
BRNO UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering and Computer Science

Department of Computer Science and Engineering

METHODS FOR DESIGN
OF AN OBJECT ORIENTED DATABASE SYSTEM

Ing. Karel Obluk

Supervisor: Prof. Ing. Jan M. Honzík, CSc.
Opponents: Prof. Ing. Tomáš Hruška, CSc.

Prof. Ing. Jiří Šafařík, Ph.D.

– 1 –

TABLE OF CONTENTS

1 Introduction ... 3
2 State of the Art... 3

2.1 Object model and Persistence... 3
2.1.1 Object model.. 3
2.1.2 Object Identity ... 3
2.1.3 Logical Storage Model .. 4
2.1.4 Physical Storage Model ... 4

2.2 Garbage Collection ... 4
2.3 Active Rules.. 5
2.4 Transactions.. 5

2.4.1 Correctness Criteria ... 6
2.4.2 Selected Transaction Models... 6
2.4.3 Workflow Models .. 7

2.5 Interoperability ... 8
3 Objectives .. 8
4 Methods ... 9
5 Main Results ..10

5.1 Events ...10
5.1.1 Events: Integral Part of the Object Definition...................................10
5.1.2 Flexibility and Extensibility ..10
5.1.3 Gains ..11

5.2 Database Areas and Object Deltas ...11
5.2.1 Database Areas ..11
5.2.2 Object Deltas..11
5.2.3 Gains ..12

5.3 The SCAT Transaction Model ...12
5.3.1 Disadvantages of the Workflow Model...12
5.3.2 The SCAT Transaction Model ..13
5.3.3 Gains ..13

5.4 Extensibility and Scalability...13
6 Conclusion ...14
Shrnutí..16
References..18
Publications..21

– 3 –

1 INTRODUCTION
During the last decade data management technology has entered a brand

new world of applications like CAD/CAM, GIS, multimedia and others that
pose different requirements on the database management system. Moreover,
even business applications now require more sophisticated technologies, such
as active rules support, distributed management or data mining. The object-
oriented technology is one of the major candidates to fulfil all the requirements
posed by these applications. In this work I summarize various methods used
for the design of object-oriented database systems and I also propose some
new methods and algorithms, mainly in the area of active rules processing and
transaction models.

2 STATE OF THE ART

2.1 Object model and Persistence

2.1.1 Object model
One of the most important object model concepts is the support for multiple

type objects. From the modeling perspective, this comports best with the
reality and makes it possible for an object instance to play different roles
during its lifetime. This support allows for some very useful constructs and it
is also quite important for some advanced features. Closely coupled with the
object model issues is the problem of object persistence. Two most noticeable
features that distinguish object oriented database systems from object-oriented
languages are persistence independence and persistence orthogonality.

2.1.2 Object Identity
Object identity is one of the fundamental properties of an object. It identifies

each object instance, all references are expressed by use of object identity. It is
used also for collections, a complex object modeling and support functionality
like indexes. The operation of dereference, i.e. the transformation of object
identity to the object instance (its data) itself has to be designed very carefully.
Implementation of this transformation has a big influence on the performance
of the whole database system and any inefficiency in object dereference can
dramatically impact all other components. The design and implementation of

– 4 –

object identity has a lot in common with an object allocation and clustering.
There are basically two possible implementations of object identity – logical
and physical.

2.1.3 Logical Storage Model
An object is essentially a conceptual entity and should provide high

independence of the physical data. A user of the logical object (i.e. usually a
programmer of an application) should not have to take into account the
physical format of the object data and the mapping necessary to store the data
on the disk. This mapping problem is very well known from all database
systems, no matter if they are relational or object. In object-oriented databases,
however, there exist two kinds of relationships: between types and between
object instances – composition. Object data can be grouped in their physical
containers together to provide better access performance based on type
relations or on composition relation. This grouping is usually called object
clustering. There are basically three storage models for object clustering: the
Decomposition Model, the Normalized Storage Model and the Direct Storage
Model. Quite often, a mixture of two models is used to achieve best results.

2.1.4 Physical Storage Model
Independently of the logical storage model and implementation of the object

identity, there are two basic ways of physical storage implementation. The
server that transfers whole data pages to the client is called page server. Page
server groups object data in pages and those pages are usually the basic units
for caching and locking algorithms. If, on the other hand, the server provides
also query optimization and an object manager, it is able to provide exactly the
object instance that the client required. Those servers are usually called object
servers. Currently, it is still not clear which strategy is better. Experience from
various systems is different and whilst some authors argue that page server
architecture is better, others claim that object servers provide higher
throughput. There still exist too few implementations of object-oriented
database systems to support either of these two opinions.

