d Prediction position
Previous Predicted stata
slale L 2 v
. Wireless
BN to RN RSS Filter
. N———p . < Channel Loss
/ Based Ranging  / Dl Map Utilization

Data Delay Q—CO;{:[C;M

Weighted

Samples Data
Representation

Mean
Computation N 2-D Position
{Weighted o & Heading
Average)

Figure 5. Complete algorithm flow chart

All other computations are done in the BN. The tiakrmeasurements are
preprocessed and the pedestrian (BN) state (positieading, etc.) is predicted
based on the previous state, system dynamic madelthe control signals (inertial
preprocessing block outputs). The predicted positiod dual wireless channel loss
map are used to compute the estimate of shadovawgrmloss for each BN to RN
measurement. This shadowing power loss estimatesrdtlRSS measurements, and
measurement model are employed to correct ther fotediction. Since the a
posterior belief in a PF is represented by a setedfjhted samples the means of the
estimated states need to be computed finally.

5 EVALUATION

5.1 EVALUATION TOOLS

The Matlab simulation environment was selected valuate the proposed
algorithms. To simulate the realistic sensor regglitwo validation tools were
employed: Reference measurement data set and IsBfoyare.
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5.1.1 Reference Measurement Data Set for Multisensor Pediian
Navigation with Accurate Ground Truth

A reference measurement data set for multisensdegpean navigation with
accurate ground truth represents a measurementetafar testing and evaluating
multi-sensor approaches in pedestrian navigatidre measurements include both
transitions from outdoor to indoor and vice verfae measurements have been
carried out in and around a lab and office buildi@gound truth reference points are
provided with sub-centimeter accuracy [18].

This reference measurement data set is freely gedviby the German Aerospace
Center (Deutschen Zentrums fuer Luft- und RaumfaBbtR) and consists of these
sensor measurements: three IMUs (two mounted t@elestrian foots and one in
the pocket of the pedestrian), magnetometer, bararatimeter, GPS and active
RFID tags. Only a part of recorded data will beduse the evaluation, as the
pedestrian walks through one floor of an office.

5.1.2 I-Prop Environment

I-Prop is a software tool for coverage planningimfioor wireless systems.
Propagation prediction models for multi-floor buigs enable a coverage analysis
and design of 3D picocellular networks.

Although the reference measurement data set ingltiie RFID readings, the
signal coverage is very weak and the RSS measutsnbetween the RNs are
missing. Since these measurements are cruciahédual wireless channel loss
mapping, the I-Prop environment was combined whth teference measurement
data set to form a new data set of logged/ simulaeasurements needed for
proposed algorithm.

5.2 EVALUATION DEFINITION

To evaluate the proposed solution and appropriateageach design decisions 6
different versions of fused navigation algorithr@$-) are evaluated. The LMS snap-
shot solution based only on RSS measurements tsassa baseline algorithm and
finally, WLMS snap-shot solution based on the RS&sarements and the dual
wireless channel loss mapping is used to asses®tiebution of the mapping.

The snapshot algorithms were evaluated in evelyote¢he reference trajectory,
but the filtered algorithms were evaluated evenyetithe step was detected. Less
evaluation points for filtered algorithms, then femap-shot ones, will be seen,
because the step length is typically bigger tharstflected grid distance.

5.3 RESULTS

As can be seen in Figure 6, 7, 8, and 9 and mairilable 1, all design decisions
were correct; the 8-state PF with dual wirelessnoklloss mapping is the most
accurate estimator and compared to the baseline tidSccuracy was increased
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more than twice. It is also interesting that thalduireless channel loss mapping
deployment has comparable performance increaseedagion with inertial sensors;

compare the WLMS with dual wireless channel losppmag and all the PF without

dual wireless channel loss mapping.
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One might be surprised by the high estimation amutaround 1 or even 0.5 m),
it is due to high density of simulated RNs. If aastrbuilding, where the control is
realized via wireless network, would be assumedeéhealts are representative.

S-state PF
A e I SERTITETPPRTRTORUPPRTR P e :
. . |:| : :
. :
: O O o : :
__.'_15 L...... D ........ , ........... i ....... . g e e ..... I:‘ ..........
O kel B, .0
: . : i3 |:| . :
: : : % : :
— L | PR e :
E 0 E : 0 : o
= O :
B=
2 r ' : : 5
e BEE : * R RRERRRE ................. :
Bk e RRKEE ................. 3 Fedometer position ;
' & O RN positions
o +  True position
O % . "
: | #  Estimated position | :
£5 i 1 T T 1
10 15 20 25 30 35
* position [m]
Figure 8: 8-state Particle filter estimation error
O-state PF & Dual Wireless Channel Loss Mapping
A e S e e :
: : El : :
(m :
| O O O : :
ARER AP : S S T e F
= S : : B :
O :% =
: : : o
— a0k (AT N T P TR :
0 | : 0 : o
= a :
=
3
(=} . : : : :
=0 . B . .
o EEE &g’» .......... D._ ........... V;,E{x ................. .................
: : * - =
EoF--- A RERREEE N S FPedometer position |
' : O RN positions
0 : +  True position
; | #  Estimated position |:
5 I 1 T T 1
10 15 20 25 30 35

