VEDECKE SPISY VYSOKEHO UCENI TECHNICKEHO V BRNE

Edice PhD Thesis, sv. 441
ISSN 1213-4198

Ing. Ludék Bryan
Hardware-Based

Object Detection Method

BRNO UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Computer Systems

Ing. Ludék Bryan

Hardware-Based Object Detection Method

Hardwarové orientovana metoda detekce objektl

Short version of Ph.D. Thesis

Study field: Information Technology
Supervisor: Doc. Ing. Vladimir Drabek, CSc.
Opponents: Doc. RNDr. Elena Gramatova, CSc.

Doc. Dr. Ing. Pavel Zem¢ik
Presentation date: 26. 11. 2007

Key Words

Object detection, hardware, FPGA, computer vision, template matching,
reconfiguration, license plate

Klicova slova

Detekce objektii, hardware, FPGA, pocitatové vidéni, porovnavani vzora,
rekonfigurace, statni poznavaci znacka

Préce je ulozena na Fakulté informac¢nich technologii VUT v Brné¢.

© Ludék Bryan, 2008
ISBN 978-80-214-3569-8
ISSN 1213-4198

OBSAH

I INTRODUCTIONottt e e e e et e e e e e e e e e e s eaerasaaaaaaaeeeeas 5
1.1 Why PLD Implementation in Embedded Systems?............ccceevvieriieiiieniieiienieeiieeie e 5
1.2 Why Do We Need Hardware Methods?cocceoeriiiiiniiiiniinienicntcieceeseee e 5
1.3 What is a Method Designed for Hardware?.............cccocueeviiiiiieniieiieiie e 6

2 PATTERN RECOGNITION......oootiiiiiiiiiteeeee ettt e e e 7

3 GO AL e e a e e e e e e e e ——aaaaaeeeeaanarraees 8

4 TEMPLATE BASED DETECTION METHODccccccooiiiiiiiiieiieeeeeeeee e, 9

5 EXPERIMENTAL ARCHITECTURE.........cccooiiiiieeieee e 12
5.1 Overall Synthesis RESUILScoouiriiriiiiiiiiiieieeee e 13

6 ADAPTIVE TEMPLATESottt e e e e 14

7 THE PROPOSED METHOD APPLICATION ..., 15
Tl PLOPTOCESSIIIZ ..uuiiuiieiieeiee et ettt et ettt et e st esat e et e e beeeabeeabeesateenseessbeenseesnseenseasnseeseens 15
7.2 Feature EXIIraCtiONcceiiiiiieiiiiieiieeieete sttt ettt sttt seee e ae e 15
R T O T 1 1o7: 15101 TSP SROPRORUSRPRR 16
7.4 Experimental RESUILSccooiiiiiiiiiiieiiccieeieece ettt ee e e saaeenae s 17
7.5 Speed UpP and PriCe.....cceooiiiiiriiiiiiieieetestet ettt 18

7.5.1 Comparison to the Current Method.................c..ccccoovveiviiiiiiiiiiiiiieeiieeeeieeeiieen 18
7.5.2 Comparison to Software Implementationcccccceucuevcienesoeeniianeneeneann. 19

8 CONCLUSIONS ..t e e e e et e e e e e aaae e e e e araeeeeesanraaeaeas 19
8.1 The Proposed Method FEAtUIEScccuiviuiiiiieiiieiiieiiesie ettt et ens 19
8.2 Experimental RESULILScciiiiiiiiiiiieie ettt 20
8.3 GOal FUIfIIMENTeouiiiiiiiiieiee ettt e 20
8.4 Original ContriDULIONc..eitiiuiiitiiiiritete ettt sttt s 20
8.5 FUuture RESCAICHcoouiiiiiiiiiiii e 21

O SHRNUTT .ottt 22
9.1 Vlastnosti NavVIZen€ MELOAYc.eerieriiiiriiieiieie ettt ettt eaee e 22
9.2 Experimentalni architeKtUra..........c.ccoveeiiiiriiieiiieiie ettt 22
0.3 AdAPTIVI VZOTY ..ottt ettt ettt et et e et e s it e e beessteeabeesaeeenbeenneas 22
9.4 Experimentalni VYSICAKYcooviiiiiiiiiiiece e e 23
0.5 SPINENT CIIT ..oniiiie e et 23

REFERENCES ettt e e e e et e e e e e e e e e s araaaaaaaeeaeeas 24

RESUME ...ttt e e e e e e et a e e e e e e e e e e nsarsaaeeeaaaaeaas 27

ABSTRACT oot e e e e e e e e et a e e e e e e e e e e s nnnasaaaaeeaaeas 28

1 INTRODUCTION

Forsyth and Ponce [17] defined the goal of computer vision "... to model and
automate the process of visual recognition, a term we interpret broadly as perceiving
distinctions between objects with important differences between them." Computer
vision has been an important part of world-wide research since the 1970s, when
computers started to be capable of processing large amounts of data. The computer
vision field may serve for many purposes, including surveillance, robot control,
autonomous vehicle driving, image set organization, scene analysis, face detection
and many others.

Another relatively new area of computer science is programmable hardware
(PLDs), which deals with hardware circuits capable of changing their internal
structure, even during circuit operation. PLDs are largely used in embedded systems.

The goal of this thesis is to link these three fields - computer vision, embedded
systems and programmable hardware, by suggesting a new method for object
detection and designed for programmable hardware implementation.

"

1.1 WHY PLD IMPLEMENTATION IN EMBEDDED SYSTEMS?

Software solutions for computer vision are today very well explored. However, a
different situation is in the field of VLSI design. This area is now quickly growing
as new devices are on the market, both powerful and reasonably priced. Mainly PLD
devices are now affordable even for small businesses.

An important feature of PLD chips is the possibility to be reprogrammed by the
user. This feature, called reconfiguration, can be used not only for debugging and
standard operation, but also for some more advanced operations. Mainly dynamic
reconfiguration allows the user to quickly reprogram a design (or even a part of one)
on a chip. Thus, completely new computer-related methods are being developed
such as evolutionary computation, and evolvable hardware.

