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1 INTRODUCTION

Many physical problems can be modeled by systems of hyperbolic conservation
laws. For example, time-dependent flow of an inviscid, compressible gas is
described by the Euler equations. They are usually used for simulation in
turbomachines, as well as in most external flows around a solid body, such
as aircraft or spacecraft. Another example of system of conservation laws is
provided by the shallow water equations. Many types of flows, not necessarily
involving water, can be characterized as shallow water flows. They describe
flows of fluids with a free surface under the influence of gravity, where any
vertical scale is negligible in comparison to horizontal scales.

Usually systems of conservation laws are nonlinear and cannot be solved
analytically. Therefore we are looking for numerical solutions to these systems
of partial differential equations. Introduction to the numerical methods are
given e.g. by LeVeque [7] or Feistauer [3]. Generally, we have three commonly
used numerical techniques: finite difference, finite element and finite volume
methods. There are the finite volume methods, which are mostly used for
the approximation of conservation laws. The main reason is in their simplic-
ity as well as automatic preservation of conservation principles. Most of the
finite volume methods are based on the dimensional splitting and on an ap-
proximation of the one-dimensional simplified problem, the so-called Riemann
problem. Considering just one-dimensional structures these methods lead cor-
rect resolutions. On the other hand, it was pointed out by many authors, see
e.g. [1], [4], [7], [9], that this type of methods can produce large errors in the

approximation of truly multi-dimensional structures such as circular or oblique
shocks.

In the last decades we can find in literature several new truly multi-dimen-
sional methods, e.g. the Method of transport [5], [14], the wave propagation
algorithm [8], the method of Brio [1] and the Weighted Average Flux (WAF)
method [17]. In the thesis we derive and study new multi-dimensional high-
resolution finite volume evolution Galerkin (FVEG) methods for systems of
nonlinear hyperbolic conservation laws. Characteristic Galerkin schemes were
first considered by Morton [13] and Morton, Childs [2] for scalar problems. A
generalization of characteristic Galerkin schemes to hyperbolic system in more
than one space dimension were formulated by Ostkamp [15]. Multi-dimensional
high-resolution FVEG methods for wave equation system were introduced in
2000 by Lukécovd, Morton and Warnecke, see [9]. Generalization to nonlinear
system of the Euler equations is more deeply studied by Lukacova, Saibertova
and Warnecke [11]. In [10] is a new FVEG operator with the full stability
(CFL = 1) derived. Application of the FVEG method to the linear system of
Maxwell equations of electro-magnetic and implementation of several types of
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boundary conditions is studied in [19], [12].

The principal reason for developing computational methods which are truly
multi-dimensional is that they are more intrinsically tied to the multi-dimensio-
nal physics of the flow. In multiply dimension there is, in general, no longer
a finite number directions of propagation. The FVEG methods couple a finite
volume formulation with approximate evolution Galerkin operators. They are
constructed using the so-called bicharacteristics of the multi-dimensional hy-
perbolic system, such that all of the infinitely many directions of wave propaga-
tion are taken into account. In such a way approximate evolution operators for
a hyperbolic system under consideration are derived. The first order schemes
are obtained using the piecewise constant approximate functions. Second or-
der resolution is obtained with a conservative piecewise bilinear recovery and
the second order midpoint rule for the time integration. In both cases integrals
along the Mach cone are evaluated exactly. Thus, all of the infinitely many
directions of wave propagation are taken into account explicitly. The numer-
ical experiments presented previously as well as in this thesis confirm higher
accuracy and good multi-dimensional behaviour of the FVEG schemes.

The thesis is organized as follows. In the first sections we introduce general
conservation laws governing motion of compressible fluids. Further, we derive
several particularly interesting systems, e.g. the Euler equations of fluid dy-
namics, the wave equation of acoustic and the shallow water equations. In the
Chapter 2 we present basic theoretical properties of hyperbolic conservation
laws. We define the concept of a weak entropy solution and study the so-called
Riemann problem for the shallow water equations.

Chapter 3 is devoted to the finite volume methods, particularly we present
some truly multi-dimensional approaches: the wave propagation algorithm of
LeVeque and the method of transport of Fey and Noelle.

The FVEG method is presented in Chapter 4. We rewrite the derivation
of several approximate evolution operators. The main goal of thesis is the
generalization of the FVEG methods to nonlinear hyperbolic conservation laws.
We deal particularly with the Euler equations of gas dynamics as well as the
shallow water equations and present the derivation of the EG operators and the
linearization technique for the FVEG methods. A rigorous derivation of the
approximate evolution operator EG), using piecewise constant and piecewise
bilinear data, for the Euler equations is a new result presented here for the
first time.

