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Introduction

The purpose of the dissertation is to introduce a new approach of general volume

data analysis. Many recent measurements in engineering practise lead to a three

dimensional volume representation of results which are quite hard to be analyzed in

an image representation since its true nature is three dimensional. As a particular

example can be noted data acquired by a confocal microscope or nuclear magnetic

resonance scanners which are of great importance in medicine and biology. Because

of the fact the volume data are stored in a general three dimensional matrix it can

be used for analysis of any volume representation of a physical phenomenon such as

results of numerical solution of differential equations etc. Therefore it is not limited

only to measured datasets.

The visualization method is designed especially to simulate a human perception of

observing a volume object, particularly linear perspective projection, visibility based

on raycasting and color combining techniques are used. Thus one can deduce fea-

tures of a volume object naturally without a proper knowledge of these methods.

An important property of this visualization method is that a volume object can be

observed interactively so a factual emphasis in the dissertation is aimed to render

a visualization in the fastest possible time, but without a hardware acceleration, be-

cause recent accelerators don’t provide sufficient support for high quality accelerated

volume rendering.

The next part of the dissertation is dedicated to principles and application of

digital filters to image and volumetric data, where also methods of adaptive filtering

such as adaptive kernel convolution are presented with particular examples of their
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use in practise. Volume analysis unfortunately brings lots of problems to solve. The

most apparent problem is a vast amount of storage space required to contain all the

information contained in a volume object in contrast with a less expensive 2D image

representation. It is essential to overcome this problem since rather small volume

data can reach beyond a capacity of todays computers. To reduce a total amount

of information there are proposed two types of compression algorithms. The first,

lossless algorithm is based on Burrows-Wheeler block sorting and adaptive arithmetic

encoding with finite context prediction. The second is aimed to lossy compression,

which is based on progressive DCT encoding.
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Chapter 1

Digital Color Representation

1.1 Introduction

T
he most popular part of image processing is processing of color images.

There exist various ways to store and interpret color information present in

such images. A color is often represented by three coordinates which can

be imagined as a spatial vector. Thus a color can be represented by a vector in so

called color space. Further will be discussed properties of the most frequent color

spaces in order to learn how a color information can be stored and which color space

is suitable for a patricular processing. More in-depth information about color spaces

can be found in [7].

1.2 CIE Chromacity Diagram

The name CIE comes from french Comission Internationale de l’Éclairage and

means International Commission on Illumination. It is the international authority on

light, illumination, color and color spaces. The standard reference for color definition

is CIE chromacity diagram. This diagram was developed in 1931 and in full plot

it is three dimensional with tristimulus X, Y, Z coordinates. The coordinates are

linear measures of light power. The Y coordinate is called “luminance” which can
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be regarded as a measure of percepted brightness. For better operating it was trans-

formed to 2D x, y diagram where y axis shows color intensity and x axis chrominance

of CIE-1931 standard observer as illustrated by the transformation equations:

x =
X

X + Y + Z
, y =

Y

X + Y + Z
. (1.1)

The x, y coordinates are known as chromacity coordinates. The CIE diagram is

based on visual response of this observer and is determined by physiological measure-

ments of human color vision. Upper rounded boundary of the diagram is composed

of pure spectral colors and their purety (saturation) decreases down to a white point

in the center. Lower straight purple part is not a spectral color and is used as arbi-

trarily selected wavelength cut-off. Most frequently the color properties are described

by red, green and blue x, y coordinates, which are called primary illuminants and

so called white point. The recommended [2] CIE D65 ‘daylight’ whitepoint is:

xw = 0.3127, yw = 0.3290, (1.2)

and the respective primary illuminants are:(
xr xg xb

yr yg yb

)
=

(
0.64 0.30 0.15

0.33 0.60 0.06

)
. (1.3)

The D65 primary illuminants are intended to represent ‘daylight’ temperatures at

various correlated color temperatures, which are colors that in a well defined sence

corresponds to black body color at certain temperature. The correlated color tem-

perature for D65 corresponds to roughly 6500K1.

