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1  THE MAIN OBJECTIVES OF THE THESIS 
In this thesis we try to achieve three goals: to analyze, to develop and to apply 

adaptive algorithms for noise cancelation in speech signals. By analyzing a structure 
and performance of conventional adaptive algorithms such as the NLMS and the 
RLS we want to reveal the strong parts and the weaknesses of these methods and 
understand the crucial parts of the adaptive process. By developing new concepts 
and improving the existing methods we try to ameliorate the overall performance 
and achieve better results in nontypical conditions. For this purpose we specify 
several conditions and criteria (rate of convergence, computational complexity, 
residual error level, ability to track sudden changes of parameters) in a way to 
determine which method yields the best results. Finally, we try to test the adaptive 
methods in certain applications that are often encountered in the field of speech 
communications. This includes system identification, background noise suppression 
and inverse filtering. 

We have successfully developped a new algorithm named OSS (Optimal Step-
size Strategy) which is essentially a gradient adaptive algorithm using orthogonality 
principles. We provide a mathematical description of the OSS concept and present 
results of several experiments that we conducted to estimate its performance. 

 
2  THE SCOPE OF CHAPTERS 
In this article we begin our discussion by a short review of the speech 

enhancement methods that are known in literature up to date. First, we provide a 
short introduction into the problem of speech enhancement. Then we describe some 
well-known non-adaptive techniques that have been successfully developped and 
implemented in several practical applications. 

In the second part we develop the concept of adaptive noise cancelation and 
describe in detail two widely used methods, the NLMS (Normalized Least Mean 
Squares) and the RLS (Recursive Least Squares). These methods serve as a 
reference during the rest of the thesis. Therefore, we conduct several experiments to 
estimate their performance in terms of the convergence rate and computational 
complexity. 

In the third part we address the issue of modifying the NLMS and the RLS 
method with the aim to improve the performance. Several algorithms have been 
proposed in literature so far to improve either the rate of convergence, the 
robustness, the immunity against impulsive noise, the numerical stability or the 
complexity. In this part we discuss only few methods including the SPSA-LMS, our 
own modification to the method of NLMS. 

In the key part of this article we propose a novel approach to the problem of 
speech enhancement. It is named OSS (Optimal Step-Size) and it is a stochastic 
gradient adaptive algorithm based on the method of APA (Affine Projection 
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Algorithm). The algorithm has been developped with the aim to improve the 
performance of the conventional methods in nonstationary environments. After 
providing a description of the mathematical concept of the proposed method several 
experiments are made to evaluate its performance and compare the results with 
conventional methods. 

 
3  THE STATE OF THE ART 
There are numerous approaches to the problem of speech enhancement existing in 

literature today . This thesis deals with only adaptive methods but in fact there are 
also many successful nonadaptive methods. Therefore, in the first part of this 
chapter we focus on them. We describe their principles and provide some remarks 
on their performance. 

In the second part we turn to conventional adaptive methods. We concentrate on 
two well-known algorithms, the NLMS (Normalized Least Mean Square) and the 
RLS (Recursive Least Squares). It is of interest to understand the mathematical 
concept of these methods since it provides a motivation to the research of a new 
approach, namely the OSS (Optimal Step-Size). We present some experimental 
results and discuss their performance in terms of convergence rate and 
computational complexity. 

In the last part we address the issue of modifying adaptive techniques. The idea of 
these methods is to modify either the NLMS or the RLS algorithms in order to 
achieve better results in certain specific situations. The objectives are usually lower 
rate of convergence, higher numerical stability, greater robustness, lower 
complexity, etc.  

 
3.1 NONADAPTIVE SPEECH ENHANCEMENT TECHNIQUES 
3.1.1 Spectral subtraction 
The spectral subtraction method is probably the most popular single-channel noise 

suppression technique used in real-world applications. The basic idea is to estimate 
the amount of additive noise in a noisy speech signal and subtract it out in the 
frequency domain. The method was first proposed by Boll [1][2] in 1979 and later  
 

 
Fig. 3.1: Schematic structure of the spectral subtraction 

 
5



expanded and generalized by McAulay and Malpass [3] in 1980 who performed 
spectral subtraction in power domain. In this method it is assumed that the additive 
noise is uncorrelated with the speech signal. The principle of the method is best 
explained on the schematic diagram in Fig. 3.1. 

