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řeči a tvorbu řečových databázı́.
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Chapter 1

Introduction

This thesis is proposed in order to obtain the “associate professor” degree at Brno University of Tech-
nology, Faculty of Information Technology. Its main topic are temporal and data-driven methods for
feature extraction in speech recognition. Rather than an individual research work, this is a topic
worked on by several of my pre- and post-graduate students as well as students in our partner labo-
ratory at OGI Portland.

1.1 Acknowledgements

The author would like to thank his tutors in speech and signal processing, starting at VUT Brno with
Vladimı́r Šebesta and Milan Sigmund, through Geneviève Baudoin and Gérard Chollet at ESIEE
and ENST Paris, till Hynek Hermansky (OGI Portland and VUT Brno). Second series of thanks
goes to postgraduate students at the Dpt. of Computer Graphics and Multimedia (from seniors to
juniors: Lukáš Burget, Petr Motlı́ček, Franta Grézl, Petr Schwarz, Martin Karafiát, Petr Jenderka
and Tomáš Vı́cha) at FIT and Inst. of Radioelectronics of FEEC (Pavel Matějka); some of them have
contributed important portions to this text: part of the introductory material on HMM recognition
[4], some TRAP figures and new results [8], SpeechDat-E recognizer [26] and context-dependent
HMMs [21] used in forced alignment of SpeechDat-E. But as important was to be in contact with
Hynek Hermansky’s students at OGI last year: Pratibha Jain, Sachin Kajarekar, Sunil Sivadas, and
Andre Adami. Among the pre-graduate students, Jiřı́ Kafka (graduated in June 2002) deserves great
thanks for his diploma work [19] on LDA-filters tested on the recognition of Czech. His results are
the core of the LDA experimental section.

The greatest thanks go of course to my wife Hanka for a steady support, and my sons Tomášek
and Adámek for some distraction and lots of fun.

1.2 Scope of chapters

This work is divided into 5 chapters. The current one contains small review of speech recognition
using Hidden Markov models and a section introducing speech feature extraction. Chapter 2 deals
in more detail with data-driven features for speech processing. Chapter 3 concetrates on the use
of Linear Discriminant analysis for filtering of temporal trajectories. Chapter 4 covers Temporal
trajectory classifiers (TRAPs) as feature extractors for speech. Chapter 5 concludes this text.
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Figure 1.1: The Markov Generation Model

1.3 Speech recognition using Hidden Markov Models

Most of current systems [7] [25] for automatic speech recognition consist of three basic function
blocks:

(1) Feature Extraction - In this phase speech signal is converted into stream of feature vectors
– coefficients – which contain only that information about given utterance that is important for its
correct recognition. Parameterization is performed for a size reduction of original speech signal data
and for preprocessing of that signal into a form fitting requirements of following classification stage.
An important property of feature extraction is the suppression of information irrelevant for correct
classification, such as information about speaker (e.g. fundamental frequency) and information about
transmission channel (e.g. characteristic of a microphone). Currently the most popular features are
Mel frequency cepstral coefficients MFCC [5].

(2) Classification - The role of classifier is to find a mapping between sequences of speech
feature vectors and recognized fundamental speech elements (words in a vocabulary, phonemes).
This mapping can be done for example by simple recognizer based on Dynamic Time Warping
(DTW), where the sequences of parameter vectors are stored as references. Word parameters are
then compared directly with the references. More advanced classifiers are mostly based on Hidden
Markov Models (HMM) [31], where parameters of statistical models (Fig. 1.1) are estimated using
training utterances and their associated transcriptions. After this process, the well trained models
can be used for recognition of unknown utterances. The output of the classifier is a set of possible
sequences of speech elements (hypotheses) and their probabilities.

(3) Language models - The role of language models is selection of a hypothesis which is most
likely the right sequence of speech elements (sentence) of a given language. The complexity of
language model depends on complexity of the problem being solved (continuous speech vs. limited
number of commands). Statistical models derived from data are also very often used for this purpose
(N-grams). Interested reader can be referred to [18].

1.4 Features for HMM speech recognition

While the acoustical matching (HMM) and decoding (Viterbi algorithm with a pronunciation dictio-
nary and language model) are heavily trained on data, the feature extraction is often considered as
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“given” and neglected [10]. In the following chapters we will concentrate on temporal processing of
features and on some pre-classification that brings the features more closed to the data.

