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1 INTRODUCTION

The general procedure of Estimation Distribution Algorithm (EDA) is similar to
that of GA, but the classical recombination operators are replaced by probability
estimation followed by probability sampling. First, the initial population of EDA is
generated randomly. In each iteration, promising solutions are selected from the
current population of candidate solutions and the true probability distribution of
these selected solutions is estimated. New candidate solutions are then generated by
sampling the estimated probability distribution. The new solutions are then
incorporated into the original population, replacing some of the old ones or all of
them. The process is repeated until the termination criteria are met.

The Bayesian Optimization Algorithm (BOA) [6] attracted much attention during
few last years. It uses Bayesian network (BN) to factorize the structure of solved
problem:

n—1
(X5 Xpo) = [ | (X [ 1) (1)

i=0
where 77; denotes the set of genes (random variables) that determine the value of
gene X; in the dependency graph of Bayesian network. The methods and metric for
BN building were adopted from the area of data mining, namely from Heckerman,
Geiger & Chickering [4]. The Bayessian Dirichlet metric (BDe) is used to measure
the quality of the network. The complete BOA evolutionary cycle is shown in the
following figure.
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Fig. 1.1: BOA evolutionary cycle.



2 RESEARCH OBJECTIVES

2.1 Open problems

There is currently a considerable amount of research surrounding Estimation of
Distribution Algorithms. However, the following open problems can be identified:

1.

9,

There does not exist a complete formal framework for EDAs.

The research on general models for continuous domains should be refined —
the present models are computationally expensive or too simplified.
Computational complexity of model construction significantly restricts the
size of solvable problems.

Existing EDAs are not applicable to problems with multiple objectives.

. Modular development system for rapid prototyping of EDA applications is

missing.
The efficiency of EDAs for real world problems was not investigated — most
empirical studies deal only with synthetic benchmarks with bounded degree of
epistasis.

2.2 Research outline

This dissertation solves all the open problems stated in previous section. The main
goals include :

1.

2.

(9,

Identification of the common features of existing EDAs and creation of their
formal description.

Development of new probabilistic model which is effectively applicable to
real-valued or even mixed optimization problems.

. Time analysis of main EDA components for the purpose of algorithmic

simplification and parallel implementation. Development of new parallel
methods and heuristics providing for realtime performance.
Extension of EDA framework for multiobjective optimization.

. Design and implementation of modular development system for rapid

prototyping of EDA applications.

. Investigation of EDA performance on real world problems, namely from the

area of circuit design.



3 APPROACH

3.1 Formal description of EDA algorithms

The following paragraph describes an original formal definition of Estimation of
Distribution Algorithm. The reasons for formal approaches are straightforward
since: (i) problem specification is rigorous, (ii) a mathematical apparatus can be
applied to investigate their properties, and (iii) tools for automatic analysis,
verification and design can be developed. As the baseline 1 use Back’s formal
definition of evolutionary algorithms presented in [1].

Definition 3.1 (Estimation of Distribution Algorithm) :
An Estimation of Distribution Algorithm is defined as an 11-tuple

EDA = (I, MY, p,@,s,7,1, i1, 1), 3.1)
where:
(i) I=A4" is the space of individuals of length 7 over the domain A4,

(i1)) @: IR denotes a fitness function assigning real values to individuals (in EDA
framework often denoted as F(x)),

(iii) M ={M|M : 1 —[0,1]} is the space of admissible probabilistic models,

(v) ¥ : I# A 5 [H s the generation transition function,
(V) p : “xM—R denotes the metrics for evaluating probabilistic models,

(vi) @ : M— I" denotes the model sampling operator (non-deterministic),

(vii) s:I# A S IH s the (utA)-selection operator, which selects the parent
population D(t) from population P(t). The most frequent truncation selection
operator is defined as s(,1)(P(t))=D(t) such that: IxeP(t) \ D(t) : (Ix’eD(t) :
Dx) > D (x’)),

(viii) 7: ¥ A S M s the replacement operator, which creates new
population P(t+1) from the old population P(t) and offspring population O(t).
The most frequent replace-worst operator is defined as  P(t+l) =
r (u+k+7»)(P (t),O(t)): S (u+k)(P (t))UO(t),

(ix) 2: 1# RGN {true, false}is the termination criterion,

(x) u is the number of parent individuals (often denoted as N), while 4 denotes the
number of offspring individuals (usually equal to N, so L = A+u = 2*N).



This definition is based on high-level concept, where each probabilistic model M
is a mapping from the space of strings to the space of probability values. This is
captured in the generation transition function

Y(P(1) = r[P(rmﬂ(arg max p(s(P(r»,M)D 3.2)

Iterated application of transition function generates a population sequence and
leads to definitions of the running time and the result of EDA.