1.3 Black Body and Sun Color

The effective sun temperature is about 5780K. It’s hard to determine its color since

the sun is not a perfect black body and the final percepted color is also affected by

1About 6504K since the later more proper evaluation of hc/k fundamental constats ratio in the
Planck formula.
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atmospheric effects. However not a big mistake will be made by an assumption that

irradiation of the sun is a perfect black body. We can calculate a color of it rather

easily then using the Planck irradiation law:

P (λ, T ) =
4π2~c2(

e
hc

kλT − 1
)
λ5

, (1.4)

what tells what’s the probability of emittance of photons at a particular wavelength

λ for a black body with known temperature T . As a color percepted by human

for a particular wavelength of light is known from the CIE diagram, it’s possible to

calculate black body color for a particular temperature as:

~c(T ) =
1

PT

∫ λ2

λ1

P (λ, T )~s(λ)dλ, (1.5)

where ~s(λ) is R,G,B color vector and ~c(T ) is the final color of black body at temper-

ature T ,

PT =

∫ λ2

λ1

P (λ, T )dλ (1.6)

and the range of visible color wavelengths is ∆λ = 〈λ1, λ2〉 = 〈450, 800〉 nm. The

result for this calculation can be seen at fig.1.1, where the color assigned to the sun

effective temperature is roughly white and turns to red for lower and to cyan for

higher temperatures.

Figure 1.1: Approximate black body color at various temperatures.
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Chapter 2

Digital filters in image processing

2.1 What a digital filter is?

F
irst it’s required to properly define a concept of a filter which is essential to

understand methods described further. It is important to point out at the

very beginning of this chapter that we are going to be involved exclusively

in analysis of digital signals. Thus it’s assumed that an input signal to be processed

is sampled at a given sampling rate and quantized in a way that every sample has

a finite bit depth which is the same for all the samples within the signal. Later,

if we talk about a signal we mean a digital signal when not otherwise stated. By

digital filtering1 is meant processing samples of an input signal in the way that

some arithmetics is performed to its samples to yield an output signal. Filtering

methods are described in the following chapters.

2.2 Classification of Filters

Digital filters are often [8] divided in two cathegories dependent on the fact whether

the filter can or cannot be considered as a linear system. A system is called linear

if it has properties of homogenity and additivity. If one of these assumptions are

1Further abbreviated only to “filtering”.
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not true, the system is nonlinear. To demonstrate these and other filter properties

let’s have a filter F to process an input signal a(t) to output signal b(t), then:

• Filter F is called homogenous if amplitude change in a causes the same am-

plitude change in b:

F
[
a(t)

]
= b(t) =⇒ F

[
ka(t)

]
= kb(t) ∀t, (2.1)

where k is a constant.

• Filter F is called additive if processing of addition of two input signals a1 and

a2 result in addition of two output signals b1 and b2:

F
[
a1(t)

]
= b1(t), F

[
a2(t)

]
= b2(t) =⇒ F

[
a1(t) + a2(t)

]
= b1(t) + b2(t) ∀t.

(2.2)

• Filter F is called shift invariant if shift in a causes identical shift in b:

F
[
a(t)

]
= b(t) =⇒ F

[
a(t + dt)

]
= b(t + dt) ∀t. (2.3)

The last property of shift invariance is not required to consider a system linear, but

most of linear and even nonlinear filters have this property.

2.3 Discrete Convolution Filters

A nice example of linear filter is a convolution filter. A discrete convolution filter can

be defined as:

b(t) = Fh(k)

[
a(t)

]
= a(t) ∗ h(k) =

K/2−1∑
k=−K/2

a(t− k)h(k) ∀t ∈ {0, 1, ..., N − 1}, (2.4)

where h(k) is convolution kernel of K samples and a(t) is a signal to be convolved.

The h(k) is also called impulse response function or point spread function

in image processing. In this text is considered only the finite impulse response
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(FIR) or truncated infinite impulse response (TIIR) function h(k) exclusively

so that K is set to some sufficiently large finite value. The name of h(k) is a finite

impulse response because if an impulse is passed, i.e. a(t = t0) = 1, zero otherwise,

through the convolution filter, function h(k) shifted of t0 is obtained as the output.