The noisy speech signal ( )x n  is transformed into frequency domain by the DFT 
transform. Its phase is stored for later use. The subtraction is carried out in the 
power spectral domain. The power spectrum of the noise itself, 2| ( ) |W ω  is 
calculated during periods of speech inacivity. After the subtraction, the signal is 
transformed back into the time domain by using an inverse DFT transform. For this 
purpose there is the stored information about the phase ( )xϕ ω . The whole spectral 
subtraction method may be described by the following equation 

( ) ( ) ( )( ) ( )
1/ 22 2ˆ max ,0 . xjS X k W e ϕ ωω ω ω⎡ ⎤= −⎢ ⎥⎣ ⎦

, (3.1)

in which  is used to overestimate the noise level to account for its variance. 
The max(.) function ensures that the result after subtraction is positive. A major 
drawback of the above method is that it introduces a distortion, called "musical 
artifacts" to the enhanced speech signal 

1k >

( )ŝ n . It has been found that by applying a 
noise floor according to Berouti et. al. [4] one can eficiently reduce this annoying 
distortion. 

The spectral subtraction method is a single-channel method which does not 
involve any adaptive principles. Its advantage is inherent simplicity with relatively 
low computational complexity. The main drawback, though challenged in derived 
methods, is the introduction of musical artifacts and nonlinear distortion. 

 
3.1.2 Iterative Wiener filtering 
The structural concept of Wiener filtering of a noisy speech signal is similar to the 

spectral subtraction. However, the basic idea here is to minimize the diference 
between the estimated speech ( )ŝ n  and the uncorrupted speech ( )s n  in the optimal 
sense. The criterion used is the minimum mean-square error (MMSE) 

( ) ( )( ){ }2ˆE s n s nξ = − , (3.2)

where both ( )s n  and ( )ŝ n  are assumed to be long-term stationary and E{.} is an 
expectation operator. An optimal filter (most often referred to as a non-causal 
Wiener filter) that would be able to achieve the minimum of the MMSE function is 
given [5] by 

( ) ( )
( ) ( )

2

2 2

S
H

S W

ω
ω

ω ω
=

+
, (3.3)

where the quantities are the same as in section 3.1.1. However, since neither ( )S ω  
nor ( )W ω  are known we must use their estimates. The estimate of the noise 
spectrum is obtained in periods of speech inactivity, i.e. in the same way as in the 
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spectral subtraction method. The clean speech spectrum is estimated iteratively 
using the output of the filter. That is 

( ) ( ) ( ) ( ) ( )ˆ i iS H Xω ω ω=  (3.4)

and the Wiener filter is updated by 

( ) ( )
( ) ( )

( ) ( ) ( )

2

1
2 2

ˆ

ˆ ˆ

i
i

i

S
H

S W

ω
ω

ω ω

+ =
+

 (3.5)

The iterative Wiener filtering approach has been first proposed by Hansen and 
Clements [5]. It was found that the algorithm converges to a steady state, in which 
the MMSE function achieves its minimum. There are numerous modifications 
existing in literature each of which trying to improve the performance of the basic 
method described above. 

 
3.1.3 Estimation maximization (E-M) approach 
This approach, proposed by Dempster et. al. [6] uses the theory of probability to 

solve a so-called maximum likelihood (ML) problem or the maximum aposteriori 
(MAP) problem. These two problems are related to the speech enhancement by a 
quantity called log-likelihood function which is defined as 

( ) ( ) ( )( )log ,L θ θ θ= ∑
x

s x xP P  (3.6)

where θ  is a parameter vector, x is a noisy speech vector and s is a clean speech 
vector. Usually the clean speech signal is estimated from the noisy speech signal 
using an autoregressive (AR) model. Therefore, the paramaters θ  are the AR 
coefficients of the model, i.e. 

1 2{ , , , }pa a aθ = …  (3.7)

and p is usually between 10 and 20. Thus the objective is to maximize the 
conditional logarithmic probability (3.6). It can be interpreted as maximizing the 
probability of observing a clean speech vector s given the knowledge of a noisy 
speech vector x and the state of the AR model θ .  

The algorithm may work iteratively. Let's assume the state of the model in kth 
state is denoted as kθ  and the corresponsing likelihood function as ( )kL θ . It can be 
shown that by applying Jensen's inequality [7], we may improve ( )kL θ  by taking the 
parameters 

( ) ( ) ( )

( ){ }
1

1 x ,

arg max , log ,

arg max E log , .
k

k k

k s

θ

θθ

θ θ θ

θ θ

+

+

⎧ ⎫= ⎨ ⎬
⎩ ⎭

⎡ ⎤= ⎣ ⎦

∑
x

x s s x x

s x

P P P

P

θ
 (3.8)

The E-M algorithm consists of applying the following two steps: 
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• E-step: determine the conditional expectation ( )x ,E log ,

ks θ θ⎡ ⎤⎣ ⎦s xP  

• M-step: maximize this expression with respect to θ . 
 
The algorithm is known to be iteratively convergent [8] since in each iteration we 

improve the log-likelihood function (3.6). This method has been first applied by Lim 
and Oppenheim [9] for parameter estimation of speech degraded by additive 
background noise. The general problem of statistical speech enhancement may also 
be solved within a fully Bayesian framework which has been extensively studied 
and applied by Vermaak et al. [10]. 

