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Introduction

Language is the engine of civilisation, and speech is its most powerful and natural form.
Textual language has become extremely important in modern life, but speech has dimensions
of richness that text cannot approximate. For example, the health, sex and attitude of a person
are all naturally and subliminally communicated by that person’s speech. Such linguistic
information has social value and serves important communicative functions in our everyday
lives.

The purpose of speech is communication. There are several ways of characterising the
communication potential of speech. According to information theory, speech can be
represented in terms of its message content. An alternative way of characterising speech is in
terms of the signal carrying the message information, i.e. the acoustic waveform. Although
information theory ideas have played a major role in sophisticated communications systems,
we will consider throughout this work the speech representation based on the acoustic signal,
which has been most useful in practical applications.

The increase in application opportunities has resulted in increased interest in speaker
recognition research. Over the past three decades, a wide variety of speech processing
techniques have been proposed and speech recognition has been in the centre of attention in
the whole world. While researching into voice recognition, we found relatively little literature,
and much of what we did find consisted of highly technical fragments of research published in
journals and conference proceedings, to which most people do not have access. The purpose
of this work is to provide an interpretative overview and perspective of voice recognition
tasks and evaluation methodology. This topic is discussed in the habilitation thesis but it has
been omitted here for lack of space. It is in this context that we present our own results in
some special areas of voice recognition, e.g. disclosure of professional imitator, stressed
speech analysis, and effect of alcohol on speech.

The design of any automatic speech processing system requires a large amount of spoken data
to obtain reliable acoustic models and/or adequate language models for specific tasks. Thus
during last years the design of adequate speech databases has been an important point of
interest in the speech recognition community. Nowadays it is possible to find large and well-
defined phonetic corpora and speech databases for specific tasks for widely used languages
like English, French or Japanese [2]. For the English languages most speech corpora are
distributed by the „Linguistic Data Consortium“ (LDC). For non English languages, the
„International Coordinating Committee on Speech Databases and Speech I/O Systems
Assessment“ (COCOSDA) was established in 1990 to encourage and promote international
interaction and cooperation in the foundation areas of spoken language processing.
Unfortunately, the currently available databases do not meet the need of all research areas, so
many non-standard  test databases are still used.

The methods developed are useful not only from the technical point of view but also as a
teaching aid because the students can process and model their own speech signal using these
methods. Voice can be visualised in time and frequency domain, extracted features can be
related with speech in its original acoustic form which all help the students understand the
complex phenomena in speech signal analysis and recognition.
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1  Principles of Speaker Recognition

1.1  Speaker Recognition by Humans

People can reliably identify familiar voices. About 2-3 seconds of speech is sufficient to
identify a voice, although performance decreases for unfamiliar voices. One review of human
speaker recognition [7] notes that many studies of  8-10 speakers (work colleagues) yield in
excess of 97% accuracy if a sentence or more of the test speech is heard. Performance falls to
about 54% when duration is shorter than 1 second  and/or distorted e.g., severely highpass or
lowpass filtered. Performance also falls significantly if training and test utterances are
processed through different transmission systems. A study using voices of 45 famous people
in 2 sec test utterances found only 27% recognition in an open-choice test, but 70%
recognition if listeners could select from six choices [7]. If the utterances were increased to 4
sec, but played backward (which distorts timing and articulatory cues), the accuracy resulted
to 57%. Widely varying performance on this backward task suggested that cues to voice
recognition vary from voice to voice and that voice patterns may consist of a set of acoustic
cues from which listeners select a subset to use in identifying individual voices.

Recognition often falls sharply when speakers attempt to disguise their voices e.g., 59-81%
accuracy depending on the disguise vs. 92% for normal voices [9]. This is reflected in
machines, where accuracy decreases when mimics act as impostors. Humans appear to handle
mimics better than machines do, easily perceiving when a voice is being mimicked. If the
target (intended) voice is familiar to the listener, he often associates the mimic voice with it.
Certain voices are more easily mimicked than others, which lends further evidence to the
theory that different acoustic cues are used to distinguish different voices.

Speaker recognition is one area of artificial intelligence where machine performance can
exceed human performance - using short test utterances and a large number of speakers,
machine accuracy often exceeds that of humans. This is especially true for unfamiliar
speakers, where the training time for humans to learn a new voice well is very long compared
with that for machines.