# position [m]

Figure 9: 8-state Particle filter & Dual mapping esimation error

21



Table 1: Simulation results

Estlmgtlon LMS WLMS &' A-state PE 4-state PF_ &
algorithm Dual mapping Dual mapping
"'”e[";‘nr]e”or 1.063 0.601 0.717 0.660
Rootmean | 4 599 0.726 0.832 0.745
square error [m]
Estlm_atlon 6-state PE 6-state PF_& 8-state PE 8-state PF_ &
algorithm Dual mapping Dual mapping
"'”e[";‘nr]e”or 0.572 0.485 0.527 0.479
Rootmean | g gpq 0.581 0.599 0.569
square error [m]

6 CONCLUSIONS AND FUTURE WORK

In this work, the focus was put on pedestrian ratwog systems for indoor and
urban areas. The literature survey was conducted. fAppropriate sensor and
environment models were selected and their outpat® fused in effective and
novel way. The evaluation of proposed solution wase via simulations (Matlab)
with usage of external tools (Reference measurerdetda set for multisensor
pedestrian navigation with accurate ground truth laprop modeling environment),
which assures that not only the fusion algorithmsasso the models selected in the
solution are assessed independently.

There was developed a navigation algorithm, whighsuitable for low-cost
pedestrian navigation system for indoor and urbrasirenments where a network of
wireless nodes was already installed. The “alraadialled” should be understood
in way that no special RF beacons are requirecedime algorithm is based on RSS
ranging and RSSI is typically available in most mwdwireless networks.

PF was deployed to fuse all the available inforomatiThis type of BF is able to
process high non-linearities, which were mainly the proposed measurement
model. The deployment of tightly integrated filteas ensured a high fidelity of the
RSS measurement error spatial distribution. A newel accurate system dynamics
model was proposed, too. This model was incorpugatcorrect statistical
characteristics (no magic, artificial constantsevesed), had refined the step length
estimation and estimation of the main RF channelpaters.

The RN to RN measurements and their known positiwwese used to build a
wireless channel loss map distributed among the@atun area. The deployment of
such a map in navigation algorithms significantigreases the positioning accuracy.
There were proposed two versions of wireless cHaho®s mapping: full
(exhaustive) and dual (approximative). The full miag correctly enumerates the
probabilities (weights) of each hypothesis. The plaxity of the full map forming
algorithm is an issue because the number of vasappkepresenting the hypothesis
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probabilities) can increase up to hundreds in #a& Bapplications. Since these
variables are heavy correlated a solution of th&tesy of equations needs to be
computed; which can be very computationally demagdind so simplified (dual
mapping) method was proposed. The discussed cotignabcomplexity was also
the reason why only the dual (approximative) weslehannel loss mapping was
evaluated via simulations and stated in this wdte full/ exhaustive mapping was
described in the full thesis only. The dual apphoapproximates all the possible
hypothesis by just two (loss/ no-loss).

The combination of main RF channel parameters astim and wireless channel
loss mapping represents a novel and very effectrag of RSS ranging errors
elimination and easily balances out the disadvanthgt the proposed solution was
not tuned on the real RF data. Such a tuning waldd be valid just for the local
area where the measurements would have been edlleGn the contrary, the
proposed approach enables an automated adap@@obitrary environments.

Let us switch from qualitative to quantitative ctustons. The proposed
algorithm was able to increase the accuracy mase tlvice as compared to the
baseline LMS operating on the RSS measurements!, WIS, and 6 version of
PF were evaluated. The 8-state PF with dual mapsgiaglld be considered as an
algorithm proposed in this thesis. Based on theltsest might be considered not to
estimate the gyroscope bias. Because the pedonpeteameters estimation
converged for 8-state PF but the wireless chanasrpeters only for 6-state PF
there could be also developed a scheme where theymter parameters estimation
would be controlled.

Since the evaluation of proposed solution was daaaimulations (Matlab) with
usage of external tools, it was assured that niyt thve fusion algorithms but also
the models selected in the solution were assesgegpéndently.

Although only 2-D position estimation was propos#uke difference between
transmitter and receiver was compensated in thgeraneasurements. The 2-D
approach is well aligned with the wireless chanogt mapping, which is also done
in 2-D because the walls (the main sources of abldoss) are typically vertical and
are built from the ground to the ceiling. For mdildior buildings, the navigation
algorithm should be supplement with floor detection

The PF measurement update is triggered by thedstiggtion and a part from the
vertical angular rate integration all the statemaigics are distretized with the
sampling rate given by this step detection. Tha faight be a problem when the
pedestrian stops and the integration interval aslémg for Euler integration. So for
real time implementation, the system dynamics gdaiggering should be
separated from the measurement update.

