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1  INTRODUCTION 
During last decades, the fast growth in wireless communication and electronics 

generally has enabled the development of microsensors that can interface with 
surroundings cordless. Since the price of these devices is decreasing, huge number 
of them concentrated in the wireless control network, Wireless Sensor Network 
(WSN), or a general wireless communication network can be deployed to cover 
outdoor, urban, or indoor areas. 

Ubiquitous computing and growing usage of informational and electronic 
technologies in every-day life brings the need of location of things and persons. The 
terms like ubiquitous services, pervasive computing, networks convergence can be 
heard frequently nowadays. The fast development in the field of electronics has also 
enabled the practical realizations of ideas, which fits the smart city concept. The 
services are directed at the persons, inhabitants and are locally dependent. So the 
localization of the person is again a crucial feature of such system.  

The Global Navigation Satellite System (GNSS) or more specifically Global 
Positioning System (GPS) does not fit very well for these applications. The main 
disadvantages of GNSS are: vulnerability to disturbances, high energy consumption, 
relatively high price of quality receivers, and outdoor usage restriction. Although the 
last drawback can be partially overcome with the indoor GNSS repeaters [1], the 
solution accuracy and the installation costs are not on an applicable level yet. Many 
efforts have been concerned on development of Local Positioning System (LPS) 
during last years. 

Seen from the perspective of wireless networks based positioning, the LPS layout 
consists of Reference Nodes (RN) and Blindfolded Nodes (BN). RNs know their 
actual position, which can be set up by administrator at the installation of network or 
acquired by supreme positioning system (for example GPS in outdoor installations) 
and can be called beacons or anchor nodes. BNs calculate their location from 
measurements of ranges of RNs or other BNs and can be called moving nodes. 

There must be solved sequent tasks to locate the RF device. Firstly the 
measurement/ communication technology must be chosen. Nowadays, these RF 
technologies are most commonly used: RF identification (RFID), ZigBee (ZB), 
Ultra Wideband (UWB) or Wi-Fi. Then there must exist RNs with prior knowledge 
of their location, independent on used LPS. The third step is to obtain the estimated 
ranges to neighboring RNs and in cooperative location ranges to other BNs, too. The 
range estimation can be based on different measured physical variables: Received 
Signal Strength (RSS), Time of Arrival (TOA), Time Difference of Arrival (TDOA), 
or Angle of Arrival (AOA). 

Next, Localization Algorithm (LA) needs to be involved to compute all the 
required coordinates of BNs. There have been proposed many LAs: Triangulation - 
usually used Least Mean Squares (LMS) approach when over-defined condition [2, 
3], Maximum Likelihood Estimation (MLE), Cooperative MLE [4, 5], Signpost - 
Nearest neighbor method, Signal fingerprinting, etc. 
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Since the range measurement typically gives very rough data and also the 
deployment of various LAs do not return satisfactory outcomes, there has been paid 
a lot of attention to utilization of several localization improving techniques to 
precise the LA’s estimation. Among them belongs averaging (done in time, 
frequency or reciprocal channel level), or Bayesian techniques (Bayesian Filters – 
BF: Kalman filter - KF, Grid-based method, Particle filter - PF, multiple use of BFs, 
etc.) [6]. 

The available computational resources (modern smart-phones are equipped with 
powerful processors and sufficient amount of memory) enable the use of more 
complex, precise and reliable LAs. On the other hand, the demand to be independent 
on the wireless standard and low cost required is limiting the efforts to received 
signal strength (RSS) range measurement method, which is giving back only very 
perturbed data. IEEE 802.15.4a, an amendment to IEEE 802.15.4, which extends the 
physical layers with UWB and chirp spread spectrum techniques was introduced in 
2006. Although these techniques enables deployment of TOA and TDOA based 
range estimation, the market with available devices is rather small, the price is 
higher as compared to other technologies and the communication is very unreliable, 
which excludes such devices to be deployed in real applications. 

The fusion with other sensors readings is a logical approach how to increase the 
positioning accuracy. Since the emphasis is put on a low cost solution the sensor set 
is quite narrow: inertial sensors (gyro, accelerometer) and magnetometer. Because 
the navigation algorithm must be applicable in indoor environment, where 
significant magnetic disturbances shall be assumed, the focus was put on inertial 
sensors only. 

There exist two basic approaches for inertial sensors based pedestrian navigation. 
Firstly, a strap-down inertial navigation system (SINS) [7, 8] can be used. Since the 
sensors must be of low grade (cost and weight requirements) and the pedestrian 
motion is very complex to implement pedestrian navigation system based on SINS is 
a challenging task. The reason is that the aiding sources for such system (LPS or 
GNSS) won't be accurate enough to estimate inertial sensors errors with their given 
grade and pedestrian motion in play. There exists one very popular solution: the 
inertial sensors are attached to the pedestrian foot [9, 10]. Then a zero velocity 
update [7] can be used during stance phase of stride to calibrate observable inertial 
sensor's biases. 