In Chapter 5 we present more closely construction of the higher (second) or-
der schemes. Several recovery techniques, conservative discontinuous or contin-
uous bilinear recovery as well as recovery by means of incomplete biquadratic
splines are studied. Further, we study the L'-stability for a simplified prob-
lem of two-dimensional advection equation. The main point is to consider
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several suitable numerical quadratures for the approximation of cell integrals.
We have shown that the trapezoidal rule leads to unconditionally unstable
scheme, whereas Simpson’s rule yields conditionally stable scheme. The CFL-
stability condition is derived. In Section 5.3 the error analysis is presented. We
study the global error as well as the linearization error in time. For linearized
systems, such as the linearized Euler equations or the shallow water equations,
as well as for the linear wave equation system with advection the truncation
error is considered. We recall the results of our recent paper [11], where the
first and the second order truncation error analysis is done for the finite vol-
ume EG1-EG3 schemes. Moreover, we present there a new result concerning
the truncation error analysis of the finite volume EG5 scheme using piecewise
constant as well as piecewise linear data.

Numerical experiments are presented in Chapter 6. Our aim was to demon-
strate that the new finite volume evolution Galerkin schemes yield qualitatively
correct resolutions, have good multi-dimensional behaviour as well as partic-
ularly high accuracy. All our numerical results confirm these conclusions. We
have compared numerical solutions obtained by the FVEG schemes with the
results of other commonly known schemes. The FVEG schemes yield qualita-
tively analogous results to the LeVeque scheme, however note a much higher
accuracy of the FVEG schemes, which was reported for the linear problems in
[10]. We have also shown that the FVEG schemes correctly resolve steady con-
tact discontinuity (one-dimensional and two-dimensional static disc problem),
which is not case of the MoT method, see [6].

In summary, the new finite volume evolution Galerkin schemes are promis-
ing truly multi-dimensional schemes having particularly high accuracy at least
for linear problems and reasonable CFL stability conditions.

2 AIM OF WORK

The main goal of this thesis is the generalization of the finite volume evolu-
tion Galerkin methods, introduced in [9] for linear hyperbolic system of wave
equation, to nonlinear hyperbolic conservation laws. First we concentrate our
attention to the derivation of exact integral representations and approximate
evolution operators for the Euler equations of gas dynamics, the shallow water
equations and wave equation with advection. Next we show how to apply the
approximate evolution operators in the finite volume framework in order to
derive the finite volume evolution Galerkin schemes.



3 EULER EQUATIONS

In this section we consider the Euler equations. They can be written in a form
of the system of nonlinear hyperbolic conservation laws that govern the dy-
namics of compressible materials, such as gases or liquids at high pressure, for
which the effect of body forces, viscous stresses and heat flux can be neglected.

There is some freedom in choosing a set of variables to describe the flow
under consideration. A possible choice is the so called primitive variable,
namely the density p(z,y,t), the pressure p(z,y,t), the z-component of ve-
locity u(z,y,t) and the y-component of velocity v(z,y,t). Another possibility
is to take the conservative variables, which consist of the density p, the x-
component of momentum pu, the y-component of momentum pv and the total
energy FE. Physically, these conserved quantities result naturally from the ap-
plication of the fundamental laws of conservation of mass, of momentum and
of energy.

Conservative formulation

The conservative formulation of the Euler equations, in differential form, in
two space dimensions is

U,+FU),+GU), =0, (3.1)

where U is the vector of conserved variables, F(U) and G(U) are the fluxes.
They are given as

P ,20u pU

pu pu” +p puv
U= FU) = GUU) =
= pv |’ E(U) pUV  G(U) pv’+p |

E u(E + p) v(E + p)

respectively. The equation of state for a polytropic gas yields
u? + 2 D
FE =
Py T

with v = 2—” denoting the ratio of specific heats, v = 1.4 for dry air.

Primitive variable formulation

If we rewrite the system (3.1) in the form of primitive or physical variables
W = (p,u,v,p)T. It has the form
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W, +AW)W,+ A W)W, =0, (3.2)
where
0 v p 00 v 0 p O
u 0w 01 0v 0 0
W= v  A,(W) = 0 0 u(p)  4,(W) = 00 v %
p 0 vp 0 w 00 vyp v

For smooth solutions both formulations are equivalent. For solutions con-
taining shock waves, however non-conservative formulation gives incorrect shock
solution. In spite of this, non-conservative formulation has some advantages
over its conservative counterpart, when analyzing the equations.

4 WAWE EQUATION

The second order wave equation in two space dimensions has the form

0w Pw 0w

2
Tu_ <w+a_y2>:0' (4.1)

This can be rewritten as a first order system of conservation laws. By intro-
ducing new variables

O =W, U= —CW;, V= —CWy,

we obtain after the substitution into (4.1)

W, + AW, + AW, =0, (4.2)
where the vector W € R? and the coefficient matrices Al, A2 € R3*3 are defined
by

) 0 cO 00 c
W=1|ul|, A = cOO,Al— 000
v 00O c 00

Here ¢ € R, ¢ = const. denotes the speed of sound.