1.2  Areas of Automatic Speaker Recognition

Speaker recognition is the general term used to include all of the many different applications
of discriminating people based on the sound of their voices. There are many terms to
distinguish the main different areas of application as follows:

Fig. 1.1  Areas of voice (speaker) recognition.
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Speaker identification aims to identify a speaker who belongs to a group of users through a
sample of his speech. In speaker identification, a speech utterance from an unknown speaker
is analyzed and compared with models of known speakers. The unknown speaker is identified
as the speaker whose model best matches the input utterance. Figure 1.2 shows the basic
structure of speaker identification system.

Fig. 1.2  Basic structure of speaker identification system.

Speaker verification aims to verify the identity of the speaker through a comparison of some
samples of his speech with the references of the speaker he claims to be. If the match is above
a certain threshold, the identity claim is verified. A high threshold makes it difficult for
impostors to be accepted by the system, but at the risk of rejecting the genuine person.
Conversely, a low threshold ensures that the genuine person is accepted consistently, but at
the risk of accepting impostors. Figure 1.3 shows the basic structure of speaker verification
system.

Fig. 1.3  Basic structure of speaker verification system.
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The sub-area speaker selection includes some specific applications as selection of sex, age,
education, geographical provenience and other demographic factors. The age estimation of
unknown speakers’ voice recorded from telephone calls is one of the most frequent tasks in
speaker profiling. Other tasks of selection of speech patterns according to specified
characteristics of the speaker are proposed by the technology providers to detect the speaker's
current emotional  state using speech samples (mood state identification ) and to detect any
pathologies using speech samples (health state identification ).

In combination with other technologies, further areas of application for voice recognition
include aids for the disabled persons and learning technologies.

1.3  Ideal Voice Recognition

The purpose of the discussion about an ideal voice recognition system is to find the theoretical
limits of voice recognition performance when all the practical restrictions are lifted. An ideal
systems should be unaffected by processes as follows:

•  changes in the speaker physical state (e. g. illness, cold),
•  changes in the speaker emotional state (e. g. stress, onset of anger),
•  changes in the speaker voice due to aging of the speaker,
•  utterance variations (e. g. fast talking versus slow talking rates),
•  noise etc.

While ideal systems should be the ultimate goal of voice recognition systems, there are
practical considerations that make the achievement of this goal difficult. The uniqueness of an
individual’s voice is a consequence of both the physical features of the person vocal tract and
the person mental ability to control the muscles in the vocal tract.

The physical features of an individual vocal tract consist of the overall length of the tract, the
height and width of the tract at different positions and the size and shape of the tongue, teeth
and lips. The density of the tissue in the vocal tract also affects the sounds that the individual
can produce. The physical dimensions of a vocal tract determine the range of possible sounds
that can be made. It is not easy for an individual to change voluntarily these physical
characteristics. However, they may change somewhat with ageing.

An ideal voice recognition system would use only physical features to characterize speakers,
since these features cannot be easily changed. However, it is obvious that investigators cannot
simply measure the vocal tract dimensions of an unknown speaker. Thus, numerical values for
physical features or parameters would have to be derived from digital signal processing
parameters extracted from the speech signal. Using this strategy, a comparison of voices can
be carried out as follows: the physical parameters of known speakers are determined either by
processing shown in Fig. 1.4 or by using physical measuring devices, e.g. X-ray.

Digital
Speech Physical

Parameters
Signal Processing

Parameters

Fig. 1.4  Ideal parameter extraction.
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Some signal processing parameters are as follows:
•  fundamental frequency,
•  formants frequency,
•  cepstral coefficients,
•  spectral moments.

Some signal physical parameters are as follows:
•  vocal tract length, width and breadth,
•  size of tongue,
•  size of teeth,
•  tissue density.

As an example, Fig. 1.5 illustrates the relationship between fundamental frequency of speech
(i.e., DSP parameter) and membranous length (i.e., physical  parameter). The fundamental
frequency is scaled primarily according to the membranous length of the vocal folds. There
was predicted an inverse relationship between fundamental frequency F0 and membranous
length Lm with fixed tension and fixed mass per unit length. The hyperbola has the form [18]

F0 = 1700 /Lm    , (1.1)

where Lm is in mm. For example a fundamental frequency of 170 Hz corresponds with adult
female membranous length Lm=10 mm.