The second approach is based on the pedestrian walking locomotion [11, 12, 13] 
and fits to the concept of this work better then SINS because the inertial sensors can 
be attached to the body of pedestrian or be worn in a pocket (some smart phones 
already includes inertial sensors and can be easily reused). The accelerometer 
measurements are used to detect the steps (the step length can be estimated, too) and 
together with gyro measurement constitutes a pedometer. 

Another sensors, which can be used for pedestrian navigation are: camera [11] 
and LiDAR [14]. Since these sensors are either too expensive or the post processing 
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is computationally too intensive, they won't be considered as an option for proposed 
navigation algorithm. 

Since most of the measurement errors in the RSS based range estimation methods 
are due to the indoor environmental effects like is shadowing and multipath a 
technique to estimate the values and associated uncertainties of these effects can 
significantly increase the localization accuracy of the proposed solution. 

 
2  OBJECTIVES 
The main objective of this work is to develop a navigation algorithm, which will 

be implementable in the low-cost pedestrian navigation system and the assumption 
of preinstaled RF communication network can be taken. 

This work aims at a selection of appropriate sensor and environment models, their 
effective and novel application in the navigation task, and favorable fusion of all 
available information. The motivation was to develop a set of top-notch navigation 
algorithms rather than focus on thorough implementation and real time (e.g. 
hardware in the loop) evaluation of a simpler solution. The objective is to increase 
the positioning accuracy or in other words lower the position estimation error of the 
navigation algorithm.  

The selection of proper sensor and environmental models is to be done based on 
the literature survey, derived thesis requirements, and via simulations. Since the 
inertial sensors error modeling has a long history and has been widely assessed also 
for modern MEMS (Micro-Electro-Mechanical Systems) sensors, the real data 
model evaluation is not required. The pedometer design can be based on solid 
grounds of multiple research activities, too. But because there exist multiple RF 
channel propagation models the absence of real data model evaluation shall be 
balanced by selection of model which is most suitable for indoors and some model 
optimization approach shall be deployed, too.  

In the end, the evaluation methodology which assures that not only the fusion 
algorithms but also the models selected in the solution are assessed independently 
shall be proposed. 

 
3  STATE OF THE ART 
3.1 WIRELESS NETWORK BASED POSITIONING 

3.1.1 Problem Definition 

In this subsection, the first task - wireless network based positioning - is briefly 
described. There are two types of coordinates, estimated BN (sometimes called 
anchor nodes) and known RN (sometimes called beacon nodes). 

The distance between nodes i  and j  (in 2-D) could be obtained with the use of 
triangulation (eq. 1): 

( ) ( )22
, jijiji yyxxd −+−=  (1) 
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3.1.2 Wireless Channel Model 

There are described three types of variations in the radio propagation channel [15, 
16]: 

• Small-scale variations (fast fading): Since the channel structure does not 
change markedly, impulse responses in the same small area are changing 
only very small. Measured parameter statistic is correlated random 
variable; these variations are caused by multipath character of the channel. 

• Mid-scale variations (slow fading): They are mainly caused by shadowing 
and terrain contours and may exhibit great differences; the distance 
between nodes is equal. 

• Large-scale variations (path loss): The increasing distance between nodes is 
dramatically changing the channel’s structure and measured parameters 
statistic. RSS location technologies are based on this fact. 

 
3.1.3 Range Measurement Methods 

The choice of range measurement method is the crucial decision point; there can 
be found many comparisons in the literature [4]. The TOA method is based on 
measuring the time, which needs the signal to travel the distance between transmitter 
and receiver. In networks where the clocks are not synchronized is commonly used 
the TDOA technique, where the first device transmits a signal to the second, which 
replays on its receive. The time interval measured on the first device consists of 
twice TOA and the second device replay delay, which is either known or measured 
by the second device and then transmitted to the first device. TOA claims the use of 
accurate (expensive) clocks and the main sources of errors are the non-line of sight 
signals, which travels longer way then the main line of sight signal. 

The AOA method is reporting the angle not the distance of neighbors and requires 
costly antenna arrays. The RSS method appears to be the cheapest one from all 
named, but also the least accurate one. The biggest advantage of RSS method is the 
fact that a Received Signal Strength Indicator (RSSI) is part of most communication 
standard. 

 
Received Signal Strength 

The large-scale variations [17] in power path-loss over distance jid ,  between 

nodes i  and j  is observing inverse-exponential pattern, formulated in dBm (eq. 2). 