3.1 Solving continuous & mixed problems

The most straightforward way how to solve continuous benchmarks by BOA is to
transform each continuous parameter into binary parameter and use the Bayesian
network model for such a binary encoding. See the papers [9] and [11] for further
details on this approach. Unfortunately, this approach is not scalable. With the
increasing precision of encoding the BN parameter k becomes unmanageably large
and the complexity of BN construction grows exponentially.

The other way of solving continuous optimization problem by EDA is to let the
parameters Y; be continuous (like in evolutionary strategies) and find a proper model
for this continuous domain. For continuous domains there is an IDEA approach [2]
used to discover and encode the parameter dependencies — estimating Gaussian
networks, Gaussian kernels and mixtures of Gaussians. However, these models are
not compatible with discrete domains.

This is the reason for proposing new EDA model based on Classification And
Regression Trees (CART), which is usable also for continuous and categorical

domains:

X,€10,1} X €{3,4}

&) ©

x<3.2  x>3.2 x1<5.8 x;>5.8
f(Xo)=... @ X | [fxo)r=..
X1 <7 X1 >7
/
Xor=.. | [fXo)r=...

Fig. 3.1: An example of CART model which comprises of one categorical split on
variable X, and three continuous splits on variable X,. The leaf nodes conditionally
determine the probability density functions for target variable X,.



3.2 Parallel processing

The most significant difference between classical GA and the EDA algorithm lies
in the character of creation of new population. In case of classical GA the crossover
is pairwise operation and can be performed even locally, but in case of EDA the
classical models of parallelism are useless, because the accuracy of estimated model
decreases rapidly with decreasing size of parent population. The only way how to
design a parallel EDA algorithm is to propose new paradigms for parallel
construction and sampling of probabilistic model in the pseudo-sequential manner.
The goal is to utilize more processors when searching for a good model.

Empirical analysis shows that nearly all the execution time of sequential BOA is
spent to find the dependence graph of Bayesian network. Thus, some method for
parallel BN construction needs to be proposed. Our consolation is that the BDe
metric is separable and can be written as a product of » factors, where i-th factor
expresses the influence of edges ending in the variable X;. Thus, for each variable X;
the set of parent variables 7//; can be determined independently. It is possible to
utilize up to n processors, each processor corresponds to one variable X; and it
examines only edges leading to this variable.

CPUO

Fig. 3.2: CPU, is adding edges ending in nodes 0 and 1, CPU, is adding edges ending
in nodes 2 and 3; CPU, is adding edges ending in nodes 3 and 4.

In Fig. 3.2 you see that the naive parallel BN construction might produce the
unwanted cycles (dashed lines). The addition of edges is parallel, so we need an
additional mechanism to keep the dependence graph acyclic. The most advantageous
way how to handle this problem is to predetermine the topological ordering of nodes
in advance. At the beginning of each generation, the random permutation of
numbers {0,1,...,n-1} is created and stored in the 0=(040,...,0,;) array. Each
processor uses the same permutation. The direction of all edges in the network
should be consistent with the ordering, so the addition of an edge from x, to X, is
allowed if only j<i. Evidently, the variable X, has no predecessor and is forced to
be independent, thus the space of possible networks is reduced. To compensate this
phenomenon the processors generate new permutation after each generation.



CPU 1
O1=0

Fig. 3.3: Example of BN construction with 3 processors and n=3. Permutation vector
0=(1,0,2) determines the topological ordering of nodes such that the dashed edges are not
allowed.
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3.3 Multiobjective optimization

Many real-world problems have multiple non-commensurable and often
competing objectives. The main attention is focused on the incorporation of well
known multiobjective niching techniques into structure of EDA to find the so called
Pareto optimal set. | have designed two variants of multiobjective BOA according to
Pareto-strength concept and epsilon-dominance concept.

3.3.1 Pareto-strength concept

The standard BOA is able to find mostly one optimal solution at the end of the
optimization process, when the whole population is saturated by phenotype-identical
individuals. To overcome this problem a promising Pareto-strength niching
technique is applied, published in [12]. The space of objective vectors is divided into
rectangles corresponding to the combinations of solutions from Pareto-set. The
Pareto-strength fitness assignment tries to replace the objective vector by the scalar
fitness value according the following two rules (see Fig. 3.4):

1. Individuals dominated by smaller number of nondominated individuals are

preferred.
2. Dominated individuals having more neighbours in their , niche* are
penalized.
F F
most preferred regions most preferred solution
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Fig. 3.4: lllustration of intuitive rules for Pareto-strength fitness assignment

11



3.3.2 Epsilon-dominance concept

The utilization of epsilon-dominance concept is a result of joint research with
Marco Laumanns from ETH Zirich, one of the authors of well known SPEA2
algorithm. We derived design guidelines for a successful selection scheme in EDAs:

1. Elitism (to preclude the problem of gradual worsening and enable
convergence to the Pareto set),

2. Diversity maintenance in objective space (to enable a good approximation
of the whole Pareto set), and

3. Diversity maintenance in decision space (to avoid redundancy and provide
enough information to build a probabilistic model).

