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Introduction

Growing significance of information in the development of human society is one of
the main features of the 20th century. Therefore, more and more attention has to be paid
to the transmission and to the processing of information. This fact causes that more and
more powerful processors are produced, memories of higher and higher capacity are
developed, wider and wider information channels are arranged.

Dealing with information channels, one of ways making them wider consists in shif-
ting transmission of information to higher frequencies. Today’s commercial applications
work on frequencies around 20 and 30 GHz, specific European systems are developed at
60 GHz. Therefore, the attention is turned to the transmission in the frequency range of
micro- and millimeter-waves, to the analysis and design of circuits, antennas and
transmission lines working at these frequencies, to the propagation of micro- and
millimeter-waves in the atmosphere etc.

Let us concentrate on the analysis of the micro- and millimeter-wave transmission
lines. In the lower part of the corresponding frequency range, the approximate quasi-
static methods can be used whereas in its upper part, the full-wave dynamic methods
have to be explored.

The quasi-static methods come from the assumption that the dominant mode of the
wave propagating longitudinally along the transmission line is well approximated by a
TEM wave. Then, the transversal fields are very close to the static ones and they can be
derived from a static potential solution of Laplace's equation. The equation can be solved
by the modified conformal mapping [1], by the finite-difference [1] or finite-element
methods [13] [14], by the use of a variational expression or an integral equation.

Since electromagnetic fields supported by micro- and millimeter-wave transmission
lines have longitudinal components which are no more negligible at higher frequencies,
fields have to be represented by a combination of TE and TM waves and described by a
vectorial wave equation which is the initial equation of the full-wave dynamic methods
[1]. The vectorial wave equation can be solved by the finite-difference [1] or finite-ele-
ment methods [14] or by the use of an analytical model of the transmission line [4].

If an analysis of a transmission line is going to be performed in the whole micro- and
millimeter-wave frequency range, full-wave dynamic methods have to be used because
the quasi-static ones provide valid results typically below 5 GHz [1]. If the method is
required to provide parameters of an arbitrary structure, the use of an analytical model
[4] cannot be taken into consideration because an analytical effort is required for every
structure. Taking remaining methods in mind, the finite-element method is preferred
from the following reasons [14]:

a) The computed quantity has a uniquely defined value everywhere within the analysed
area (not only in nodes as in the finite-difference method).

b) The approximate solution has minimal error in a global sense that takes into account
the solution values at all points (not only the nodal ones as the finite-difference
method).
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c) There are no limitations to the shape and to the size of elements. Therefore, the ele-
ments can be curvilinear to match geometry of the analysed structure, they can be
small in areas where the dramatic changes of a field are supposed and large where a
slowly varying field is expected. This is not possible if the finite-difference method is
used.

Therefore, the finite-element method has been chosen for the analysis of general
micro- and millimeter-wave transmission lines.

In the first chapter of this work, an overview of vectorial hybrid nodal-edge finite
elements [6] is given and some aspects of the already existing method are originally
discussed.

Since accuracy of results obtained by the finite-element method is crucially influen-
ced by the quality of the finite-element mesh [13] [14], this influence is discussed in the
second chapter. Accuracy of obtained results is tested using the reaction concept and
taking analytical models as the reference.

If an optimal finite-element mesh is at the disposal, the finite-element matrix equation
can be built and it has to be efficiently solved. The efficient solution used in this work
comes from the finite-element complex-hopping method [5] which is originally extended
to the analysis of transversally non-homogenous structures in the chapter 3.

All the computations described in chapters 2 and 3 are performed for shielded wave-
guides because the finite-element method can be used for the analysis of closed systems
only [13] [14]. If an open waveguiding structure is going to be analysed then the open
system has to be converted to the closed one. In chapter 4, a special real spatial mapping
[15] is described and it is originally implemented to the analysis of open waveguides.
Moreover, the introduced mapping can be shown to behave as a perfectly matched layer
[17] which is shown at the end of the chapter 4.