( ) ( )
0

,
0,

~

log10
~

d

d
ndBmPdBmP ji

pji −=  (2) 

Where pn  is path-loss exponent, 0P  is received power at short reference distance 

0d . There is typically used a log-normal (Gaussian if expressed in decibels) 
distribution for modeling the range measurement errors. 
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3.1.4 Localization Algorithms 

The LA computes from the measured ranges to RNs the position of BN. 
Maximum Likelihood Estimator 

MLE maximizes of the probability of location solution based on the statistical 
character of the wireless propagation channel. By taking the negative logarithm and 
assuming all available measurements have the same variance, the 2-D position can 
be estimated as follows [4]: 
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Least Mean Squares 

Least mean square (LMS) algorithm minimizes the mean of differences squares 
and assumes identical measurement error characteristics. It is a methodology, which 
is appropriate also for overdetermined tasks, where there exist more measurements, 
than is needed for the task to be solvable. When the errors in measurements have the 
Gaussian distribution, the LMS solution tends to MLE solution. 

 
Weighted Least Mean Squares (WLMS) 

When the assumption of identical measurement error distribution does not hold 
the truth, the LMS can be reformulated to WLMS. 

 
3.2 BAYESIAN FILTERING IN POSITIONING 

Since the “traditional” LAs (described previously) combined with RSS range 
measurements does not carry out sufficient outcomes, it is logical to proceed from 
snap-solutions (represented by the MLE, LMS and WLMS methods) to the filtered 
solutions. In filtered solutions, also the path history is used (for BFs only the actual 
and previous step), not only current measurements from the sensors. The 
probabilistic relationships between variables enable the utilization of conditional 
probability techniques, e.g. BFs. These conditional probabilities usually express 
both, the system dynamics (state evolution) and measurement models. These models 
can be and in this work was used to describe the navigation system represented by 
the pedestrian moving along an area covered by the RF signal from multiple RNs. 

The probabilistic approach used in BF means, that the state is not represented 
directly, by a numerical value, but by the belief ( )( )txbel , which assigns a probability 
to each possible solution. 

Bayes filter consists of two essential steps: 
• Prediction (Control update) - There is predicted the next state vector 

( )( )txbel  according to the previous state ( )( )1−txbel  and system dynamic 
model ( ) ( )( )1| −txtxp . 
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( )( ) ( ) ( )( ) ( )( ) ( )∫ −−−= 111| tdxtxbeltxtxptxbel  (4) 

• Correction (Measurement update) - Sensor likelihood (perceptual) model 
( ) ( )( )txtyp |  is used for correction of the state predicted in the previous step. 

( )( ) ( ) ( )( ) ( )( )txbeltxtyptxbel |η=  (5) 

 
3.2.1 The Particle Filter 

The PF represents the belief by a set of M weighted random state samples (eq. 6) 
drawn from this probability density function (eq. 7): 

( ) ( ) ( ) ( )txtxtxtX M ][]2[]1[ ,...,,=  (6) 

( )( ) ( )∑
=

−=
M

i

ii xxwtxbel
1

][][ δ  (7) 

The basic variant of PF consists of these steps [14]: 

sampleMm :],...,1[=∀ ( ) ( ) ( ) ( )( )1,| ][][ −≈ txtutxptx mM  (8) 

          ( ) ( ) ( )( )txtyptw mm ][][ |=  (9) 

          ( ) ( ) ( ) ( )twtxtt mm ][][ ,+Χ=Χ  (10) 

drawMm :],...,1[=∀ i with ( )twyprobabilit i ][∝  (11) 

          add  ( )tx i ][ to ( )tΧ  (12) 

Initially, there is generated a set of M  hypothetical states (eq. 8), each based on 
the control ( )tu , particles from the last step ( ) ][1 mtx −  and system dynamic model 

( ) ( ) ( )( )1,| −txtutxp . To include the measurement ( )ty  into the particle set, the so-
called importance factor ( ) ][ mtw  is calculated in (eq. 9) for each particle. This step is 
called importance sampling. Eq. 11 and eq. 12 are representing the re-sampling 
procedure. This procedure draws from the set of predicted particles ( )tΧ  a set of M  
new particles ( )tΧ . Particles in ( )tΧ  are distributed according to the ( )( )txbel  and in 
the set ( )tΧ  according to the ( )( ) ( ) ( )( ) ( )( )txbeltxtyptxbel m][|η= . 

 
3.3 SYSTEM DYNAMICS AND MEASUREMENT MODELS 

System dynamics and measurements models are two important components of 
BF. 

 
3.3.1 Pedestrian Locomotion Model 

There can be seen a typical pattern of vertical and forward acceleration during the 
human walking on a flat floor on Figure 1. The peak detection can be deployed for 
the step detection. 
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Figure 1: Walking stage and acceleration pattern [11] 

 
An approach for estimating the step length was proposed in [11]. The walking 

speed can be estimated according to the difference between maximum and minimum 
for vertical and/or forward acceleration; the relationship can be easily linearized. 