Fig. 1.5  Mean speaking fundamental frequency F0 as a function of membranous length Lm.

Since many independent, continuously valued physical parameters of the vocal tract exist, it is
unlikely that two speakers, even if they sounded very similar to each other, would have the
same values for all parameters. Suppose that vocal tracts could be effectively represented by
10 independent physical features, with each feature taking on one of 10 discrete values. If the
vocal tract could be modeled that accurately, then 1010 individuals in the population (i.e., 10
billion) could be distinguished. Today’s world population amounts to approximately 6 billion
(6⋅109) individuals.
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2  Feature Parameters

2.1  Parameters for Speaker Recognition

Speaker identity is correlated with the physiological and behavioural characteristics of the
speaker. These characteristics exist both in the spectral envelope ( vocal tract characteristics )
and in the supra-segmental features ( voice source characteristics ) of speech. Although it is
often impossible to separate these kinds of characteristics, and many voice characteristics are
difficult to measure explicitly, many characteristics are captured implicitly by various signal
measurements. The most basic type of parameters used for voice recognition [13] are either
quantifiable by a human listener or have been borrowed from systems for speech coding,
recognition or synthesis.

The first type of machine speakers recognition using spectrograms of their voices, called
voiceprint analysis or visible speech [6], was begun in the 1960s. The term voiceprint was
derived from the more familiar term fingerprint. Voiceprint analysis was only a semiautomatic
process. First, a graphical representation of each speaker’s voice was created. Then, human
experts manually determined whether two graphs represented utterances spoken by the same
person. The graphical representations took one of two forms: a speech spectrogram or a
contour voiceprint [1].

Figure 2.1 illustrates a comparison of spectrogram  variation within one speaker and between
two speakers. The word „alarm“ was normally spoken twice by one male speaker and once by
another male speaker.

                                        a b c

Fig. 2.1  An example of spectrogram  variations  of the „ala“ sequence (cut out from the word
„alarm“) twice for the same speaker a), b) and once for another speaker c).

Both speech and speaker recognition rely primarily on spectral features, but speaker
recognition makes more use of prosodics (F0 in particular) than speech recognition does.
Mean F0 averaged over all test data from an unknown speaker is frequently used as a simple
feature to classify speakers coarsely into broad groups (e.g., male, female, children).
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Following are the most significant acoustic parameters used to characterize and control
different types of voices:

1)  Fundamental frequency F0  (definition and details can be found in [4] )
2)  Fundamental frequency changes
 Variation of fundamental frequency during an analysis frame is a source of modulation

aperiodicity. This situation is normal in natural speech due to intonation. The effect of
these variations can be described using a set of synthetic signals, in which the slope of
fundamental frequency is varied in the range 0 - 24 semitones per second in seven steps: 0,
1.5, 3, 6, 12,18, 24.

3)  Harmonic-to-noise ratio HNR
 The HNR is defined as the periodic components to aperiodic components energy ratio level.
4)  Noise burst duration
 The noise burst is modeled as a gated white Gaussian noise signal. This choice for the noise

source is based on synthesis and perception experiments [5]. Glottal turbulence noise is
commonly assumed to result from a combination of high air flow velocity and imperfect
glottis closure, and can be more or less modulated.

5)  Jitter
 The jitter is defined as the maximum perturbation of fundamental frequency. Jitter values are

expressed as a percentage of the duration of the pitch period. Large values for jitter
variation may be encountered in pathological voices. However, jitter in normal voices  is
generally less than 1% of the pitch period. Jitter appears a very significant source of
aperiodicity in the speech signal. It is generally known that the effect of jitter on the spectra
of voiced speech is to widen the harmonic peaks [5].

6)  Shimmer
The shimmer represents the maximum range of peak amplitude change in the signal and
thus the maximum variation in peak amplitudes of successive pitch periods. Large values
for shimmer variation may be encountered in pathological voices. However, shimmer in
normal voices  is generally less than about 0.7 dB. The effect of shimmer appears less
important than the effect of jitter on the spectrum and on the perceived aperiodicity.