2.2 Garbage Collection
It is very well understood that any object instance has to be created first. It

then exists in the database because one of the main object-oriented database

– 5 –

properties is the ability to support persistence. But when should such instance
be deleted? There are generally two methods – explicit object destruction and
automatic garbage collection. While explicit destruction is quite
straightforward from the implementation point of view, the automatic garbage
collection is much more complicated.

This method assumes that the object instance should exist until the last
reference to it is removed. Once the last reference is broken, the object
instance should be deleted automatically. This is very convenient for an
application programmer and an end user as the system automatically collects
the garbage, that is, removes all objects instances that are no more of any use.
However, efficient implementation of automatic garbage collection is a very
difficult task, mainly in database systems that support distributed processing. I
describe several methods that are used most often and in more detail I discuss
the method named GC consistent cuts that was proposed for the O2 object-
oriented database system.

2.3 Active Rules
Another important area of an object oriented database system is the support

for active rules processing. Most of the current ECA system implementations
consist of a separate engine built on top of an existing system. The ECA
engine monitors events in the database and if a specified condition is met, the
corresponding action takes place. The vast majority of the ECA systems
concentrate on improving the condition evaluation engine and optimisation of
the ECA systems performance.

2.4 Transactions
One of the most important areas of a database system is the transaction

processing support. In contrast to relational database systems, object oriented
databases have different needs and requirements. This crucial topic is covered
in a great detail.

A transaction is an execution of a set of programs that access shared
recoverable resources (e.g., data items). The concurrency transparency and
failure atomicity of transactions are due to four properties – Atomicity,
Consistency, Isolation and Durability. Together, these are commonly referred
to as the ACID test for transactions.

– 6 –

2.4.1 Correctness Criteria
Correctness criterion indicates the notion of correctness that is employed to

achieve a certain degree of concurrency transparency in the system. Full
concurrency transparency means that each user transaction could be repeated
with the same results. This could be achieved only if two concurrent
transactions do not interfere and the implication is that the concurrent
execution does not compromise database consistency. There are basically two
correctness criteria: serializability-based and nonserializable.

Generally, there are two different ways of achieving serializability, based on
the definition of “equivalence” between two histories. The two types of history
equivalence that have been proposed are view equivalence and conflict
equivalence. Since determining if two histories are view equivalent has been
shown to be NP-complete problem, for practical reasons we are only
concerned with conflict equivalence.

There are a number of serializability-based correctness criteria that differ in
how they define a conflict. We concentrate on three criteria discussed in the
literature: commutativity, invalidation and recoverability. Commutativity states
that two operations conflict if the results of different serial executions of these
operations are not equivalent. Invalidation defines a conflict between two
operations not on the basis whether they commute or not, but according to
whether or not the execution of one invalidates the other. The conflict relation
established on the basis of recoverability seems to be identical to that
established by invalidation, however there is no formal proof of this
equivalence.

Serializability requires that the execution of each transaction must appear to
every other transaction as a single atomic step. This requirement may be
unnecessarily strong for many applications. The semantic information, in this
case, is the application semantics rather than the data semantics and it could
be used to weaken serializability and achieve a higher level of concurrency.

2.4.2 Selected Transaction Models
Transaction models, in one sense, specify the user interface to the

transaction management system (TMS). The user is required to write the
transactions according to the model restrictions. In another sense, the
transaction model determines the capabilities of the TMS. Classification of the

– 7 –

transaction models could be based on the transaction structure or on the object
structure. In this paper, we will use the transaction structure classification
although there exist many extensions to each model and some of them simply
do not fit strictly in any category.

According to this classification, we distinguish four broad categories in
increasing complexity: flat transactions, closed nested transactions, open
nested transactions such as sagas, and workflow models which, in some cases,
are combinations of various nested forms.

2.4.3 Workflow Models
The most general transaction model is usually referred to as a workflow

model, sometimes called also an ATM model – advanced transaction model of
activities. The traditional ACID test properties are not sufficient or they are
rather too restrictive for modern OODBMS systems. Although they are quite
sufficient for modeling relatively simple and short activities, they are much
less appropriate for modeling longer and more elaborate activities. It has been
argued that even the nested transaction models are not sufficiently powerful to
model current business activities. Therefore, new models, which are
combinations of open and close transactions, have been proposed. The name
workflow model is an answer to arguments that these cannot be properly called
transactions since they break the ACID properties which are assumed to be the
basic rule of all transactions.

A workflow model is modeled as an activity, which has open nesting
semantics in that it allows other concurrent activities to see its results. The
components of an activity can be either other activities or closed nested
transactions. The components of a closed nested transaction can be only other
closed nested transactions. The structure of an activity can be represented as a
directed graph, although some models restrict it to be a hierarchy.