Embedded systems are becoming part of many things of everyday use, including
cars, and home appliances. Making a design for an embedded system is comparable
to designing a standard system. The biggest difference is a design space limited by
price, size, and power consumption. It makes sense though to create the method
suitable for the embedded systems, which significantly extends possible range of
target applications.

To summarize, as new technologies have developed, a gap has risen in the field of
computer vision techniques targeting PLDs, while this area is becoming more
important as small businesses can use powerful PLDs for their embedded systems.

1.2 WHY DO WE NEED HARDWARE METHODS?

As stated by Leibson [18] the majority of programers today are used to sequential
thinking. This was mostly caused by the dominating position of purely sequential
computers for a long period of time. As predicted by Liebson, this habit has to

change as the multi-core processors and PLD chips are getting a bigger share of the
market.

With the mentioned considerations, one question naturally comes to mind: What
are the advantages of hardware design (either general VLSI design, or specifically
PLD design) over standard processor programming?

e The design can be highly parallel.

e Comparing to parallel processor or processor arrays, implementation of any
arbitrary parallel algorithms is straightforward, not limited by the processor
instruction set.

e Real-time designs are suitable.

e Custom behaviour of inputs / outputs is natural.

e Lower power consumption can be reached. Govindu et al. [19] compared CPU
and PLD implementation of the same algorithm and the PLD implementation
was nearly 8 times more energy efficient.

e For PLDs, chip reconfiguration is possible.

Of course, there are also disadvantages of hardware design:

e Implementation phase is difficult and time consuming.
e Sequential behaviour is expensive and difficult to implement.

As a result, it's not possible to say universally whether the processor
programming or hardware design is better. Some tasks are suitable for hardware
implementation, while others are more suitable for the processor. Usually, the most
efficient way is by using either the processor, for naturally sequential or easy tasks,
and parallel processors or a hardware custom design, together with a processor, for
difficult tasks.

1.3 WHAT IS A METHOD DESIGNED FOR HARDWARE?

There are many methods that can be efficiently implemented in hardware. This
thesis will go a little deeper and will also distinguish methods designed for
hardware. What should be the features of such a method?

Intended for hardware implementation

Naturally parallel

Not efficient software implementation

Quick or immediate reaction required (software implementation may suffer
from interrupt delays)

Use of specific hardware features, like reconfiguration for PLD chips

e A method designed for hardware is more of an abstract idea, the listed items
are more a clue than a definition.

2 PATTERN RECOGNITION

Pattern recognition is a computer vision technique for extracting high-level
information from an image. This can be useful for object detection, object tracking,
defect detection or robotic systems.

Pattern recognition is wusually decomposed into three step pipeline -
preprocessing, feature extraction and classification. Each of these is described in the
following sections. However, in reality, many modifications of this pipeline exist, or
some of the steps may be dissolved.

Preprocessing

Preprocessing enhances the image for easier processing during the next steps.
This involves mainly removing noise from an image, but also much more
sophisticated methods can be utilized. A list of feasible methods follows, with a
brief description for each of them.

e Point operators are applied individually to every pixel in an image, without
information about its neighborhood. Processing cost is usually low in
comparison with other methods, but utilization is limited. Point operators
include thresholding, contrast stretching, linear, or non-linear operators.

e Spatial filters, unlike point operators, transform a pixel according to its
neighborhood, not only according to the pixel itself.

e Histogram techniques modify an image according to the changed shape of its
histogram, or use histogram information for setting values for further
processing.

e Transform operations, including the well-known Fourier or wavelet transform,
do not just modify the image as previous methods do, but convert it to
completely different form. Although transforms can be very powerful,
implementation in hardware is very space consuming and difficult to
implement.

Feature Extraction

The second step is feature extraction and is the essential part of pattern
recognition. The goal is to recognize features in an image that indicate the presence
of regions of interest. In other words, we want to transform an image from a spatial
domain to a feature domain, where data represent more abstract quantities. Usually,
the features are placed in the feature vector (vi, vy, ..., V).

If we use feature extraction for object detection or recognition, it should treat
objects independently without regard to their placement or other properties. Usually,
three characteristics are desirable:

e Resistance against changes in illumination is usually required. We should
propose algorithms sturdy enough to handle shifts in intensity. Otherwise, our
system is limited to exact lighting conditions.

e Rotational invariance is necessary when the objects in an image or sensor are
not constantly oriented.

e Scale invariance means that the algorithm should work, if possible, equally
well for closer or more distant objects.

For feature extraction, methods have been previously suggested by many authors,
dependent on the target application [20], some of them in hardware [21]. The spatial
filters are one of the more popular methods. An edge detector is an example of
commonly used method, because edges are usually an important clue for pattern
recognition.

Classification

The last step, known as Classification, decides whether there are any regions of
interest, and where, upon the found features.

Classification can be either supervised or unsupervised. For supervised
classification, a training data set is provided and learning has to be performed prior
to classification. In unsupervised classification, the classifier decides about types of
regions in an image solely from the information included in this image. In the thesis,
we deal only with the supervised classification.

The fundamental idea of classification is to gather certain features from an image
during the feature extraction phase, and decide what class the image belongs to.

There are several classification methods. One of the simplest methods is the
minimum distance classifier. Each class is defined by one point in the n-dimensional
feature space. A feature vector belongs to the closest class.

Bayesian decision theory 1is considered universal statistical method for
classification. This method has been thoroughly described in many books, for
example by Duda et al. [22]. Neural networks are also often used as a classification
technique.

3 GOALS

Now the vital question comes: What should be the new feature of the proposed
method, so that the proposed method is not only a parallelized version of a software
method? The answer lies in the nature of hardware implementation, which allows
massive parallel processing. However, for massive parallel processing the basic
computation unit should be as simple as possible in order to place a large number of
them into the target device. So the final goal is to implement a method that will
consist of very simple basic elements, and the strength of the method will be in the
implementation of a large number of those elements. Then, the basic hypothesis of
this thesis is:

The proposed method, though based on very simple elements, can compete with
commercially used methods due to the massive parallelization of those simple
elements.

