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1 INTRODUCTION
The history of L-systems started in 1968 when a biologist Aristid Lindenmayer

introduced his formalism for the description of development of filamentous organism.
This formalism, which is called L-systems after the author, uses a final set of symbols
for cells and their developmental stages. A filamentous organism is a sequence of cells
and it is represented as a string of corresponding symbols. The cells can divide, die or
grow. The evolution of a cell is expressed as a rule as in Chomsky grammars. Because
the evolution of a metazoan organism is a simultaneous evolution of all its parts, of all
its cells, the rules are applied to all symbols in the string in parallel.

In the terms of formal language theory, L-systems are parallel grammars. The im-
portance of some results obtained during the investigation of L-systems is purely the-
oretical, on the other hand, some other results lead to various applications. At present,
L-systems are use not only for biological models, but also in other areas. The most
common use of them is for creating of developing models such as fractals in computer
graphics, models of plants[13] or neural networks[33]. Some models, such as neural
networks, can be expressed as graphs. Thus we can consider L-systems to be graph
grammars too.

L-system have several important properties, which they are used for. In particular,
it is their parallelism and fractal character of words of some their languages.

This thesis discuses L-systems from two viewpoints.

1. Theoretically, we discusses L-systems as a generators of languages. Specifically,
the exponential density of languages, reduction of context-sensitive L-systems
and two extensions and modifications of interactive L-systems are studied here.

2. From a practical point of view, we investigate L-systems as formalism for devel-
oping models. Interpretation of words generated by L-systems, especially inter-
pretation as graphs with skeleton and chords, is discussed here. A programming
language for L-systems is introduced here.

The PhD thesis is organized as follows. Part 1 contains the mathematical background
of this work. It begins with section Notation, where the used symbols are defined.
This part is divided into Chapters 1–3. Chapter 1 contains the necessary definitions
and theorems concerning the formal language theory which are important for the def-
initions and results obtained in Chapters 4, 7 and 8. Chapter 2 defines L-systems
and their extensions. It also includes theorems concerning the generating power of
L-systems. This chapter forms a mathematical background for investigation in terms
of both theory and application. Chapter 3 defines graphs and graph grammars that
were studied.

Part 2 forms a heart of this work in terms of formal the language theory. Section 4.1
proves new theorem, which can be used to decide if a given language is exponentially
dense. Corollaries demonstrating how to use this theorem are given. Specifically, we
show how to prove that the classes of POL languages and pure recursively enumer-
able languages are exponentially dense. A reduction of ETIL-systems is studied in
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Sections 4.2 and 4.3. Section 4.4 defines a controlled sequential grammar systems
and proves that these systems generate the same languages as EIL-systems—that is
the class of languages generated by controlled sequential grammars is equal to the
class of recursively enumerable languages. Section 4.5 defines interactive L-systems
with semi-free context. They are generalization of interactive L-systems and they al-
low to expressed the dependence of application of a production on the other symbols
in the current word, regardless of if the symbols neighbour or not with the symbols
being rewritten.

Part 3 overviews well-known applications of L-systems. It is formed with Chap-
ters 5–6. Chapter 5 describes applications of L-systems in various areas. Particularly,
it shows applications in the computer graphics for modeling of biological organisms.
Chapter 6 introduces some generators of L-systems and high-level languages based
on L-systems.

Part 4 closes this thesis. It is divided into Chapters 7 and 8. Chapter 7 formally stud-
ies interpretation of words generated with L-systems with turtle systems and discuses
interpretation of L-systems as graph grammars with a skeleton and chords. New high-
level programming language is introduced in Chapter 8. This language is designed
in order to allow the user to describe various developing models as an L-systems and
define the interpretation of the terminal string. The syntax and the semantics of the
language is defined with respect to our investigation.

This thesis brings new results both in the theory and applications of L-systems. The
theoretical investigation of L-systems and investigation of their application are not two
separate areas. They are connected in the proposed programming language.

2 PRELIMINARIES
The present section recall some basic notions and introduces convention used hence-

forth. For other notions used in their formal language theory, consult [1] and for other
information about L-system consult [3].

For an alphabet, Σ, Σ∗ denotes the free monoid generated by Σ under operation of
concatenation; its unit is called the empty word and denoted by ε. For every α ∈ Σ∗,
|α| denotes the length of α, α denotes the reversion of α.