Since activities have the open nested semantics, it is necessary to define
compensating transactions that semantically undo the effects of an aborted
activity. However, it is not always possible to define a compensating
transaction for an activity, mainly in the case of activities that interact with the
real world (bank transfers, mail etc.).

– 8 –

2.5 Interoperability
Interoperability is becoming a very important issue nowadays when

almost every computer is connected to the Internet or at least to a local area
network (LAN). On the one hand, the object-oriented database systems with
their encapsulation and abstraction capabilities may vastly assist in
providing interoperability. On the other hand, they add to the complexity
being yet another form of data repository. There is a number of ways that
object-orientation can play a role in assisting interoperability. A common
approach is to define a common object model that can be used to represent
various objects from other repositories. A popular approach is to define an
object model that is powerful enough to model others. Another alternative is
to use composite objects that integrate data from various data sources.

3 OBJECTIVES
Main objective of this work was to summarize existing methods for design

of an object oriented database systems and propose some new methods and
extensions to the existing ones. These new approaches should improve the
overall quality and usability of an object oriented database system with main
focus on general information systems as opposed to specialised information
systems (i.e. GIS, CAD, CAE and similar). The new features should allow
both for better application development environment and for greater user
friendliness.

Therefore, three important areas of an object oriented database system were
targeted:

1. Event system – improve its modelling capabilities and reduce
maintenance obstacles, mainly in distributed environment

2. Data persistence – improve user friendliness, allow for some
common tasks that users often require

3. Transaction support – extend the workflow model so that it is more
suitable for general IS applications and try to reduce its drawbacks as
much as possible

Another significant topic is the three-tier architecture support. Quite many
systems overlook the security issues tied to the data transmitions in a
heterogenous network. Moreover, extensibility very often does not mean that

– 9 –

really any part of the system could be extended and support for new
technologies could not be added to existing systems.

The author gained practical experience in design of both a relational and an
object oriented database system. Some of the methods and approaches
described in this work were proposed during the development of an OODBMS
G2; extensions to the transaction system have their origin even back in the
relational system G1.

The proposals in the area of data persistence utilize the input from users of
the database systems VEMA and practical experience with various other
database systems.

4 METHODS
There was no one universal method that could be used to study and evaluate the

various approaches in all areas of this work. For many parts of this work it was
necessary to collect user input and utilize experience achieved during development
and usage of other systems. However, as most of current information systems are
built using relational technology, it was necessary to combine knowledge of object-
oriented approaches to software development together with the latest advances in
database technology. For some areas it was possible to make use of theories and
methods that are equally applicable to relational and object-oriented approaches.

For description of transactional properties and the workflow model I used
the ACTA framework. Chrysanthis and Ramamritham originally proposed it
for description of the Saga model properties. However, it is generally accepted
as a very good formal apparatus for description of transaction systems in
general.

Other areas of the work, like the event model, database areas and usage of
object deltas, stem mainly from the user input together with facts obtained
from various open sources. In this context, there is one fact that is really worth
noting. Most books and papers describe what the designers and programmers
think about what the users need and want and their assumptions and
conclusions in this area are very often incorrect. On the other hand, the same
books and papers describe very well what really was implemented or proposed
and as such could be assumed as reliable sources. Quite the opposite, the users
frequently want something completely different from what they are talking
about. Moreover, it is interesting that very often this is not because of
insufficient skills of the end user but rather because the user is “lying”. The

– 10 –

user is simply feeling shame that she wants something unusual, old-fashioned
or contrariwise that she does not want something modern that all others want
or already have. This symptom has to be seriously taken into account when
collecting and evaluating the user input. It is necessary not only to simply ask
the user but also to check all the answers several times and make sure that the
conclusions are correct.

5 MAIN RESULTS

5.1 Events

5.1.1 Events: Integral Part of the Object Definition
I describe the role of active rules in a database system and I propose a new

concept of active rules definition and processing system. In the proposed
model, the object definition contains also definition of all possible events;
corresponding actions are part of the object implementation. The system
contains automatic support for some typical events like handling the inverse or
is-part-of relation; other events can be added freely. The most important thing
is that the model captures all the object behavior including that in irregular, or
unusual conditions; and the object implementation contains all code that the
object requires. This is very important in a distributed environment where the
object “takes with itself” all the code it needs to behave properly and keep its
state consistent. Moreover, if the definition or implementation of an object
changes, all events and corresponding actions can be changed as well and at
the same time.