HMMs have one substantial drawback - one HMM state “sees” only the current speech frame
and it does not know, what happened before and what will happen later in the feature matrix. Delta
and delta-delta features introduced in the 70-ies, have added some notion of trends in feature space.
Note, that computation of ∆s and ∆∆s can be also interpreted as temporal filtering. Hermansky
and Morgan introduced RASTA filtering [12], being inspired by some properties of human auditory
periphery, namely by the insensibility to too high and too low frequencies in modulation spectrum.
RASTA processing has made especially recognizers based on context-independent phonemes far
more robust than their non-filtered counterparts.

In RASTA, the characteristics of filter were “tuned” to match some auditory properties, but it
was not shown to be optimal. From the classifier theory, we dispose however of some mathematical
tools to design optimal projection of parameter space in order to preserve discriminability. As linear
filtering is nothing but projection of the original temporal trajectory on the reversed impulse response
of the filter, a filter can be designed using this theory. In chapter 3, we will see an application of
LDA (linear discriminant analysis) derived filters to the recognition of Czech.

Till now, we are however still limited to feature-preparation using linear processing. Non-linear
methods, especially Neural Nets [3] have been widely used in speech processing, mostly to derive
class-posteriors for the Viterbi algorithm (they are replacing mixtures of Gaussians). On the other
hand, one would like to use NNs directly to derive features and not to “touch” the recognizer itself
– the Gaussian mixture modeling (GMM) is nowadays the most wide-spread technique to model
the distribution of features in states (this inclination is also given by the popular HTK toolkit, using
GMMs). The Tandem-approach or Feature-Net overcomes this barrier by processing the feature
stream by NNs, but using the output likelihoods (after some post-processing, as Gaussianization and
de-correlation) as input to standard GMM-HMM recognizer [11].

The classification of Temporal Patterns (TRAPs) using NNs, first introduced by Sharma [28], is
a natural step in combining the temporal processing and non-linear classification into the feature-
extraction block. Unlike conventional recognizers where the recognition is done of a “instantaneous
cut” of the entire speech spectrum, TRAP classifiers detect acoustical units out of long temporal
trajectories in each frequency band, and then the results are combined using a merging network. We
hope that if the speech is corrupted in one more frequency bands, the merger will still be able to
obtain a more reliable output. This idea is similar to multi-band recognizers promoted by Bourlard
and Morgan [2], but in our case, we are not forced to “touch” the recognizer’s architecture – the
robustness should be achieved by the feature extractor itself.
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Chapter 2

Data driven features for speech processing

The purpose of feature extraction is a reduction of speech data size and other processing required for
an adaptation of these data for classifier (HMM). The standard way of feature extraction consists of
the following steps:

(1) Segmentation – Speech signal is divided to segments where the waveform can be regarded as
stationary (the typical duration 25 ms). The classifiers generally assume that their input is a sequence
of discrete parameter vectors where each parameter vector represents just one such segment - frame.

(2) Spectrum – Current methods of a feature extraction are mostly based on the short term
Fourier spectrum and its changes in the time, therefore the power or magnitude Fourier spectrum is
computed in the next step for every speech segment.

(3) Auditory-like modifications – Modifications inspired by physiological and psychological
findings about human perception of loudness and different sensitivity for different frequencies are
performed on spectra of each speech frame.

(4) Decorrelation – Some technique for vector decorrelation is used for a better adaptation of
features to requirements of classifier. In the case of HMM, only a variance vector can be used for a
description of output probabilities instead of a full covariance matrix.

(5) Derivatives – Feature vectors are usually completed by first and second order derivatives of
their time trajectories (delta and acceleration coefficients). These coefficients describe changes and
speed of changes of the feature vector in the time.

2.1 Mel frequency cepstral coefficients

Mel frequency cepstral coefficients (MFCC) [5] are a commonly used feature extraction method.
Brief description of this method is presented here and in Fig. 2.1 because MFCC are used as starting
point for modifications described in section 2.2.

First, speech samples are divided into overlapping frames. The usual frame length is 25 ms
and the frame rate is 10 ms. Hamming window is applied in the next step and magnitude Fourier
spectrum is computed for this windowed frame signal. A filter bank is then applied for modification
of the magnitude spectrum. Energies in the spectrum are integrated by the set of a band limited
triangular weighting functions. These weighting functions are equidistantly distributed over Mel
scale according to psycho-acoustic findings where better resolution in spectrum is preserved for
lower frequencies than for higher frequencies. A vector of the filter bank energies for one frame
can be seen as a smoothed and down-sampled version of spectrum. The log of integrated spectral
energies is taken with agreement to the human perception of sound loudness. The feature vector is
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Figure 2.1: Block diagram showing steps of Mel frequency cepstral coefficients computation

finally decorrelated and its dimensionality is reduced by its projection to several first cosine basis
(Discrete Cosine Transform).