0-type grammar is a quadruple G = (Σ, P, S, ∆), where Σ is an alphabet, ∆ ⊂ Σ
is an alphabet of terminal symbols, P ⊆ Σ+ × Σ∗ is a finite set of productions and
S ∈ Σ − ∆ is the starting symbol. We define relation derivation ⇒∈ (Σ+ × Σ∗) as
follows: α ⇒ β if and only if α ∈ Σ+, β ∈ Σ∗, α = xuy, β = xwy, w.x, y ∈ Σ∗,
u ∈ Σ+and (u → w) ∈ P . The transitive closure of the relation of direct derivation
is denoted by ⇒+ and the transitive and reflexive closure is denoted by ⇒∗. The
language generated by G is defined by

L (G) = {α ∈ ∆∗|S ⇒∗ α} .

Languages generated by 0-type grammar are called recursively enumerable. RE

denotes the class of all recursively enumerable languages. A given language L ∈
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RE is said to be pure recursively enumerable language, or pure language in short, if
there exists a 0-type grammar G = (Σ, P, S, Σ), that is a 0-type grammar without
nonterminals, such that L = L(G). The class of pure languages is denoted by PL.

2-type grammars, also called context free grammar, are restricted 0-type grammars
where P ⊆ (Σ − ∆) × Σ∗. Languages generated by 2-type grammars are called
context-free and the class of context-free languages is denoted CF. CF is a proper
subset of RE.

It can be proved (see [6]) that for every language L ∈ RE there are two languages
L1,L2 ∈ CF and homomorphism h such that L = h (L1 ∩ L2). This theorem plays
crucial role in some proofs in the thesis.

L-systems are parallel grammar. The basic L-system, denoted OL-system, is de-
fined as a triple

G = (Σ, P, ω)

where Σ is an alphabet, ω ∈ Σ+ is a starting word called axiom and P ⊆ Σ × Σ∗

is a set of productions of the form a → α, where a ∈ Σ and α ∈ Σ∗. Definition of
relation of direct derivation ⇒⊆ (Σ+ × Σ∗) is different from sequential grammars:
α ⇒ β if and only if α ∈ Σ+, β ∈ Σ∗, α = a1a2 . . . ak, β = γ1γ2 . . . γk, k = |α|
and for every integer 1 ≤ i ≤ k, ai → γi is a production from P . ⇒+ or ⇒∗ denote
the transitive or the transitive and reflexive closure of the relation ⇒, respectively.
Language generated by 0L-systems is defined as

L (G) = {α ∈ Σ∗|ω ⇒∗ α}

Example 2.0.1 Example of 0L-systems: G =
(

{a, b} ,
{

a → b2, b → a2
}

, aba
)

. First
derivation steps are:

aba ⇒ bbaabb ⇒ aaaabbbbaaaa ⇒ bbbbbbbbaaaaaaaabbbbbbbb

L(G) =
{

a2k−1b2k−1a2k−1
}

∪
{

b2ka2kb2k
}

for every k ≥ 1.

There are various extension of the former L-systems. ETOL-system and ETIL system
are important for this thesis. They are defined now.

An ETOL-system is a quadruple G = (Σ, H, ω, ∆) where Σ is an alphabet, ω ∈ Σ+

is an axiom, ∆ ⊆ Σ is a terminal alphabet of G and for each Pi ∈ H where 1 ≤ i ≤
‖H‖ Gi = (Σ, Pi, ω) is a E0L-system. Relation of direct derivation ⇒⊆ Σ+ × Σ∗

is defined as follows. α ⇒ β if and only if there is such 0L-system Gi such that
α ⇒Gi

β. The language of G, denoted by L(G), is defined by

L(G) = {α ∈ Σ∗|ω ⇒∗ α} ∩ ∆∗ .

Definition 2.0.2 Let m, n ∈ ℵ0. An (m,n)L-system is a triple G = (Σ, P, ω), where
Σ is an alphabet, ω ∈ Σ+ is the axiom, and P is a mapping of the set

⋃m
i=0 Σi × Σ×

⋃n
i=0 Σi into the set of all nonempty finite subsets of Σ∗. If a word γ ∈ P (α, a, β) we

write (α, a, β) → γ and call it a production. A word α ∈ Σ+ directly derives a word
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β ∈ Σ∗ in G, written as α ⇒ β if α = a1 . . . ak, β = β1 . . . βk, k ≥ 1 is an integer,
ai ∈ Σ,βi ∈ Σ∗ and for all i = 1, . . . , k,

(ai−mai−m+1 . . . ai−1, ai, ai+1 . . . ai+n) → βi (2.1)

is a production of G. In 2.1 we define aj = ε whenever j ≤ 0 or j > k.
As usual, ⇒+ and ⇒∗ are transitive and transitive and reflexive closure of the

relation ⇒, respectively. The language generated by (m,n)L-systems G is defined
L(G) = {α ∈ Σ∗|ω ⇒∗ α}. The class of languages generated by (m,n)L-systems for
given m, n is denoted (m,n)L.