Summarized, the goal is to implement an object detection method with these
features:

e Method is designed for hardware as stated in Section 2.3.

e Simple basic building blocks will be used in order to use massive
parallelization.

® Real-time processing is required so that a solution for every image is found in a
constant maximum time limit. If possible, computation should be done "on-the-
fly", i.e. the data will be processed while being received at the input, and output
is available after certain constant time delay. The "on-the-fly" feature is not
necessary for real-time hardware implementation, but it brings some
advantages like minimum delay or no need of buffer implementation.

e Limited resources are in an embedded system, we can not use a high-power PC
processor or large memory blocks.

e Adaptability to changes in the environment using PLD reconfiguration should
be possible.

e Comparable results to commercially used methods are required.

4 TEMPLATE BASED DETECTION METHOD

In Section 3 , the expected functionality of the proposed method is suggested.
Coming from these expectations, a new method is proposed in this section.

The proposed method together with experimental architecture was described in
[1] and [2].

We will go through a few standard object detection techniques, in order to decide
which one will be used for the proposed method.

The method should be suitable for FPGA implementation and should profit from
the advantages of FPGAs. This is not the case for any frequency domain transforms,
Hough transform, thinning, or motion detection techniques. Edge detection is
suitable for an FPGA implementation, but is a rather simple method and can be
efficiently implemented in a DSP processor. Histogram techniques are suitable for
an FPGA implementation and profit from hardware implementation. However,
histogramming usually does not give sufficient results for the method as a whole,
but can be used as a part of the method for segmentation. Template matching, is
suitable for hardware implementation in non-linear filter form, and it can also
benefit from hardware implementation by utilizing massive parallelization in the
case of larger number of filters. Therefore, the template matching will be our object
detection method.

In the basic form, where an object also represents a template, template matching
may suffer from some important problems:

e The object will not look the same every time. I.e. we do not want to search for
one object, but for certain class of objects.

e The object may consist of some repeating patterns. Having only one template
for each of these repeating objects may significantly save implementation
resources.

e There may be parts of an object not holding any information. However,
appropriate detection hardware must be still implemented.

These issues may be solved by more sophisticated detection methods. However,
the requirement from Section 3 is to suggest very simple detecting elements.

The basic idea on how to resolve this is to decompose the searched object into
smaller objects (templates), and search for each of these templates separately, used
by Qiang and Bo [24], for example. Presence of an object is then determined by
dependencies of these templates. This way we can allow higher miss rate of the
simple elements, while the object as a whole should still be detected. By this
decomposition, we also will switch from searching for instances of an object to
searching for objects belonging to a certain class. This feature is caused by the
possibility of locating objects that do not exactly match a template.

The proposed method follows the standard three step pattern recognition scheme -
preprocessing, feature extraction, and classification.

We want to do as much work in preprocessing as possible, which means leaving
only the necessary part for feature extraction. This necessary part is comparing 1-bit
values in templates with 1-bit values derived from an image, saying whether the
pixel is dark or bright. This implementation will be very cheap in hardware - if
templates are known at time of synthesis, it would require only invertors for dark
pixels and one AND gate through all values (chip occupancy will be discussed more
in Section 5.1).

4.1 PREPROCESSING

The preprocessing unit has to convert an image to a binary image. How this
conversion is done is largely application specific. In this thesis, preprocessing will
be made suitable for the case study of the license plate detection. The whole
preprocessing operation is implemented as a set of two filters - the edge detection
filter and thresholding filter.

For the edge detection filter (1* stage), the output of the filter (pixel in the output
image) will be the response of the edge filter. Many methods could be used for edge
detection. The most common approach would be the linear filters. But, these filters
are not suitable for hardware implementation. As an alternative, a 3x3 non-linear

10

filter was developed. The function of this filter is the difference between the
minimum and maximum of the pixels in a neighborhood.

The second stage is actual segmentation. A non-linear 3x3 filter computes a value
from the neighborhood, and outputs 1 if the pixel value is greater than this value, or
0 otherwise. For the dividing value, average between minimum and maximum of the
neighborhood pixels is used.

The preprocessing method proved to be very effective in preserving shapes and
removing noise, which are basic considerations for the quality of feature extraction.
An Example of a preprocessed image is in Figure 1.

12 |13 | 15| 62189190

14 |14 | o leo oot | INpPUL
Image

15 |37 | 8 [192 |191 192

108|177| 192|191| 192|192
192191 |192 |192| 192|191

192182192 |193|192 192

+ Preprocessing
0

0 11001

of1 o101

of1]o Jc]o]|1] Prepro-
o1 |1 Jloc]o|o | cessed

1o |c o | Image

0
1o/o0 |1 b o

T1 V Matchi" T2 Match
5 ,
0

1 1 0D 0
1 0 o oo | Template
1110 o oo | bank
ololo|ololo
olofo|olo]o
olo|1]ololo
Pattern
0191912129 oecurence ™ " m]
0o |o|o |0 |o|o0]| |mage 2 3 3 3
olofo|ololo

Figure 1: Example of preprocessing and feature extraction

11

4.2 FEATURE EXTRACTION

For feature extraction, we need to utilize many parallel filters, each searching for
one specific template. A template is represented as a binary image. The set of these
templates will be called a template bank. The feature extraction filter puts
identification numbers of a template in the template bank to template occurrence
image to positions where corresponding templates fit.

An illustration of preprocessing and feature extraction is shown in Figure 1. On
the right and left side real-life image and an artificially made close-up image are
shown, respectively. In the feature extraction phase, we are searching for templates
T, .. T, included in the template bank. Finally, the pattern occurrence image is
created with the located slices matching templates. In the right image, three
occurrences of template “E” (template T5) have been found.