 
3.2 CONVENTIONAL ADAPTIVE METHODS 
Historically, the concept of adaptive signal processing evolved from techniques 

developed to enable adaptive control of time-varying systems. In the 1960s, mainly 
due to work of Bernard Widrow and his colleagues [11], it began to be recognized as 
a separate category in digital signal processing. 

Adaptive systems refer to systems that are able to efectively change their own 
parameters and thereby "adapt" to the changes of the environment in which they 
operate. In this chapter we review some basic properties of adaptive systems and 
adaptive algorithms. We concentrate mainly on the NLMS (Normalized Least Mean 
Squares) algorithm and the RLS (Recursive Least Squares) algorithm as these two 
methods represent a reference for the other methods. 

 
3.2.1 NLMS (Normalized Least Mean Square) method 
The basic NLMS algorithm belongs to the group of stochastic gradient methods 

developped by Bernard Widrow et al. [11] in 1960. The adaptive system may be best 
described using the schematic diagram in Fig. 3.2. In this scheme ( )x n  represents an  

 

 
Fig. 3.2: Block diagram of an adaptive filter (tapped-delay line) 
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input signal to the filter,  is the desired output signal,  is the filter output 
and  is the error signal. The number of coefficients is usually denoted as . 
The output of the filter can be expressed as 

( )d n ( )y n
( )e n N

( ) ( ) ( )Ty n n n= w x  (3.9)

where 

( ) ( ) ( ) ( )1 2, , ,
T

Nn w n w n w n= ⎡ ⎤⎣ ⎦w …  (3.10)

is the vector of filter coefficients (tap-weight vector) and 

( ) ( ) ( ) ( ), 1 , , 1
T

n x n x n x n N= − − +⎡ ⎤⎣ ⎦x …  (3.11)

is the input vector. In the NLMS algorithm the tap-weight vector is updated in every 
iteration according to the following equation 

( ) ( )
( )

( ) ( )21n n n
n

e nµ
+ = +w w x

x
 (3.12)

In (3.12), µ  is called a step-size parameter and it controls the rate of convergence 
and stability. The state of the adaptive process may be characterized by a single 
function, called cost function (objective function). In the case of the NLMS 
algorithm, the cost function is the MSE (Mean Square Error). The function is 
defined as 

( ){ }2EwJ e= n  (3.13)

It depends on the square of the tap-weight vector and therefore it is common to  
 

 
 
Fig. 3.3: (a) MSE cost function for the case of 2N = , (b) MSE contour plot 
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Fig. 3.4: Convergence behavior of the NLMS algorithm for different step sizes 

 
visualize the cost function as an elliptical paraboloid (see Fig. 3.3). 

 
Here are some results of the convergence rate analysis that we conducted in order 

to evaluate the performance of the NLMS method. We employed this method to 
solve the system identification problem. The objective is to find a transfer function 
of an unknown system that has been aplied to an input signal ( )x n . The output of the 
system is denoted as  and serves also as the desired output for the adaptive 
filter. Thus, when the adaptive system converges to its steady state its coefficients 
represent the transfer function of the unknown system. The input signal is the white 
noise with a level of 0dB and the output of the unknow system  is corrupted by 
an additive white noise (measurement noise) with a level of -15dB. The results of 
the analysis are shown in Fig. 3.4. 

( )d n

( )d n

 
3.2.2 RLS (Recursive Least Squares) method 
As an alternative to the stochastic gradient method, such as the NLMS, there is 

another class of algorithms suitable for speech enhancement applications, the least 
squares methods. The RLS method, a representative of this class, does not make use 
of the stochastic nature of signals. Instead it applies some recursive principles to 
obtain averages of parameters which are of stochastic (noisy) character. In 
particular, it establishes an input correlation matrix 
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( ) ( ) ( ) ( )
1

n
n i T

i
n iλ −

=
= ∑Φ x x i

d i

 (3.14)

and a cross-correlation vector 

( ) ( ) ( ) ( )
1

n
n i

i
n iλ −

=
= ∑z x  (3.15)

In both equations, i.e. (3.14) and (3.15) it is assumed that the data prior to time 1n =  
are zero (prewindowing method). The correlation matrix ( )nΦ  and the cross-
correlation vector  may be calculated resursively ( )nz

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1 .