(m,n)L-systems are also called IL-systems (I for interactive). The class of languages
generated by IL-systems is IL =

⋃∞,∞
m=0,n=0(m,n)L.

(1,0)L-systems and (0,1)L-systems are called one-sided L-systems and denoted as
1L-systems. (1,1)L-systems are denoted as 2L-systems.

The previous interactive L-systems where pure, that is without nonterminal. Be-
cause all words derived from the axiom belong to L(G), context cannot be reduced
by simulation. Thus, IL-systems defines infinitely many language classes which are
either incomparable or one is a proper subset of another.

By analogy with 0L-systems, EIL-systems are IL-system with nonterminals. They
are defined now.

Definition 2.0.3 An EIL-system is a quadruple G = (Σ, P, ω, ∆) where U(G) =
(Σ, P, ω) is a IL-system (called underlaying system of G) and ∆ ⊆ Σ is a terminal
alphabet of G. The language of G is L(G) = L (U((G)) ∩ ∆∗. The class of all
languages generated by EIL-systems is denoted by EIL =

⋃∞,∞
m=0,n=0 E(m,n)L.

EIL-systems without erasing productions (ε-productions) are called propagating EIL-
systems and denoted by EPIL. By analogy, EPIL is a class of all languages generated
by EPIL-systems.

Theorem 2.0.4 EIL = E2L = E(1,0)L = E(0,1)L = RE.

3 THEORETICAL INVESTIGATION OF L-SYSTEMS
This chapter is a theoretical heart of this work. It includes original investigation

of exponential density, reduction of context productions, transformation of L-systems
and definition of L-systems as graph grammars. The organization of this chapter is
as follows. Section 3.1 proves new theorem, which can be used to decide if a given
language is exponentially dense. Application of the this theorem is demonstrated in
several corollaries. A reduction of ETIL-systems is studied in Sections 3.2 and 3.3.
Section 3.4 defines a controlled sequential grammar systems and proves that these
systems generate the same languages as EIL-systems—that is the class of languages
generated by controlled sequential grammars is equal to the class of recursively enu-
merable languages. Section 3.5 defines interactive L-systems with semi-free context
as a generalization of interactive L-systems.

8



3.1 Exponential Density

Let L be a language. L is called exponentially dense if there exist positive constants
c1 and c2 having following property: for any n ≥ 1 there exists a string x ∈ L such
that c1e

(n−1)c2 ≤ |x| < c1e
nc2 .

The class of all exponentially dense languages is denoted by ED.
The exponential density can be used in proofs of that some languages are out of a

language familly. Let L be a language and CL be a class of languages. If L /∈ ED

and CL ⊆ ED, then L cannot be in CL. E. g. Since language L = a22n

is not
exponentially dense and all infinite ETOL languages are exponentially dense (see [7]),
L cannot be an ETOL language.

3.1.1 Results

The PhD thesis proves following theorem.

Theorem 3.1.1 Let L be a infinitive language, H ⊆ L, and R ⊆ L × L. If there
exists a constant d > 1 such that for every v ∈ L there is w ∈ H such that v R∗ w
with |v| < |w| ≤ d |v|, then every language M ⊇ H is exponentially dense.

This theorem can be used to prove a given language is exponentially dense. Example
of corollaries of this theorems are

Corollary 3.1.2 Every infinite OL language is exponential dense.

Corollary 3.1.3 Every infinitive pure recursively enumerable language is exponential
dense.

Corollary 3.1.4 PL ⊂ RE.

Corollary 3.1.5 Every infinite language L, such that L ∈ ETOL, is exponentially
dense.

Corollary 3.1.6 There are exponentially dense context-sensitive languages that are
not ETOL languages.