Spectral features in specific sounds tend to be very useful for voice recognition, e.g., formants
F2  - F4  in vowels and nasals. Vowels, nasals and fricatives (in decreasing order) are
commonly recommended for voice recognition because they are relatively easy to identify in
speech signals and their spectra contain features that reliably distinguish speakers. Nasals have
been of patricular interest because the nasal cavities of different speakers are distinctive and
not easily modified (except via colds). One study found nasal coarticulation between  „m“ and
an ensuing vowel to be more useful than spectra during nasals themselves [17].

The current most commonly used short-term spectral measurements are LPC-derived cepstral
coefficients and their regression coefficients. A spectral envelope reconstructed from a
truncated set of cepstral coefficients is much smoother than one reconstructed form LPC
coefficients and therefore provides a stabler representation from one repetition to another of a
particular speaker’s utterances. As for the regression coefficients, typically, the first- and
second-order coefficients, that is, derivatives of the time functions of cepstral coefficients are
extracted at every frame period to represent spectral dynamics (the delta- and delta-delta-
cepstral coefficients).
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2.2  Evaluation of Parameters

The goal of parameter evaluation should be to determine the smallest set of parameters
which contain as much useful information as possible. The penalties for choosing parameters
incorrectly include poor recognition performance, excessive processing time and storage
space. Typical voice recognition systems use a set of parameters that may be represented by a
vector

x = [x1, x2, ... xN]  ,

where x1, x2,  etc. are individual features. The same parameters are calculated at different time
positions in an utterance. One common measure of effectiveness for individual features is
called the F-ratio, which compares inter- and intraspeaker variances:

F
Variance of speaker means
Mean intraspeaker variance

=                                          (2.1)

The F-ratio for each feature n can be determined as follows
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where xi,j,n  is the value of the n-th feature for the i-th speaker during the j-th frame. If J
vectors have been collected for each of  I number of speakers, then Si,n estimates the value of
the n-th feature for the i-th speaker.
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The average of the n-th feature over all frames of all speakers is represented by
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Features with larger F-ratios will be more useful for voice recognition. The F-ratio tends to be
high for features for which one or two speakers are very different from the rest, which
suggests that F-ratios are most useful in eliminating poor features rather than choosing the
best. However, F-ratios are only valid for the set of data from which they were calculated.
Features that appear to be useful for one set of speakers may be worthless for another set of
speakers.
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3  Long-Time Spectrum of Vocal Tract

As text-independent features, long-term sample statistics of various spectral features, such as
the mean and variance of spectral features over a series of utterances, are used. However,
long-term spectral averages are extreme condensations of the spectral characteristics of a
speaker’s utterances and, as such, lack the discriminating power included in the sequences of
short-term spectral features used as models in text-dependent methods.

3.1  Estimation of Vocal Tract Long-Time Spectrum

The procedure for determining the speaker-specific vocal tract spectrum is based on the LPC
approach [14]. First, we compute the autocorrelation coefficients Rj(k) for the j-th frame of
speech signal  and the average  autocorrelation coefficients

( ) ( )R k
J

R kj
j

J

=
=

∑1
1

                                                          (3.1)

corresponding to the whole vocabulary formed by J frames. Thus, from the average
autocorrelation coefficients, we get the predictor coefficients am  using the Durbin’s recursive
procedure [8] and then the average LPC-based spectrum using

( )
( )

S f
a zm

m

m z j f f s

=
− −

=
∑

1
1

2

2

exp π

                               (3.2)

where  m = 1, 2, ..., M  is limited by the order M of the predictor and fs denotes sampling
frequency.

The speech data used in the experiment described below were recorded with an electret
microphone. The speech signal was sampled at 22 kHz using a 16-bit A/D converter under
laboratory conditions over a period of five months. A group of  26 speakers (19 male, 7
female) aged 20 to 25 years took part in the research, the speaker’s nationalities were Czech
and Hungarian.

First, the order of LPC spectrum needed for vocal tract description was investigated. Using a
set of sixteen LPC coefficients, a1  through a16 , the accuracy of long-time  LPC  spectrum
was measured. The LPC orders of 6, 8 or 12 seems to be more appropriate orders of the LPC
model, considering the accuracy of represented spectrum and the computational volume
needed to obtain the spectrum.