Wave equation system is sometimes called the acoustic equation system
since it describes propagation of acoustic waves in air. The wave equation
system creates the key part of the Euler equations. If we linearize the system
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of the Euler equations (3.2) at some state (g, w,0,p) and we set p = %, we
obtain by freezing the coefficient matrices 41’ éQ the system
W, +A W)W, + A W)W, =0, (4.3)
where
0 @500 50 50
U ~ 0w 0 c ~ 0 v 00
W=1, 4 =fg0z0| LW=1q05q
P 0 ¢c 0 u 0 0 cwo

Now we remove the first row as well as the first column from the Jacobian
matrices él, éQ of system (4.3) and finally move the third equation for pres-
sure to the first row. We obtain the so-called wave equation system with
advection. Further, if the advection velocities are & = v = 0 and ¢ = const.
we get the linear wave equation system (4.2). Thus by linearization the Euler
equations at some state we can model propagation of disturbances of sound

waves around the state (p, @, 0, p).

5 SHALLOW WATER EQUATIONS

Numerical solution of the shallow water equation was one of the earliest
applications of computers when they became available in the late 1940’s. After
then Charney, Fjortoft and von Neumann produced the first weather forecast
by simulating the two-dimensional shallow water equations that describe atmo-
spheric flows. Today, weather forecasting is simulated using tree-dimensional
models which incorporate a vast number of physical effects. Further examples
of shallow water are rivers with their flood plains, currents along the coast or
estuaries influenced by tides and wind, and flows in lakes generated by wind
blows. In general, the shallow water equations describe a motion of incom-
pressible fluids. The conditions that the water surface is free and the bottom
surface is solid have to be implemented into the model. In conservative vari-
ables the shallow water equations read

with
¢ pu PV 0
U=|¢u | ,FU)=|¢2+% | , GU)=| dw |, S=|gdh, |,
v puv Pv? + g? gohy



where U is the vector of conservative variables, F(U) and G(U) are flux vectors
and S(U) is a source term vector. Here ¢ denotes the depth of water and g is
the acceleration of gravity, assumed constant.

We study only the homogeneous case. This strictly hyperbolic system can
be written as

U,+F{U),+GU), =0. (5.2)

Similarly to the Euler equations the shallow water equations can be rewrit-
ten into the primitive variable form

W, +AW)W,+ A W)W, =0, (5.3)
where
0] u ¢ 0 v 0 ¢
W=lul|, AW)=1 g u 0|, AW)=|0 v 0
v 0 0 u g 0w

We can notice a common structure of the Jacobian matrices él, 42 of the

Euler equations (3.2) and the shallow water equations (5.3). Actually, they
are sparse matrices, which diagonals are determined by the advective velocities
(u,v). This fact will be used in what follows in order to derive approximate
evolution operators.

6 FINITE VOLUME METHOD

Finite volume methods are numerical methods specially designed for the
approximation of conservation laws. We restrict our derivation of the FVM
onto two-dimensional case using a regular rectangular mesh. But schemes and
results presented here can be extended to three-dimensional flow and to other
types of grids, as well. For more details we refer the reader to the works [3],

[7], [16] or [18].
We consider a general two-dimensional hyperbolic system
U,+FU),+GU),=0 inQx(0,00), (6.1)

where F = (Fy,...,F,), G = (Gy,...,Gpn), F;,G; € CY(R™). The computa-
tional domain 2 is divided into a finite number of control volumes €2;;,

Qij = [(i=5)he, (i+3)ha] X [(G—3)hy, (G+3)hy] = [331‘—%’ $i+§} X [yj—%a yj+%]
with a center S;; = (z;hy, y;hy), where i, j € Z, h, > 0 and h,, > 0 are the mesh
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size parameters in the x-direction and the y-direction, respectively. Further,
we choose a time step At > 0 and set t,, = n/AA\t, n € Z*.

Denote by V' = ;X (ty, t+1) the space-time volume and integrate equation
(6.1) over V. Applying Green’s theorem on 2;; we obtain

0= / U (z,y,t)dzdydt + / (0:£(U) + 0,G(U))dzdydt =
;

v
:/ Q(x7y7
0

¥

S [ Ewn s gwmasa, 2

where (ny,n,) is the unit outer normal to 8Qij. Now we replace the integrals
in (6.2) by their suitable approximations

/ U(z,y,t,)dzdy ~ h,h,U};, (6.3)
Q

ij

/Q“Q(rr,y,t)