Unlike in the example, templates in a real system are expected to be smaller,
automatically generated and their number will be in hundreds.

4.3 CLASSIFICATION

In this thesis, there will be no straight answer for how to implement the
classification part, because it largely depends on the application. For our purposes,
we will use two extreme versions of classification:

e Minimal classification where object is detected when the number of matched
templates exceeds a certain number in an area of the objects' size

e Maximal classification where object is detected when there are slices matching
templates at the exact position as on the searched object

In reality, we will probably use something between those two. For instance,
specific slices have to be placed in certain areas.

S EXPERIMENTAL ARCHITECTURE

Figure 2 shows the overall scheme. The connecting line descriptors show the
format of the data. Input to the system is a serial stream of data with bit length D
representing pixels coming from a sensor. The pixels are ordered from left to right,
lines from top to bottom. The whole scheme works “on-the-fly”, i.e. whenever a
new pixel comes to the input, a new pixel is computed and appears at the output
(with a certain delay, caused by the serial to matrix unit).

Block serial to matrix (published in [6])is necessary, because filters work with
surrounding of the actual pixel. It converts the serial pixel input to a matrix of NxN
pixels, that contains the actual pixel and its surroundings. For this purpose, N-1
image lines must be stored in memory. For FPGA implementation, the most suitable
are internal Block RAMs.

With this matrix of pixels (NxN pixels with bit depth D), we can do the
preprocessing in the edge detection and threshold units.

12

After preprocessing, feature extraction can take place using a template bank. It
compares all |B| templates with an image slice coming from the threshold unit, and if
some of the templates fit, the proper output signal is set. There is a maximum of |B|
output signals, one for each template. However, some of the templates can share
output signals which reduces the number of signals. Then, the appropriate signal is
set when any of the joint templates match.

An improvement was suggested by placing the templates directly into the
processing elements of the target FPGA, because the chip occupation is critically
dependent on the implementation of this unit.

The output image should be an array with the identification numbers of matched
templates, so the set of |B| signals must be converted to a number of the matched
template in arr2num unit. This number is finally the serial output forming a template
occurrence image.

S2M —» Threshold Template
< Bank
*D pd 1
=3 +|B|xNxNx1
cdge Index
Detection S2M p.| FEAture p.| AT 1O >
=z | Extraction |B|x1 Num
NxNxD X
<
Dyl oM 2

Figure 2: Overall hardware scheme

5.1 OVERALL SYNTHESIS RESULTS

In this section, the synthesis results of all the units are presented. The target
FPGA is the Xilinx Spartan II1 XC3S1600E.

‘ Slices | BRAM ‘ Max. (1(_&1&1}-’

Edge detection 468 2 kB 21.0 ns
Thresholding 352 2 kB 14.4 ns
Feature extraction 4537 0 18.31 ns
XC3S1600E | 14752 | 648kB | N/A

Total | 5357 [36%] | 4 [1%] | 21.0 ns

Table 1: Overall synthesis results

The results are shown in

Table 1. The design occupies 36% of the XC3S1600E FPGA chip. Maximum
propagation delay of 21 ns allows “on-the-fly” implementation, as a normal HDTV
cameras' pixel clock is usually 40 ns.

13

These results show that the method can be implemented in a real system, in fact
there is no need of the more expensive, cutting-edge technology, FPGAs.

6 ADAPTIVE TEMPLATES

The dynamic reconfiguration block scheme is in Figure 3. It is a modification of
the hardware scheme in Figure 2. Together with the normal feature extraction
process (using “current” template bank) there is a parallel branch for the feature
extraction of new templates being tested (“test bank™). The results from both of
these branches are evaluated and compared in the processor. The testing branch
creates new templates for the test bank, and removes the worst templates. The
normal branch adds good templates to the current bank from the test bank.

In order to replace old templates with new ones using FPGA dynamic
reconfiguration, the templates have to be in fixed predefined positions. Probably the
easiest way to do this is to place the templates in a regular array directly into the
target technology cells, for Xilinx FPGAs these are LUTs. This allows us to change
the template pixels simply by reconfiguring only the LUT configuration. A
description of the the dynamic reconfiguration approach was published in [3].

» preprocessing
Jn |

est + Y curr.
bank > FE‘ ‘ FE - |bank

Proccssor ¥ Y
. Classification | Classification

vy

| Compare |

v oy

Templates Templates
creating update

Oul

y

Figure 3: Dynamic reconfiguration

14

7 THE PROPOSED METHOD APPLICATION

To demonstrate that the proposed method suggested in Section 4 can be
competitive with methods currently used in real life, the proposed method had to be
implemented in an actual real-life situation and compared with some existing
methods. This happened to be a difficult task, as the real-world methods and the
testing data sets are usually proprietary. Fortunately, there was a chance to test the
method on the real-life problem of detecting the license plates, the Unicam system'
[4]. In this section, the proposed method will be evaluated and compared to the
method based on a DSP processor architecture currently used in the Unicam system.

Implementation of the preprocessing and feature extraction is completely the
same as proposed in Section 4 . The classification part differs, which will be
described in Section 7.3.

7.1 PREPROCESSING

An Example of an original image and a preprocessed image is in Figure 4.

Figure 4: Original image and preprocessing

7.2 FEATURE EXTRACTION

Using the theoretical outputs regarding detection quality, a 5x5 template size has
been chosen and the number of templates is 500. An example of a subset of an
automatically created template bank is shown in Figure 5. An example of an image
after feature extraction is in Figure 6, preprocessed image is printed light and
matched templates dark.

! Thanks is given to Camea Itd. for supporting this research by providing me with the hardware boards and sample
images. However, none of the outputs of the research part of this thesis have been used for commercial purposes by
Camea ltd.

15

) Ll [

Figure 5: A template bank subset

7.3 CLASSIFICATION

The task of classification is to find the license plate, if present, in an image. A
successful classification example is shown in Figure 6, the rectangle shows the
detected license plate.