The sum of all samples within the kernel h(k) must be a non-zero constant in case of

low-pass filter what is fulfilled if it’s normalized, so the condition 2.5 must hold.

K−1∑
k=0

h(k) = 1. (2.5)

An analogous condition 2.6 must hold for a high-pass filter:

K−1∑
k=0

g(k) = 0. (2.6)

If we look at (2.4) the argument of a can reach below zero and above the total

samples N in the signal. We can’t neglect this boundary problem because signal of

a finite lenght is processed. By a style how the boundary problem is solved can be

distinguished various types of discrete convolution.

2.4 Adaptive Kernel Convolution

It is appropriate for some signals to change shape of kernel during convolution. If the

idea is improved a little bit, we can say that we needn’t only change h(k) at the end

and beginning of a(t) but also let h(k) be somehow dependent on contents of a(t)

itself. We call it adaptive kernel convolution when this approach is used.

One application of this type of convolution is demonstrated here which is very

suitable for error elimination from images. The divide and conquer strategy is followed

here to fulfill this task, so the method itself consists of not one but a few simple steps.

The calculation consists of three steps, where adaptive kernel convolution is used in

the end:

1. Low-pass filtering of the original image I1(x, y) to obtain processed image I2(x, y).
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2. Detection of defect pixels based on difference checking between I1 and I2.

3. Replacing of defect pixels and their interpolation using acyclic adaptive kernel

convolution.

For a given image I1(x, y) 2D discrete acyclic convolution with symmetric TIIR gaus-

sian kernel of K samples is calculated in each dimension to obtain I2:

I2(x, y) = Fh(kx,ky)

[
I1(x, y)

]
= I1(x, y) ∗ h1(kx, ky) = I1(x, y) ∗

[
e
−

k2
x+k2

y

σ2
1

]
K

(2.7)

where K is large enough to represent the point spread function h1(kx, ky). The next

step is to mark defective pixels. An information about defective pixels is held in error

matrix E(x, y), which is calculated by using the following bad pixel criterion:

E(x, y) =

{
0 if |I1(x, y)− I2(x, y)| ≤ It;

1 otherwise.
(2.8)

where It is appropriatelly selected threshold. When E(x, y) is calculated, we perform

adaptive kernel convolution (AKC) of I1(x, y) for every E(x, y) = 1 in order to in-

terpolate bad pixel in I1(x, y). Even if it’s a 2D problem (and might be 3D problem

for volume data) it can be reduced to one dimensional AKC, what can be done by

creating a vector function ~p(n) which contains coordinates of neighbouring pixels in

not decreasing distance order with increasing n. It is shown in the fig.2.1. The filtered

image is then calculated by AKC as:

I1(x, y) =
1

||h2||

N−1∑
n=1

I1

[
(x, y)− ~p(n)

]
h2(n, x, y) ∀E(x, y) = 1, (2.9)

where

h2(n, x, y) =

 e
− |~p(n)|2

σ2
2 if E

[
(x, y) + ~p(n)

]
= 0;

0 otherwise.
(2.10)

is adaptive kernel constructed from TIIR gaussian kernel which expresses decreasing

weight of convolved pixel with increasing distance |~p(n)|. The norm ||h2|| is calculated

during AKC as:

||h2|| =
N−1∑
n=1

h2(n, x, y). (2.11)
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151 129 101 89 81 69 82 90 102 130 152
131 97 70 61 49 45 50 62 71 98 132
103 72 57 37 29 25 30 38 58 73 104
91 63 39 21 13 9 14 22 40 64 92
83 51 31 15 5 1 6 16 32 52 84
74 46 26 10 2 0 3 11 27 47 75
85 53 33 17 7 4 8 18 34 54 86
93 65 41 23 19 12 20 24 42 66 94
105 76 59 43 35 28 36 44 60 77 106
133 99 78 67 55 48 56 68 79 100 134
157 135 107 95 87 80 88 96 108 136 158

Table 2.1: Pixel ordering n in non-decreasing distance from the center (Euclid metric).