An important factor for the accuracy of vocal tract spectrum estimation is the needed speech
duration. Duration refers to how much of the training/test  data must be used to eliminate the
text-dependent effect on the variation of the average spectrum. As an example, we present
spectrum accuracy as a function of speech duration in Fig. 3.1. The solid and dotted  curves
correspond to the Czech and the Hungarian text spoken by the same speaker (native
Hungarian living in the Czech Republic). Both curves differ in details but tend to the same
contour.
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Fig. 3.1  Long-time spectrum accuracy as a function of speech duration (LPC, M=6).

A comparison between intra- and inter-speaker variability in long-time spectrum is shown in
Figures 3.2 and 3.3. Fig. 3.2 illustrates two vocal tract spectra of the same speaker
corresponding to two different texts. The difference between both curves is 12%.
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Fig. 3.2  Long-time spectrum difference of one and the same speaker (LPC, M=6, 100 sec).

Vocal tract spectra obtained from two different speakers saying the same text is shown in Fig.
4.8. The difference between both curves increased to 22% in this case. The average intra-
speaker difference over all speakers was 12.6%, while the average inter-speaker difference
(gender-specific) reached 23.4%. In accordance with the inter-gender differences, the
estimated difference between  the two groups of speakers (male and female) was more
apparent (29.6%) than within the groups.
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Fig. 3.3  Long-time spectrum variability between speakers (LPC, M=6, 100 sec).
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3.2  Speech Normalization by Long-Time Spectrum

An important aspect of the described long-time spectrum is that it also offers a potential tool
for speech normalization applicable to speaker-independent speech recognition [11]. To
normalize the speech signal by LPC long-time spectrum, we can transform the autocorrelation
coefficients Rj(k) on each frame into the form

                           ( ) ( ) ( ) ( ) ( ) ( )[ ]R k R R R m R k m R k mj
n

a j a
m

M

j j= + − + +
=

∑0 0
1

 ,                     (3.3)

where

                                             ( )R m a aa i
i

M m

i m=
=

−

+∑
0

  .                                                             (3.4)

The normalized autocorrelation coefficients ( )R kj
n can then be used to evaluate various sets of

parameters for speech recognition. Figure  3.4 illustrates the effects of the normalization by
long-time spectrum for the spectrum of vowel „a“ cut out from continuous speech. Solid line
shows the spectrum before normalization, dotted line after normalization.The formant peaks
of normalized speech are weighted more heavily and thus represented more accurately.
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Fig. 3.4  Effect of speaker normalization on the spectral function for phoneme  „a“.

3.3  Conclusions

•  Long-time spectra can yield high recognition accuracy for normal speech but not for
speech spoken under stress and for disguised (impersonated) speech.

•  Results show that it is possible to use long-time spectra models across languages for
normally spoken speech.

•  To estimate relevant long-time spectra with respect to their  computational simplicity,  a
set of  6, 8 or 12 LPC coefficients and speech of about 100 seconds in duration seem to be
sufficient.

•  Long-time spectra used for speech normalization can bring better formant localisation and
increased performance of word recognition systems.
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4  Effects of Emotional Stress on Speech

Voice has been shown to be a reliable indicator of speaker’s internal state. Mood, emotion,
personality and other pragmatic information about the state of the speaker are present in every
spoken utterance. At present, interest in this area of research is increasing as the number of
potential applications grows and vocal emotions have also tended to be studied as a separate
topic.

4.1  Stressed Speech Data

It is really difficult to obtain realistic voice samples of speakers in various stressed states,
recorded in real situations. There are not many corpora designed to allow the study of speech
under stress [3]. A typical corpus of stressed speech from a real case is extracted from the
cockpit voice recorder of a crashed aircraft. For the Czech language, no research in emotional
speech is known and no appropriate public database exists.

However, for our studies conducted within the research of speech processing in noise and
stress we used our own database consisting of data collected during oral final examinations at
our Institute of Radio Electronics [15]. The training data in the experiments were extracted
from ca. 12 hours of raw conversational male speech (mostly answers). The recorded
utterances were manually examined. This material contains stressful phases (improvisations
relating to unknown technical problems) and other phases with lower stress (during
discussions relating to known technical problems mainly in the final stages of the
examination). The recording platform is set up to store the speech signals „live“  in 16-bit
coded samples at a sampling rate of  22 kHz.