L
e ¥
' = z L = =
H" « = ol 41 ' 1
3 = 1 H;I= ==

i l-;lr[_“ ?ﬁ]lll? [j

TR

4

Figure 6: Feature extraction and classification

Classification, considering only the number of templates in an object, suffers
significantly from the regular patterns outside of the license plate. For example, if a
template detects the pattern of a vent (Figure 7), there may be more detected
templates there, than in the license plate. However, although the number of
templates is very high, there are usually only one or two templates involved.

The problem of regular patterns and other classification problems lead us to a
modification of the classification function. One possibility is to consider not only the
number of templates, but also how various they are (i.e. how many different
templates are in the area).

The regular pattern problem seen in the last example shows that this case study is
very important part of this thesis. If the proposed method testing was performed
only on a limited number of images, the results would not have told us much about
the actual method's properties.

16

A BT

Figure 7: Regular pattern problem

7.4 EXPERIMENTAL RESULTS

The method was tested on a set of images from real traffic. The results are
compared to the method that is currently used for detection in Unicam cameras, and
has been developed for many years. For evaluation, the metrics suggested by
Mariano et al. [23] seem to be suitable. However, there is no data available
concerning the accuracy of detection for the currently used method. As a result, only
the binary information, whether the object is detected or not, was used.

The proposed method has not been implemented as a whole in hardware yet. All
tests were performed by a C program that works the same way as the design works
in hardware.

The method needs to be trained first for every class of images by creating an
appropriate template bank. For every image set, a subset containing 10 to 30 images
was selected. Using a C program, 500 templates were obtained that were used as a
bank for the whole image set.

Current | Proposed | Set Occ
Normal 94.1% 97.1% 377 | 33%
Light 96.7% 100% 29 3%
Dark 62.5% 93.6% 63 3%
Shadows 90.2% 78.4% 162 1%
Road 100% 100% 233 51%
Snow road 99.1% 99.7% 321 9%
Tilted images | 40.4% 91.8 % 98 N/A
Total | 96.6% | 98.6% | 1283 | 100%

Table 2: Experimental results

The results are presented in

17

Table 2. Current and proposed are the two compared methods, set is the number
of images in each testing set, and the occ column is the rough estimate of
percentages showing how often each group takes place in real-life. The results are
shown in percents of successful detections. The last line, total, shows an estimate of
the overall hit rate using the occ column.

The proposed method hit rate shows 2% better results than the current one. The
credibility of this result may be affected by the limited test set, estimation of the occ
values and the need of training set for each testing image group. However, the
results still show that the proposed method quality is at least comparable to the
current one.

7.5 SPEED UP AND PRICE

In this section, the proposed method is compared to two other implementations.
First, with the implementation of the current method used in Section 7.4,
implemented on the embedded processor. This comparison is the most important,
because the current method serve as a reference. Second, we compare the proposed
method implemented in C, on a PC computer, and in hardware to show the speed up
achieved by moving the algorithm to hardware.

7.5.1 Comparison to the Current Method

The proposed method computes outputs “on-the-fly”. Considering an image slice
of size of 860x105 and a maximum propagation delay 21.0 ns, total computation
time 1is

Thw=860x105x21.0ns=1.9 ms

The current method runtime on the embedded processor TMS 320C6416 is on
average T4y, = 30 ms, depending on the image complexity. The algorithm has been
optimized for parallel processing in the processor. The speed up of the proposed
method is

Sasp = Tasp/ Taw =30/1.9=15.8

Even though the hardware and software solutions work differently (dedicated
hardware can not be used for other purposes while not in use), the speedup of 15.8
shows that the hardware solution is at least comparable to the DSP one.

The price of the suggested FPGA chip, the Spartan-3E 1600, is around $63. The
price of the DSP chip, the TMS 320C6416, is around $150. The fraction of the
hardware solution price over the DSP solution price is

Py = $63 / $150 = 0.42

18

A simple price comparison is not going to give us a precise answer about which
solution is cheaper. With the hardware solution, we still need to use some kind of
processor for subsidiary functions. Also the other way around, with the DSP
solution, we may need an FPGA chip for the low-level system functions. Still, the
chip prices give us pretty good look on the final solution price.

7.5.2 Comparison to Software Implementation

The proposed method running on the Pentium M 1.6 GHz processor takes
Tpm = 9350 ms. The speed up of the proposed method running on an FPGA i1s

Spm = Tpm / Thw =9350 /1.9 = 4921

This speed up shows how efficient FPGA implementation may be for highly
parallel tasks compared to processor implementation. Not only is the speed up itself
extensive, but an FPGA runs at 48 MHz while the processor runs at 1.6 GHz.

However, these numbers do not reflect any real-life situation. The speedup is
more or less proof that it makes no sense to implement the method in software, and
that the method is suitable for hardware implementation. Considering statements
from Section 1.3, the speed up helps to realize one of the goals that the method was
designed for hardware implementation.

8 CONCLUSIONS

A new method for object detection has been proposed. An important feature of
the proposed method is that it has been designed for hardware implementation. The
proposed method is based on very simple elements, filters detecting only one
template each. The filters are implemented in a parallel matrix in an FPGA.
Although based on simple elements, the proposed method's results are comparable
to commercial method results.

8.1 THE PROPOSED METHOD FEATURES

The proposed method follows the standard three step pattern recognition scheme -
preprocessing, feature extraction, and classification.

Preprocessing consists of two filters - an edge detection filter and a local
thresholding filter. A binary preprocessed image is passed to the feature extraction
stage, which consists of a large set of filters that run in parallel. Each of these filters
compares an image slice to a template. A template is basically a small binary image
representing a small part of an object. The set of these templates is called a template
bank. The final phase of the object detection process is classification. For
classification, various standard techniques can be used depending on the application
that the method is being used for.