 
3.3.2 Sensor Models 

Inertial Sensors Model 

Inertial sensors comprise accelerometer and gyroscope (gyro), which measure 
specific force and angular rate, respectively. Since 3-D navigation information is 
usually required, triads of these sensors are combined in an inertial measurement 
unit (IMU). The general sensor error model, which can be applied for both, gyro and 
accelerometer measurements, is shown in eq. 13: 

( ) wbxMIx ++−=~  (13) 

Where I  is identity matrix (3-by-3 for 3-dimensional coordinate system), x  is the 
true value (true specific force or angular rates) and x~  is measured value (sensor 
output). b  is the bias (typically the most remarkable error), M is matrix of scale 
factors and misalignment errors, and w  states for the measurement noise, typically 
assumed to be white (at least for frequency band constrained by the vehicle 
dynamics) and Gaussian. 

 
RSS Based Range Measurement Model 

The RF propagation channel model represents the measurement model in the 
application with framework of RNs, which are transmitting the RF signal and the 
BNs measures the ranges by the RSS method. As it has been said before, the range 
measurement errors are typically described with a log-normal (Gaussian if expressed 
in decibels) distribution. 
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4  PROPOSED SOLUTION 
4.1 PEDESTRIAN DEAD RECKONING TIGHTLY FUSED WITH RSS 

BASED RANGE MEASUREMENTS 

4.1.1 Frames Definition 

Four coordinate frames will be used and are depicted on Figure 2. 

 
Figure 2: Coordinate frames 

 
The IMU (IMU) frame is fixed to the IMU and the accelerations and angular rates 

are measured in this frame. The leveled (LVL) frame has the same origin as IMU 
frame but is rotated in order the z axis was pointing down; this rotation is defined by 
two consecutive Euler rotations over two angles (roll and pitch). The forward-right-
down (FRD) frame is a local leveled frame, too, this frame has its origin in the 
center of gravity of the pedestrian and the forward direction is aligned with the 
horizontal velocity vector projection. Although the leveled and forward-right-down 
frames are translated to each other, their relative rotation can be defined by a single 
vertical Euler rotation. The angle, which will be called IMU bearing, defines this 
rotation and is not easy to be estimated. Although some methodologies were 
proposed (i.e. [11]), the results of them are not satisfactory. In this work the IMU 
bearing will not be estimated and only vertical accelerations and angular rates will 
be further used. The fixed (FIX) frame is fixed to the environment, where the 
navigation should be resolved. 
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4.1.2 Proposed System Dynamics and Measurement Models 

The system dynamics and measurement models are summarized in this 
subsection. The state space is to be described first (eq. 14): 

 [ ]Tpstepstep
frd
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fix

y
fix

x nPBAbrr δδδδψ 0,  (14) 

The state space consists of: horizontal position (fix
y

fix
x rr , ), heading (ψ ), vertical 

gyro bias ( frd
zgyrb , ), errors of vertical acceleration and step length linearized 

relationship parameters (slope and intercept: stepstep BA δδ , ), error of received reference 

power coarse value (0Pδ ) and error of path loss exponent coarse value (pnδ ). 

The proposed discrete time system dynamics model is described in eq. 15: 
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Where frd
zω~ is measured horizontal angular rate with corresponding measurement 

noise ( frd
zgyrw , ), t∆  is system dynamics sampling time, lenS  is estimated step length with 

corresponding estimation noise (stepw ), stepÂ  and stepB̂  are the slope and intercept of 

step length linearized relationship coarse estimates (to fit the wide range of human 
walk), frd

maxza ,ˆ  and frd
minza ,ˆ  are the low-pass filtered vertical acceleration maximum and 

minimum used to estimate the step length. Vertical gyro bias, errors of vertical 
acceleration and step length linearized relationship parameters (slope and intercept), 
error of received reference power coarse value, and error of path loss exponent 
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coarse value dynamics are modeled by first Gauss-Markov process with 
corresponding time constants (...τ ) and  driving noises (...w ). 

The model is non-linear, but all the noises are modeled as white and Gaussian so 
the sampling (representing PF prediction) from the proposed system dynamic model 
is straightforward. 

The number of available RSS ranging measurements to the RN will define the 
dimension of measurement vector. The measurement model is similar for the whole 
measurement vector: 

( )
( )( ) ( )( ) ( )( )( ) RSSL

fix
y

fix
iRNy

fix
x

fix
iRNxpp

ii

wwztrrtrrtnn

LtPPP

i
+−∆+−+−+−

−−+=
22

,,

2

,,

00

logˆ5

ˆˆ~

δ

δ
 (16) 

Where fix
iRNxr ,,  and fix

iRNyr ,,  are the coordinates of RN i , z∆  is a constant to compensate 

the difference in the RN and BN height, 0̂P  is the coarse value of reference receive 

power, pn̂  is path loss exponent coarse value, and RSSw  is receiver noise. Finally, iL̂  

is shadowing power loss with corresponding noise (
iLw ), both variables will be 

discussed next. 
 