5.1.2 Flexibility and Extensibility
One common argument against this model is its potential lack of flexibility

when it comes to definition of business rules. However, I show that this need
not be true. Using the concept of inheritance, the proposed model achieves
both high flexibility and extensibility. Moreover, rules can easily be defined
and implemented in the same development environment as the whole
application; therefore, it is not necessary to create any specialized tools. The
only problem is with the introduction of new rules in an existing database
where already exist instances of objects that should be subclassed. This is
easily solved in a system that supports multiple type objects, where the new

– 11 –

type can be added to existing object instances. In addition, the existing rules
can easily be discarded by a simple removal of the type information from
existing object instances. Systems that do not support multiple type objects
have to cope with this problem by changing the type of all existing object
instances, which can be quite time-consuming operation. This could be
considered as the only serious disadvantage in systems that do not support
multiple type objects and where the rules change quite frequently.

5.1.3 Gains
The most important advantage of the proposed event system is the

improvement of modeling capabilities. At the same time, installation and
maintenance requirements are reduced, mainly in distributed systems and
heterogeneous environments. This notion of events that are part of the object
model is one of the original contributions of this work; its core part was
presented at the MOSIS ’99 conference.

5.2 Database Areas and Object Deltas

5.2.1 Database Areas
The idea of database areas is relatively simple and is very similar to a widely

used concept of namespaces in programming languages. The motivation is
purely practical and its main purpose is to help to an end user and to improve
the user-friendliness of the whole database system. Database areas have no
strict boundaries, they are not restricted by storage allocated to them or any
other placement specification. They could be viewed upon as a kind of
collection that is maintained automatically by the system. Each object instance
is marked as a member of a certain database area. The database area is then
recursively defined as a collection of all object instances that are marked as
members of that area. The definition of database areas employs multiple
inheritance, so that a new area can be defined as an ancestor of one or more
existing areas. An end user can define a new area any time they need and
select the active area.

5.2.2 Object Deltas
In a multiversion database, each object state is stored as a new value. All

states of one object instance are linked together and the system can return to

– 12 –

older values. This offers an end user the possibility of accessing older versions
directly, enabling object history inspection, and comfortable undo operations.
It also provides very good support for transaction processing. The new state
also does not have to be stored directly but it can rather be stored as a
difference from previous value. Another area where object deltas can be used
is the ECA rules processing in active databases, where the object modifier can
have access to the previous object state. This idea was proposed independently
for the G2 database system. The last but not least interesting feature of object
deltas is the possibility to offer various views of the database to the end user,
based on the time scale. For this purpose, we propose a concept of object
generations. Object generation is defined by a time span in which the
particular value is valid. Each object can have one or more generations and it is
possible to access either the last one or any of the older ones. However, there
are still some unsolved issues with object generations that have yet to be
solved. The main problem is that of inter-generation object relations.

5.2.3 Gains
The concept of database areas together with object generations represents a

quite novel approach and together with the usage of object deltas can improve
the overall functionality, efficiency and user friendliness of the whole database
system. This concept was proposed during the development of OODBMS G2
and I took part in its design and implementation. The usage of object deltas
was designed independently of other similar solutions; the idea of database
areas and object generations is completely new.

5.3 The SCAT Transaction Model

5.3.1 Disadvantages of the Workflow Model
The workflow model (ATM) has many properties that are required for

object-oriented database systems and modern applications; however, the
problem of compensating transactions cannot be overlooked. Sometimes, it is
very difficult to specify a compensating transaction for an open activity. If
compensating transactions are parts of the object model, as proposed in this
work, some problems may be solved. But still relaxing the axiom of
transaction isolation is a big issue. Therefore, it is necessary to provide some
level of isolation for certain activities.

– 13 –

5.3.2 The SCAT Transaction Model
The proposed model tries to cope with this issue. Its main idea is to modify

the workflow model slightly by allowing the activity itself to control if it is
affected by other activities. In the proposed Self-Controlling Activities
Transaction Model we define two kinds of activities. Isolated Activity is an
activity that allows other activities to see its results but it does not use partial
results of other activities. Isolated activities are always independent on all
other activities. Open Activity is the “traditional” activity of the workflow
model. It allows other activities to see its results and it uses results of other
(committed) activities.

Other then this, the basic workflow model is unmodified. That means that
activities may contain other activities or closed nested transactions.
Components of a closed nested transaction may be only other closed nested
transactions. The structure of an activity can be represented as a directed
graph, although it seems to be quite sufficient to restrict it to be a hierarchy.

5.3.3 Gains
The SCAT method is one of the main contributions of this work. On

practical examples I demonstrate its advantages and the benefits for an object-
oriented database system and information systems built on top of it. The
original idea of this concept was presented at the conference Objekty ’96, its
core part was also presented at the international conference MOSIS ’98.