In connection with the construction of mixed decision trees probabilistic model
we developed new selection operator based on e-archives [6]:

- log(F;)/log(1+epsilon)
>

Fig. 3.4: The basic idea of e-dominance. The objective space is divided into &boxes.
Each &-box can contain only one solution. This avoids outbreak of “easy to get” solutions
from the middle region.
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3.4 Prototyping of BOA applications

The creation of a well-performing classical evolutionary algorithms highly
depends on problem encoding, genetic operators and control parameters. In the field
of classical EAs there are many development environments for fast prototyping, but
in the field of EDAs these tools are missing. The work on DEBOA system for the
rapid prototyping of BOA-based applications is an extension of Radim Kostka‘s
master thesis [5] I supervised. This system includes all advantageous features of
existing development systems:

3.4.1 Visualization

By the visualization I mean the ability of EA development system to provide as
many information about the evolution as possible. The common visualization can be
divided into two classes:

- visualization of EA evolution process

- visualization of current population distribution in solution space

3.4.2 Extensibility

Modern EA toolkits should be implemented in a modular way, such that a new
operator, visualization or fitness function can be added. After building a final source
code for solved optimization task two extensibility modes can be used:

- Interpreted code

- Binary code using DLL files

The interpreted mode uses a built-in interpreter of pseudo-programming language
in which the user code can be written. The binary one is faster, because the
precompiled binary code is dynamically loaded and executed (for example from
.DLL file or Java .class file).

3.4.3 Reusability

Most of EA toolkits support only prototyping, but some of them can also export
settings and operators into final application such that the optimization engine needs
not to be programmed again. For example the core of reusable EA toolkit is
contained in .DLL file and its API functions are called from the source code
generated according to optimal settings found.

3.4.4 Portability

By the portability I mean the transfer of EA toolkit from one platform to another.
Usually the commercial toolkits contain platform-specific binaries whereas the
open-source toolkits are easily portable.

13



4 THE RESULTS

4.1 MBOA

In Mixed Bayesian Optimization Algorithm (MBOA) design I have focused on
solving problems with mixed continuous-discrete parameters. For each “target”
random variable X; MBOA builds one decision tree. The parent variables /7
contained in split nodes of i-th decision tree are used to cut the space of all
chromozomes into parts, where the variable X; is more linear or predictable.

The building of decision trees starts from empty trees and it recursively adds the
splitting nodes until no splitting is favourable:

Function RecursiveSplitting(Population Pop, TargetVariable Xj,
ListOfCandidateSplitVariables Pa) : DecisionTreeNode
Begin
fremp := EstimateElementaryPDF (Pop,X;,Pa);
If “fremp 15 sufficiently detailed” then return new
LeafNode (fremp) 7
For Each Variable X5 in Pa do

Esy := Find optimal threshold of X5 with respect to X;;
ModelGain := Evaluate the split quality (“Xy<E;”, Xi);
Save the X5 and E; with the highest ModelGain;

End for

Popl := SelectIndividuals (Pop,” X5 < Es5”);

Pop2 := SelectIndividuals (Pop,”X5 > E;”)

return new SplitNode (new SplitCondition(”Xy < E;”),
RecursiveSplitting (Popl,X;, Pa\{Xj}),
RecursiveSplitting (Pop2,X;i, Pa\{Xj}));
End;

You see that the continuous-valued decision attributes are incorporated into the
learned tree by dynamically defining new binary attributes that partition the
continuous attribute value into two intervals (Xj<E; and X;j>Ej). The threshold Ej is
selected among the candidate thresholds to maximize the metrics. The step of split
condition finding and evaluation is essential. The algorithm uses a greedy search,
that is, it picks the best candidate and never looks back to reconsider earlier choices.
The choice is based on the equation we derived from the Bayesian-Dirichlet metrics:

(X, 2, ot 0T, T, ot )
(11, H(Z, s 0 [ TL, 1, o0

where X; is the variable for which the tree is being constructed, X; is the parent
variable - possible split, and m(x;,x;) is the number of individuals having X;=x; and
X=x;. Note that the splitting is done recursively, so m(x;x;) is determined only from

gain(X;, X ;)= 4.1)
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the subpopulation being splitted. We often use the logarithm of this metric, which
avoids multiplication operations.