19

8.2 EXPERIMENTAL RESULTS

To show that the proposed method can be used in a real-life system, a case study
dealing with the license plate detection was utilized. The proposed method was
evaluated and compared to the method based on DSP processor architecture
currently used in the Unicam system in Section 7.4. The evaluation was made on a
set of almost 1300 real-life images from different environments. The results show
that the detection quality the proposed method is at least comparable to the current
one.

In Section 7.5.1, the proposed method and the DSP Unicam method hardware
implementations were compared. The speed up of the proposed method against the
current one is 15.8, and the solution of the proposed method using an FPGA seems
to be approximately twice cheaper than the current DSP based solution.

In Section 7.5.2, the proposed method was compared to the software
implementation of the same method. A speed up of about 5000 shows that the
proposed method was designed for hardware, as discussed in Section 1.3.

8.3 GOAL FULFILLMENT

The requirements specified in Section 3 have all been met, namely:

o The method is designed for hardware, as the core of the method, feature
extraction, is feasible for FPGA implementation. The proposed method can
also profit from reconfiguration as shown in Section 6 .

o Simple building blocks are used. Template matching units are very simple, and
can be placed in only a few FPGA slices.

e Real-time processing is used. Feature extraction is computed “on-the-fly”

e Limited resources are considered for method implementation. A standard
FPGA is sufficient for the hardware part. The processor part, classification, is
not too computationally difficult, thus an embedded processor implementation
1s suitable.

e Adaptability to changes is a part of the method. The technique proposed in
Section 6 allows adaptation to the environment or slow object changes.

e The results in Section 7.4 show that the method efficiency is comparable to
commercial methods.

8.4 ORIGINAL CONTRIBUTION

e [suggested a set of mathematical definitions for working with basic computer
vision operations.

e In Section 4 , I proposed a new method for object detection designed for
hardware implementation.

e [analyzed the proposed method and suggested optimal size of the templates. I
defined image quality for the method and image class quality.

20

e In Section 5 , I proposed a hardware scheme for the proposed method, and
confirmed its workability by simulation and synthesis of all of the major parts.

e In Section 6 , I extended the proposed method to adaptation to environmental
changes using partial dynamic FPGA reconfiguration.

e In Section 7 , I applied the proposed method to the real-world problem of a
license plate detection. To set the method parameters properly, I used a theory
based on object detection quality.

e In Section 7.4, I compared the detection abilities of the proposed method to a
real-world license plate detection method. The testing set was composed of
nearly 1300 real-world images.

e In Section 7.5, I compared the speed up and price of the proposed method to a
real-world license plate detection method.

e | confirmed the proposed method's ability to detect different types of objects by
applying the method to another case study.

e [explored the proposed method's limits by setting the learning set and counter
set to objects that are very similar.

8.5 FUTURE RESEARCH

Even though the method has been tested on real data and all parts have been
synthesized, there is a long way to real implementation. Consequently, the first
future goal is to make the system work in real hardware system, processing real data
on site. A statistical evaluation of the results of this on-site system will help to find
possible weak spots in the method, resulting in making the method more efficient.

Having the real hardware system would also allow us to analyze some other
method's features. For example, in Section 1.2, we stated that a PLD implementation
can be significantly more energy efficient than a processor implementation. If this
statement was confirmed, it would be an important advantage of the proposed
method.

21

9 SHRNUTI

V této praci je navrzena nova hardwarovd metoda detekce objektii v obraze.
Zékladem této metody je paralelni extrakce ptiznakli pomoci jednoduchého
porovnavani vzord. Diky paralelismu je metoda vhodnd pro hardwarovou
implementaci. Soucdst prace je také experimentalni architektura, zaloZend na
implementaci v FPGA. Navrzend metoda miize byt rozSifena o adaptivni ucici se
systém, ktery automaticky nastavuje parametry v zavislosti na okolnim prostiedi.
V préci je navrzen tento adaptivni systém pomoci dynamické rekonfigurace FPGA.
Na ukazku toho, Ze navrzend metoda mize byt pouzitd pro feSeni problémul
v redlném prostiedi, byla navrzena a vyhodnocena ptipadova studie zabyvajici se
detekei statni poznavaci znacky v obraze.

9.1 VLASTNOSTI NAVRZENE METODY

Navrzend metoda se sklada ze tfi ¢asti znamych z teorie rozpoznavani vzori —
piedzpracovani, extrakce vlastnosti a klasifikace.

Ptedzpracovani je navrzeno jako dva filtry — filtr detekce hran a filtr lokalniho
prahovani, které vytvoii binarni obraz ze vstupniho obrazu ve stupnici Sedé. Tento
binarni obraz je nésledn€ zpracovdn pomoci techniky extrakce vlastnosti, kde je
obraz filtrovan pomoci mnozstvi paralelnich filtrt. Kazdy z téchto filtri porovnava
okoli v obraze s uritym vzorem. Tyto vzory jsou binarni obrazy o rozméru v fadu
jednotek az desitek pixelil, které reprezentuji ¢asti hledaného objektu. Zavérecna
faze detekce je klasifikace, kde mohou byt pouzity rizné standardni techniky.

9.2 EXPERIMENTALNI ARCHITEKTURA

Pro potvrzeni toho, Ze metodu je mozné implementovat v praxi, pro ni byla
navrzena experimentalni architektura. Jako cilova platforma byl zvolen FPGA Cip ze
standardni fady Spartan-3 firmy Xilinx. VSechny dtlezité jednotky navrzené
experimentalni architektury byly syntezovany, diky ¢emuz bylo moZzné piiblizné
urcit obsazeni FPGA ¢ipu a maximalni frekvenci hodin. Diky optimalizaci modulu
extrakce vlastnosti (umisténi filtra ptimo do logickych bunék cilové architektury) je
mozné metodu implementovat bez problémii do standardniho FPGA.

9.3 ADAPTIVNI VZORY

Vramci prace byla také navrzena technika, kterd umoznuje automaticky
adaptovat vzory pro extrakci vlastnosti v zavislosti na okolnich podminkach.
K dosazeni tohoto cile je vyuzito dynamické rekonfigurace FPGA.