)

bt Y501
[ [ e e |
t’ll y

ik

o hwhy(gg.“ — U3, (6.4)

dSdt ~ Ath,Hr(U, UL,,.),  (6.5)

i+d

where U Z is a constant approximation of the exact solution U on the control
volume §;; at time ¢, and the numerical flux Hg(U};, Ul ;) is an approxi-
mation to the exact flux function F(U)n, + G(U)n, on 0€;; N 02;41j. Note
that in classical dimensional splitting finite volume schemes the numerical flux
Hp(Uj;, Ut q;) is derived using an approximation to an one-dimensional aux-
iliary problem in the direction of outer normal. Thus only the values U
and U}, ,; are used for the approximation. Analogously other numerical fluxes
H;, Hy, Hg on the left, upper and bottom cell interface are defined, respec-
tively.
Substituting (6.3) - (6.5) into (6.2) we obtain the finite volume scheme

n n At n n
Qij—H U _h—[HR(Uzy Z+1]) HL(UZ]7 =i 1])]
At n .
_h_[HU(Umﬂ 2]+1) HB(UU7 =ij— 1)} (66)
Y

Let A (U) and A (U) be the Jacobian matrices of the fluxes F(U) and

G(U), respectively. Since the system (6.1) is hyperbolic there exists a diago-
nalizable matrix

P(U,n) = A (U)n1 + A, (U)ns,
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where n = (nq,n2) is unit vector, with real eigenvalues \;,7 = 1,...,m. This
means that there exists a nonsingular matrix I = T'(U, n) such that

T™'PT = D(U,n) = diag(A, - Am).
Let us denote by At = max(\,0) and A~ = min(}, 0). Set
D* =diag(A],..., A\n),

P*(U,n) = P*=T(U,n)D*(U,n)T (U, n).

Matrices P* are the so-called positive or negative parts of the matrix P, con-
taining only positive or negative eigenvalues, respectively.

For example, in the finite volume method with Steger-Warming numerical
flux Hg, H;, Hy and Hp are define as follows

HE"(Usj, Ujia;) P (Ui, (1,0)) Uy + P~ (Uyyaj, (1,0)) Uyyy,
Hi*(U;;,U; ;) = P* (nga (—1,0)) U,;,+P (Qi—lja (—1,0)) U;_qj;
Hy' (U, Ugja) = PF (sz (0,1)) U+ (Qij+la (0,1)) Uijs1s
Hy' (U, Uiy 1) = PT (U (0,-1)) Uy + P (Usjq, (0,-1)) Uy

This method belongs to the class of dimensional splitting schemes. Instead
of solving a multi-dimensional problem the one-dimensional Riemann problems
are solved in the direction of outer normals on cell interfaces. It was reported,
see, e.g. [8], [9], that such dimensional splitting finite volume schemes can pro-
duce spurious oscillations in solutions, especially when shocks are propagating
in directions that are oblique with respect to the orientation of mesh. In what
follows we will describe the finite volume evolution scheme, which belongs to
the class of genuinely multi-dimensional schemes. These methods are less de-
pendent on mesh orientation and approximate fully multi-dimensional flows in
a more accurate way.
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7 FINITE VOLUME EVOLUTION
GALERKIN SCHEME

In this section we will describe finite volume evolution Galerkin schemes
for a general hyperbolic system in two space dimensions.

Let us consider a general hyperbolic conservation law in two space dimen-
sions

Ui+ ) (FuU)), =0, z=(21,22)" € R, (7.1)

where F; = F,(U),k = 1,2 represent given physical flux functions and
the conservative variables are U = (uy, .. .,um)T € R™. Let us denote by
E(r) : X — X the exact evolution operator associated with a time step 7
acting on a suitable function space X for the system (7.1), i.e.

Q('7t+7) - E(T)Q(vt) (72)
We limit our considerations to cases of constant time step At, i.e. t, = nAt.
For further simplification let us use a uniform mesh consisting of squares of a
uniform mesh size h. Generalization to nonuniform meshes can be done and it
is only a question of implementation. We suppose that S} is a finite element
space consisting of piecewise polynomials of order p > 0 with respect to the
given mesh. Let U" be an approximation in the space S} to the exact solution
U(-,t,) at a time ¢, > 0 and take E, : S; — X to be a suitable approximation
to the exact evolution operator E(7), r > 0. We denote by Ry : S} — S; a
recovery operator, r > p > 0.