6.1 NEXT STEPS

Firstly, the full (exhaustive) wireless channel mimg should be evaluated
against the dual (approximative) one. Selectioapyropriate solver for the system
of equations for the full mapping would not be mle task and the increase in
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computational demands would be with high probabéxtreme so the accuracy vs.
computation complexity trade-off between the twdaians is of high interest.

Later, it might be decided to implement the proplosaution into a real platform.
The algorithms described in this thesis are soltimg main functionality of the
pedestrian navigation system, but to be implemdataba real application a few
simpler tasks should be completed, for exampleorflaletection algorithm
development, independent trigger for prediction.

Additional possible updates of the proposed satuttan be divided onto two
types: potential accuracy improvements and comiput@tdemands optimization.

Potential accuracy improvements:

The wireless channel map forming could be improved, Firstly, the
previously traveled trajectories could be used fiadestrian cannot walk
through the walls). Secondly, the map resultingmfrthe RN to RN
measurements could be postprocessed to highlighghtapes (the walls are
typically lines and their layout has a pattern,)tdo the end, the map can
be estimated on-line, but such an approach woulddng complex and
computationally demanding and the PF could notdeel at all.

In proposed solution, the tilt (in terms of rolldapitch angles) is estimated
only from the filtered accelerometer measuremeits.increase the tilt
estimation accuracy an integrated algorithm (irdBgg accelerometer and
gyroscope measurements) could be deployed. (Noteh 8&n algorithm is
in the aerial navigation area typically calledtatte and heading reference
system.)

Computational demands optimization:
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The PF could be replaced by some other parameiser f Due to the high
non-linearities in both system dynamics and measenté models the
selection is not easy. The best (and probably tig) @andidate would be
Gaussian sum filter with a bank of Unscented Kalifiggrs or some other
higher order filters. But since the unscented fians would need to be
done for both system dynamics and measurement siaddl it is not sure
that the three sigma points approximation (corredpw to the second
order linearization) would be enough, the compatatidemands
optimization is questionable.

The dual wireless channel mapping could be furtapproximated/
simplified by a single Gaussian for the longer engeasurements. It could
also be studied if this further approximation couafat be used for all the
range measurements without a significant accurasyg. ISince the dual
channel loss mapping is the only reason that Gamssum filter was
proposed in the previous paragraph, the single €skausould save up to
fifty percent of computational demands in case opaametric filter
deployed without the Gaussian sum extension.

The wireless channel loss map grid size could enied.
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ABSTRACT

This thesis deals with navigation system based ioelegs networks and inertial
sensors.

The work aims at a development of positioning atgar suitable for low-cost
indoor or urban pedestrian navigation applicatibme sensor fusion was applied to
increase the localization accuracy. Due to requiosd application cost only low
grade inertial sensors and wireless network basegdimg were taken into account.
The wireless network was assumed to be preinstalleel to other required
functionality (for example: building control) théoee only received signal strength
(RSS) range measurement technique was consideregle¥¢ channel loss mapping
method was proposed to overcome the natural umtieta and restrictions in the
RSS range measurements.

The available sensor and environment models arenswired first and the most
appropriate ones are selected secondly. Theirteféeand novel application in the
navigation task, and favorable fusion (Particleefihg) of all available information
are the main objectives of this thesis.

Keywords: Personal Localization, Indoor and Urbamavi§ation, Wireless
Networks, Inertial Sensors, Particle Filter

ABSTRAKT

Tato prace se zatfuje na vyvoj navigéniho algoritmu pro systémy vhodné k
lokalizaci osob v budovach aéstskych prostorech. Vzhledem k pozadovanym
nizkym nakladm na vysledny navigai systém byla uvazovana integrace levnych
inercialnich senzdra ukovani vzdalenosti na zakkadieni v bezdratovych sitich.
Dale bylo gedpokladano, Zze bezdratovd &iude uéena k jinym delim (nap:
meéfeni a regulace), nez lokalizace, proto bylo poubigeni sily bezdratového
signalu. Kwli sniZzeni zna&né nepesnosti této metody, byla navrhnuta technika
mapovani ztrat v bezdratovém kanalu.

Nejprve jsou shrnutyizné modely senzora prostedi a ty nejvhod¥Si jsou poté
vybrany. Jejich efektivni a nové vyuziti v nawiga uloze a vhodnauke vSech
dostupnych informaci jsou hlavni cile této prace.

Klicova slova: Lokalizace osob, Navigace v budovacheatskych prostorech,
Bezdratové s¥ Casticovy filtr
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