All the 14 speakers in the database are students finishing their university studies aged about
25 years, non-smokers, have no speech, language or hearing difficulties, and are Czech
natives speaking with standard Moravian accent. The students were asked to give information
about some factors which can correlate with stress in influencing the voice, e.g. the number of
hours of sleep during the previous night, the use of (legal) drugs or alcohol shortly before
examination, etc. This information was added to the records in the database. Further, short
portions of 1 to 2 minutes of fluent stressed speech were selected, cut out and written down. A
few days later, the same speakers read this written text.

4.2  Detection of Stressed Speech

To get the quantitative changes of speech parameters, we applied in this study some simple
features that had not been specifically designed for the detection of stressed speech, such as
vowel duration, formants and fundamental frequency. These features were measured in
normal and stressed speech, and obtained values were then compared [16].

Duration analysis conducted across individual vowel phonemes shows the main difference in
the distribution of vowel „a“. By contrast, the small differences in the distribution of vowel
„e“ seems to be irrelevant for the detection of emotional stress (Fig. 4.1).
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Fig. 4.1  Distribution of duration for vowels „a“ and „e“ (the solid lines are
for normal  speech, the dotted lines for speech under stress).

In general, more significant results are given by formants. The analysis of vocal tract spectrum
focused on formant positions Fi and formant bandwidths Bi for selected vowel phonemes
shows that only changes in the first and the second formants are significant. In stressed
speech, both low formants F1 and F2  were shifted to higher frequencies as a rule. Table 4.1
illustrates the average formant values for phoneme „i“.

    F1     B1     F2     B2      F3       B3      F4      B4

Normal    409      52     1981     218    2630     489    3356     371
Stressed    525      98     2068     142    2672     462    3347     383

Tab. 4.1  Formant changes in spectrum for phoneme „i“ (all in Hz).

Further, the characteristics of pitch were estimated. The fundamental frequency F0 contours
were calculated on the frame-by-frame basis using the center-clipping autocorrelation method.
From this information the distribution of F0 values was obtained separately for the stressed
and normal speech, and the mean F0 values and standard deviations were calculated. In all
cases, the average fundamental frequency increased and the range of fundamental frequency
enlarged when the speaker was involved in a stressful situation. Figure 4.2 illustrates the F0
distribution. The curves are comparable because they were obtained from speaking/reading the
same text.
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Fig. 4.2  Pitch distribution for a male speaker (top graph is for normal speech,
bottom graph is for speech under stress).

The effect of changes in speech due to the emotional state of speaker on long-time spectrum
can be observed in Fig. 4.3. The dashed line gives the spectrum of emotional speech spoken
under stress, the solid line gives the spectrum obtained from the same text read in normal state
of speaker and the dotted line also gives the spectrum from the same text read by a tired
speaker. Thus in all three cases the identical speech was spoken by one speaker in various
states of mind. The psychological state (stress) affects the spectrum more than the physical
state (fatigue).
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Fig. 4.3  Long-time spectrum variability  within speaker for normal
 and emotional speech (LPC, M=8, speech duration 114 sec).

4.3  Conclusions

•  Emotional stress is essentially characterized by an increase in the first and second formant
frequencies of the vowels in stressed speech.

•  Fundamental frequency F0 may be used as significant stress indicator, both its mean value
and variance increase when the speaker is involved in a stressful activity.
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5  Conclusion

The thesis submitted deals with speaker recognition by his/her voice trying to comprehend as
far as possible all the important aspects regarding this theme. A lot of the thesis can be seen as
a report about the state-of-the-art. In the new portion, our research experiments are described
and the results obtained are presented. Because of differences among national languages and
various „speaking behaviour“ relating to each nation, it is necessary to perform research for
each language separately.

In summary, the following general conclusions can be drawn from the experiments and data
mentioned in the habilitation thesis: In broad groupings the vowels, liquids and nasals are
found to provide the best speaker recognition performance, followed by the fricatives and
affricates, with the plosives providing the worst performance of all. Experiment results show
the effectiveness of using the information in the chosen individual phonemes for specific
tasks, e.g. „a“ for sex identification, „r“ for analysis of alcoholic speech. The log area ratio
coefficients, mel-cepstra and line spectral-pair frequencies appear to be best suited for
discriminating speakers. The speech signal could by used as possible indicator for stress and
alcohol consumption. In our future research we will try to assess objective measures of these
factors. We show that all of the speaker-related problems can be effectively handled by the use
of phoneme-based acoustic analysis in the field of  LPC-derived features. Finally, it should be
noted that automatic speaker recognition is extremely sensitive to noise and channel effects.