Definition 7.1 Starting from some initial data U° at time t = 0, the finite
volume evolution Galerkin method (FVEG) is recursively defined by means of

2

1 At
Qn+1 — Qn . E/(; Zé‘wkﬂk(gn—FT/At) dT, (73)
k=1

where the central difference v(x 4+ h/2) — v(x — h/2) is denoted by §,v(x) and
5wkEk(Q”+T/At) represents an approximation to the edge flur difference at in-

termediate time levels t, +1, T € (0, At). The cell boundary flux F}, (Q”+T/At)

18 evolved using the approrimate evolution operator E, to t, + 7 and averaged
along the cell boundary, i.e. e.q. on vertical edges for U itself

1 h
U =5 [ FUE RS, (7.4)
0

This is the new key step in our FVEG methods. Analogous formula holds for
horizontal edges.
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For the computation of fluxes on cell interface solution of U"*/4* has to be
determined by means of an approximate evolution operator. If time integral
from 0 to At is approximated by the midpoint rule and no recovery is used

then the whole method is of first order. In this case the finite volume evolution
Galerkin scheme (7.3), (7.4) gives

Uttt =y - — Z 80 F (U), (7.5)

1 h
E(U) = E/o Fi(Eat2U")dS. (7.6)

However, the most important advantage of this formulation is that even a
first order accurate approximation F;, to the evolution operator E(7) yields
an overall second order update from U" to U "1 The second order scheme is
obtained by a conservative discontinuous bilinear recovery Rj, using the vertex
values. The fluxes on cell interface are computed as

1

h
Fp(U") = E/o F.(Eatj2RpU™)dS. (7.7)

8 EXACTINTEGRAL REPRESENTATION
AND APPROXIMATE EVOLUTION OP-
ERATORS FOR THE EULER EQUATIONS

In [9] a general procedure for the derivation of integral equations for lin-
ear hyperbolic systems in d space dimensions have been described. In order
to derive the integral equations for nonlinear hyperbolic systems a suitable
linearization has to be done first. This is achieved by freezing the Jacobian
matrices at a suitable state.

In this section we derive the integral equations for the linearized system of
the Euler equations of gas dynamics and start with the system (3.2) in primitive
variables. This is the simplest and most convenient form for studying the
bicharacteristics of the system away from shocks and contact discontinuities.

To derive the integral equations we linearize system (3.2) by freezing the
Jacobian matrices at a point P = (%,7,%). Denote by W = (5, @, #, ) the local

variables at the point P and by ¢ the local speed of sound there, i.e. & = 7pp
Thus, the linearized system (3.2) has the form
W,+A W)W, +A W)W, =0, z=(z,y)" €R. (8.1)
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The eigenvalues of the matrix pencil P(W) = A W)n, + A, (W)ny,
where n = n(0) = (n,,n,)T = (cosf,sinf)T € R? are
Al = wcosf@+vsinf—¢c
A = A3=1wcos @+ 0 sin

Ay = ucos B+ vsin 6+ ¢,

and the corresponding linearly independent right eigenvectors are

! :
S cos 6 i 0 _— sin ¢ _— cos 6
= sinf |’ 2 0| -3 —cosf |~ sin 0
—pc 0 0 pc

Let R(W) be the matrix of the right eigenvectors. The inverse of R(W) is

0 cosf sinf —1/(2p¢)
e 110 0 -1y
L (W) = 21 0 sinf —cosf 0
0 cos@ sinf  1/(2p¢)
Multiplying system (8.1) by R(I¥) from the left we obtain the charac-

teristic system -

Vi,+B W)V, +B,(W)V, =0,

where

('&—ECOSQ 0 —icsind 0
~ 0 U 0 0

B,(W) _ésinf 0 @ Zsin 6

\ 0 0 Llsinf a+écosd
(17—6sin0 0 %écose 0
~ 0 0y 0 0

éz(w) o ccos 0 v —ccosf

0 0 —%56089 U+ ¢ésinf

and the characteristic variables V are

%(—% + ucosf + vsin6)

01
B 3
V= V3 =R (W)W = usinf — vcos6 ' (8.2)
Uy %(%—{—ucos@—kvsin@)
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The quasi-diagonalized system of the linearized Euler equations has the
following form

u—ccosf 0 O 0
0 u 0 0
0 0 0 u-+ccosb
v—¢sinf 0 O 0
0 v 0 0
+ 0 035 0 V,=4%
0 0 0 v+¢csinf
(8.3)
with
S, % (sin 96”3 — Cos 9‘9”;)
s=| %= !
= | S3 | | ¢si (am %) — ccos@(a”1 — %—Z‘*)
Sy 18(—sin#2% + cos 98”3)

This procedure was carried out in [9] for the wave equation system. Note
that there the advection terms were not consider. These are present in the lin-
earized Euler system. The system (8.3) would reduce to a diagonal system, i.e.
S = 0, only in the special case when the Jacobian matrices él, é commute,
which is not the case for the two-dimensional Euler equations.

In what follows we will work with the concept of bicharacteristics. The
¢-th bicharacteristic z, corresponding to the /-th equation of the system (8.1)
is defined by

- = bye(n) == (by, bj) " (8.4)

The set of all bicharacteristics creates the so-called Mach cone, see Fig-
ure 1. We integrate the ¢-th equation of the system (8.1) from the point
P = (z,y,t+ At) down to the point Q¢(#), where the bicharacteristic hits the
plane through P’ = (z — 4At,y — 9At,t). Integrating the system (8.3) along
the bicharacteristics from ¢ up to t + At gives the relations for the character-
istic variables, which after the multiplication from the left by the matrix R
yield the exact integral representation N
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P = (z,y,t+ At)

=
L,

Figure 1: Bicharacteristics along the Mach cone through P and Q(0).