All corollaries are proved in the thesis. Corollary 3.1.5 was proved by Meduna in
[7]. The proof presented in the thesis is a simplification of the original proof using
Theorem 3.1.1.

3.2 Modified Version of EIL systems and Their Reduction

This paper introduces a modified version of EIL-systems. This modification con-
sists in allowing context-free productions to be used inside of sentential forms. The
present paper proves that these modified EIL-systems with no more than 12 context-
sensitive productions are as powerful as ordinary EIL-systems. That is they define the
family of type-0 languages (see [3, page 286]).
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3.2.1 Definition

(mE(m, n)L) This modification is based on [13].
Let m, n be two non-negative integers, Σ be an alphabet, ∆ ⊆ Σ be an alphabet of

terminals and ω ∈ Σ∗. A modified interactive L-system, mE(m,n)L-system in short,
is a quadruple

G = (Σ, P, ω, ∆) ,

where ω is the axiom of G and P is a finite set of productions of form

(α, a, β) → γ ,

where a ∈ Σ, α ∈ Σi for some i ∈ {0, 1, . . . , m}, β ∈ Σj for some j ∈ {0, 1, . . . , n},
γ ∈ Σ∗.

Let x = a1a2 . . . ak where ah ∈ Σ for any 1 ≤ h ≤ k, k = |x|, y = γ1γ2 . . . γk,
where γh ∈ Σ∗ for any 1 ≤ h ≤ k. Write x ⇒ y if for every ah for h = 1, . . . , k there
is a production of the form (αh, ah, βh) → γh in P where αh ∈ suffix(a1 . . . ah−1)
such that |αh| ≤ m and βh ∈ prefix(ah+1 . . . ak) such that |βh| ≤ n.

The language of G, denoted by L(G), is defined by

L(G) = {α ∈ Σ∗|ω ⇒∗ α} ∩ ∆∗ .

Let p ∈ 0, . . . , m and q ∈ 0, . . . , n. The number of productions of the form

(α, a, β) → γ ,

form P , where a ∈ Σ, α ∈ Σp, β ∈ Σq, γ ∈ Σ∗ is denoted #p,qP . Obviously
∑m

i=0

∑n
j=0 #i,jP = ‖P‖.

If ((ε, a, ε) → γ) ∈ P , where a ∈ Σ and γ ∈ Σ∗, we write simply a → γ instead
of (ε, a, ε) → γ.

mET(m,n)L-systems are mE(m,n)L-systems with one or more sets of production.
They are analogy to ETOL-system.

3.2.2 Main Results

Theorem 3.2.1 For every EIL-system G = (Σ, P, ω, ∆) there exist an equivalent
mE(1,0)L-system Gm = (Σm, Pm, ωm, ∆) such that L(G) = L(Gm).

Theorem 3.2.2 For every mE(1,0)L-system G = (Σ, P, ω, ∆) there exists a mET(1,1)L-
system G′ = (Σ′, H ′, ω, ∆) where H = {h1, h2, h3, h4} and

∑4
i=1 (#1,0hi + #0,1hi) =

12, that is H contains only 12 context sensitive productions, such that L(G) = L(G′).

Both theorems are proves in the thesis.

3.3 Complexity of ETIL-systems

This section proves that the class of ETIL-systems with only six context productions
is equal to RE. The proof is inspired by [12] and [11].
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Theorem 3.3.1 For every recursively enumerable language L there exists a ETIL-
system G = (Σ′, H, ω′, ∆′) such that H contains no more than six context produc-
tions.

This theorem is proved in the thesis.

3.4 Controlled Grammar System for L-systems

3.4.1 Definitions

Definition 3.4.1 A controller C is a sextuple C = (Q, Σ, Π, Q0, t, o) where Q is a set
of states, Σ is a set of input symbols (input alphabet), Π is a set of output symbols,
called output alphabet, Q0 ⊆ Q is a set of starting states, t : (Q × Σ) → Q is a
transition function and o : (Q × Σ) → Π is an output function. Q can be infinite.

Definition 3.4.2 A controlled grammar system is a tuple Γ = (Σ, ∆, ω, C, P1, . . . , Pk)
where Σ is an alphabet, ∆ ⊂ Σ is an alphabet of terminal symbols, ω ∈ Σ+ is
a starting word (axiom), C = (Q, Σ − ∆, {1, . . . , k} , Q0, t, o) is a controller and
Gi = (Σ, Pi, S, ∆) for i = 1 . . . k are context-free grammars providing left-most
derivations only, k ∈ ℵ.