Population:

Xo X1 X2 X3 .

olololo Split on xo : Split on x; : Split on x; :
olololo x3=0| x3=1 x3=0| x3=1 x3=0 | x3=1
ol1lol1 Xo=0] 2 2 x;=0 2 1 x=0] 2 5
ol1loly xo=1| 1 3 x(=1] 1 4 =11 1 0
110]0(1 gain = 1.40 gain = 1.92 gain = 1.65
1|1]0]1

1|1]0]1

111)o Sub-population x;=1:

X X1 X2 X3
Sub-population x;=0: 0|*(0]1
Xo X] X2 X3 0]*|0]1
ol*lolo 1{*|1(0
ol*lolo 1[*[{0]1
11*lol1 1{*|0(1
Split on xp : Split on x; : Split on X : Split on x; :
x3=0| x3=1 x3=0 | x;=1 x3=0|x3=1 x3=0| x3=1
xo=0 2 0 x=0 0 3 x=0 0 2 | x=0 4 0
X0=1 0 1 X2=1 0 0 X0=1 1 2 X2=1 0 1
gain = 1.54 galn =1.07 galn =1.07 gain = 2.22

Fig. 4.1: Example of recursive building of decision tree for x;.

4.2 PBOA

The pipelined algorithm PBOA is the first of my three parallel BOA algorithms.
All these algorithms use parallel dependency graph construction based on the
principle of restricted ordering of nodes, they differ mainly in the way how the
offspring is being generated. PBOA was proposed for fine-grained type of
parallelism. The target platform for its implementation can be for example the
Transputers with their tightly-connected communication channels, or one-purpose
MIMD processor. Each processing element has its own local memory with complete
copy of the whole population.

Let us consider usage of m=n processors (resp. processing elements). First the BN
is constructed. The i—th processor determines the set of parent variables 17, and it

estimates the parameters of CPD (Conditional Probability Distribution) for
p(X, |11,). Fig. 4.2 shows an example of parallel construction of BN with n=4

variables and m=4 CPUs, including the parallel estimation of local CPDs.

15



CPUO: CPUI .

p(X)=0.8 p(X;31X)=0.3
CPU;: CPU;:
P(X5|XX3)=0.8 P(Xo|X5X5)=0.1
PG X,)=0.3(X) (X X Koy=0.9
P(X3|X;X;5)=0.2 P(Xo1X5X5)=0.7
P(X,IX;X;5)=0.6 p(X 1 X5X5)=0.2

Fig. 4.2: An example - splitting of BN construction between 4 processing elements. The
ordering permutation is 0=(1,3,2,0), so the variable X, is independent. Parts of BN
(including local CPD tables) which are estimated by different CPUs have different color

shades.

Now, let us focus on the pipelined offspring generation. PBOA can generate
offspring in a linear pipeline way, because in the fine-grained architecture there are
negligible communication latencies. It takes n cycles to generate the whole
chromozome. For example let us consider the first chromozome. Its o4-th bit is
generated independently in processor number 0 at time ¢. Then, its o,-th bit is
generated in processor number 1 at time 7+1 conditionally on the o,-th bit received
from neighbouring processor number 0, etc. Generally, X, is generated in CPU

number 7 at time #+i conditionally on 7, < {X 0, Xo ) The advantage is that each

CPD is sampled locally at the place where it had been estimated:
clk

)SPUO —| local memory I—

CPU, —| local memory :(

v
U,
X, —| local memory I_

CPU.. —l local memory :(

Fig. 4.3: Pipelined generation of ofspring according to the BN constructed in Fig. 4.2.
The dashed arrows mean ungenerated variables.
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4.3 DBOA

My Distributed Bayesian optimization algorithm (DBOA) was proposed and
implemented for coarse-grained type of parallelism. Its target platform is for
example the cluster of workstations connected by fast Ethernet network. The
experiments were run on the uniform cluster of Sun Ultra 5 workstations with
UltraSPARC II processors at 270 MHz. The hardware multiport router has been
Summit48 (from Extreme Networks), which is able to transfer up to 100 Mb/s
between pairs of distinct workstations simultaneously. I used the MPI C++ library
version 1.2 which provides the well known standard for message passing
communication.

At the beginning of DBOA cycle each processor has the full copy of the parent
population and it constructs the part of BN dependence graph, in the same way like
PBOA. Unfortunately, the communication delays are too long to use pipelined
generation of offspring. Thus, DBOA uses distributed generation of offspring, each
processor generates the whole subpopulation of chromozomes. See Fig. 4.4 for
comparison of both types of offspring generation.

PBOA DBOA
fgene index (0 ... n-1)—= gene index (0 . n- ])%

y

() Xapui [pnpiaiput
0) xopu1 ivnp.myou!

é(['N cen

é([’[\[ .

Fig. 4.4: Comparison of offspring generation. PBOA distributes the work between
processors ,, horizontally* and DBOA ,,vertically“.

Note that for this kind of offspring generation each processor needs to use the
complete probabilistic model, which is constructed piecewise. Thus, a necessary
step between model estimation and offspring generation is the gathering of local
parts of model. Each processor exchanges its part of model with the other
processors. The workload balancing methods ensure that all workstations
finish the BN construction and the BN sampling in the same time, because
BN gathering or offspring gathering steps can be considered as the barrier
synchronization. The complete example of one DBOA timing cycle can be
seen in Fig. 4.5.
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BN Offspring

gathering gathering
I BN construction: BN sampling B
CPUO _ - _ - e B
CPU 1 - - - -
cru2 | ] [0 B
Farmer-workers Performance t())vz;f?ae;)s g ed
architecture measurements y .
computation

Fig. 4.5: Example of timing diagram for one DBOA cycle.