4.1.3 Fusion Filter 

The PF was selected to be used in proposed navigation algorithm. Since there 
exist many types of PF selected implementation is described. Sampling importance 
re-sampling particle filter with systematic re-sampling triggered by the estimated 
effective sample size threshold is to be used as part of the proposed navigation 
algorithm. 

The sampling uncertainty is propagated based on the state space noises as defined 
in the system dynamics model (eq. 15) not based on an artificial constants as 
proposed in [14]. The flow chart shown on Figure 3 depicts the simplified algorithm 
of fusion filter. 

The accelerometer measurements are filtered with low-pass filter with long 
(relatively to the system/pedestrian dynamics) time constant to estimate the Gravity. 
Then the specific force is filtered once again (low-pass filter with short time 
constant) to lower the noise and the Gravity is subtracted next. Since the low-pass 
filter is not able to differ Gravity from the accelerometer bias, the bias is also 
inherently suppressed via this subtraction. 

The estimated Gravity is used to compute the roll & pitch angles and both, 
accelerometer and gyro measurements are leveled (the coordinate frame is rotated to 
have the x and y axis in the horizontal plane). As stated in the previous paragraph, 
the Gravity estimation includes also the accelerometer bias and the roll & pitch will 
be just coarse estimates, but will be sufficient for proposed algorithms. 

The vertical acceleration is used in the pedometer to detect the step (which 
triggers the new filter epoch) and to estimate the step length. The vertical angular 
rate and the distance traveled comprises the control signals used in the filter 
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prediction step, which is propagating the particle set (representing the belief 
estimates from previous step) due to the state space noises. According to the RSS 
based ranging and measurement model, the samples are weighted. Afterwords, the 
weighted particle set effective sample size is enumerated and if it is lower than a 
predefined threshold the systematic re-sampling algorithm is applied on this particle 
set. In the end, the mean of estimated values are computed using the weighted 
average of the particle set. 

 
Figure 3: Fusion filter flow chart 

 
4.2 DUAL WIRELESS CHANNEL LOSS MAPPING 

There was proposed (full/exhaustive) wireless channel loss mapping in the full 
thesis but since it is a complex algorithm, the number of variables (representing the 
hypothesis probabilities) can increase up to hundreds in the real applications and the 
solution of resulting system of equations can be very computationally demanding a 
simplified/ approximative method is proposed next. 
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Firstly, list of all relevant RN to RN hypotheses for every cell is constructed. 
Secondly, when the RSS ranging is to be used, based on the predicted pedestrian 

(BN) and RN i  positions, a set ( [ ]( )yxQi , ) of cells that intersects this measurement is 
constructed. This set of cells is used to build a set of all relevant RN to RN 
hypothesis ( )jiH i ,  and the occurrence (cM ) of each RN to RN hypothesis in these 
cells is enumerated. Only two (dual) hypotheses are constructed: 

• There is a single loss with these characteristics: 
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• There is no loss: 

LnL pp −=1  (20) 

0,´ =nLwP  (21) 

22
, RSSnLPw σσ =  (22) 

Where Lp  and nLp  are the probabilities/ weights, LwP ,´  and nLwP ,´  are power losses, 

and LPw,σ  and nLPw,σ  are standard deviations of noise of single loss and no loss 

hypothesis, respectively. RSSσ  is the standard deviation of receiver measurement 
noise. 

Because probabilities are only approximative, there can occur a situation when the 
approximated probability of single loss hypothesis is thrLL pp ,> . Where thrLp ,  is a 

maximum probability assigned to single loss hypothesis, which can be set up to 0.6. 
Then the single loss hypothesis is replaced by multi loss hypothesis: 

( ) 1ceil
ˆ

, +−
=

thrLL

L
L pp

p
p  (23) 

( )( )1ceilˆ
,,´,´ +−= thrLLnLwnLw ppPP  (24) 

( )( )1ceilˆ ,
2

,
2

, +−= thrLLnLPwnLPw ppσσ  (25) 

Where “ceil” stands for round towards plus infinity. 
There will be probably some cells in the navigation area, which are not 

intersecting with any RN to RN measurement; an average value is assigned to these 
cells. The allocation of power into one cell will be computed and linearly averaged 
over all RN to RN measurements: 
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( )

r

jiHji jwRNijRNi

avr N

Pp
L

∑ ∈= ,, ,,
4  (26) 

Where ( )jiH ,4  is a set of rN  elements, which contains all RN to RN 
measurements. If there exist avrN  cells with no RN to RN hypothesis, both, the no-
loss and single (multi) loss hypothesis standard deviations are updated accordingly: 

( )2,
2

,ˆ avravrLPwLPw LN+= σσ  (27) 

( )2,
2

,ˆ avravrnLPwnLPw LN+= σσ  (28) 

Thought it might be considered also to update the power loss (increase it by 
avravrLN ) it will not be proposed in order to lower the dual approximation error. This 

error is due to unmodeled correlations between the RN to RN hypotheses and causes 
the single power loss to be higher. 