9 _§U1+Uz+§v4
1 m :
W(P)= — v1 cos 0 + vgsinf + vy cos b 40

27 J v18inf — vz cosf + vysin b
—pCu1 + pcuy

—LS) + Sy + £8S,
_|_i T S cosf + Sy sinf + S) cos f
2 Jo Sy sin® — Sy cosf + Sy sinf

—peS| + pés,

o,  (8.5)

where S, = tt+At Se(z,(t,0),t,0)dt is an integral along the /-th bicharacter-
istic. If we use the facts that Q1(0 + 7) = Q4(0), all v(z,y,t,6) and Q.(6),
¢ =1,..,4 are 2w-periodic and that ()2 = (Y3 are independent on # we obtain

from (8.5) the following formulae for the exact solution W of the linearized
system at the point P = (z,t 4+ At). We put Q := Q1(0) and P’ := Q».

o(P) = o(P) - ")
27 ~ =
+ % 0 [p(g) ~Lu(@) cos6 — Lu(Q) sino| a0

(8.6)
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27
u(P) = % 0 [—p(ﬁg) cos f + u(Q) cos?d + v(Q) sind cos@] dé

1 2 t+ A\t L B
b / cos 0 S(z — (it — en(0))(t + At — ), 4, 0) di d6
0 t

b ou(P) - % /t T (P dE (87)
v(P) = %/0% [—2% sin@ + u(Q) cosf sinf 4 v(Q) sin’ 9] d
4 % 0% /HmsineS(g— (i — en(6))(t + At —7),7,6) di 4
+su(P) - o /t T (P (D) di (8.9)
p(P) = — / " 1D(Q) — pu(Q) cosb — pen(Q) sinf] A
:

_ pc— W/Mt S(z — (i — en(0))(t + At — 1), 1.0 df b,
(8.9)

where P'() = (z — a/\t,y — 0AL 1), (z — (& — én(8))(t + At — 1)) =
= (z — (@ — écosB)(t+ At — 1),y — (0 — ¢sinf)(t + At — 1)) and S(z,t,0) =
elus(z,t,0)sin* 0 — (u,(z,t,0) + vi(z,t,60))sinf cos + v,(z, t,0) cos? ).

Note that we have derived the exact integral representation of the solu-
tion to the linearized Euler equations (8.1). This is a basis for our further
numerical approximations. In derivation of individual approximate evolution
operators the most attention need to be put on the approximation of the in-
tegrals of S over intermediate time levels and time integrals involving p, and
py- Here we present only resulting approximate evolution operators without
detail derivations, which were done in Section 4.2 in the thesis.

Approximate evolution operator EG1

p(P) = 1 /27r 1@ — Qéu(Q) cosf — 2@1}(@) sin 6d6

2 J, 2 ¢ ¢

+p(P) - L (&f ) 4 o(a)
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27
u(P) = l/ _p(ﬁ)) cos @ +u(Q)(3cos?d — 1) + 3v(Q) sin 6 cos Hd8
0

m pC

+0(AP),
27
v(P) = l/ —]@sme+3u(Q)sm9cose+U(Q)(gsm?e—1)d9
0

Y pC
+0(At?)
1 2w

p(P) = o /. p(Q) — 2péu(Q) cos @ — 2pév(Q) sin 8dh + O(AL?)

Approximate evolution operator EG2

p(P) = 1/0 ’ []@ — éu(Q) cos f — E’U(Q) sinf| dé

s C C

+p(P') — zp(;ﬂ) + O(AP)

u(P) = = /OF [—@ cos@ + u(Q)(2cos?d — 1/2) + 20(Q) sin 6 cos 9] de

j—O(At?’) "

v(P) = %/0% [—1% sin @ + 2u(Q) cos fsin O + v(Q)(2sin® 6 — 1/2)] d
+0(At?)

pP) = p(P) 4 [ @) - (@) cosd — peu() sind] s+ O(ar)

Approximate evolution operator EG3

p(P) = ! /027T p@) _ ol (Q) cosf — 2@1}(@) sin 6d6

s c2 C C

+p(P) — ]% + O(At?)

27
u(P) = L —ip(@) cosf + u(Q)(3cos? @ — 1) + 3v(Q) sin 6 cos HdH
21 Jy pC

+%u(P’) + O(At?)
27
v(P) = QL —%p(@) sin § + 3u(Q) sinf cos 6 + v(Q)(3sin*§ — 1)dh
T Jo

+%U(P/) + O(A#?)
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1 27

p(P) = o /. p(Q) — 2p¢u(Q) cos § — 2p¢v(Q) sin Bdf + O(At?)