By analogy with automata define configuration.
Let Γ = (Σ, ∆, ω, C, P1, . . . , Pk) be a controlled grammar and

C = (Q, Σ − ∆, {1, . . . , k} , Q0, t, o)

be a controller. We say that a couple (α, q) ∈ Σ∗ × Q where α is a word and q is a
current state, is a configuration of controlled grammar.

Relation of direct derivation ⇒∈ (Σ∗ × Q)× (Σ∗ × Q) is defined with analogy to
transition in automata. (α, qi) ⇒ (β, qi+1) if

1. A ∈ Σ − ∆ is the leftmost nonterminal symbol,

2. α ⇒Go(qi,A)
β1 and

3. qi+1 = t (qi, A).

The language generated by controlled grammar system is defined as

L(Γ) = {α ∈ ∆∗| (ω, q0) ⇒∗ (α, qk)}
where q0 ∈ Q0 and qk ∈ Q.

3.4.2 Main results

Theorem 3.4.3 Let L ∈ RE. Then there exists a controlled grammar system Γ such
that L(Γ) = L.

1As usual, notation α ⇒Gx
β means α directly derives β in grammar Gx. qi is a current state

of the controller, x = o (qi, A) is a value of the output function for current state and the leftmost
nonterminal symbol. The output function select grammar that is used to derive α.

11



3.5 Interactive L-systems with Semi-free Context

Definition 3.5.1 An interactive L-systems with semi-free context (SFCIL-system in
short) is an octad

G = (Σ, Q, P, ω, ∆, λ, ρ,♥)

where Σ is an alphabet, ∆ ⊆ Σ is a terminal alphabet, ω ∈ Σ+ is the axiom, Q is a,
possibly infinite, set of messages, ♥ ∈ Q is an empty message, λ, ρ : Σ×Q → Q are
flow functions, P is a finite set of production of the form a → α, Π(l, r) where a ∈ Σ,
α ∈ Σ∗ and Π(l, r) is a predicate with l, r ∈ Q.

Let x = a1a2 . . . an be a word, where n = |x| and ai ∈ Σ for every i = 1 . . . n.
Define l1 = ♥, rn = ♥, li+1 = ρ (ai, li), ri = λ (ai+1, ri+1) for every i = 1 . . . n− 1.
Word x directly derives word y = α1α2 . . . αn, where αi ∈ Σ∗ for every i = 1 . . . n,
if for every i = 1 . . . n there is a production (ai → αi, Π (li, ri)) such that Π (li, ri) is
true. We write x ⇒ y.

The language generated by SFCIL-system G is defined as

L(G) = {x ∈ ∆∗|ω ⇒∗
G x}

The class of languages generated by SFCIL-system is denoted SFCIL.

3.5.1 Results

Theorem 3.5.2 SFCIL = RE.

SFCIL-systems are suitable for such models based on L-system where some part di-
rectly depends on some other part and these parts do not neighbours. Such as models
are models of a group of organisms.

4 APPLICATIONS OF L-SYSTEMS
Przemyslaw Prusinkiewicz and his group have studied application of L-system in

computer graphics, especially for modeling of plants [13, 14]. Their investigation
comes out investigation of interpretation of L-systems in computer graphics, modular
structure of plants, recognition of the fractal character of plants and fractal character
of L-systems, such as locally catenative formulas in [3]. L-systems are used as a lan-
guage describing developing models, where each word that belongs to the language,
is treated as a formal description of a developmental stage of the model.

Although the generative power of EIL-systems is equal to the power of Turing ma-
chines, i. e. EIL = RE, various extension of L-systems were introduced. These
extensions increase the range of phenomena that can be modeled using L-system.
Such as extensions are parametric L-systems (see [13]) or open L-system (see [15]).

Words generated by an (parametric) L-systems are interpreted by a logo-style[39]
turtle in computer graphics. Turtle interpretation was introduced by Szilard and Quin-
ton in [16] and extended by Prusinkiewicz (see [14, 13]) and Hannan (in [17]). A
turtle is a object that interprets modules and creates the target object according to the
module being interpreted and a current state of the turtle.
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Although L-system were originally introduced as formalism for description of the
development of metazoan organisms, they are used in various areas, today. Applica-
tion of L-systems as grammars describing parallel generation of graphs was mentioned
in [33, 32], program LMuse [42] uses L-system to generate a fractal music. We men-
tion here application of L-system for generation of fractal music and for symbolic
computation. Goel and Shen extended L-systems in [22] for symbolic computation.