5.4 Extensibility and Scalability
Most current applications built upon relational or object-oriented database

system use the client – server architecture. However, this model has several
drawbacks. In the first place, the client – server model does not scale well.
Secondly, the server is a critical spot of the whole system. Object orientation
offers much better apparatus to overcome all these shortcomings. Because of
location transparency, the objects can easily be distributed to different
processors and systems. Therefore, it is possible to distribute the application
processing to another system or even multiple systems. This is usually referred
as a three-tier architecture, meaning client – application – server layers.
Sometimes, it is also called multi-tier architecture to point out that the
application layer does not have to be concentrated on one processor or
computer system only.

– 14 –

Although the main focus of a database system is in the database engine
itself, front-end considerations should not be overlooked as they can influence
not only the overall notion of the system but also its reliability, efficiency and
extensibility. In the work, I describe an approach that was used in the
OODBMS G2. This system introduces the concept of presentation
environment and Abstract Dialogue Elements, that enables a high degree of
flexibility and extensibility. Both new presentation environments and abstract
dialogue elements could easily be created and added to an existing system.
This allows for a great extensibility and possibility to support new
technologies that were not known in the time when the original system was
created. The concept of independent presentation definitions also guarantees,
that the user receives only the data they are permitted, thus maintaining a high
degree of security. This is quite often an overlooked aspect in object oriented
database systems, where usually whole object instances are sent to the client,
even though only certain properties of an object are necessary.

6 CONCLUSION
In this work, I tried to summarize main methods and trends in the object-

oriented database development. Having backed up with experience from
development of the object-oriented database system G2, I proposed some
novel methods and features, which, as I believe, can greatly enhance properties
of an object-oriented database system. I assume the main contribution of this
work to be the concept of event processing and the SCAT transaction model.
In addition, I took part in design of some principles that were designed for the
OODBMS G2 and that were described in this work, too. The most important
are the ideas of object deltas, database areas and object generations. To my
best knowledge, there exists no object-oriented database system exploiting
these features. In addition, the idea of a multiversion database in the context of
the transaction system support is to my best belief novel and has not been used
yet in any commercial OODBMS implementation.

However, there are still many topics that deserve further studies and
implementation considerations. In future, I would like to concentrate on further
work on the proposed event system. There still exist some unsolved issues,
mainly with respect to implementation. I would also like to work more on the
concept of object generations that has still some important issues unsolved.

– 15 –

To summarize, I believe this work to be a contribution to the wide topic of
the object-oriented database systems implementation. Not only does it
summarize some of the most important and known design methods from all
areas of database design, but it also offers some new directions and ways that
could improve the quality and usefulness of the object-oriented database
systems.

– 16 –

SHRNUTÍ

Nové aplikace z oblasti CAD/CAM, grafických informačních systémů nebo
multimediálních aplikací, ale dnes již i klasické obchodní aplikace kladou na
databázové systémy nároky, které se s pomocí tradičního relačního modelu
vyplňují stále obtížněji. V poslední době je odbornou veřejností více
akceptován fakt, že technologie objektově orientovaných databází by mohla
být správnou volbou pro následující roky. Předkládaná práce popisuje metody
používané v současné době při návrhu OO databázových systémů. Kromě
shrnutí a zhodnocení používaných postupů obsahuje také některé nové metody
a algoritmy zejména z oblasti aktivních pravidel a transakčního zpracování.

První část je věnovaná objektovému modelu a problémům dědičnosti.
Rozsáhlejší diskuse je soustředěna zejména na podporu vícetypovosti, která
přináší některé velmi užitečné vlastnosti a jejíž podpora je důležitá i pro
některé metody a postupy navrhované v dalším textu. Kromě nesporných kladů
rozebírám i některé problematické stránky vícetypovosti a možné varianty
řešení. S objektovým modelem souvisí také otázky persistence, které jsou
rozebrány zejména v kapitole 4. Vedle základního přehledu o možných
metodách implementace objektové identity a modelu uložení dat se věnuji
důkladněji také automatickému rušení objektů. V souvislosti s možnými
přístupy k uložení dat diskutuji také dosud ne zcela vyjasněnou otázku volby
mezi stránkovým a objektovým serverem, na kterou existují různé názory
podpořené zcela rozdílnými praktickými zkušenostmi.