Although many advances and successes in speaker recognition have recently been achieved,
there are still many problems to which good solutions remain to be found. Most of these
problems arise from variability, including speaker-generated variability and variability in
channel and recording conditions. It is very important to investigate feature parameters that
are stable over a long period, insensitive to the variation of speaking manner, including
speaking rate and level, and robust against the variation of voice quality such as those due to
voice disguise or colds. It is also important to develop a method to cope with problems of
distortion due to telephone sets and channels, and background and channel noises.

As part of fundamental research, it is important to pursue a method for extracting and
representing the speaker characteristics that are commonly included in all the phonemes
irrespective of the speech text. From the human-interface  point of view, it is important to
consider how the users should be prompted, and how recognition errors should be handled. It
is expected, that computer power will continue to grow exponentially for at least the near and
foreseeable future and that leading researchers will use it productively.
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Souhrn

Habilitační práce „Speaker Recognition - Identifying People by their Voices“ se pokouší
poskytnout ucelený pohled na problematiku rozpoznávání mluvčích podle hlasu zahrnující
popis nejčastěji používaných metod, aktuální stav problematiky a možné směry dalšího
rozvoje oboru. Vzhledem k rozdílům mezi národními jazyky nejsou všechny metody a
výsledky zcela přenositelné a pro aplikační účely je žádoucí provádět výzkum v každém
jazyce zvlášť. Předkládaná habilitační práce obsahuje výsledky vývoje získané v českém
jazykovém prostředí (i když je práce psaná anglicky).

Pro získání základního přehledu o vlivu různých řečových signálů na efektivnost
rozpoznávání a o účinnosti různých metod zpracování bylo provedeno několik statistických
měření. Nejdříve byly všechny české fonémy rozděleny do skupin podle příbuznosti
parametrů, jednotlivé skupiny pak použity samostatně na rozpoznávání mluvčích a
vyhodnocena úspěšnost rozpoznávání. Na fonémech z nejúspěšnější skupiny bylo potom
prováděno porovnávací měření jednotlivých metod a opět vyhodnocena úspěšnost
rozpoznávání. Pozornost byla věnována také vývoji algoritmů na automatickou fonémovou
segmentaci řečového signálu s ohledem na budoucí automatický výběr předem zvolených
fonémů z řečového signálu plynulé řeči.

V oblasti analýzy řeči nezávisle na textu bylo vytvořeno dlouhodobé spektrum hlasového
traktu mluvčích a zkoumány různé parametry ovlivňující tvorbu a použitelnost dlouhodobého
spektra. Získané poznatky byly použity pro odlišení imitátorů hlasu od originálních mluvčích
na zkušební množině nahrávek.

V oblasti analýzy řeči v závislosti na textu bylo řešeno několik specielních témat zabývajících
se automatickým určováním pohlaví mluvčích z krátkého úseku řečového signálu, určováním
vlivu stresu mluvčího na řečový signál a určováním vlivu alkoholu v malém množství na
řečový signál.

Některé získané poznatky již byly zahrnuty do výuky zpracování řečových signálů, další
výsledky pro rozšíření resp. aktualizaci výuky lze očekávat v oblastech, ve kterých dále
pokračuje výzkum, zejména v oblasti určování psychického stavu mluvčích. Otevřeným
tématem zůstává zatím možnost použití některých algoritmů vyvinutých pro rozpoznávání
mluvčích a jejich stavů  také v dalších oblastech zpracování signálu, zejména pro aplikace na
jiné biologické signály.

I když byly dosaženy měřitelné výsledky slibující možnost praktického využití, zůstává celá
řada nedořešených problémů, které vyplývají ze složitosti procesu tvorby a vnímání řeči.
Výraznější pokrok v automatickém rozpoznávání mluvčích lze zřejmě očekávat s uplatněním
nových poznatků také z jiných vědních oborů a s dalším rozvojem výpočetní techniky.
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