Developed methods are useful not only from the technical point of view but from the
pedagogical one too because students can model various structures using these methods.
Fields can be visualised, frequency dependencies of propagation parameters can be plot-
ted which all helps to students in understanding complex wave phenomena in transmis-
sion lines. This topic is discussed in the habilitation but it was to missed here because of
the shortage of place.
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1 Finite-element analysis of transversally non-homogenous
micro- and millimeter-wave transmission lines

Finite element method (FEM) is the general approach to the solution of partial diffe-
rential equations. Since Maxwell equations expressed in terms of differential operators
belong to the above class of equations, FEM is widely used to solve them [13] [14].

Applying FEM to the analysis of transversally non-homogenous waveguides is rather
difficult because classical versions of FEM produce spurious (physically non-existing)
solutions [6] [14]. The first source of spurious solutions is related to the boundary
conditions at the interface between dielectric layers (some of the tangential boundary
conditions, which are necessary to unambiguously define the boundary value problem,
are not satisfied) and the second one to the presence of sharp metallic edges (electric
field approaches infinity at the edge and field’s direction changes infinitely there) [6].

1.1 Vectorial basis functions
As a solution of the described problems, tangential

vector finite elements (TVFE) were proposed [6]. TVFE
impose only tangential continuity of the field, and there-
fore, the modelled electromagnetic (EM) field can change
abruptly at sharp edges [6].

The occurrence of the spurious modes due to the unsa-
tisfied tangential boundary conditions can be interpreted as
the improper modelling of the null space of the curl
operator. If appropriate TVFE are used, null space of the
curl operator is modelled exactly and the spurious modes degenerate to eigensolutions
with eigenvalue zero [6].

The main idea of TVFEs consists in approximating transversal components of the
electric-intensity vector by edge finite elements (FE) and in approximating longitudinal
components by nodal ones.

1.2 Functional and its minimization
Assume a longitudinally homogenous waveguiding structure closed by perfect-elec-

tric conductor (PEC) or perfect-magnetic conductor (PMC) walls. The structure can
consist of a linear dielectric filling of arbitrary properties (non-homogenous, anisotropic,
lossy) and of arbitrary shape. Arbitrary metallic objects can be present in the structure.

The described structure is placed into the Cartesian coordinate system so as the cross
section of the waveguide can lie in the x, y plane and the longitudinal axis of the
waveguide can be of the same direction as z axis of the coordinate system. Then, the z-
dependence of the EM field inside the structure can be expressed as exp(-γz) where γ is
the complex propagation constant [1].

The so far published FE methods for the analysis of structures meeting the above
description have been based on the Galerkin's method [6] [14]. In our original approach,
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the analysis comes from a functional, which was published by I. Huynen and A. Vander
Vorst [4], and which is stationary about the solution of the vectorial wave equation
describing the EM field in the structure.

The functional was re-formulated in terms of the transversal electric-intensity vector
and the longitudinal electric-intensity component. Performing some mathematical ma-
nipulations and enforcing the relations to fulfil Dirichlet and Neumann boundary condi-
tions on PEC and PMC walls, the Euler equation associated with the functional was ob-
tained. Manipulating the Euler equation, the divergence-free condition for the non-zero
frequency was obtained. Therefore, the introduced mathematical formulation ensures that
spurious solutions, which could be produced due to the uncomplete fulfilling boundary
conditions, can never appear.

Substituting the FE approximations to the functional, introducing the necessary
boundary conditions, extremizing the functional and summing resultant equations over
all the elements yield the matrix relation

In the above equation, γ denotes the complex propagation constant, E is the column
vector of unknown coefficients of the FE approximation, 0 denotes the column vector of
zeros and M1, M2, M3 are matrices containing products of shape functions and their de-
rivatives integrated over FEs.