Další rozsáhlejší téma jsou databázové oblasti, rozdílové objekty (object
deltas) a generace objektů. Koncepce databázových oblastí a generací objektů
představuje nový přístup ve správě objektů a společně s metodou ukládání
diferencí objektů znamená, dle mého názoru, významný přínos v práci s daty a
v uživatelském komfortu. Na návrhu a implementaci těchto metod jsem se
spolupodílel v rámci řešení objektově orientovaného databázového systému
G2. Metoda ukládání diferencí objektů byla navržena a rozpracována nezávisle
na jiných podobných řešeních; koncepce databázových oblastí a generací
objektů je zcela původní.

– 17 –

Jedním z prvků, které by neměly v moderním databázovém systému chybět,
je podpora tvorby aktivních pravidel. Objektové databáze pochopitelně nejsou
výjimkou. Na základě praktických zkušeností s vývojem relačních i
objektových databázových systémů předkládám v kapitole 3 netradiční pojetí
aktivní databáze, které zahrnuje aktivní pravidla přímo do objektového
modelu. To umožňuje jednak výrazné zvýšení kvality datového modelu a
současně dramaticky snižuje nároky na instalaci a údržbu, a to zejména
v distribuovaných systémech. Rozsáhlá diskuse je věnována implementačním
problémům souvisejícím s navrhovaným modelem aktivních pravidel, otázkám
pružnosti a rozšiřitelnosti a v neposlední řadě i jejich správě. Navrhovaný
systém je zcela původní, jeho koncepce byla prezentována na konferenci
MOSIS ’99.

Další velmi důležitou oblastí databázového systému je podpora transakčního
zpracování. Oproti relačním databázím, objektově orientované databáze kladou
na transakční systém jiné požadavky. Tomuto rozsáhlému tématu se věnuji
v kapitole 5. Kromě výchozího popisu transakcí a jejich stručné kategorizace
využívám aparát rámce ACTA pro popis některých podstatných vlastností
transakcí a jejich vazeb. Na praktických příkladech pak demonstruji problémy
hledání kompenzačních transakcí. Objektový model sice nabízí řešení
některých problémů, se kterými se potýkají relační databáze, ani on však není
schopen pokrýt všechny situace. Proto navrhuji modifikaci transakčního
modelu aktivit – metodu SCAT (Self Controlling Activities Transaction
Model). Tato modifikace umožňuje aktivitám řídit stupeň jejich izolace. Tak je
možné řešit jednak problémy spojené s nemožností nalezení kompenzačních
transakcí pro určité aktivity, jednak obecné problémy související
s požadavkem izolace aktivit a zaručení opakovatelného čtení. Tato metoda je
zcela původní a považuji ji za jeden z hlavních přínosů mé práce. Základní
teze této metody byly publikovány na konferenci Objekty ’96, na
mezinárodním fóru byla prezentována na konferenci MOSIS ’98.

Závěrečná část práce shrnuje některé zajímavé metody z oblasti
distribuovaného zpracování, replikace a provozu v heterogenních sítích.

– 18 –

REFERENCES

1. Özsu, M. T., Dayal, U., Valduriez P. (ed.). Distributed Object Management. San
Francisco: Morgan Kaufmann, 1994.

2. Carey, M. J., DeWitt, D. J. Of Objects and Databases: A Decade of Turmoil. In
Vijayaraman, T. M., Buchmann, A. P., Mohan, C., Sarda, N. L. VLDB’96.
Bombay, India: Morgan Kaufmann, 1996, p. 3-14.

3. Cattell, R. G. G., Barry, D. The Object Database Standard: ODMG-2.0. San
Francisco: Morgan Kaufmann, 1997.

4. Alagić, S. The ODMG Object Model: Does it Make Sense? OOPSLA ’97.
Atlanta, Georgia, 1997. SIGPLAN Notices 1997, vol. 32, no. 10, p. 253-270

5. Beneš, M. Multiple Inheritance. In Hruška, T. MOSIS’98. Ostrava: 1998,
MARQ., p. 9-14.

6. Hruška, T.: Multiple Class Objects. In Hruška, T. MOSIS’98. Ostrava: 1998,
MARQ., p. 15-22.

7. Kappel, G., Retschitzegger, W. The TriGS Active Object-Oriented Database
System – An Overview. SIGMOD Record. 1998, vol. 27, no. 3, p. 36-41.