Algoritmus se snazi ziskat nové vzory zdetekovanych objektli pii béZzném
provozu zatizeni. Nové vzory jsou testovany, a pokud jsou vyhodnoceny jako
kvalitni, jsou pfesunuty do skupiny béZzné¢ pouzivanych vzori. K tomuto je potteba
mit moZnost zapisovat vzory do filtri FPGA za béhu zatizeni.

22

Zakladem techniky je umisténi filtrii extrakce vlastnosti ptimo do logickych
bunék cilové architektury (LUT), jak jiz bylo naznaceno v sekci 9.2. Pixely vzoru,
coZ jsou zaroven parametry filtru, jsou umistény jako konfigurace bunky LUT.
Jednotlivé filtry jsou umistény pravidelné v poli bunék LUT. Diky tomu je mozné
zménit pixely vzoru pouhym piepsanim odpovidajici buiky LUT. Pozici
jednotlivych filtrii neni tézké zjistit diky tomu, ze builky jsou umistény v FPGA
pravideln¢ v poli.

9.4 EXPERIMENTALNI VYSLEDKY

Pro ovéfeni, ze navrzend metoda muze byt pouzita v praxi, byla provedena
pfipadova studie na redlném problému detekce statnich poznavacich znacek.
Vysledky dosazené navrZzenou metodou byly porovnany s vysledky metody, ktera se
pouziva v redlném systému Unicam. Testovaci sada obsahovala témét 1300 obrazii
zrealného provozu. Vysledek testovani ukdzal, ze navrZzend metoda dosahuje
porovnatelnych, nebo lepSich vysledkl nez stdvajici metoda. Navrzena metoda také
vykazuje zrychleni 15.8 oproti stdvajici metod¢€, a odhadnutd cena implementace je
zhruba polovicni.

9.5 SPLNENI CILU

Pti navrhu metody byly stanoveny pozadavky, které by metoda méla spliiovat.
Nasleduje jejich seznam s kratkym vysvétlenim.

e Metoda je navriena pro hardware. Jadro metody, extrakce vlastnosti, je
sloZzena z velkého mnozstvi paralelnich filtrG. Metoda také vyuZziva moznosti
rekonfigurace FPGA.

e Jednoduché zdkladni komponenty jsou filtry, lehce implementovatelné
v hardware. Kazdy z filtrii zabere pouze nékolik bun¢k LUT.

e /pracovani v redalném case je realizovano diky implementaci “on-the-fly”, coz
znamend, ze vysledky se objevuji na vystupu se stejnou frekvenci jako data
ptichazejici na vstup, pouze s ur€itym konstantnim zpozdénim.

o [mplementace na systemu s omezenymi zdroji je mozna. Vysledky zpracovani
experimentalni architektury ukézaly, Ze pro implementaci je dostatecné
standardni FPGA. Diky tomu je metoda vhodna i pro implementaci ve
vestavénych systémech.

o Prizpusobeni se zméndam prostiedi je popsano v sekci 9.3.

o Vysledky srovnatelné se systémy pouZivanymi v praxi jsou popsany v sekci 9.4.

23

REFERENCES

Author’s publications

[1] Bryan L., Fu¢ik O., Drabek V.: HW-Based Object Detection Method for
Traffic Monitoring, 6th Electronic Circuits and Systems Conference, Bratislava, SK,
2007

[2] Crha L.: System for the license plate detection and image compression using
hardware, In: Proc. of the 7th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems, Bratislava, SK, SAV, 2004, p. 274-276, ISBN 80-
969117-9-1

[3] Bryan L., Fucik O.: FPGA Implementation of a Reconfigurable License Plate
Detection Method, Proceedings of the 2007 Engineering of Reconfigurable Systems
and Algorithms, Las Vegas, NV, US, 2007

[4] Fucik O., Zemcik P., Tupec P., Crha L., Herout A.: The Networked Photo-
Enforcement and Traffic Monitoring System Unicam, Proceedings of Engineering
of Computer-Based Systems, Los Alamitos, IEEE, 2004, p. 423-428, ISBN 0-7695-
2125

[5] Crha L., Fugik O., Sustek J.: Environment for Hw/Sw Codesign of Embedded
Systems, Proceedings of the 8th IEEE Design and Diagnostic of Electronic Circuits
and Systems Workshop, Sopron, HU, UWH, 2005, ISBN 9639364487

[6] Crha L., Fuc¢ik O., Drabek V.: Image filter implementation in FPGA used for
the license plate detection, Proceedings of 38th International Conference Modeling
and Simulation of Systems, 2004, Ostrava, CZ, MARQ, 2004, ISBN 80-85988-98-4

[7] Marek T., Novotny M., Crha L.: Design and Implementation of the Memory
Scheduler for the FPGA - Based Router, Proc. of the Field Programmable Logic and
Application 2004, Leuven, BE, Springer, 2004, p. 1133-1139, ISBN 3-540-22989-2

[8] Crha L.: Nové metody komprese, Sbornik ptispévkli ze seminatfe PocitaCové
Architektury & Diagnostika, Brno, CZ, FIT VUT, 2003, ISBN 80-214-2471-0

[9] Crha L.: Systém pro aplikaéné¢ specifickou kompresi obrazu, Zbornik
prispevkov Cesko-slovenského seminara pre §$tudentov doktorandského §tidia
Pocitacové architektary & Diagnostika, Bratislava, SK, SAV, 2004, p. 94-100,
ISBN 80-969202

24

[10] Zemcik P., Herout A., Crha L., Fucik O., Tupec P.: Particle rendering engine
in DSP and FPGA, Proceedings of Engineering of Computer-Based Systems, Los
Alamitos, US, IEEE CS, 2004, p. 423-428, ISBN 0-7695-2125-8

[11] Bryan L.: A Set of Definitions for Working with Spatial Filters, Proceedings
of the 13th Student Conference and Competition EEICT, 2007 Volume 4, Brno, CZ,
VUT Brno, 2007, p. 430-434, ISBN 80-214-3410-3