If the operator in a vectorial wave equation associated with the functional is self-
adjoint then the resultant matrix equation (1.1) is identical with the result of Galerkin's
method [14]. Otherwise, the resultant matrix equation is identical with the result of Ga-
lerkin's method if and only if the adjoint trial fields in the functional are expanded by
non-adjoint basis functions [14]. Since the above presented basis functions are the same
both in the adjoint and in the non-adjoint form, the matrix equation (1.1) should be
identical with the result obtained on the basis of Galerkin's method. And it really is.

If the operator in a vectorial wave equation associated with the functional is non-
negative definite then the FE approximation converges to the extreme of the functional in
the sense of energy [14]. Otherwise, the FE approximation exhibits weak convergence
[14].

1.3 Solution of the matrix equation
If propagation constants γ and discrete values of the field components are required,

then the matrix equation (1.1) has to be solved. The most usual way of doing this is
transforming (1.1) into the classical generalized eigenvalue problem [6]
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which can be efficiently solved by the classical eigenvalue solvers such as the eig
function of matlab.

In (1.2), I denotes unitary matrices of respective size, ~E E= γ and the rest of symbols
has the same meaning as it was described below eqn. 1.1.

1.4 Conclusions
In this chapter, the FEM for the full-wave analysis of shielded longitudinally homo-

genous microwave structures is described. Analysed structures can consist of a non-
homogenous dielectric exhibiting anisotropy and losses and can contain arbitrarily sha-
ped lossy metallic parts.

The analysis comes from the functional, which is stationary about the solution of a
vectorial wave equation describing the structure. A solution of the functional is appro-
ximated in terms of vectorial nodal-edge FEs. Then, the functional is minimized, which
produces quadratic eigenvalue equation for complex propagation constants as eigen-
values and approximation coefficients of the field distribution as eigenvectors. The
quadratic eigenvalue equation is converted into the linear one which is solved by the
generalized eigenvalue solver of matlab (function eig).

Dealing with the CPU demands, the computations require about 10 seconds per fre-
quency when Matlab 5.1 running under Digital UNIX 4.0c on the Personal Workstation
Digital 433au is used.

The original work of the first chapter consist in the use of the variational expression
of Huynen and Vander Vorst as the initial equation of the analysis and in comparison of
the variational approach with the Galerkin's method.
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2 Quality of the finite-element mesh

Accuracy of obtained results is a very important question which has to be answered
with respect to FE solutions. For structures, which can be analysed by some different
method or the parameters of which can be measured, comparison of results and com-
puting the relative error of the FE solution can be done easily. For structures, which have
not been so far analysed by any different method or parameters of which have not been
measured so far, the method based on the reaction concept has been worked up [6].

In the first section of this chapter, the reaction concept is reviewed and results of the
FE analysis of the shielded microstrip line, obtained with various FE meshes, are com-
pared with results of the analysis based on the analytic model. Moreover, it is pointed out
that there is a coincidence between the errors based on the reaction concept and on the
analytic model.

In the last section, possible ways of the automated FE mesh optimization are dis-
cussed. Then, a simple FE mesh refinement based on the Non-Linear Random Search
(NLRS) algorithm is proposed. The structure of the NLRS algorithm is compared with
structures of artificial neural networks and it is pointed out that there are common
features of both the systems.

2.1 The reaction concept
Quality of the FE mesh with respect to the accuracy of the FE solution can be eva-

luated according to the procedure based on the reaction concept. This procedure comes
from the definition of the reaction of a field a on a source b and from the consideration
that the true field at resonance is source-free. Therefore, the reaction of any field with the
true source is zero [6].

Taking the above conclusion in mind, two separate analyses of the structure, which
come from dual variational expressions, are performed, sources are computed from
Maxwell's equations and the relative error provided by eth element is evaluated accor-
ding to the relation [6]

( )

( )δ
ω ε µ

e

d

d
=

⋅ − ⋅

+

∫

∫

E J H M

E H

Ω

Ω
Ω

1
2

2 1
2

2

( 2.1 )

with electric- and magnetic-intensity vectors E and H, with electric and magnetic current-
density vectors J and M, with permittivity and permeability within a FE ε and µ, with
angular frequency ω and with integration over a FE.