Approximate evolution operator EG4

o(P) — i/% [p(g) —9Pu(Q) cost — 22(Q) sin@] d6

21 Jo c c c

+p(P') — 2% + O(AP)

u(P) = 1 /W [—2]@ cos § + 2u(Q) cos® § + 2v(Q) sin 6 cos 9] df + O(At?)

21 J pe
v(P) = 1 3 [—QP(Q) sin @ + 2u(Q) cos #sin @ + 2v(Q) sin® 9] df + O(At?)
21/, pé
2m
p(P) = % [ p(Q) — 25u(@) cost — 270(Q) sind] b + O(AE)

Approximate evolution operator EG5 for piecewise constant data
p
p(P) = p(P) =~

+i/0 W [p(;)) ~ 2u(Q) sgn(cos ) - éU(Q) sgn(sin6) | df

C

wP) = — /0 K [—pg) sgn(cosf) + v(Q) sinf cosf
< + cos? @ ]

v(P) = %/0 ' [_p(pCCQ) sgn(sinf) + u(Q) cosf sind

+0(Q) <%—|—sin29 ] dé

1 27

p(P) = 5 [ Q) ~ fu(Q) san(cos6) - e (Q) sen(sin6)] a6

Approximate evolution operator EG5 for piecewise linear data

02

cosf — 2u(Q) sinf| 4o + O(A#?)

C

P+ / 2 (@)~ p(P)] 0
(0

/

>1I'—‘
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w(P) = u(P’)—I—l/O% _p(~C~2) cos 6 df

T pe
—1—3/0 ' [u(Q) (3 cos®0 — 1) + 3v(Q) sinf cosf — %U(Pl)] de
+O(At?)
o(P) = v(P)+ 71r /O —p(ﬁ? sin 0 df
—|— [ (3 sin®@ — 1) + 3u(Q) sin6 cosd — %U(P/)] de
+O(At2)
pP) = P+ [ (@) - P 0
1

27
- / 52 [u(Q) cosf — v(Q) sind] df + O(AL),

0
where @ = (z—At(a—écosb),y— At(v—ésinb),t), P = (x — Ata, y— Ato, t),
and P = (z,y,t+ At).

We want to point out that the discretization error of the evolution operator
EG5 for piecewise constant data is O(At?) only if the CFL number equals 1,
otherwise it is just O(At). The accuracy of the whole finite volume evolution
Galerkin scheme is imposed by the second, correction, step, which is the finite
volume update.

In the thesis the rigorous derivation of the approximate evolution operators
EG1-EG5 for the shallow water equations and wave equation with advection
using the above design principles were done. We have decided not to present
these rather lengthy calculations here, since it would enlarge the size of this
paper substantially.

9 CONCLUSION

In thesis we studied numerically a complex problem of genuinely multi-dimen-
sional structure of the hyperbolic systems of conservative laws. The main em-
phasis was put on derivation and study of new genuinely multi-dimensional
numerical scheme based on the use of bicharacteristic, the so-called finite vol-
ume evolution Galerkin schemes. At the beginning of the thesis we deal with
the simplified one-dimensional Riemann problem presenting a rich structure
of its solution, such as rarefaction waves, shear waves and shocks. These can
be seem in some our test cases in numerical experiments, cf. Chapter 6 of
the thesis. In the thesis we have derived finite volume evolution Galerkin
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schemes for nonlinear systems of hyperbolic conservation laws in two space
dimensions, namely for the Euler equations and for the shallow water equa-
tions. These methods couple a finite volume method with the approximate
evolution Galerkin operator, which is construct using the bicharacteristics of
multi-dimensional hyperbolic system such a way, that all infinitely many direc-
tions of wave propagation are taken into account. In Sections 4.2-4.4 of thesis
we have derived precisely five evolution Galerkin operators EG1-EGb5 for the
Euler equations, the shallow water equations and for the wave equation with
advection. The second order finite volume evolution Galerkin schemes are cre-
ated by using the conservative piecewise bilinear recovery in space, appropriate
approximation of the edge integrals and the midpoint rule approximation in
time.

Further we have studied theoretically L!-stability of the schemes. The L!-
stability was done for a simplified two-dimensional linear advection equation.
The main point was to consider several suitable quadrature rules for the ap-
proximation of cell interface integrals. For the two-dimensional systems we
have also analyzed the linearization error in time, global error in time and
space under assumption of linearization and the truncation error for linearized
hyperbolic systems. We have shown that the error of the finite volume evo-
lution Galerkin scheme (7.5), (7.7) applied to the linearized Euler equations,
shallow water equations and the wave equation system with advection is of
second order. The error analysis concerning the second order scheme (7.5),
(7.7) with the EG1-EG3 operators was already published in our paper [11].
The analysis for the operator EG4 is analogous. A new result presented in the
thesis is the analysis of the truncation error for new operators using piecewise
constant as well as piecewise linear data, cf. Section 5.3 of the thesis.