Tn n n

n n n d n

λ

λ

= − +

= − +

Φ Φ x x

z z x

n
 (3.16)

In the RLS algorithm the tap-weight vector ( )nw  is updated in every iteration using 
the following equation 

( ) ( ) ( ) ( )1n n n nξ= − +w w k  (3.17)

where ( )nξ  is the a-posteriori estimation error calculated as 

( ) ( ) ( ) ( )1Tn d n n nξ = − −x w  (3.18)

and k(n) is a so-called gain vector defined as [12] 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1

1 1
1 1

1 1

T

T
n n n n

n
n n n

λ
λ

− − −

− −

− −
=

+ −
Φ x x Φ

k
x Φ x

. (3.19)

From (3.19) it is clear that it would be necessary to calculate the inverse correlation 
matrix . This operation would be computationally very intensive and would 
probably cause the RLS method be inatractive for the developpers. Fortunately, 
Householder [13] found that it may be calculated recursively as 

( )1 n−Φ

( ) ( ) ( ) ( ) ( )1 1 1 1 11 Tn n n nλ λ− − − − −= − −Φ Φ k x Φ 1n − . (3.20)

In Fig. 3.1 there is a signal flow graph of the tap-weight update equation (3.17) and 
the a-posteriori error equation (3.18). 

We also conducted several experiments to estimate the convergence behavior of 
the RLS algorithm in the same way as for the NLMS algorithm. The objective of the  

 

 
 

Fig. 3.5: Signal flow graph of the RLS tap-weight update equation 
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Fig. 3.6: Convergence rate analysis of the RLS algorithm, (a) MSE, (b) MSD 
 
experiment is to identify an unknown system which is a low-pass FIR filter with the 
order of 20. Therefore, the number of tap-weights in the adaptive filter is set to 20 
and the identification should be accurate.  

The results of the experiment are shown in Fig. 3.6. The MSD (Mean Square 
Deviation) function is defined as 

( ){ }2Ew oD n= −w w , (3.21)

where o  is the optimal solution in which the MSD function is zero. We see that the 
RLS algorithm exhibits better convergence compared to the NLMS. This is 
exemplified for example by the MSD curves in (b) where for 

w

0,99λ =  both methods 
achieve the same level of steady-state error but the speed of convergence of the RLS 
method is approximately twice as better. 
 

4  ALTERNATIVE STOCHASTIC GRADIENT ALGORITHMS 
The popularity of the NLMS and the RLS methods led to several practical 

modifications. The goal is obviously to improve the performance of these methods 
under certain specific requirements. In most cases the objectives are to improve the 
rate of convergence, to increse the robustness, to improve the immunity against 
impulsive noise or to decrese the computational complexity. 

In this chapter we present several methods that we analyzed and tested in the 
intial phase of our research. The fundamentals of these methods are either known in 
literature or found experimentally. We try to investigate the performance of these 
methods under inconventional conditions, such as speech input, abrupt change of 
parameters or high level of noise. The aim is not to provide an extensive analysis or 
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comparison of methods but to show that certain changes of algorithms may lead to 
better results. 

We discuss several simple methods derived from the NLMS algorithm, such 
Leaky LMS, Dead-Zone LMS or Median LMS. We also propose our own 
modification to the NLMS algorithm using stochastic perturbations which we named 
SPSA-LMS. We provide some experimental results and discuss the performance of 
these methods. 

 
4.1 LEAKY-LMS 
The possible sensitivity to round-off errors and other disturbances exists in the 

NLMS algorithm due to the fact that (3.12) is essentially an integrator. An 
introduction of a small "leakage" to the tap-weight vector 

( ) ( ) ( ) ( ) ( )1 1n n n e nαγ α+ = − +w w x , (4.1)

should protect the algorithm against such numerical problems. The parametr γ  is 
called the leakage factor and it is chosen such that αγ  is grater than but close to 0. 
The leakage provides an additional degree of stability. However, by applying the 
leakage, (4.2) no longer corresponds to an MSE estimation problem. The objective 
function minimized by the Leaky-LMS is given by 

( ) ( ) ( )2 2
J e n nγ= +w w  (4.2)

The Leaky-LMS algorithm does not only help to solve the numerical problems of 
the NLMS method. It is also useful for improving the convergenmce properties 
when the input signal is correlated (e.g. the voiced parts of speech signals). In this 
case the convergence would be slow due to an ill-conditioned input correlation 
matrix [12].  
 

4.2 DEAD-ZONE LMS 
Small values of the error signal ( )e n  may represent disturbances or noise but may 

also result from numerical instability. The Dead-Zone Least Mean Squares (DZ-
LMS) is designed to mitigate the problems of round-off errors. The algorithm 
applies a dead-zone nonlinearity and stops updating the tap-weight vector when the 
error signal falls below some predefined threshold. The dead-zone nonlinearity is 
defined as 

( )
, 0

0, ,
,

x d x d
g x d x d

x d x d

− > >⎧ ⎫
⎪ ⎪= − < <⎨ ⎬
⎪ ⎪+ < −⎩ ⎭

 (4.3)

where  is a threshold. When the nonlinear function d ( )g x  was applied to the 
error signal  of the NLMS algorithm, the tap-weight update equation (3.12) 
would become 

( )e n
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Fig. 4.1: Nonlinear function "dead zone" used in the DZ-LMS algorithm 

 

( ) ( ) ( ) ( )( )1n n n g e nα+ = +w w x , (4.4)

The "dead-zone" nonlinear function has the shape shown in Fig. 4.2. 
 