The global error can be computed then as the sum of δe over all the FEs.

Performing FE analysis for various FE meshes and evaluating the relative error using
both the reaction concept and the analytic model as a reference value, following
conclusions were done:

1. The good accuracy of obtained results is conditioned by the good homogenity of the
FE mesh which means that all the FEs have to be of approximately the same size.
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2. There is a coincidence between the relative errors computed by the reaction concept
and by the comparison with the analytic model results. On the other hand, the FEM
provides results which does not converge to the analytic model ones - there is a cer-
tain shift between results obtained by both the methods.

2.2 Mesh optimization based on Non-Linear Random Search Algorithm
A Linear Random Search (LRS) algorithm was proposed to enable optimization of

system with an unknown mathematical model. The algorithm can be described by the
relation [16]

( ) ( )[ ]W W W W U Un n n n n n+ = + − +1 β ξ ξ
~ ~ ( 2.2 )

where W is the column vector of state variables, U is the column vector of random
numbers having the covariance σ 2 I (I is the unitary matrix), ( )~

ξ Wn  denotes a squared
error (difference between the solution related to the state vector Wn and the exact one)
and β and σ are adaptation parameters of the algorithm.

In the algorithm, a state vector Wn is introduced to the optimized system and the
squared error is measured. In the next step, a vector of random numbers is added to the
state vector, this addition is introduced to the optimized system and the squared error is
again measured. If the random change of the state vector Wn + Un causes a decrease of
the squared error then the state vector is changed in the same direction in which the
random change of the state vector has been performed. In the opposite case, the state
vector is changed in the contra-direction of the random change.

It is obvious that the exact mathematical model of the optimized system is not needed
in the LRS algorithm, and therefore, this algorithm can be used for the optimization of
the FE mesh with respect to the squared error of the finite-element solution.

Applying the algorithm to the FE mesh optimization, sizes of FEs in the direction x:
dx(1), dx(2), ..., dx( Nx) and sizes of FEs in the direction y: dy(1), dy(2), ..., dy( Ny) are
considered to form the state vector W. The squared difference of the complex propaga-
tion constants of the dominant mode of solutions performed in electric-intensity terms
and magnetic-intensity ones is taken as the squared error (* is complex conjunction)

Moreover, a non-linearity, which limits random changes of the size of FEs so as they
can correspond to the size of the analysed structure, has to be introduced to the so-far-
linear algorithm.
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The block scheme of the described algorithm is depicted
in fig. 2.1. In this scheme, the squared error ξTH denotes the
threshold squared error. If the FE mesh produces lower
squared error than ξTH, then the optimization is stopped.

At the end, let's try to classify the developed NLRS al-
gorithm as it were an artificial neural network. In our situ-
ation, the classical non-linear model of neuron is modified by
moving the non-linear activation function from the output of
summer into its input branches and by the formal introduction
of activation functions into weights. The modified non-linear
neuron implements one row of the final FE matrix equation
(1.2). Input signals correspond to coefficients of edge or
nodal FEs, synaptic weights represent sizes of FEs in
directions x and y, activation functions and thresholds submit
to weights' modification within the non-linear random search
algorithm, linear functions build coefficients of matrices from
(1.2) on the basis of FE sizes and simplex matrices and
summer computes right-hand side of (1.2) as the function of
unknown complex propagation constant γ. In the modified
neuron, thresholds are random numbers generated by the
standard matlab function rand. These thresholds correspond
to the random vector U from eqn. 2.2.

On the basis of the above description, the FE routine
completed by the NLRS mesh optimization can be conside-
red to be built from a special kind of neurons - non-linear
modified ones [2].