5 INVESTIGATION OF INTERPRETATION OF L-SYSTEM
L-systems are usually process in two stages. During first stage is a final word

derived from the axiom in a given number of steps. In the second stage, this word
is consider to be a program, where each symbol is a command of an interpret. This
section studies the second stage of L-system interpretation. It introduces turtle system,
discuses pipelining in processing of L-systems and studies interpretation of chords.

5.1 Abstract Model of Turtle

The word generated by an L-system are interpreted so called turtle. The studied
papers use the turtle but there is no formal definition of it. This thesis defines the
turtle by analogy with automata. . The turtle is defined as a pushdown automaton (or
transducer) with infinitive state space rather then finite set of states.

Definition 5.1.1 A turtle is a septuple

T = (Q, Σ, Γ, δ, q0, C, ρ)

where Q is a state space of the turtle, Σ is an L-system alphabet, Γ is a pushdown
alphabet with ♠ ∈ Γ, δ : (Q × Σ × Γ) → (Q × Γ∗) is a transition function,
q0 ∈ Q is a start state, C is a output set of state-independent commands and ρ :
(Q × Σ × Γ) → C∗ is the output function. Note that the state space and pushdown
alphabet can be, unlike pushdown automata, infinite. Because Q and Γ can be infini-
tive the transition function must be defined by expressions, like real functions.

The state space and the transition function depend on the purpose of the L-system.
A configuration of the turtle and relation ` are defined by analogy with pushdown

automaton.

Definition 5.1.2 Let T = (Q, Σ, Γ, δ, q0, C, ρ) be a turtle. We say T properly accepts
a word α ∈ Σ∗ if (♠, s, α) `∗ (♠, f, ε) and f ∈ Q.

The class of all languages accepted by push-down automata is equal to Class CF, the
class of languages accepted by finite automata is even only REG. Here, we describe
interpretation of L-systems with push-down automata. But the classes of languages
generated by L-systems are either incomparable with CF, or CF is their proper subset.
For example, OL is incomparable with CF, CF ⊂ ETOL ⊂ EIL = RE. We want
to process languages that are not in CF with push-down automata. Is not it a contra-
diction? Yes, it can look like. But we do not want to accept languages generated by
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Figure 5.1: Graph representation of word
EE[(0)E[(1)E](2)E](3)E {(2)E {(3)E} (4)E} (5)E

L-system with a push-down automata. We obtain a word α as a result of a derivation
of the axiom in a given L-system G. It ensures α ∈ L (G). The sequence of symbols
in α is treated as a sequence of actions needed to create the target object. Push-down
automata are not used as recognizers, but as state-controlled interprets.

The thesis discusses interpretation of words by single turtle and defines a turtle
system for parallel interpretation of words generated by an L-system.

5.2 Generation of General Continuous Multigraphs

Remark that only trees can be generated with bracket L-system. A tree Fs(V, E, W )
can be considered to be a skeleton of some continuous graph Fc(V, E ′, W ′), where
E ⊆ E ′ and W ⊆ W ′. Graph Fc is obtained from Fs by adding chords to skeleton
Fs[28, page 103].

The definition of a graph is extended with node labels. A labeled graph is a quadru-
ple F = (V, E, W, λ) where V, E, W are set of nodes, set of edges and a morphisms
assigning source and target node to every edge, respectively. λ : ℵ → V is a mor-
phism such that it assign a node n ∈ V to each label l ∈ ℵ. If some l ∈ ℵ is not a
label of any node then λ (l) is not defined.

Extend bracket L-systems by chord support. Add symbols {,} into Σ. The target
word will be parametric and will be generated by a parametric L-system. Every node,
where more than two edges meet (these nodes are denoted by [) and leaves (denoted
by ]) will be indexed with unique number as a parameter. This number is a label of
such noes. A chord will be expressed as a substring {(i)t} (j), where i and j are labels
of nodes. An interpret labels last node with j and create a subgraph Fx denoted by
word t such that root of Fx will be node λ (i) and last leaf of Fx will be node λ (j).
Remark word t does not represent an edge—the chord—but a graph, that replaces the
chord. Such graph that replaces the chord is called an expanded chord.