4.3 SIGNED-ERROR LMS, SIGNED-DATA LMS AND SIGNED-SIGNED 

LMS 
Although the NLMS algorithm is very simple and computationally efficient there 

is an effort to reduce the complexity of this popular method even more. This is a 
motivation that lead to the research of signed variants of the NLMS method. The 
idea is to replace the multiplication operation in (3.12), which is computationally 
intensive, by a more simple operation such as shifting or addition. It is noteworthy to 
remark that today's DSP processors are able to perform multiplication operation at 
the same rate as addition or shifting. Thus, for several applications these algorithms 
have lost their attractivity. Nevertheless, the possibility to have a low-complex 
adaptive method is still an issue of concern that will persists for several decades. 

In all of the signed variants of the NLMS algorithm, the sgn(.) function is used to 
replace the multiplication operation [14]. The function is defined as ordinarily  

( )
1, 0

sgn 0, 0 .
1, 0

x
x x

x

>⎧ ⎫
⎪ ⎪= =⎨ ⎬
⎪ ⎪− <⎩ ⎭

 (4.5)

The sgn(.) function (4.5) can be applied either to the error signal  (Signed 
Error Least Mean Squares (SE-LMS)), the input data 

( )e n
( )x n  (Signed Data Least Mean 

Squares (SD-LMS)) or both (Signed Signed Least Mean Squares (SS-LMS)) 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

SE-LMS: 1 .sgn

SD-LMS: 1 . sgn

SS-LMS: 1 .sgn sgn .

n n e n n

n n e n n

n n e n

µ

µ

µ

+ = +

+ = +

+ = +

w w x

w w x

w w x n

 (4.6)
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Fig. 4.2: Convergence performance of the signed algorithms - comparison 
 
It is an intuitive feeling that the gradient estimates of the SE-LMS and the SS-

LMS may become rather chaotic. This has also been approved by Classen and 
Mecklenbrauker [15] who noticed that the directions of the updates can be 
significantly diferent from the true gradient direction. In the worst case which is 
when signed data sgn(x(n)) are used instead of the true data, there is a possibility of 
divergence and instability. Therefore, caution must be taken when employing these 
methods in practise since they work only in specific environments. A precise 
analysis is not provided in this thesis and interested readers are referred to e.g. [16]. 

We evaluated the convergence performance of all signed algorithms discussed 
above and the results are shown in Fig. 4.3. 

 
4.4 SIMULTANEOUS PERTURBATION STOCHASTIC 

APPROXIMATION (SPSA) 
In this section we propose a new adaptive method based on the NLMS algorithm. 

It is called the SPSA-LMS (Simultaneous Perturbation Stochastic Approximation). 
The principle of stochastic approximaion has been developed by J. C. Spall in 1988 
[17] and was primarily intended for use in nonlinear control applications. 
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4.4.1 The principle of simultaneous perturbation 
In the conventional NLMS algorithm the tap-weight adjustment is carried out 

accoring to the stochastic gradient vector 

( ) ( ) ( ).n n e n=g x  (4.7)

This vector is noisy and it has certain variance. Therefore, the convergence process 
is also noisy which can be seen for example in Fig. 3.4. The algorithm considered 
here uses a more accurate estimate of the gradient vector and its convergence 
process is therefore less noisy. 

Suppose we have an access to the objective function ( )wJ n . The state of the 
adaptive filter is represented by the tap-weight vector ( )nw  at time n. If we 
conducted two measurements of the objective function at small distances from ( )nw  
we could calcualte a differnce between them as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )wJ n J n c n n J n c n n∆ = + − −w ∆ w ∆  (4.8)

where  is an N-dimensional vector consisting of random values and ( )n∆ ( )c n  
controls its variance. The vector ( )n∆  is called the perturbation and since all 
elements of the tap-weight vector are perturbed at the same time it is simultaneous 
perturbation. We see that ( )wJ n∆  has been calculated using two measurements at 
the distances ( ) ( )c n n± ∆  from the tap-weight vector. 

Every element of the gradient vector is calculated using the following equation 

( )( ) ( )
( ) ( )

, 1,2, ,
2

w
i

i

J n
g n i

c n n
∆

= =
∆

w … N . (4.9)

It is clear that the gradient vector calcualted using (4.8) and (4.9) is still noisy and 
has its variance but it is more accurate than the gradient vector used in the NLMS 
algorithm. A drawback of using the stochastic perturbation principle is that an exact 
objective function must be known in advance. 