8. Meo, R., Psaila, G., Ceri, S.: Composite Events in Chimera. In Apers, P. M. G.,
Bouzeghoub, M., Gardarin, G. EDBT’96, Avignon, France, 1996. Lecture Notes
in Computer Science. 1996, vol. 1057, Springer, p. 56-76

9. Hanson, E. N., Khosla, S. An Introduction to the TriggerMan Asynchronous
Trigger Processor. In Geppert, A., Berndtsson, M. RIDS’97, Skövde, Sweden,
1997. Lecture Notes in Computer Science. 1997 vol. 1312, Springer, p. 51-66

10. Benzaken, V., Delobel, C., Harrus, G.: Clustering Strategies in O2: An
Overview. In Bancilhon, F., Delobel, C., Kanellakis, P. C. Building an Object-
Oriented Database System, The Story of O2. Morgan Kaufamann, 1992

11. Day, M. Object Groups May Be Better Than Pages. Workshop on Workstation
Operating Systems. Napa, California: IEEE Computer Society Press, 1993, p.
119-122

– 19 –

12. Liskov, B., Adya, A., Castro, M., Day, M., Chemawat, S., Gruber, R.,
Maheshwari, U., Myers, A. C., Shrira, L. Safe and Efficient Sharing of Persistent
Objects in Thor. SIGMOD ’96. Montreal, Canada, 1996. SIGMON Record 1996,
vol. 25, no. 2, ACM Press, 1996, p. 318-329.

13. Dijkstra E. W., Lamport L., Martin A. J., Scholten C. S., Steffens E. F. M. On-
the-fly garbage collection: an exercise in cooperation. Communications of the
ACM, 1978, vol. 21, no. 11, p. 966-975

14. Maheshwari, U., Liskov, B. H. Fault-Tolerant Distributed Garbage Collection in
a Client-Server Object-Oriented Database. In PDIS ’94. Austin, Texas, 1994:
IEEE-CS Press, 1994. p. 239-248

15. Maheshwari, U., Liskov, B. Collecting Distributed Garbage Cycles by Back
Tracing. PODC ’97. Santa Barbara, California, 1997: ACM Press, p. 239-248

16. Skubiszewski, M., Valduriez, P. Concurrent Garbage Collection in O2. In Jarke,
M., Carey, M. J., Dittrich, K. R., Lochovsky, F. H., Loucopoulos, P., Jeusfeld,
M. A. VLDB’97. Athens, Greece, 1997: Morgan Kaufmann, p. 356-365

17. Hulse, D., Dearle, A. A Log-Structured Persistent Store. ACSC ’96. Melbourne,
Australia, 1996. Australian Computer Science Communications.

18. Sundermaier, A., Abdellatif, T. B., Dietrich, S., Urban, S. D. Object Deltas in an
Active Database Development Environment. In Bry, F., Ramakrishnan, R.,
Ramamonaharao, K. DOOD’97. Montreaux, Switzerland, 1997. Lecture Notes in
Computer Science. 1997 vol. 1341, Springer, p. 211-228

19. Vingralek, R., Ye, H., Breitbart, Y., Schek, H. Unified Transaction Model for
Semantically Rich Operations. In Gottlob, G., Vardi, M. Y. ICDT’95. Prague,
1995. Lecture Notes in Computer Science. 1995 vol. 893, Springer, p. 148-161

20. Elmagarmid, A. K. Database Transaction Models For Advanced Applications.
San Francisco, 1992, Morgan Kaufmann

21. Schwarz, K., Türker, C. Investigating Advanced Transaction Models for
Federated Database Systems. Otto-von-Guericke-Universität Magdeburg,
Magdeburg, 1997. 58 p.

22. Tesch, T., Wäsch, J. Transaction Support for Cooperative Hypermedia
Document Authoring. ERCIM ’95. Trondheim, Norway, 1995

– 20 –

23. Muth, P., Veijalainen, J., Neuhold, E. J. Extending Multi-Level Transactions for
Heterogeneous and Autonomous Database Systems. GMD Technical Report, No.
739, Sankt Augustin, 1993

24. Rusinkiewicz, M., Klas, W., Tesch, T., Wäsch, J., Muth, P. Towards a
Cooperative Transaction Model – The Cooperative Activity Model. In Dayal, U.,
Gray, P. M. D., Nishio, S. VLDB’95. Zurich, Switzerland: Morgan Kaufmann,
1995, p. 194-205

25. Peters, R. J., Lipka, A., Özsu, M. T., Szafron, D., Muńoz, A. TIGUKAT: A
Uniform Behavioral Objectbase Management System. The VLDB Journal. 1995,
vol. 4, no. 3, p. 445-492

26. Özsu, M. T., Valduriez, P. Distributed Database Systems: Where Are We Now?
IEEE Computer. 1991, vol. 24, no. 8, p. 68-78

27. Soisalon-Soininen, E., Ylönen, T. Partial Strictness in Two-Phase Locking. In
Gottlob, G., Vardi, M. Y. ICDT’95. Prague, 1995. Lecture Notes in Computer
Science. 1995 vol. 893, Springer, p. 139-147

28. Vestenický, V. Replikace dat v distribuovaných systémech. In Merunka, V.,
Sklenář, V. Objekty’98. Praha: 1998, ČZU, p. 67-72

29. Lampa, P. CORBA. In Merunka, V., Sklenář, V. Objekty’98. Praha: 1998, ČZU,
p. 105-126

30. Snášel, V., Sklenář, V. DCOM. In Merunka, V., Sklenář, V. Objekty’98. Praha:
1998, ČZU, p. 105-126

31. Obluk, K. Active Rules in Object-Oriented Database Systems. In Hruška, T.
MOSIS’99. Ostrava: 1999, MARQ., p. 141-146.