 
Figure 4: Dual and full wireless channel loss mapping comparison 

 
An example is used to compare the dual (approximative) wireless channel loss 

mapping and the full (exhaustive) one. For dual wireless channel loss mapping, the 
belief is represented by a sum of two weighted Gaussian distributions (Figure 4). 

 
4.3 PARTICLE FILTER BASED PEDESTRIAN NAVIGATION 

ALGORITHM WITH DUAL WIRELESS CHANNEL LOSS 
MAPPING 

The flow chart of the complete proposed algorithm (Particle Filter Based 
Pedestrian Navigation Algorithm with Dual Wireless Channel Loss Mapping) can be 
seen on Figure 5. Firstly, the wireless channel loss map is off-line formed based on 
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the RSS ranging between all RNs. The map needs to be processed and stored in one 
central point of RNs. 

 
Figure 5: Complete algorithm flow chart 

 
All other computations are done in the BN. The inertial measurements are 

preprocessed and the pedestrian (BN) state (position, heading, etc.) is predicted 
based on the previous state, system dynamic model, and the control signals (inertial 
preprocessing block outputs). The predicted position and dual wireless channel loss 
map are used to compute the estimate of shadowing power loss for each BN to RN 
measurement. This shadowing power loss estimate, current RSS measurements, and 
measurement model are employed to correct the filter prediction. Since the a 
posterior belief in a PF is represented by a set of weighted samples the means of the 
estimated states need to be computed finally. 

 
5  EVALUATION 
5.1 EVALUATION TOOLS 

The Matlab simulation environment was selected to evaluate the proposed 
algorithms. To simulate the realistic sensor readings, two validation tools were 
employed: Reference measurement data set and I-Prop software. 
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5.1.1 Reference Measurement Data Set for Multisensor Pedestrian 

Navigation with Accurate Ground Truth 

A reference measurement data set for multisensor pedestrian navigation with 
accurate ground truth represents a measurement data set for testing and evaluating 
multi-sensor approaches in pedestrian navigation. The measurements include both 
transitions from outdoor to indoor and vice versa. The measurements have been 
carried out in and around a lab and office building. Ground truth reference points are 
provided with sub-centimeter accuracy [18]. 

This reference measurement data set is freely provided by the German Aerospace 
Center (Deutschen Zentrums fuer Luft- und Raumfahrt - DLR) and consists of these 
sensor measurements: three IMUs (two mounted to the pedestrian foots and one in 
the pocket of the pedestrian), magnetometer, barometric altimeter, GPS and active 
RFID tags. Only a part of recorded data will be used in the evaluation, as the 
pedestrian walks through one floor of an office. 

 
5.1.2 I-Prop Environment 

I-Prop is a software tool for coverage planning of indoor wireless systems. 
Propagation prediction models for multi-floor buildings enable a coverage analysis 
and design of 3D picocellular networks. 

Although the reference measurement data set includes the RFID readings, the 
signal coverage is very weak and the RSS measurements between the RNs are 
missing. Since these measurements are crucial for the dual wireless channel loss 
mapping, the I-Prop environment was combined with the reference measurement 
data set to form a new data set of logged/ simulated measurements needed for 
proposed algorithm. 

 
5.2 EVALUATION DEFINITION 

To evaluate the proposed solution and appropriateness of each design decisions 6 
different versions of fused navigation algorithms (PF) are evaluated. The LMS snap-
shot solution based only on RSS measurements is used as a baseline algorithm and 
finally, WLMS snap-shot solution based on the RSS measurements and the dual 
wireless channel loss mapping is used to assess the contribution of the mapping.  

The snapshot algorithms were evaluated in every cell of the reference trajectory, 
but the filtered algorithms were evaluated every time the step was detected. Less 
evaluation points for filtered algorithms, then for snap-shot ones, will be seen, 
because the step length is typically bigger than the selected grid distance. 

 
5.3 RESULTS 

As can be seen in Figure 6, 7, 8, and 9 and mainly in Table 1, all design decisions 
were correct; the 8-state PF with dual wireless channel loss mapping is the most 
accurate estimator and compared to the baseline LMS the accuracy was increased 
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more than twice. It is also interesting that the dual wireless channel loss mapping 
deployment has comparable performance increase as the fusion with inertial sensors; 
compare the WLMS with dual wireless channel loss mapping and all the PF without 
dual wireless channel loss mapping. 