Note that the norm is also dependent on position x, y by equation 2.10.
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The original MOLA scanned image with errors.

Filtered by adaptive kernel convolution.

Figure 2.1: Usage of the adaptive kernel convolution.
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Chapter 3

Volume rendering

A
nalysis of volume data is quite complicated task to solve. There exist

several approaches to do such analysis. The basic one is to decompose

a 3D object to slices and to analyze them as usual images. This method

allows us to look inside the volume of 3D object but seems to be unusable when

our demand is to observe the object in a different direction. Then a 3D visualization

technique is likely to be used. The basic methods of such 3D visualization are based on

extraction of polygonal meshes describing isosurfaces1. One can enjoy a 3D impression

when observing such isosurface but a disadvantage of it is that the isosurface is in

fact two dimensional so one has to extract more such isosurfaces to predict how

a property of 3D object changes in volume. Furthermore, algorithms of isosurface

extraction are rather complicated and often erroneous for a complex 3D objects. Our

approach is to employ a volume rendering technique, which is intended to consider

volume information as native 3D. Unfortunately this technique is very computationaly

expensive so optimizations and speedup is of our particular importance. The purpose

of this chapter is to develop a volume rendering method, apply it to large scale VHP

volume dataset and conclude with discussion.

1A surface on which a feature of the 3D object is (almost) constant.
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3.1 Principles of Volumetric Raycasting

In order to develop a suitable technique of volume rendering we must define how

the 3D object will actualy be analyzed. First of all we want to analyze a 3D object

from various points of view and directions. Therefore a position of an observer and his

viewing orintation has to be specified. Then, because of the fact we’ll display an image

of the 3D object on a 2D screen, we have to use some method of projection. Since

a human perception of observing a 3D scene is similar to linear perspective projection

we’ll use such projection to let the result look natural to a human observer. Finaly,

because we have a volumetric object, it is good idea to have a possibility to “see in

depth”, i.e. to model translucency of the data.

3.1.1 What Raycasting is

The basic idea of the raycasting is to cast a ray through a volume object for every

single pixel on the screen and trace properties of the volume object along the ray

in order to return a single pixel value per ray to describe volume properties of the

object. The situation is shown on fig.3.1, where position and orientation of the

Figure 3.1: Illustration of rays cast from the position of observer.

observer is defined by the perspective pyramid and rays are colored black with the
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tracing direction away from the observer. Note that in the fig.3.1 is demonstrated

creating of raycasted projection to a screen of 4× 3 pixel resolution which is mapped

to the perspective plane and rays passes through the center of their corresponding

pixels, what is denoted by small blue spheres in the image.

3.2 Volume Renderer Design

The developed volume rendering software saves all the volume data in compressed

form in the way that the volume data is decomposed into cubes2 so that only this part

of volume is needed to be stored in memory when a ray passes through it. Frequently

used cubes are stored in memory in order to prevent a need to decompress them when

a ray penetrates to another cube that was traced recently. The software allows to use

only a memory specified by an user. To keep only last recently used cubes the LRU

[6] algorithm is used. The software uses progressive rendering in the way that at first

only a fraction of total rays is cast into a 3D scenery. After calculation of resultant

colors, these are interpolated for pixels for which no rays have been cast and shown

on the screen. This allows an user to see a temporary result of rendering even if

rendering goes on. The pixel values are calculated in a way that pixel intensities are

gathered along a ray in a given3 precision so that the result is a vector of intesities ~Vc

of arbitrary size for each channel c in the volume dataset. The ~Vc can be processed

in various ways to obtain a single pixel value to be displayed on the screen. At first

a convolution with thin gaussian TIIR kernel is calculated to suppress sharp intensity

jumps and similar artifacts caused by discontinuities between voxels:

K/2−1∑
k=−K/2

~Vc(i− k)h(k), ∀i, c (3.1)

then opacity tracing algorithm is used. Description of such techniques can be found in

[5], [3]. The opacity tracing algorithm works in the way that a certain small amount

2of 8× 8× 8 up to 32× 32× 32 voxels each.
3mostly sub–voxel

18



of the first intensities along the ray are ignored in order to skip low–intensity layer

around a volume object. Then the final pixel intensity of c–th channel of the volume

data is calculated as

Ic =
1

N2 −N1

N2∑
i=N1

T i−N1 ~Vc(i), ∀c (3.2)

where T is translucency coefficient4, N1 is the index in ~Vc for the first not ignored

intensity value, N2 is an index in ~Vc, where the contribution to the final pixel intesity

is neglectable due to small value of T i−N1 in 3.2. Then the final color ~P in RGB space

of the pixel displayed on screen is calculated like

~P =
∥∥∥ C∑

c=0

~PcIc

∥∥∥, (3.3)

where C is the cotal number of channels in volume data, Pc is normalized base color of

the channel in RGB color space. Normalization in 3.3 denotes normalization and/or

saturation of the RGB components in ~P .

4T ∈ (0, 1〉, where for T = 1 is the object completely translucent
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Chapter 4

Lossy Image Compression

4.1 Discrete Cosine Transform

Another method of image decorrelation is the Discrete Cosine Transform (DCT).

In numerous cases DCT is used frequently in practice since there exist lots of fast

algorithms which calculates DCT decorrelation much faster with results close to the

KLT. Many image compression algorithms are based on DCT, for instance JPEG [9].

There exist various types of DCT which are designed to fast image decorrelation in

separate image fragments or by partially overlapped fragments1. The most frequent

DCT type is DCT-II, which is in 1D defined as

F (k) = C(k)
X−1∑
x=0

f(x) cos
k(2x + 1)π

2X
, (4.1)

where X is total number of samples in f(x), and

C(k) =


√

2
N

if k 6= 0;√
1
N

otherwise.
(4.2)

1So called Lapped Orthogonal Transform (LOT).
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In our case we’ll use 2D DCT-II, where we can also compose it from row and column

1D transforms. Then we can write the 2D DCT-II as

F (kx, ky) = C(kx)C(ky)
Y−1∑
y=0

[
X−1∑
x=0

f(x, y) cos
kx(2x + 1)π

2X

]
cos

ky(2y + 1)π

2Y
. (4.3)

As we have mentioned, the DCT transform is used because its calculation speed. It is

so because close similarity of DCT basis vectors with their optimal ones for a natural

picture. These discrete bases are calculated as a spatial response to impulse in KLT

or DCT2 domain. We can interpret the shape of basis vectors shown at fig.4.1a as

an information of what type of detail from an input image contains a single DCT-II

basis coefficient. In particular, we can say that the most of horizontal information

contain the leftmost coefficients, the highest details the coefficient in bottom right,

etc.

a) natural order b) variance descending (zig-zag) order

Figure 4.1: DCT basis vectors for 8× 8 transform.

2Fig.4.1.
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4.2 DCT–based Lossy Compression Algorithm Pro-

posal

The purpose of all compression algorithms in image compression is to reduce the in-

formation capacity up to its minimum in the fastest possible time at minimal memory

requirements. Furthermore, the quality loss of decompressed image should be mini-

mal. Unfortunately, compromises have to be made because these optimum criteria are

dependent on each other. In particular, the most of recent lossy image compression

algorithms are based on the DCT (section 4.1) even if it’s not optimal, because the

calculation time is much shorter in comparison with KLT.

I0 I1 = I0 + D0 I2 = I1 + D1 I3 = I2 + D2 I4 ≈ O

R0 = O − I0 R1 = O − I1 R2 = O − I2 R3 = O − I3 R4 = O − I4

D0 D1 D2 D3 D4

Figure 4.2: Progressive 8× 8 encoding with zero-padded 2D IDCT prediction.