From the point of view of learning paradigms, the NLRS
neural network exhibits supervised learning. If the analytic-
model results are taken as the learning pattern, the analytic
model play the role of the teacher. If the optimization process
is based on the reaction concept then the error signal, which
is computed by the comparison of the teacher's results and
the optimized system ones, is built as a difference of
solutions based on electric-intensity components and mag-
netic-intensity ones [2].

Dealing with the architecture of the neural network, the
developed network can be considered as a single-layer feed-

forward network with the back propagation of the error [2].

Therefore, the final conclusion can state that the NLRS algorithm for the optimization
of the FE mesh can be considered as an artificial neural network [2].

start
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FE analysis
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FE analysis
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randomly
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Wn + Un
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of the NLRS algorithm
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2.3 Conclusions
This chapter reviews methods which enable evaluation of the quality of FE meshes.

Using these methods, original discussions and comparisons of various FE meshes have
been done. The meshes have been shown to have to be well homogenous to provide
relatively accurate results.

Moreover, the correspondence between errors computed from the reaction concept
and from the analytic model has been originally discussed and both errors have been
shown to exhibit a certain shift between each other.

On the basis of obtained results, an original algorithm for the FE mesh optimization
has been developed. The algorithm comes from the Linear Random Search algorithm,
which does not require mathematical description of the optimized system. The algorithm
has been completed by the non-linear activation function which limits sizes of FEs so as
they cannot be too small or too large and which matches sizes of finite elements to the
geometry of the analysed structure.

The developed NLRS algorithm has been shown to be able being considered as an
artificial neural network consisting of modified non-linear neurons, exhibiting supervised
learning and having the single-layered feed-forward architecture with back propagating
error signal.
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3 Finite-element complex-hopping method

Computational effectiveness of the FE analysis of waveguiding structures is crucially
influenced by the solution of linear or quadratic eigenvalue problem produced by the
method [14]. To overcome this difficulty, M. A. Kolbehdari applied complex frequency
hopping (CFH) technique to the computation of critical frequencies of the transversally
homogenous rectangular waveguide and have shown that speed-up ratios of CFH in
comparison with eigensolution based on LU decomposition are from 19 to 72 depending
on the matrix size [5]. Even more, CFH exhibits good accuracy and does not require
development of any special mathematical routine (CFH can be very effectively
implemented by sparse matrix operations from the matlab core).

Thanks to the high speed, good accuracy and simple programming, CFH seems to be
attractive for the use in the analysis of general waveguiding structures. Therefore, the
CFH concept is originally applied to the analysis of transversally non-homogenous
waveguiding structures. Starting at the vectorial wave equation, a functional is derived
which can be shown to exhibit variational behaviour, and, under given circumstances,
comes to the new variational formula published by I. Huynen and A. Vander Vorst [4].
The functional is then solved by hybrid nodal-edge FEs [6] and complex hops (CH).

3.1 Complex propagation constant hopping
Assume a cylindrical waveguide of an arbitrary cross section which is bounded by

PEC or PMC walls, which is filled by linear lossy non-homogenous anisotropic dielec-
trics described by the permittivity, permeability and electric conductivity tensors and
which contains arbitrary metallic parts. If a harmonic wave is assumed then the vectorial
wave equation can be expressed in the form

( )∇ × ⋅ ∇ × + ⋅ − ⋅ =−µ ε σ1 2E E E Js s s ( 3.1 )

Here, E is the electric intensity vector, J denotes the source current density vector, s is
the angular complex frequency, ε, µ and σ are permittivity, permeability and electric
conductivity tensors respectively.

Vectors in (3.1) are split into transversal and longitudinal components. Then, the
relation is multiplied by the complex conjugate electric intensity vector and is integrated
over the waveguide cross section. Applying Green's theorem and considering the
boundary conditions yield an original functional which can be shown to be variational.