4.4 Multithreaded MBOA

In MBOA algorithm a set of binary decision trees/graphs is used to express the
probability model. Many ideas for parallel MBOA algorithm can be adopted from
the DBOA design, namely the concept of restricted ordering of nodes.

The MBOA differs from BOA in the heterogeneous model parameters. It is very
difficult task for each process to convert the parameters of decision tree into one
linear data stream, which has to be exchanged with the other processes. It would be
far more comfortable if each decision tree could be used exactly in the same place
where it has been built. Thus, the goal is to design the distributed MBOA algorithm,
which does not need to exchange the decision trees between processes. It uses the
distributed generation of offspring in the “vertical” manner (see Fig. 4.4 left), but it
was designed for use on cluster of workstations. Multithreaded processing was
proposed to overcome large communication latencies.

The whole architecture of multithreaded MBOA is shown in Fig. 4.6. The farmer
thread is responsible for dynamic workload assignment, builder threads are
responsible for building decision trees and generator threads are responsible
for generating new genes. The buffer threads are used only for buffering
dataflow between builders and generators, because Transim does not support
buffered channels. All the threads builder; buffer; and generator; are
mapped to the same i-th workstation.

18
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Fig. 4.6: Architecture of multithreaded MBOA in Transim. The dashed curves separate
workstations

The multithreaded MBOA algorithm was simulated using the well known
TRANSIM tool.
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4.5 Pareto BOA

Pareto BOA algorithm is a modification of original Pelikan’s BOA code [§]
where a Pareto-strength niching technique is applied. The most important part of the
Pareto BOA algorithm is the procedure for detection of nondominated solutions
(current Pareto front) and sophisticated Pareto-strength fitness calculation. The
whole structure of Pareto-strength based BOA algorithm is stated in Fig. 4.7.

Population®" | Archive*!

Truncate selection

Model construction

Bayesian ®‘®
network | (x) (x)

A\ J

Sampling

Offs pring(t)

Objective vector evaluation

Pareto ide n—tiﬁc/ation>

Dominated solutions Nondominated solutions

Strength fitness
computation

Strength fitness
recomputation

Replace worst

Population® |  Archive'

Preserved by elitism
(Strength fitness > 1.0)

Fig. 4.7: Architecture of Pareto-strength BOA
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4.6 (u+).£) — BMOA

The Pareto-strength BOA algorithm was comparable to the best multiobjective-
algorithms of its time - SPEA [12] and NSGA [10]. However, I decided to create
new algorithm to be competitive to the recent SPEA2 [13] and NSGA-II [3]
algorithms. The aim was also to develop completely new multiobjective technique
for MBOA core based on mixed decision trees model. I started the joint research
with Marco Laumanns from ETH Zirich, one of the SPEA2 authors. Our new
Bayesian Multi-objective Optimization Algorithm (BMOA) reflects all the new
studies related to the theoretical convergence analysis. It has both properties of
converging to the true Pareto-optimal front and maintaining a widely spread
distribution of solutions.

The e-archive was proposed for use in classical MOEAs, because it maintains a
minimal set of solutions that e-dominate all other solutions generated so far.
However, as this set can become very small, the scheme has to be modified to
provide enough decision space diversity for BOA. The new selection operator is
described in Alg. 1. The idea is that now also dominated individuals are allowed to
survive, depending on the number of individuals that they are dominated by.

Algorithm 1 Select(Ar, P, U, €)
Input: old parent set Ar, candidate set P,
minimum size u, approximation factor €
Output: new parent set Ar'
for all x € P do
B := {yeAr | VF;: Llog Fi(y) / log (1+¢) | = Llog F;(x) / log (1+e)] }
if B = J then
Ar:=ArU{x}
else if dyeB such that x>y then
Ar:=Ar \ BuU{x}
end if
end for _
Ar' := {ye€Ar | dzeAr: z>y}
D := Ar \ Ar’
if |Ar'| < u then
Fill Ar' with p—|Ar'| individuals yeD in increasing order
of |{z€eAr’UD | z>y}|
end if
Return: Ar’

The algorithm consists of two parts — insertion of individuals from P to 4Ar and
selection of most promising part of 4r into 4»’. The insertion rules for e-archive are
straightforward:

o anew solution is added if the e-box is empty

o a new solution replaces the old solution in the e-box if the new solution

strictly dominates the old one
o otherwise the new solution is omitted
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The combination of the selection operator (Alg. 1) and the variation based on the
probabilistic model results in a Bayesian Multi-objective Optimization Algorithm
described in Alg. 2. In this (¢ + 4, €) - BMOA, u denotes the (minimum) number of
parents that survive to the next generation being the input to build the model, 4
the number of samples from the model in one generation and € the factor that
determines the granularity of the approximation.