The preferred scheme for the compression algorithm is progressive. It means that

an original image O to be compressed is stored at various levels of detail and only
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differences are encoded. The progressive scheme was chosen because of error resistence

and possibility of displaying preview at various scales of image even from its small

loaded context. The encoding itself is based on 2D DCT but is designed to be easily

modified to KLT. The original image O is decimated to a size to fit one single 2D DCT

fragment and saved to output file3. Then the fragment is upsampled to the original

size of O with suitable technique of interpolation. After it the upsampled image I0

(see fig.4.2 where the fragment size is 8× 8 pixels) is subtracted from O which yields

R0. That was the first step and the following steps are calculated iteratively in the

way that the number of DCT fragments is increased by factor of 44 per iteration what

ensures convergence to the original image:

Di =↑ DCT
(
↓ Ri

)
,

Ii+1 = Ii + Di,

Ri+1 = O − Ii+1,

i = i + 1,

(4.4)

where ↓ denotes decimation and ↑ denotes interpolation. After each iteration Di is

encoded and saved to output file. The total number of iterations is equal to b = log2 S,

where S is the largest dimension of image, where S ≤ 2b. This method gives better or

comparable compression in comparison with recent lossy image compression formats

with comparable signal-to-noise ratio.

3It means quantized, zig-zag ordered, RLE and entropy encoded.
42 per dimension
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Chapter 5

Lossless Image Compression

A
different treatment to image compression has to be made in order to re-

move redundant information from input data with a request of lossless re-

construction of the original image. There exist a few approaches to lossless

compression algorithms. The simplest approaches are RLE algorithms that replaces

large sequences of identical characters with length-code pairs. The other classical

methods used frequently are alphabet substitution approaches such as Shannon-Fano

coding or Huffman [4] coding. These methods construct binary trees in order to assign

the smallest bit sized code to the most probably used characters. To the other group

belong dictionary or sequentional based methods from a wide Lempel-Ziv family such

as LZ77 [10] or LZ78 [11]. These methods uses dynamically updated databases of used

sequences, where a compression is achieved because a single code is sent out for every

frequently used sequence. In our approach we use multiple level compression, where

arithmetic coding scheme is used at the end, which achieves the best compression in

general from all the mentioned methods.

The arithmetic coding is a bit similar to Huffman coding in the way that it assigns

less bit-sized codes to the most probable characters. The principal difference is that

in case of arithmetic coding the codes needn’t be of integer bit length. In fact the

output of arithmetic coder is one huge binary number which represents all characters

present in message of any finite alphabet.
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5.1 Lossless Compression Algorithm Proposal

The proposed algorithm for lossless image compression is based on Burrows-Wheeler

block-sorting algorithm [1], [6], hierarchycal RLE coding and adaptive arithmetic

coding with finite context prediction.

Figure 5.1: Scheme of the proposed compression algorithm.

The characters within a message are first reordered using the BWT to gather

characters of similar contexts close together. Then the message is separated to blocks

of specified size. Then for each block a histogram bitmap is calculated to reduce

message alphabet states in the block passed to the entropy coder. The histogram

bitmaps are encoded by the hierarchycal RLE encoding. Multiple iteration passes are

then performed in order to find an optimal size of context to compress the message

to a minimal size. The context starts at size of 256 characters and is doubled in each

iteration up to 16384 characters. Usual range for the optimal context size is 1024 up

to 8192 characters. The reason for doubling the context size is time expense of the

compression. It could be found in a precission up to one character. The compression

software supports up to 16bit per letter characters in a message. The purpose of

the hierarchycal RLE coding in the compression scheme in table 5.1 is that for 16-bit

characters we have to store histogram bitmap for 65536 characters, what is the bitmap

of size 8192 bytes what is frequently reduced below 1/100 of its original size. In case

of 8-bit characters in message, the histogram size is mostly halved. A comparison

of effectivity of the proposed algorithm and other commercial and non-commercial

lossless compression formats can be seen from table 5.1.
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Name File size [B] Entropy [b] Algorithm
GIF 700 206 5.342 LZW
TIFF 621 772 4.743 LZ77

GNU zip v1.3.3 608 016 4.638 LZ77
UNIX compress v4.2.4 604 225 4.609 LZW

RAR v3.3 beta 1 566 518 4.322 unknown
PNG 542 779 4.141 LZ77

bzip2 v1.0.2 470 925 3.592 BWT, Huffman
proposed algorithm 427 934 3.265 BWT, Arit.