Now, the waveguide cross section is divided into triangular FEs, transversal electric
field components are approximated in terms of vectorial edge FEs and longitudinal one is
approximated in terms of nodal FEs [6]. Approximations are substituted into functional
which is then minimised with respect to the z-dependent approximation coefficients.
Applying Laplace transform to the produced matrix equation with respect to the
longitudinal component z yields

( ) ( ) ( )Y H Xγ γ γ= ,s ( 3.2 )
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with the column vectors of input and output spatial spectra X and Y respectively and
with the transfer function of the analysed structure H.

The output signals' spatial spectra Y can be expanded by the Taylor's series about the
complex propagation constant γ0 and the transfer function between the excitation point
and the output one Hout,exc(γ,s) can be approximated by the fractional function

( )
( )

( )
H s

a s

b s
out exc

l
l

l

L

k
k

k

K, ,γ
γ

γ
=

+

=

=

∑

∑
0

1
1

( 3.3 )

with the complex propagation constant γ and with the complex frequency s.

If the Taylor’s expansion of output spatial spectra

( ) ( )Y Mγ γ γ= −
=

∞
∑ n

n

n
0

0
( 3.4 )

and the fractional function (3.3) are substituted into (3.2), if a white noise excitation in
the sense of spatial spectra is assumed and if coefficients at the same powers of γ are
compared then relations for computing coefficients of the fractional function are ob-
tained.

The derived relations can be now used for the complex propagation constant hopping
which provides approximation of the transfer function in the interval of interest <γmin,
γmax> for the given complex frequency s. Propagation constants, by which wave can
propagate on the given frequency along the analysed structure, are determined by poles
of Hout,exc .

3.2 Conclusions
The original application of the CH to the FE analysis of shielded waveguides has

been described. The analysis come from an originally derived functional which exhibits
variational behaviour for trial fields fulfilling Maxwell's equations. The functional is
identical with the new variational formula of I. Huynen and A. Vander Vorst when given
conditions are met.

Functionals are solved in terms of hybrid nodal-edge FEs and CH is applied to the
resultant matrix equation. The technique is based on the expansion of the kernel of the
eigenvalue equation to the set of low-order fractional functions. Then, eigenvalues can be
easily found by computing poles of low-order expansion functions.

Obtained results shows good accuracy, simple programming and low CPU costs.
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4 Finite-element analysis of open structures

The FEM cannot be directly used for the analysis of open waveguiding structures
because the analysed area has to be bounded by the surface of known boundary condi-
tions [13] [14]. Therefore, if an analysis of an open structure is required then the FEM
has to be completed by an additional technique which converts the open problem to a
closed one. At the present time, perfectly matched layers (PML) are most frequently used
[17].

PML can be understood as an artificial lossy material which efficiently attenuates
waves falling to it and which exhibits no reflections for all frequencies, angles of inci-
dence and polarizations [17].

In this chapter, a real spatial mapping, which transforms an infinite space into a finite
one [15], is introduced into Maxwell's equations. By this way, a layer, which surrounds
an open longitudinally homogenous waveguide and which efficiently attenuates
transversally propagating evanescent waves, is created. Moreover, the introduced spatial
mapping is interpreted as a PML based on the real stretch of coordinates [17] and on a
lossles anisotropic layer.

4.1 A real spatial mapping interpreted as a PML
Assume that electromagnetic field of an open isotropic waveguide is going to be

analysed. The infinite space surrounding the structure is divided into an inner region, in
which the detail information about the EM field is required, and an outer one, which is
mapped into a layer of finite thickness [15]

( )
′ = −

−
> =m a R

a R
m

a m x y zm m
m m

m
1

1
2

, , ( 4.1 )

The mapping (4.1) is invariant to the border between the inner and outer region Rm
and the infinity is "shifted" to the distance amRm. Therefore, the area of interest can be
imagined to be surrounded by a layer of the relative thickness am which replaces the
original infinite space. Since the evanescent waves are supposed to be zero in the infinity,
the external surface of the layer can be covered by PEC or PMC walls.