Algorithm 2 (u+4,¢) - BMOA

while |Ar| < u do
Randomly create an individual x.
Ar := Select (Ar, {x}, Y, €

end while

while Termination criteria not fulfilled do
Create Bayesian Model M from Ar.
Sample A new individuals from M.
Mutate these individuals and put them into B.
Ar := Select(Ar,B, u,e)

end while

4.7 DEBOA

New object oriented rapid prototyping environment DEBOA fulfills the following
goals:

- redesign of BOA core

- reusability of BOA core for variety of applications

- visualization of BOA evolution process

- interactive parameter settings

By combining the object-oriented design with the other Java features, DEBOA
has several unique advantages:

o in the Java applet mode it is suitable for WWW presentations

o pre-compiled modules with new visualizations and new fitness computation can
be dynamically loaded during run-time as new classes

o the class files are easily portable, no need to distribute the source code

o the class containing optimization core is reusable, it can be easily incorporated
into the final project
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For object oriented design the “design patterns” technique was used. The
simplified scheme of DEBOA system is shown in the following UML diagram.
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Fig. 4.1: The UML diagram of DEBOA classes
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S CONCLUSION AND FUTURE WORK

The main contributions and conclusions of this thesis can be summarized as
follows:

e A new paradigm for Evolutionary Computation was explored and the new formal
specification of EDA algorithm was formulated.

e It was developed a new probabilistic graphical model composed of binary
decision trees with mixed decision nodes, which is more accurate and reliable
model than the pure Bayesian network, more general model than Gaussian
network and more useful for building blocks evolution than mixtures of
Gaussians.

e A new advanced EDA algorithm MBOA (Mixed Bayesian Optimization
Algorithm) for solving problems with real-valued parameters was designed and
implemented. Its main advantage against the mostly used IDEA and EGNA
approach is the backward compatibility with discrete domains, so it is uniquely
capable of learning linkage between mixed continuous-discrete genes. MBOA
handles the discretization of continuous parameters as an integral part of the
learning process and the divide-and-conquer approach used for construction of
decision trees exhibits high performance. For experiments with MBOA a new
mixed continuous-discrete benchmark Fmixed was established, which is very
hardly sensitive to correctness of decision tree building algorithm. MBOA was
able to find global optimum, so the dependencies within each pair of deceptive
mixed parameters have been successfully discovered.

e Original concept of parallelization of BN construction was proposed on the basis
of predefined ordering of BN nodes. Parents for each node can be found
separately without checking for acyclic dependency graph. This completely
removes the need for communication between parallel processes and enables
nearly linear speedup. It should be emphasized that the usage of concepts of
parallel construction of probabilistic model is not limited only to the area of
Estimation of Distribution Algorithm. The graphical probabilistic model became
an important tool in the artificial intelligence, expert systems, data mining, etc.

e Three different versions of parallel EDA algorithms were proposed. The
pipelined Parallel BOA algorithm (PBOA) was proposed for fine-grained type of
parallelism with tightly connected communication channels. Simulation results
showed that the quality of generated network was almost the same as in the
sequential case. The Distributed Bayesian Optimization Algorithm (DBOA) was
proposed and implemented for coarse-grained type of parallelism using the
message passing communication (MPI). The experiments were successfully run
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on the uniform cluster of Sun Ultra 5 workstations with UltraSPARC 1I
processors connected by fast Ethernet multi-port router. In the multithreaded
MBOA algorithm an efficient parallel construction and sampling of binary
decision trees was proposed and successfully validated via simulation in Transim
tool.

e Additional methods for utilization of prior knowledge were suggested to speed
up the convergence. In a Problem Knowledge-based BOA algorithm (KBOA) the
partial (local) information about the problem was used to adjust the prior of
probabilistic model and injection of building blocks was used to improve the
quality of initial population.

e Multi-criterial BOA algorithms were designed. The first one was the Pareto BOA
algorithm based on promising Pareto-strength fitness technique. It was
comparable to the best recombination-based multi-objective algorithms of its
time - NSGA and SPEA. More recent is the Bayesian Multi-objective
Optimization Algorithm (p+A,e)-BMOA, which has been designed using a
probabilistic model based on binary decision trees and a special selection scheme
based on epsilon-archives. The convergence behavior of the algorithm can be
tuned via the values of m, the minimal population size to estimate the
probabilistic model, and 1, the approximation factor. The algorithm was
empirically tested on different instances of the 0/1 multi-objective knapsack
problem and successfully compared to NSGA-II and SPEA2 algorithms.

e Visual environment DEBOA for rapid prototyping of BOA optimization
applications was developed. It includes all the important features of evolutionary
toolkits — visualization, extensibility, reusability and portability. Due to using of
Java language this system fulfills all the requirements for modern development
system. One of its unique properties is the ability to be executed as java applet
for WWW presentations. As far as [ know, DEBOA is the only development
environment based on Bayesian optimization algorithm for efficient solution of
complex optimization problems with high epistasis.