 
Figure 6: LMS estimation error 

 

 
Figure 7: WLMS & Dual mapping estimation error 
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One might be surprised by the high estimation accuracy (around 1 or even 0.5 m), 
it is due to high density of simulated RNs. If a smart building, where the control is 
realized via wireless network, would be assumed the results are representative. 

 
Figure 8: 8-state Particle filter estimation error 

 

 
Figure 9: 8-state Particle filter & Dual mapping estimation error 
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Table  1: Simulation results 
Estimation 
algorithm 

LMS 
WLMS & 

Dual mapping 
4-state PF 

4-state PF & 
Dual mapping 

Linear error 
[m] 

1.063 0.601 0.717 0.660 

Root mean 
square error [m] 

1.291 0.726 0.832 0.745 

Estimation 
algorithm 

6-state PF 
6-state PF & 

Dual mapping 
8-state PF 

8-state PF & 
Dual mapping 

Linear error 
[m] 

0.572 0.485 0.527 0.479 

Root mean 
square error [m] 

0.653 0.581 0.599 0.569 

 
6  CONCLUSIONS AND FUTURE WORK 
In this work, the focus was put on pedestrian navigation systems for indoor and 

urban areas. The literature survey was conducted first. Appropriate sensor and 
environment models were selected and their outputs were fused in effective and 
novel way. The evaluation of proposed solution was done via simulations (Matlab) 
with usage of external tools (Reference measurement data set for multisensor 
pedestrian navigation with accurate ground truth and I-prop modeling environment), 
which assures that not only the fusion algorithms but also the models selected in the 
solution are assessed independently.  

There was developed a navigation algorithm, which is suitable for low-cost 
pedestrian navigation system for indoor and urban environments where a network of 
wireless nodes was already installed. The “already installed” should be understood 
in way that no special RF beacons are required since the algorithm is based on RSS 
ranging and RSSI is typically available in most modern wireless networks. 

PF was deployed to fuse all the available information. This type of BF is able to 
process high non-linearities, which were mainly in the proposed measurement 
model. The deployment of tightly integrated filter has ensured a high fidelity of the 
RSS measurement error spatial distribution. A novel and accurate system dynamics 
model was proposed, too. This model was incorporating correct statistical 
characteristics (no magic, artificial constants were used), had refined the step length 
estimation and estimation of the main RF channel parameters. 

The RN to RN measurements and their known positions were used to build a 
wireless channel loss map distributed among the navigation area. The deployment of 
such a map in navigation algorithms significantly increases the positioning accuracy. 
There were proposed two versions of wireless channel loss mapping: full 
(exhaustive) and dual (approximative). The full mapping correctly enumerates the 
probabilities (weights) of each hypothesis. The complexity of the full map forming 
algorithm is an issue because the number of variables (representing the hypothesis 
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probabilities) can increase up to hundreds in the real applications. Since these 
variables are heavy correlated a solution of the system of equations needs to be 
computed; which can be very computationally demanding and so simplified (dual 
mapping) method was proposed. The discussed computational complexity was also 
the reason why only the dual (approximative) wireless channel loss mapping was 
evaluated via simulations and stated in this work. The full/ exhaustive mapping was 
described in the full thesis only. The dual approach approximates all the possible 
hypothesis by just two (loss/ no-loss). 

The combination of main RF channel parameters estimation and wireless channel 
loss mapping represents a novel and very effective way of RSS ranging errors 
elimination and easily balances out the disadvantage that the proposed solution was 
not tuned on the real RF data. Such a tuning would also be valid just for the local 
area where the measurements would have been collected. On the contrary, the 
proposed approach enables an automated adaptation to arbitrary environments. 

Let us switch from qualitative to quantitative conclusions. The proposed 
algorithm was able to increase the accuracy more than twice as compared to the 
baseline LMS operating on the RSS measurements! LMS, WLMS, and 6 version of 
PF were evaluated. The 8-state PF with dual mapping should be considered as an 
algorithm proposed in this thesis. Based on the results, it might be considered not to 
estimate the gyroscope bias. Because the pedometer parameters estimation 
converged for 8-state PF but the wireless channel parameters only for 6-state PF 
there could be also developed a scheme where the pedometer parameters estimation 
would be controlled.  

Since the evaluation of proposed solution was done via simulations (Matlab) with 
usage of external tools, it was assured that not only the fusion algorithms but also 
the models selected in the solution were assessed independently.  

Although only 2-D position estimation was proposed, the difference between 
transmitter and receiver was compensated in the range measurements. The 2-D 
approach is well aligned with the wireless channel loss mapping, which is also done 
in 2-D because the walls (the main sources of channel loss) are typically vertical and 
are built from the ground to the ceiling. For multi-floor buildings, the navigation 
algorithm should be supplement with floor detection. 