Table 5.1: Results and comparison of the proposed compression algorithm.

Figure 5.2: Sample 1024× 1024 grayscale image used for compression.

26



a) cross section in eyes area b) face of the cadaver

c) cadaver viewed from profile d) nose hollow and ear area

e) photography of Joseph Paul Jernigan f) area with cervical, pith and vocal chord

Figure 5.3: Application to the Visible Human Project.
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Abstract

The purpose of the dissertation is to introduce a new approach of general volume data

analysis and image processing of 2D images. The volume data visualization method

is designed especially to simulate a human perception of observing a volume object,

particularly linear perspective projection, visibility based on raycasting and color

combining techniques are used. Thus one can deduce features of a volume object nat-

urally without a proper knowledge of these methods. The next part of the dissertation

is dedicated to principles and application of digital filters to image data where also

methods of adaptive filtering such as adaptive kernel convolution are presented with

particular example of its usage in practise. Then principles and filters using radix 2

FFT algorithm are presented. To reduce a total amount of information there are pro-

posed two types of compression algorithms. The first, lossless algorithm is based on

Burrows-Wheeler block sorting and adaptive arithmetic encoding with finite context

prediction. The second is aimed to lossy compression, which is based on progressive

DCT encoding. The principles and examples of orthogonal and biorthogonal wavelet

transform application in image compression is also presented.

Keywords:

volume rendering, raycasting, convolution, FFT, orthogonal wavelet, biorthogonal

wavelet, DCT, BWT, RLE, Huffman coding, Shannon-Fano coding, arithmetic cod-

ing, KLT, RGB, CMY, YUV, HSV, black body, Visible Human Project
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Abstrakt

Účelem dizertačńı práce je předvedeńı nového př́ıstupu k analýze objemových dat a

zpracováńı dvojrozměrného obrazu. Metoda vizualizace objemových dat je založena

na simulaci lidského vjemu při pozorováńı objemového objektu. Konkrétně jsou

použity techniky lineárně perspektivńıho zobrazeńı, řešeńı viditelnost́ı pomoćı ray-

castingu a techniky kombinováńı barev. Proto je možno pozorovat vlastnosti obje-

mového objektu přirozeně bez nutnosti znalosti těchto metod. Daľśı část dizertačńı

práce je věnována princip̊um a aplikaci digitálńıch filtr̊u na obrazová data, kde jsou

také použity techniky adaptivńıho filtrováńı jako např. konvoluce s adaptivńım

jádrem s konkrétńım př́ıkladem použit́ı. Dále jsou prezentovány principy radix 2

FFT algoritmů a některé filtry, které je použ́ıvaj́ı. Ke sńıžeńı celkové informačńı

náročnosti obrazových dat jsou navrženy dva typy kompresńıch algoritmů. Prvńı

algoritmus pro bezeztrátovou kompresi je je založen na Burrows-Wheelerově tř́ıděńı

blok̊u a adaptivńım aritmetickým kódováńım s konečnokontextovou predikćı. Druhý

je zaměřen na ztrátovou kompresi obrazových dat, který je založen na progresivńım

DCT kódováńı. Také jsou prezentovány pricipy a př́ıklady ortogonálńı a biortogonálńı

waveletové transformace s aplikaćı při kompresi obrazu.

Kĺıčová slova:

objemový rendering, raycasting, konvoluce, FFT, ortogonálńı wavelety, biortogonálńı

wavelety, DCT, BWT, RLE, Huffmanovo kódováńı, Shannon-Fanovo kódováńı, arith-

metické kódováńı, KLT, RGB, CMY, YUV, HSV, absolutně černé těleso, Visible

Human Project
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