The future work will be oriented towards the application of proposed parallel
construction of dependence graph and usage of proposed mixed decision tree model
and its metrics in non-evolutionary tasks like artificial intelligence, expert systems
and data mining.
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ABSTRACT

The thesis deals with the new evolutionary paradigm based on the concept of
Estimation of Distribution Algorithms (EDAs) that use probabilistic model of
promising solutions found so far to obtain new candidate solutions of optimized
problem.

There are six primary goals of this thesis:

1. Suggestion of a new formal description of EDA algorithm. This high level
concept can be used to compare the generality of various probabilistic models by
comparing the properties of underlying mappings. Also, some convergence issues
are discussed and theoretical ways for further improvements are proposed.

2. Development of new probabilistic model and methods capable of dealing with
continuous parameters. The resulting Mixed Bayesian Optimization Algorithm
(MBOA) uses a set of decision trees to express the probability model. Its main
advantage against the mostly used IDEA and EGNA approach is its backward
compatibility with discrete domains, so it is uniquely capable of learning linkage
between mixed continuous-discrete genes. MBOA handles the discretization of
continuous genes as an integral part of the learning process, which outperforms the
histogram-based approach. The original metrics for MBOA is derived as the
incremental version of Bayesian Dirichlet metrics (BDe). Its usefulness for
modelling of Boolean functions is also investigated and confirmed.

3. Parallelization of EDA algorithms. Different versions of parallel EDA algorithms
are proposed for fine-grained, coarse-grained and multithreaded environment. All
these algorithms use the original principle of restricted ordering of nodes in
Bayesian network to minimize the communication between parallel processes:

e The pipelined Parallel Bayesian Optimization algorithm (PBOA) is proposed
and simulated for fine-grained type of parallelism. The target platform for its
implementation can be Transputers, or one-purpose MIMD processor.

e The Distributed Bayesian optimization algorithm (DBOA) is proposed and
implemented for coarse-grained type of parallelism. The experiments are
running on the uniform cluster of Sun Ultra 5 workstations connected by fast
Ethernet switch. Both PBOA and DBOA are based on the parallelization of
classical Pelikan’s BOA code.

e The multithreaded MBOA algorithm, which uses original MBOA code with
mixed decision trees model, was simulated in Transim tool.
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In all parallel algorithms the additional progress towards realtime performance can
be achieved by choosing the KBOA version of BOA algorithm. The concept of
KBOA is based on the partial (local) information about the linkage. This
information is used to adjust the prior of probabilistic model and injection of
building blocks is used to improve the quality of initial population.

4. Extension of single-objective EDA to multi-objective EDA. The experiments
show that the realized Pareto-strength BOA algorithm, which utilizes a promising
Pareto-strength niching technique, outperforms the classical constraint- or
weighting-based approach and is comparable to best recombination-based
multiobjective-algorithms of its time - SPEA and NSGA. A completely new
optimization technique for MBOA core was designed in collaboration with the
author of SPEA2. This new selection operator based on epsilon-archives leads to
implementation of Bayesian Multi-objective Optimization Algorithm (BMOA).

5. Design of the modular development system DEBOA for rapid prototyping of
optimization applications on the basis of BOA algorithm. The general requirements
on the development system are identified including modularity and visualization of
results. The design of the development system itself is realized on the platform of
Java language, which ensures great portability. DEBOA system can be easily
extended to support new types of fitness functions as well as new types of
visualizations.

6. Testing of the developed algorithms on well-known benchmarks as well as
several real-world problems, mainly from the area of circuit design.
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ABSTRAKT

Prace shrnuje pokrocilé techniky genetické optimalizace zalozené na principu
generovani novych jedinci z pravdépodobnostniho modelu rodi¢ovské populace.
Analyza soucasného stavu vyzkumu v oblasti téchto EDA algoritmti (Estimation of
Distribution Algorithm) vede k identifikaci nékolika aplika¢nich oblasti, v nichz
principialné nemohou byt soucasné EDA optimalizatory uspokojivé aplikovatelné.
Jedna se zejména o oblast feSeni uloh se spojitymi a smiSenymi parametry, dale
feSeni rozsahlych uloh a multikriteridlnich Gloh. Prace navrhuje nové metody a
pravdépodobnostni modely piekondvajici uvedené bariéry.

Vzhledem k absenci formalniho pfistupu v literatufe je najprve navrzen formalni
popis EDA algoritmu a jsou nastinéna teoreticka vychodiska pro dalsi vylepSeni
existujicich EDA algoritm.