32. Obluk, K. Metody návrhu databázového stroje pro objektově orientovaný
systém správy dat. In Merunka, V. Objekty ’96. Praha: 1996, ČZU, p. 49-59

33. Obluk, K. Transaction Support for Object-Oriented Database Systems. In
Hruška, T. MOSIS’98. Ostrava: 1998, MARQ., p. 29-36.

– 21 –

PUBLICATIONS

1. Obluk, K. Active Rules in Object-Oriented Database Systems. In Hruška, T.
MOSIS’99. Ostrava: 1999, MARQ., p. 141-146.

2. Obluk, K. Transaction Support for Object-Oriented Database Systems. In Hruška,
T. MOSIS’98. Ostrava: 1998, MARQ., p. 29-36.

3. Obluk, K. Metody návrhu databázového stroje pro objektově orientovaný systém
správy dat. In Merunka, V. Objekty ’96. Praha: 1996, ČZU, p. 49-59

4. Obluk, K.: Metody návrhu a implementace databázového stroje OO databáze.
Tvorba Software’95, Ostrava, 1995

5. Obluk, K.: Databázový stroj v objektově orientovaných databázových systémech.
Některé nové přístupy při tvorbě informačních systémů, doprovodná konference
mezinárodního veletrhu INVEX’95, Brno

6. Obluk, K.: OS/2 Warp - recenze operačního systému
Computer. 1995, no. 2, Computer Press, Brno, 1995

7. Obluk, K.: CA vidí objektově - Recenze OO vývojového prostředí CA-VO.
Computer. 1995, no. 8, Computer Press, Brno, 1995

8. Obluk, K., Honzíková, N., Honzík, J.M.: Visual Model of Controlled Respiration,
BioSignal ’94. Brno: 1994. FEECS Division, Technical University Brno,
p. 136-138
Obluk, K.: Genetické algoritmy. Softwarové noviny. 1993, Vol. 10, No. IV.

9. Havlíček, P., Krampol, R., Obluk, K.: Graphical Environment For Simulation
Models. MOSIS ’92. Olomouc, 1992

10. Obluk, K.: Knihovna pro paralelní zpracování více procesů a Modul interpretu.
In Havlíček, P., Krampol, R., Obluk, K.: Systém pro tvorbu výukových programů.
SVOČ, KIVT FE Brno, 1992

11. Obluk, K.: Grafika na počítačích PC. XX. konference uživatelů malé výpočetní
techniky, Dům Techniky ČSVTS, Ostrava, 1990

– 22 –

12. Obluk, K.: Frequency Fall Detection Using the Single-Chip Microcontroller
M68HC11. Research Report of the IAESTE Project. Department of Electrical and
Electronic Engineering, The Queen’s University of Belfast, Belfast, 1990

13. Obluk, K., Odehnal, P.: OKENA - soubor knihoven pro tvorbu uživatelského
rozhraní programů v jazyce C. SVOČ, KIVT FE Brno, 1989

14. Obluk, K., Odehnal, P.: Grafika na počítačích PC. Smluvně zajištěno vydání -
ZENITCENTRUM Beroun, 1988

15. Obluk, K.: Překladač NEVADA FORTRAN - Příručka programátora. JZD AK
Slušovice, divize kybernetiky, Slušovice, 1986

	Title page
	Table of contents
	Introduction
	State of the art
	Object model and persistence
	Object model
	Object identity
	Logical storage model
	Physical storage model

	Carbage collection
	Active rules
	Transactions
	Correctness criteria
	Selected transaction model
	Workflow models

	Interoperability

	Objectives
	Methods
	Main results
	Events
	Events: Integral part of the object definition
	Flexibility and extensibility
	Gains

	Database areas and object deltas
	Database areas
	Object deltas
	Gains

	The SCAT transaction model
	Disadvantages of the workflow model
	The CSAT transaction model
	Gains

	Extensibility and scalability

	Conclusion
	Shrnutí
	References
	Publications