If electric and magnetic intensity vectors are expressed in terms of primed coor-
dinates then Maxwell’s equations have to be rewritten using the modified del operator

∇ = ′
′
+ ′

′
+ ′

′
=

′
+

′
+

′a
x y z

x
x x

y
y y

z
z z s x s y s z

x y z x y z
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

1 1 1 ( 4.2 )

where

( )
( )

s
a R

a R m
m x y zm

m m

m m

=
−

− ′
=

1 2

2 with , ,
( 4.3 )

are obtained from (4.1). If a primed coordinate approaches the border between the inner
and outer region Rm then sm is a real number depending on the relative thickness of the
surrounding layer am. If a primed coordinate approaches the external surface of the layer
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amRm then sm converges to infinity. If an evanescent plane wave shall be attenuated in
direction m' then the condition sn = 1 for all n  ≠ m has to be fulfilled to guarantee no
reflections at the interface Rm. Since n = n' and ∂n'/∂n = 1 if no mapping is applied to
directions n  ≠ m', the above condition is fulfilled and no reflections appear at the internal
surface of PML. The amplitude decay at the m' direction is then described by the
following relation

( )ψ ψ ψ= − ′′ ′ = ′ ′0 exp ,k s mm m with E H ( 4.4 )

Here, km'' is the attenuation constant of the evanescent wave falling to the PML in m'
direction.

It is obvious (4.4) that the attenuation of the evanescent wave is increased by the
factor sn in the PML. The factor sn equals 1/(an-1) at the inner border of PML and con-
tinuously grows to infinity at the external surface of PML which models well the PEC or
PMC coverage of the layer.

Following the intellectual line of [17], transformed space can be considered as an
anisotropic layer described by space-dependent permittivity and permeability tensors and
with physical fields replaced by scaled ones.

4.2 Conclusions
The original perfectly matched layer based on the real spatial mapping is described in

this chapter. The PML is shown to efficiently attenuate evanescent waves, and therefore,
it can be adopted for the FE analysis of open microwave transmission lines.

The presented PML exhibits high attenuation ability. That is why the space surroun-
ding the open waveguide can be minimized, and therefore, the FE analysis of the struc-
ture shows high efficiency.

Functionality of the proposed method has been verified by computing complex pro-
pagation constants of the dominant mode of the open microstrip line and open image
line. Obtained results have exhibited good agreement with other methods. Among results,
no spurious solutions have been observed.
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5 Conclusion

In the framework of the presented theses, the so far development of FE techniques for
the analysis of general, longitudinally homogenous microwave transmission lines have
been reviewed and originally extended. The analysed structures could be both shielded
and open, both lossy and lossles, they could exhibit arbitrary non-homogenity and
anisotropy.

The developed FEM for the analysis of shielded structures has come from the func-
tional derived by I. Huynen and A. Vander Vorst. In this functional, trial fields were
approximated in terms of vectorial hybrid nodal-edge FEs and the functional was mini-
mized with respect to approximation coefficients. The resultant matrix equation has been
shown to equal the Galerkin's solution.

Since accuracy of the FE solution is significantly influenced by the FE mesh covering
the analysed structure, the detailed discussion has been devoted to meshes. Many various
meshes have been proposed and their quality has been tested by the method based on the
reaction concept and by comparing FE results with analytic-model ones. Then, the FE
mesh optimization procedure based on the non-linear random search algorithm has been
proposed and it has been shown to behave as an artificial neural network. Thanks to the
introduced mesh optimization, the relative error of the FE solution was reduced to the
level of few per cent.

Solution of the generalised eigen-value problem is the most time-consuming part of
the FEM, and therefore, the eigen-problem has been replaced by the CH procedure.
Thanks to the described replacement, computational requirements of the method have
been significantly reduced.

The developed CH techniques have come from an original functional which has been
minimized in terms of nodal-edge FEs. Minimizations of the functional has yielded a
matrix equation which has presented a waveguide as a linear system with a given transfer
function. Observing resonances of the transfer function has revealed complex
propagation constants which could appear on a given frequency.