Déle je prace vénovana metoddm feSeni uloh se spojitymi parametry. Je navrZen
novy pravdépodobnostni model zaloZzeny na pouziti rozhodovacich stromi.
Strukturalné se model podoba CART modelu pouzivanému v oblasti dolovani dat. K
jeho konstrukei je vSak pouzity Bayesovsky pfistup — z BDe metriky je odvozena
nova inkrementalni metrika pro ohodnoceni kvality potencidlnich rozhodovacich
uzli ve stromu. Vyhodou nového modelu je zpétnd kompatibilita s diskretnimi
parametry. Navrzeny algoritmus MBOA (Mixed Bayesian Optimization Algorithm)
je tedy vhodny i na feSeni uloh se smiSenymi parametry, na rozdil od IDEA
algoritmt (Iterated Density Estimation Algorithm) pouzivajicich pouze spojité
pravdépodobnostni modely jako je Gausovskd sit’ nebo Gausovskd jadra. Dalsi
vyhodou MBOA je, Ze diskretizace spojitych parametri je integralni soucasti
konstrukce modelu, ¢imz se dosahuje lepSich vysledkli nez v ptipadé apriorni
diskretizace pomoci histogrami.

Dalsi kapitola je vénovana podminkdm pouziti EDA na rozsahlé problémy, tedy
algoritmickému zjednoduSeni a paralelnimu zpracovani. Jsou popsany nové metody
hardwarové a softwarové akcelerace, zejména efektivni paralelni metoda konstrukce
pravdépodobnostniho modelu. Principem je dopiedné stanoveni topologického
usporadani uzla v grafu zavislosti. Kazdy procesor nemusi pti konstrukci své ¢asti
modelu komunikovat s ostatnimi procesory, nebot’ pfi pfidavani hran je apriorné
zajisténa acyklicita grafu. Tim klesd Casova slozitost konstrukce Bayesovské sité
linearné s po¢tem pouzitych parallelnich procesori. Na uvedeném principu byly
navrzeny 3 paralelni EDA algoritmy.

Disledny navrh vsSech casti EDA algoritmu podle zasad distribuovaného
zpracovani a jeho prakticka implementace je vysledkem prace na optimalizatoru
DBOA (Distributed Bayesian Optimization Algorithm). Ten byl odladén v siti 10
pracovnich stanic typu Sun Ultra 5 a pouzivd komunikaci metodou zasilani zprav
pomoci standardni knihovny MPI (Message Passing Interface). Algoritmus
konstrukce a vzorkovani pravdépodobnostniho modelu je zaloZzen na modelu
distribuovaného zpracovani typu “farmer-workers”, takze je optimalni vykonnosti
dosazeno i v pfipadé nehomogenni vypocetni site.
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Také byla navrzena a simulovéna varianta tohoto algoritmu pro jemnozrnnou
uroven granularity paralelismu, nazvand PBOA (pipelined Parallel Bayesian
Optimization  Algorithm). Zatimco DBOA 1 PBOA pouzivaji jako
pravdépodobnostni model Bayesovskou sit' z klasické BOA a liSi se hlavné ve
zpusobu generovani novych jedincu, tak tieti paralelni EDA algoritmus je navrzen
specialné pro pravdépodobnostni model zaloZzeny na rozhodovacich stromech, tedy
pro MBOA. Byl navrZen vicevlaknovy paralelni algoritmus MBOA a jeho ¢innost
byla uspésné simulovana pomoci néstroje TRANSIM.

Nasledujici cast prace je vénovana optimalizaci multikriteridlnich tloh. Byly
navrzeny dva multikriteridlni EDA algoritmy. Prvnim je Pareto-BOA pouzivajici
principu Pareto sily pro ohodnoceni jedinci v populaci. V ramci feSeni grantu
“Paralelizace Bayesovského Optimalizaéniho Algoritmu” byla naké navrzena
integrace Pareto-BOA s DBOA, ktera mimo jiné zahrnuje i algoritmus pro paralelni
detekci a zpracovani Pareto fronty. Druhym multikriteridlnim EDA algoritmem je
(u+A,e)-BMOA (Bayesian Multiobjective Optimization Algorithm) navrzeny ve
spolupraci s Marco Laumannsem z ETH Zurich. Na rozdil od Pareto-BOA byl tento
algoritmus cileny na pravdépodobnostni model s rozhodovacimi stromy, tedy jedna
se opét o rozsifeni MBOA. Diky pouziti techniky epsilon-archivu je algoritmus
teoreticky schopen garantovat nalezeni globalniho optima.

Na rozdil od ostatnich praci zabyvajicich se EDA nezlstaly testovaci ulohy
omezeny pouze na umelé aditivné-dekomponovatelné problémy, ale bylo ovéreno
pouziti EDA algoritmii na mnozstvi praktickych uloh, zejména z oblasti navrhu
obvodl. Dalsim smérem k praktickému nasazeni EDA algoritmi je i vytvoreni
systému pro rychlé prototypovani aplikaci na bazi Bayesovskych evolu¢nich
algoritmii. Program DEBOA je implementovany v Jazyce JAVA a je spustitelny i
jako internetova prezentace.
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