The PF measurement update is triggered by the step detection and a part from the 
vertical angular rate integration all the states dynamics are distretized with the 
sampling rate given by this step detection. This fact might be a problem when the 
pedestrian stops and the integration interval is too long for Euler integration. So for 
real time implementation, the system dynamics update triggering should be 
separated from the measurement update. 

 
6.1 NEXT STEPS 

Firstly, the full (exhaustive) wireless channel mapping should be evaluated 
against the dual (approximative) one. Selection of appropriate solver for the system 
of equations for the full mapping would not be a simple task and the increase in 
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computational demands would be with high probability extreme so the accuracy vs. 
computation complexity trade-off between the two options is of high interest. 

Later, it might be decided to implement the proposed solution into a real platform. 
The algorithms described in this thesis are solving the main functionality of the 
pedestrian navigation system, but to be implementable to a real application a few 
simpler tasks should be completed, for example: floor detection algorithm 
development, independent trigger for prediction.  

Additional possible updates of the proposed solution can be divided onto two 
types: potential accuracy improvements and computational demands optimization. 

Potential accuracy improvements: 
• The wireless channel map forming could be improved, too. Firstly, the 

previously traveled trajectories could be used (the pedestrian cannot walk 
through the walls). Secondly, the map resulting from the RN to RN 
measurements could be postprocessed to highlight the shapes (the walls are 
typically lines and their layout has a pattern, too). In the end, the map can 
be estimated on-line, but such an approach would be very complex and 
computationally demanding and the PF could not be used at all. 

• In proposed solution, the tilt (in terms of roll and pitch angles) is estimated 
only from the filtered accelerometer measurements. To increase the tilt 
estimation accuracy an integrated algorithm (integrating accelerometer and 
gyroscope measurements) could be deployed. (Note: Such an algorithm is 
in the aerial navigation area typically called attitude and heading reference 
system.) 

Computational demands optimization: 
• The PF could be replaced by some other parametric fuser. Due to the high 

non-linearities in both system dynamics and measurement models the 
selection is not easy. The best (and probably the only) candidate would be 
Gaussian sum filter with a bank of Unscented Kalman filters or some other 
higher order filters. But since the unscented transform would need to be 
done for both system dynamics and measurement models and it is not sure 
that the three sigma points approximation (corresponding to the second 
order linearization) would be enough, the computation demands 
optimization is questionable. 

• The dual wireless channel mapping could be further approximated/ 
simplified by a single Gaussian for the longer range measurements. It could 
also be studied if this further approximation could not be used for all the 
range measurements without a significant accuracy loss. Since the dual 
channel loss mapping is the only reason that Gaussian sum filter was 
proposed in the previous paragraph, the single Gaussian could save up to 
fifty percent of computational demands in case of a parametric filter 
deployed without the Gaussian sum extension. 

• The wireless channel loss map grid size could be optimized. 
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ABSTRACT 
 
This thesis deals with navigation system based on wireless networks and inertial 

sensors. 
The work aims at a development of positioning algorithm suitable for low-cost 

indoor or urban pedestrian navigation application. The sensor fusion was applied to 
increase the localization accuracy. Due to required low application cost only low 
grade inertial sensors and wireless network based ranging were taken into account. 
The wireless network was assumed to be preinstalled due to other required 
functionality (for example: building control) therefore only received signal strength 
(RSS) range measurement technique was considered. Wireless channel loss mapping 
method was proposed to overcome the natural uncertainties and restrictions in the 
RSS range measurements. 

The available sensor and environment models are summarized first and the most 
appropriate ones are selected secondly. Their effective and novel application in the 
navigation task, and favorable fusion (Particle filtering) of all available information 
are the main objectives of this thesis. 

 
Keywords: Personal Localization, Indoor and Urban Navigation, Wireless 

Networks, Inertial Sensors, Particle Filter 
 
 
ABSTRAKT 
 
Tato práce se zaměřuje na vývoj navigačního algoritmu pro systémy vhodné k 

lokalizaci osob v budovách a městských prostorech. Vzhledem k požadovaným 
nízkým nákladům na výsledný navigační systém byla uvažována integrace levných 
inerciálních senzorů a určování vzdálenosti na základě měření v bezdrátových sítích. 
Dále bylo předpokládáno, že bezdrátová síť bude určena k jiným účelům (např: 
měření a regulace), než lokalizace, proto bylo použito měření síly bezdrátového 
signálu. Kvůli snížení značné nepřesnosti této metody, byla navrhnuta technika 
mapování ztrát v bezdrátovém kanálu. 

Nejprve jsou shrnuty různé modely senzorů a prostředí a ty nejvhodnější jsou poté 
vybrány. Jejich efektivní a nové využití v navigační úloze a vhodná fůze všech 
dostupných informací jsou hlavní cíle této práce. 

 
Klíčová slova: Lokalizace osob, Navigace v budovách a městských prostorech, 

Bezdrátové sítě, Částicový filtr 
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