The SPSA method uses the following tap-weight update equation 

( ) ( ) ( ) ( )( )1n n a n+ = +w w g w n . (4.10)

where  is called a variable step-size parameter and it substituted the constant ( )a n λ  
that has been used in the NLMS algorithm. Thus, in every iteration the step-size is 
different. 

 
4.4.2 The configuration of parameters 
Ideally, the perturbation vector ( )n∆  would be generated by Monte Carlo 

simulations [18]. However, this is not practical and a Bernoulli generator giving an 
outcome of ±1 is used instead. The chance for each outcome is 50%. Spall [18] also 
notes that random vectors from uniform or normal distribution is not allowed since it 
violates some regularity principles. 
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Fig. 4.3: Influence of various parameters on sequences a(n) and c(n) 
 
The choice of the sequences ( )a n  and ( )c n  has a profound effect on the 

performance of the SPSA method. However, there exist only heuristic analyses as to 
what type of sequence sould be used. The most popular choice seem to be  

( )
( )

( )
( )

1

1

aa n
A n

cc n
n

α

γ

=
+ +

=
+

 (4.11)

where 0,602α =  and 0,101γ = . The constant  assures sufficient noise 
suppression near the solution o . The optimal choice of  is obtained by 
experimental evaluation. The choice of c determines the distance of the current 
estimate of the tap-weight vector from the perturbed one. It is best to set c to a level 
approximately equal to the standard deviation of the measurement noise in Jw . An 
accurate value is not necessary. The constant A is typically not discussed in literature 
but Spall [18] has shown that it may improve the stability of the SPSA algorithm in 
early iterations. It allows to use a larger a in the numerator of (4.11) and therefore 
more aggressive steps in early iterations. After certain amount of time A may 
become insignificant against n and its impact will be minimized. The character of 
the sequences a(n) and c(n) and the impact of the constants 

a
w a

, , ,a cα γ  and A are 
shown together in Fig. 4.8. 
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Fig. 4.4: Convergence analysis of the SPSA algorithm and comparison with the 
NLMS, (a) contour plot of the tap-weight vector movement, (b),(c) MSE 
functions 

 
4.4.3 Convergence performance 
We evaluate the performance of the SPSA algorithm on the application of system 

identification, i.e. the same experimental system as for the NLMS algorithm. As an 
input, however, we use the colored noise signal, obtained by filtering the white noise 
signal thourgh a 20th order low-pass FIR filter. The unknown system is a 2nd order 
FIR filter with the coefficients wo = [0,6125; -0,5124]. 

First we illustrate the the SPSA tap-weight vector movement. We will compare 
this movement to that of the NLMS algorithm for the case of N = 2, i.e. for 2 tap 
weights. On the countour plot in Fig. 4.4 we see how the SPSA and the NLMS 
algorithms try to approach the optimal point of the objective function. It is clear that 
the updates of the SPSA algorithm take place in exactly 2N

 directions. The 
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parameters of the algorithms were set to achieve the highest possible rate of 
convergence while maintaining the variance of the steady-state excess error under 
0,05. 

In the lower part of Fig. 4.4 we see the MSE functions of both methods. It can be 
deduced that the convergece performance of the SPSA method is clearly better than 
that of the NLMS method. We may also notice a noisy charactyer of the function 
with alternating peaks and valleys. This is due to the colored noise input. 

 
5  OPTIMAL STEP-SIZE (OSS) STRATEGY 
In chapters 3 and 4 we have shown some adaptive algorithms that may be 

employed to solve the speech enhancement problem. In experiments conducted we 
analyzed the performance of these methods in terms of convergence rate and steady-
state error level. The partial conclusions that we came to may be summarized as 
follows. The NLMS method and its derivatives have all a very low computational 
complexity. On the other side, their rate of convergence and also the steady-state 
error level is sometimes poor compared to the method of RLS, which is more 
complex. In section 4.4 we proposed a novel stochastic gradient approach based on 
the SPSA principle. This method uses a variable step-size in every iteration. The 
problem is that it is necessary to know some parameters in advance which is 
impractical in real-time applications. However, the idea of applying a variable step 
motivated our research into a new class of adaptive algorithms, which we call 
Optimal Step-Size (OSS). 

In this chapter we describe the optimal step-size strategy and develop an OSS-
LMS algorithm. We compare its performance with the methods of NLMS and RLS 
which are considered as a reference. Finally, we show some experimental results in 
a typical speech enhancement applications. 

 
5.1 MATHEMATICAL DESCRIPTION 
5.1.1 The idea of the OSS method 
We start our description with the objective function of the conventional LMS 

algorithm (3.13) which can be written in terms of the tap-weight vector [12] 
2 T T T

w dJ σ= − − +w p p w w Rw , (5.1)

where 2
dσ  is the variance of the desired output signal and R  and  are the input 

correlation matrix and the cross-correlation vector, respectively, defined as 
p

( ) ( ){ }
( ) ( ){ }

E

E .