Since the classical FEM can be applied to the analysis of shielded structures only, a
special attention has been paid to the analysis of open waveguides using a special spatial
mapping. The mapping has been shown to behave as a PML surrounding the structure.

The use of the developed algorithms in the teaching process seems to be the other
very interesting topic which should be discussed. This discussion was done in the habi-
litation and it was missed here because of the shortage of place.

The presented work has tried to cover all the aspects of the FE solution of micro- and
millimeter-wave transmission lines, to review them and to extend them by an original
way.
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Obsahem habilitační práce „Full-Wave Finite-Element Analysis of General Micro-
wave Waveguides“ bylo vytvořit kritický přehled dosud vyvinutých numerických metod,
založených na konečných prvcích, a sloužících pro analýzu podélně homogenních mik-
rovlnných vedení. Na základě zjištěných nedostatků byly tyto metody originálně rozvi-
nuty. Důraz byl přitom kladen na obecnost vyvíjených postupů - algoritmy měly umož-
ňovat analýzu stíněných i otevřených, ztrátových i bezeztrátových, isotropních i neiso-
tropních lineárních struktur.

Základní metoda vychází z funkcionálu I. Huynenové a A. Vander Vorsta, který po-
pisuje rozložení elektromagnetického pole v mikrovlnném vedení. Složky pole byly
v tomto funkcionálu aproximovány pomocí hybridních hranově-uzlových konečných
prvků a funkcionál byl minimalizován vzhledem k neznámým aproximačním koefici-
entům. Byla tak získána maticová rovnice, jejíž tvar byl shodný s rovnicí, produkovanou
Galerkinovou metodou.

Jelikož přesnost metody konečných prvků je výrazně ovlivněna kvalitou použité sítě
konečných prvků, byla detailní diskuse věnována i této otázce. Bylo navrženo několik sítí
a jejich kvalita byla testována pomocí konceptu reakce a pomocí srovnání výsledků
konečných prvků s výsledky, produkovanými metodou analytického modelu. Poté byl
navržen algoritmus optimalizace sítě, založený na nelineárním náhodném hledání, a navíc
bylo ukázáno, že lze tento algoritmus považovat za umělou neuronovou síť. Díky
zavedené optimalizaci byla minimalizována chyba, produkovaná metodou.

Jelikož nejvíce výpočetního času spotřebovává u metody konečných prvků řešení
zobecněného problému vlastních čísel, byla věnována detailní pozornost i této otázce.
Problém byl řešen hybridizací metody konečných prvků s metodou komplexního přeska-
kování. Tím byla nahrazena nutnost řešit zobecněný problém vlastních čísel výpočtem
soustavy lineárních rovnic, jenž spotřebovává mnohem méně času. Přesnost metody je
pouze nepatrně nižší nežli je tomu u klasického přístupu. Cenou, kterou musíme za větší
rychlost výpočtu zaplatit, je nemožnost získat informaci o rozložení pole (metoda
produkuje pouze komplexní konstanty šíření vidů, jež mohou ve struktuře vzniknout).

Jelikož klasická metoda konečných prvků může být aplikována pouze na stíněná
mikrovlnná vedení, byla pozornost věnována i otázce možné analýzy otevřených struktur.
Na otevřené vedení byla aplikována speciální prostorová transformace, u níž bylo
dokázáno, že se chová jako dokonale přizpůsobená vrstva, a která výrazně zefektivnila
proces analýzy díky přesunutí nekonečna, v němž je pole nulové, do konečné vzdálenosti
od analyzované struktury.

Lákavým tématem k diskusi je rovněž možnost použití vyvinutých algoritmů ve vý-
uce. Této otázce byla věnována pozornost v habilitační práci, avšak v těchto tezích ne-
byla vzhledem k nedostatku místa tato otázka diskutována.
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