Many numerical experiments, presented at the end of thesis, illustrate good
multi-dimensional behaviour as well as high global accuracy of our finite vol-
ume evolution Galerkin schemes.

There are still several open questions concerning the stability of the second
order finite volume evolution Galerkin schemes. New finite volume EG5 op-
erators increase the stability of the finite volume evolution Galerkin schemes
considerably, however the desired limit of CFL=1 is not yet reached. Further
we have studied in this thesis only homogeneous conservation laws, e.g. homo-
geneous shallow water equations. There is a possibility to extend our results in
future to a non-homogeneous case, which is a particularly interesting question
with respect to geophysical modeling.
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10 ZAVER

Predlozena prace se zabyva matematickym modelovanim proudéni stlacitelnych
tekutin. Hlavni diraz byl kladen na odvozeni a studium nové ryze multi-
dimenzionalni numerické metody zalozené na metodé bicharakteristik. Tato
metoda byla nazvana evolué¢ni Galerkinova metoda kone¢nych objemt. V tvodu
se prace zabyva jedno-dimenziondlnim Riemannovym problémem a popisuje
jeho bohatou strukturu reseni, do které patti viny zredéni, kontakty nespoji-
tosti a Soky. Tyto jednotlivé typy struktur se vyskytuji i v reSeni nékterych
testovacich pripadu v kapitole numerickych experimentu disertacni prace. Déle
je v praci odvozena evolucni Galerkinova metoda konecnych objemu pro ne-
linearni systémy hyperbolickych zakonu zachovani ve dvou dimenzich a to
zejména pro Eulerovy rovnice a pro rovnice mélké vody. Evoluéni Galerkinova
metoda konec¢nych objemu propojuje metodu koneénych objemu s aproxima-
tivnim evolu¢nim Galerkinovym operatorem. Tento operator je tvoren pomoci
bicharakteristik multi-dimenzionalniho hyperbolického systému tak, ze pracuje
s nekonecné mnoha sméry proudéni tekutiny. Podrobné odvozeni jednotlivych
evolucnich Galerkinovych operatoru EG1-EG5 pro Eulerovy rovnice, rovnice
meélké vody a vlnovou rovnici s advekci je provedeno v oddilech 4.2-4.4. Metoda
druhého tadu je vytvorena pomoci konzervativni po castech spojité bilinearni
rekonstrukce, vhodné numerické aproximace integralu pies hranu kone¢ného
objemu a uzitim obdélnikového pravidla pro aproximaci v case.

Na pripadé dvou-dimenzionalni linedrni advektivni rovnice je v praci teoret-
icky studovéna L!-stabilita evoluéni Galerkinovy metody koneénych objemil,
kde uvazujeme nékolik vhodnych numerickych kvadratur pro aproximaci in-
tegralu pres hranu kone¢ného objemu. Analyza chyby linearizace v ¢ase stejné
tak jako globalni chyby v case a v prostoru za predpokladu linearizace a také
chyby ze zanedbéni (truncation error) pro linearizovany hyperbolicky sytém
je vypracovana pro systémy ve dvou dimenzich. Je zde ukazano, ze pokud
evolu¢ni Galerkinovu metodu kone¢nych objemu (7.5), (7.7) aplikujeme na
Eulerovy rovnice, rovnice mélké vody nebo vlnovou rovnici s advekci, tak je
chyba metody druhého fddu. Rozbor chyby metody (7.5), (7.7) druhého tddu
s evolu¢nimi operatory EG1-EG3 byl jiz diive publikovédn v nagem ¢lanku [11].
Analyza chyby metody pro operator EG4 je analogicka. Novym vysledkem
prezentovanym v disertacni praci je analyza chyby pro novy evoluc¢ni operator
EG5 s po castech konstantnimi i s po castech linearnimi daty, viz oddil 5.3
disertacni prace.

Dobré multi-dimenzionalni chovani nasi metody i jeji vysoka presnost jsou
potvrzeny na mnoha numerickych experimentech v kapitole 6 disertacni prace.

Do budoucna zustava stale oteviena otdzka stability evoluéni Galerkinovy
metody konec¢nych objemu druhého fadu. Novy evolucni operator EG5 ma
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sice vyssi stabilitu nez ostatni evolucni operatory, ale magické hranice CFL=1
stale jesté nedosahl.

Jelikoz je prace zameérena pouze na homogenni hyperbolické systémy, t;j.

homogenni rovnice mélké vody, je v budoucnu moznost rozsitit nase vysledky
i na rovnice nehomogenni, coz by mohla byt zajimava otdzka vzhledem ke
geofyzikalnimu modelovani.
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