Tn n

n d n

=

=

R x x

p x
 (5.2)

In the stochastic gradient approach, the tap weights of the _lter are updated along the 
noisy gradient vector which is calculated as 
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Fig. 5.1: The principle of the OSS strategy 

 
( ) ( )2wJ n e∇ = − x n  (5.3)

 
Thus, it uses the instantaneous values of the input correlation matrix and the cross-
correlation vector. In every step the tap-weight vector is moved in a direction 
determined by the noisy gradient vector. The length of the movement is controlled 
by a fixed step-size parameter µ . 

We propose to calculate the step-size in such a way that the tap weights will be 
moved to a position where the objective function will achieve its local minimum 
value. This is called the optimal step-size. The line along which the movement is 
carried out is calculated in advance using an averaged correlation matrix and an 
averaged cross-correlation vector. The situation is explained in Fig. 5.1 for the case 
of 2 tap weights. If the gradient vector was known precisely the solution would be 
reached N steps exactly. This is not the practical case, however. 
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5.1.2 Calculation of the optimal step 
As mentioned in the introduction, the optimal step-size is calculated in every 

iteration. Let us assume the weight adjustment is carried out according to the 
following equation 

( ) ( ) ( ) ( )01n n r n+ = +w w t n , (5.4)

where t(n) represents a vector along which the optimal step ro(n) is searched for. 
Unless otherwise specified, from now on, we will omit the time index n from the 
quantities that depend on it. Then, in every iteration we perform the following 
minimization 

0 min w
r

Jr
r

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
. (5.5)

By substituting (5.1) to (5.3) we recognize that the partial derivative consists of the 
following three terms 

( ) ( ) ( )T T TwJ
r r r r

∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂ ∂
w p p w w Rw . (5.6)

The variance of the desired response 2
dσ  does not depend on r and thus its derivative 

is zero. The first term of (5.6) may be written as 

( ) [ ]{ }
.

TT

T

r
r r
∂ ∂

=
∂ ∂

=

w p w + t p

t p
 (5.7)

The second term is similar to the first one and its derivative is therefore 

( ) .T T

r
∂

=
∂

p w p t  (5.8)

The last term of (5.6) is calculated as 

( ) [ ] [ ]( )
2 .

TT

T T T

r r
r r

r

∂ ∂
=

∂ ∂
= + +

w Rw w + t R w + t

t Rw w Rt t Rt
 (5.9)

By substituting (5.7), (5.8) and (5.9) to (5.6) we get 

2T T T T TwJ r
r

∂
= − − + + +

∂
t p p t t Rw w Rt t Rt . (5.10)

In order for a function to achieve its minimum point, its derivative must be equal to 
zero. Thus, by setting (5.10) to zero we may calculate the optimal step-size ro as 

( ) ( )

( )

1
2

.

T T

o T

T

T

r
− + −

=

−
=

t p Rw p w R t

t Rt
t p Rw

t Rt

T

 (5.11)

From the last equation we may recognize that the second term closely resembles the 
gradient vector  which is defined as wJ∇
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Fig. 5.2: Impulse response of the exp. averaging filter for various values of λ  

 
2 2wJ∇ = − +p Rw . (5.12)

Using (5.12) we may rewrite (5.11) as 
1
2

T
w

o T
Jr ∇

=
t
t Rt

. (5.13)

 
5.1.3 Tap-weight update 
By substituting (5.13) back to (5.4), we obtain the OSS tap-weight update 

equation 

( ) ( ) 11
2

w
T
Jn n ∇

+ = −
t tw w
t Rt

. (5.14)

The OSS strategy does not require any a priori knowledge of the characteristics of 
the input data. Moreover, it is not controlled by any parameters that would have to 
be set before adaptation. The convergence rate, however, is still subject to the 
character of the input signal, especially its eigenvalue spread. This will be illustrated 
by the results of experimental analyses given further in the next section. 
 

5.2 EXPONENTIAL AVERAGING AND REGULARIZATION 
The OSS weight adjustment process (5.14) requires the knowledge of the 

correlation matrix R and the cross-correlation vector p. Since instantaneous values 
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of these quantities are stochastic with high variance, we propose to apply 
exponential averaging to improve the estimates over time 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1 1

Tn n n

n n n d

λ λ

λ λ

+ = + −

+ = + −

R R x x

p p x ,

n

n
 (5.15)

where λ  is so-called forgetting factor. It determines the amount of memory the 
averaging filter has and how many past samples it uses. It is chosen in the range 
0 1λ< <  and the closer it is to one the less past samples it uses. The introduction of 
exponential averaging requires the input signal to be stationary and ergodic. We 
know that the speech signal is stationary only in a short interval not longer than few 
milliseconds. This corresponds to setting the forgetting factor to 

11
s dF t

λ < − , (5.16)

where Fs is a sampling frequency and td is the chosen interval of stationarity. The 
averaging filter's impulse response is shown in Fig. 5.2. 