[12] Crha L., Fucik O., Zemcik P., Drabek V., Tupec P.: Inter chip
communicating system with dynamically reconfigurable hardware support,
Proceedings of the 6th IEEE DDECS Workshop, Poznan, Poland, 2003, p. 311-312,
ISBN 83-7143-557-6

[13] Venard O., Blanchard Y., Lionti R., Crha L: Single chip FPGA realization of
a 2D multicomp. wavelet transform, IEEE ISISPA, Rome, 2003, ISBN 953-184-
062-8

[14] Crha L.: Jak se piSe procesor, ABC Linuxu, Vol. 2005, Praha, CZ, ISSN
1214-1267, http://www.abclinuxu.cz/clanky/programovani/jak-se-pise-procesor

[15] Crha L: 2D VMulticomponent Wavelet Transform, Preprints of IFAC
Workshop PDS , FEI VSB, Ostrava, CZ, 2003, p. 384-390, ISBN 0-08-044130-0

[16] Crha L: CPLD, FPGA and DSP communication, Proceedings of the 9th
Student Conference and Competition EEICT, Brno, CZ, 2003, p. 619-623, ISBN 80-
214-2379

Other publications

[17] Forsyth D., Ponce J.: Computer Vision: A Modern Approach, Prentice Hall,
2003, ISBN 978-0130851987

[18] Leibson S.: Challenges in Consumer Electronics for 21st Century, Keynote
lecture, Worldcomp 2007, Las Vegas, NV, USA, June 2007

[19] Govindu G., Zhuo L., Choi S., Gundala P., Prasanna V.: Area and power
performance analysis of a floating-point based application on FPGAs, Proceedings

of the 7th Annual Workshop on High Performance Embedded Computing, 2003

[20] Jahne B., Hausecker H., Geisler P.: Handbook of Computer Vision and
Applications, Academic Press, San Diego 1999, ISBN 0-12-379770-5

25

[21] Porter R.: Evolution on FPGAs for Feature Extraction, PhD Thesis,
Queensland University of Technology, Brisbane, Australia, 2001

[22] Duda R., Hart P., Stork D.: Pattern Classification, Second edition, John
Wiley & Sons Inc., New York NY, 2000, ISBN 0-471-05669-3

[23] Mariano V., Min J., Park J., Kasturi R., Mihalcik D., Li H., Doermann D.,
Drayer T.: Performance Evaluation of Object Detection Algorithms, Proceedings of
the 16th ICPR, IEEE Computer Society, 2002, ISBN 1051-4651/02

[24] Qiang L., Bo Z.: Template Matching Based on Image Gray Value, Visual

Communications and Image Processing, Proceedings of the SPIE, Volume 5960,
2005, p. 614-622, 2005SPIE.5960..614L

26

RESUME

Education

PhD degree at University of Technology, Brno, The Faculty of Informatics,
started 2002, expected 2007

Ing. Degree (equivalent to Master’s degree) at University of Technology, Brno,
Czech Republic, The Faculty of Electrical Engineering and Computer Science, 1997
—2002

- Diploma thesis at ESIEE Paris, France
Teaching experience

Penn State Erie, the Behrend College, Pennsylvania, 2005 — 2006

University of Technology Brno, Faculty of Electrical Engineering and Computer
Science, 2002 — 2005

Industry experience

HW designer — 2002 — 2005, Camea Brno, www.camea.cz
- Traffic-related applications using cameras

English language
- Fluent in English
- One and half years of working experience in the US
- Passed General State Exam in English in the Czech Republic

27

ABSTRACT

This thesis presents a new hardware designed object detection method. The core
of the proposed method is a highly parallel feature extraction performed by simple
template matching elements. Due to the high parallelism the proposed method is
suitable for hardware implementation. Part of the thesis is also an experimental
architecture based on FPGA implementation. The proposed method can be enhanced
by an adaptive learning system that automatically sets the method parameters
according to environment conditions. An adaptive learning system implementation
using FPGA dynamic reconfiguration is suggested in the thesis. To show that the
proposed method can be used for real life situations, a case study dealing with
license plate detection has been evaluated.

28

	OBSAH
	1 INTRODUCTION
	1.1 WHY PLD IMPLEMENTATION IN EMBEDDED SYSTEMS?
	1.2 WHY DO WE NEED HARDWARE METHODS?
	1.3 WHAT IS A METHOD DESIGNED FOR HARDWARE?

	2 PATTERN RECOGNITION
	3 GOALS
	4 TEMPLATE BASED DETECTION METHOD
	4.1 PREPROCESSING
	4.2 FEATURE EXTRACTION
	4.3 CLASSIFICATION

	5 EXPERIMENTAL ARCHITECTURE
	5.1 OVERALL SYNTHESIS RESULTS

	6 ADAPTIVE TEMPLATES
	7 THE PROPOSED METHOD APPLICATION
	7.1 PREPROCESSING
	7.2 FEATURE EXTRACTION
	7.3 CLASSIFICATION
	7.4 EXPERIMENTAL RESULTS
	7.5 SPEED UP AND PRICE
	7.5.1 Comparison to the Current Method
	7.5.2 Comparison to Software Implementation

	8 CONCLUSIONS
	8.1 THE PROPOSED METHOD FEATURES
	8.2 EXPERIMENTAL RESULTS
	8.3 GOAL FULFILLMENT
	8.4 ORIGINAL CONTRIBUTION
	8.5 FUTURE RESEARCH

	9 SHRNUTÍ
	9.1 VLASTNOSTI NAVRŽENÉ METODY
	9.2 EXPERIMENTÁLNÍ ARCHITEKTURA
	9.3 ADAPTIVNÍ VZORY
	9.4 EXPERIMENTÁLNÍ VÝSLEDKY
	9.5 SPLNĚNÍ CÍLŮ

	REFERENCES
	RESUME
	ABSTRACT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