Example 5.2.1 Word EE[(0)E[(1)E](2)E](3)E {(2)E {(3)E} (4)E} (5)E represents
a graph that is shown at Figure 5.1
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Figure 5.2: Graphical representation of string
F [+ + FF ](x)F{(x)F}(y)

The thesis defines a turtle such that it generates general continuous graphs. The
thesis also contains a proof that any continuous graph can be expressed as a string of
the form above.

5.3 Interpretation of Chords

A chord is an edge connecting two nodes created by two (separate) turtle, say tx
and ty. We say a chord connects turtles tx and ty. A connection of turtles tx and ty is a
drawing of the expanded chord. Interpretation of a expanded chord is a interpretation
of a substring {(x)u}(y).

If we look at a graph from topological point of view, we do not take care of inter-
pretation of edges and their graphical representation. For example there are infinitely
many drawings of any (multi)graph.

A problem can occur when a string is interpreted by a turtle system. Consider
substring {(y)u}(x) and turtles tx, ty such that state of tx is a just the state at the node
nx and state of ty is a just the state at the node ny. Intuitively, substring u should be
interpreted to connect nodes nx and ny by a curve. It can be impossible to obtain this
curve by standard interpretation of u in some cases. For example, consider α = F [++
FF ](x)F{(x)F}(y) and q0 = (−→sp0,

−→sh0, sl, sa) = ((0, 0), (0, 1), 1, π
3 ). Graphical

representation of the string is shown at figure 5.2. Turtle ty reaches the point ny and

its state is sy =
(

(√
3, 0

)

,
(√

3
2

,−1
2

)

, 1, π
3

)

, the main turtle reaches point nx and its

state is sx =
(

(0, 2) , (0, 1) , 1, π
3

)

. A chord must be drawn between points nx and ny.
If we directly interpret the chord code from the state sx, the point ny cannot be reached.

Furthermore the distance of these points ‖nx − ny‖ =
√

(√
3, − 2

) (√
3, − 2

)

=
√

13 > 1 and command F draws only unit-length lines.
One can see that the state of turtle txdrawing the chord must be modified to ensure

that this turtle meats the tyin point ny. Define morphism T ⊆ (Q × Q × Σ∗)×Q such
that (♠, T (sx, sy, u), u) `|u|= (♠, se, ε) ∧ se1 = sy1 where u is a string representing
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the chord and the index 1 means the first component of a state, that is the position of
the turtle. Informally, morphism T modifies the state of turtle tx to ensure the position
of turtle tx after interpretation of u is equal to the position of turtle ty.

5.4 Example of Transformation in 2D

Have a look to two dimensional L-systems and 2D transformation. A point (x, y)
is usually expressed as a three-element vector (x, y, 1) (see [25]). Call it extended co-
ordinates.Transformation of extended coordinates is defined by transformation matrix

T =





a11 a12 0
a21 a22 0
mx my 1





where (mx, my) is a translation vector and sub matrix

(

a11 a12

a21 a22

)

is a rotation ma-

trix. An image (x′, y′, 1) = (x, y, 1)T . Drawing of a chord is completed by turtle
tx from its current state sx. This drawing will be transformed to fix it between nodes
nx and ny. This transformation uses transformation matrix T which have to fulfill
following conditions:
−→p1T = −→p1−→
p′2T = −→p2

where −→p1 is extended coordinate of nx, −→p2 is extended coordinate of ny and
−→
p′2 is

extended coordinate of point which is reached by tx after interpretation of a chord.
To ensure definiteness of transformation matrix T , three points which does not lie in
a line and their images are needed. We need another point −→p4 and its image −→p5 such
that −→p4T = −→p5 . Furthermore it is expected the transformation is “homogeneous” in
the sense of scale. It means that for every three points with extended coordinates −→r1 ,
−→r2 and −→r3 and their images −→r1

′,
−→
r′2 and

−→
r′3

(‖−→r1 −−→r2‖ = n)∧(‖−→r1 −−→r3‖ = m) ⇔
(∥

∥

∥

−→
r′1 −−→

r′2

∥

∥

∥
= kn

)

∧
(∥

∥

∥

−→
r′1 −−→

r′3

∥

∥

∥
= km

)

where n, m, k are real numbers.
Vectors −→p3 and

−→
p′3 can be defined as follows:

−→p3 = −→p1 + ⊥ (−→p2 −−→p1)−→
p′3 = −→p1 + ⊥

(−→
p′2 −−→p1

)

where ⊥−→s = ⊥ (s1, s2, 0) = (s2,−s1, 0). To explain the above, ⊥−→s is a vector
which is orthogonal to −→s and has the same length as −→s .