If the algorithm is close to its steady state, the optimal step-size calculation 
becomes numerically instable. The reason is that near the optimal point the gradient 
vector will have low energy and the division in (5.14) will no longer be accurate. A 
solution to this problem may be the regularization. Regularization, as we known it 
from the literature of linear algebra, helps in overcoming the problems with ill-
conditioned matrices [19]. The key is to strengthen the values on the main diagonal 
of a given matrix by adding a small constant, i.e. 

r δ= +A A I , (5.17)

where I is an identity matrix. We propose a different, slightly modified, method of 
regularization. We add a small constant δ  to the whole denominator term in (5.14), 
i.e. 

( ) ( ) 11
2

w
T

Jn n
δ
∇

+ = −
+

t tw w
t Rt

, (5.18)

The value of δ  is subject to various numerical considerations and a thorough 
analysis would be necessary. Practically, the value of δ  determines the length of the 
step near the optimal point wo. 

 
5.3 EXPERIMENTAL ANALYSIS 
In the experiment, the objective is to model a transfer function of an unknown 

FIR filter using the OSS strategy (the same as usually). As the input, we use the 
colored noise signal (white noise passed through a 20th order LP FIR with fc = 0.3). 
In Fig. 5.3 we see the MSD function between the coeficients of the model and the 
unknown filter. We see that in the first half of the experiment the OSS method 
achieves the fastest convergence time, better than that of the RLS and the NLMS. 
The RLS method, in addition, has the lowest steady-state MSD of approximately  
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Fig. 5.3: MSD function of the OSS method, compared with the NLMS and the 
RLS. In the middle of the experiment (i.e. when n=1000) the coeficients of the 
unknown FIR filter are reversed. 

 
-90dB. After the changeover of coeficients, the OSS method still continues to 
achieve the best convergence time, followed by the NLMS and the RLS. 

The ability of the OSS method to model the impulse response of an unknown 
system is depicted in Fig. 6.1. In (a) we can see the impulse response of the 
unknown system, in (b) we see its magnitude spectrum and in (c) we see the model's 
impulse response and its time evolution. We may recognize that it closely fits the 
original in a few iterations. We may also notice a sudden change of the response in 
the beginning of the second half of the experiment. This reflects the algorithm's 
ability to track sudden changes of parameters of the unknown system. 
 

6  CONCLUSION 
In this thesis we have presented some adaptive algorithms for noise cancelation in 

speech signals. We have explored diferent ways to improve the performance of the 
conventional methods. We have also proposed a novel approach that we named the 
Optimal Step-Size (OSS) algorithm. The proposed method provides comparable to 
better convergence than the widely used NLMS and RLS algorithms, especially in 
certain applications. We have verified the performance of the proposed method by 
conducting several experiments with some results presented in this article. 

During the development of the OSS method we first analyzed the structure and 
the performance of the two well-known methods, the NLMS and the RLS. We 
revealed the strong points and the weaknesses of these methods (convergence rate, 
complexity, level of the steady-state error) and we established some objectives for  
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Fig. 6.1: (a) Impulse response of the unknown filter, (b) the magnitude 
spectrum, (c) 3D evolution of the filter coefficients. 

 
the proposed algorithm. We came to a conclusion that the new method should 
represent a meaningful compromise between the stochastic gradient concept and the 
least squares concept. Then we presented some alternative approaches including the 
SPSA method, a modification to the NLMS algorithm. 

Motivated by some new approaches with variable step-size that were  recently 
published in literature we began our work on optimal step-size methods. In this 
article we have presented the mathematical concept of the OSS method including the 
exponential averaging principle and the regularization principle. From the 
experiments that we conducted with the OSS method we present some results for the 
problem os system identification. We proved that the OSS method was comparable 

 
25



to the conventional methods in terms of convergence speed and level of error in 
steady state. In a few cases it was even better. 

In the future work we propose to conduct a subjective listening test with a group 
of 20-50 independent listeners. The speech signals should comprise different 
languages spoken by male and female speakers. It would be best to conduct a 
statistical test, such as Perceptual Evaluation of Speech Quality (PESQ), Mean 
Opinion Score (MOS) or MUlti Stimulus test with Hidden Reference and Anchors 
(MUSHRA) to evaluate the overall quality of speech rather than intelligibility or 
clearness. We also propose to continue with the mathematical concept of the OSS 
method. There is a challenge to integrate the OSS principle into the RLS concept. 
This would lead to an OSS-RLS algorithm which could be another way of how to 
increase the performance of the adaptive algorithm.  
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