Matrix T is a solution of equalationequationequation






−→p1−→
p′2−→
p′3






T =





−→p1−→p2−→p3




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6 PROGRAMMING LANGUAGE BASED ON L-SYSTEM
A new programming language is designed on the basis of investigation of L-systems

from the viewpoints of the theory and interpretation. The language is a semi-functional
programming language with weak type system.

The syntax of the language allows the programmer use two approaches. The model
can be based on interactive L-system with semi-free context (see 3.5) or as controlled
grammar system (3.4). The second approach allows to pipeline generation of the
model and its interpretation.

The language uses identifiers rather then one-letter symbols. Productions are con-
sider to be functions and the syntax of definition of „productions” and definition of
terminal is unique, in opposite to other generators, like [34, 35]. All functions can
have parameters, so it is easy to created a model based on parametric L-systems [13].
The set of terminals is not fixed, as it is in common free generators of L-systems. The
user can define new terminals or modified behaviour of the built-ones.

The generated parametric word is interpreted by a turtle system. This turtle system
uses built in state space which can be extended with any number of new dimensions.
Furthermore, the proposed language supports branched L-systems with chords, de-
fined in section 5.2.

Because SFCIL-systems and controlled grammar systems define the class of re-
cursively enumerable languages, the interpret uses an extensible state space and an
extensible set of terminals and the branched L-systems with chords are supported in
the language, the proposed language can be used in various applications.
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ABSTRACT
Lindenmayer systems, L-systems in short, where introduced in 1968 as a formalism

for description of evolution of metazanan organism. L-system are parallel grammars,
from the point of view of formal language theory. This PhD thesis studies L-systems
from from two points of view. Theoretical part of the thesis deals with exponential
density of languages and reduction of interactive (e.i. context-sensitive) L-system.
New theorem for proofs of exponential density of languages is proved here and several
corollaries of this theorem are also included. The work proves that the class of table
interactive L-systems with at most six context production and the class of modified
interactive L-system with at most twelve context productions are equal to the class of
recursively enumerable languages.

Application part of the thesis extends bracket L-systems by chord support. Such
as L-systems can be used to create general continous graphs defined as skeleton with
chords. The PhD thesis also discusses interpretation of chords. The bracket L-systems
with chords can be used to create objects modeled as graphs with fixed skeleton, such
as model of leaves or models of trees in the wind.

The closing part of the thesis connects the theretical investigation of L-systems and
investigation of their interpretation. New programming language based on L-systems
is defined here as a result of our investigations.
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ABSTRACT

Lindenmayerovy systémy, zkráceně označované L-systémy, byly poprvé představeny
v roce 1968 jako nástroj pro popis vývoje mnohobuněčných organismů. Z hlediska
teorie formálních jazyků jsou L-systémy paralelními gramatikami. Tato disertační
práce je studuje ze dvou hledisek.

Teoretická část práce pojednává o exponenciální hustotě formálních jazyků a re-
dukci interaktivních nebo-li kontextových L-systémů. Práce dokazuje nový teorém
pro dokazování exponenciální hustoty jazyků včetně několika příkladů jeho aplikace.
Dále je v disertační práci dokázáno, že třída ETIL-systémů s nejvýše šesti kontex-
tovými pravidly a třída modifikovaných ETIL-systémů s nejvýše dvanácti kontex-
tovými pravidly jsou rovny třídě rekurzívně vyčíslitelných jazyků.

Aplikační část disertační práce rozšiřuje závorkové L-systémy o podporu tětiv. Díky
tomu mohou být L-systémy použity pro generování obecných spojitých grafů defino-
vaných jako kostra s tětivy. Interpretace tětiv je též předmětem této práce. Takto
rozšířené závorkové L-systémy s podporou tětiv mohou být použity pro vytváření ob-
jektů modelovaných jako grafy s pevnou kostrou, jako jsou například modely listů
nebo modely stromů ohýbajících se ve větru.

Závěrečná část práce spojuje výsledky výzkumu L-systémů z matematického hlediska
a z hlediska jejich intepretace. Výsledkem je nový programovací jazyk založený na
L-systémech.
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