2.2 Data driven feature extraction methods

While classification and language models are usually based on stochastic approaches where models
are trained on data, feature extraction is generally based on knowledge and beliefs. However, since
mechanism of the human auditory system is not fully understood, the optimal system for a feature
extraction is not known. Moreover, psychoacoustic findings often describe limitations of the human
auditory system and we do not know if modeling of those limitations is useful for the speech recog-
nition. Therefore methods of data driven optimizations for some stages of above described standard
feature extraction scheme are presented in following sections. The agreement between results of
these methods and the psychoacoustic findings is shown. Principal Component Analysis and Linear
Discriminant Analysis techniques are used by these optimization methods and they will be described
first.

2.2.1 PCA and LDA

Principal Component Analysis (PCA) or Karhunen-Loevy transform (KLT) is a technique looking
for such linear transform with orthogonal basis where the first base vector shows a direction of
the largest variability of training data in N-dimensional space of input vectors. The second base
vector than shows a direction perpendicular to direction given by the first vector with the second
largest variability and so on. A limitation of this technique is the assumption that input data have
Gaussian distribution. This transform has two important properties: (1) Elements of outputs vector
are decorrelated (their values are not dependent each on other). (2) Projection to only several first
base vectors can be performed for a dimensional reduction preserving most of a variability of original
data.
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The figure 2.2a demonstrates the effect of PCA for 2-dimensional data vectors. The gray ellipse
represents distribution of data, the axes show the new coordinates (directions) obtained by a rotation
of original coordinates using PCA transform. The new distributions of uncorrelated data in both
directions are also demonstrated in this figure.

Base vectors of PCA transforms are given by the eigen vectors of a covariance matrix which
is computed from training data. The eigen value associated with each eigen vector represents the
amount of variability preserved by the projection of input vectors to this particular eigen vector.
Therefore only several eigen vectors corresponding to the highest eigen values are used as basis of
PCA transform for the purpose of a dimension reduction.

Analogous to PCA, Linear Discriminant Analysis (LDA) proposed by Hunt [14] is a data
driven technique looking for such linear transform allowing a dimension reduction of input data.
However, it preserves information important for the linear discrimination among input vectors which
belong to different classes. Therefore, unlike the case of PCA, we need also information about the
class to which a particular input training vector belongs. The result of LDA are then base vectors
of the linear transform sorted by their importance for discriminating among classes. We can there-
fore pick up only several first basis which preserve almost all the variability in data important for
discriminability. Note, that LDA like a PCA ensures decorrelation of transformed data. Moreover, it
does not decorrelate only overall training data as it is in the case of PCA, but data belonging to each
particular class are also decorrelated. The figure 2.2b demonstrates effect of LDA for 2-dimensional
data vectors which belong to two classes. The gray and the empty ellipses represent distributions
of data in two different classes with mean vectors m1 and m2 and covariance matrices C1 and C2.
The axes X and Y are coordinates of the original space. Large overlap of the class distributions can
be seen in the directions of these original coordinates. The axis Z then shows the direction obtained
by LDA in which the classes are well separated. Since this example deals just with two classes and
since LDA assumes that distributions of all classes are Gaussian with the same covariance matrix
(C1 = C2) no other direction can be obtained for a better discrimination.

Base vectors of LDA transforms are given by the eigen vectors of a matrix AC×WC−1, where
the within-class covariance matrix WC represents unwanted variability in data and the across-class
covariance matrix AC represents the wanted variability.
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An eigen value associated with one eigen vector represents the amount of variability necessary
for the discriminability preserved by the projection of input vectors to this particular eigen vector.
Only several eigen vectors corresponding to the highest eigen values can be used as LDA transform
for the purpose of a dimension reduction.

2.3 From RASTA to temporal filters derived using LDA

The original design of RASTA filters [12] for filtering temporal trajectories was inspired by psy-
chological findings about temporal masking and is the core of RASTA algorithm described in [12].
RASTA takes advantage of the fact, that the linguistic message is coded into movements of the vo-
cal tract. It suppresses the spectral components that change more slowly or more quickly than the
typical range of change of speech. Temporal trajectories of the log energies of each band are filtered
by bandpass filter. The low pass character of such filter allows to remove fast energy changes which
cannot be produced by the human articulatory tract. The high pass character of the filter is responsi-
ble for removing a static information about a channel, since it appears as an additive constant to the
filter bank band output in the log domain. In principle, the RASTA processing can be done on time
trajectories of any parameters.

Another possibility is to derive impulse responses of such filters using Linear Discriminant Anal-
ysis. The filters can be derived independently for each band. Vectors which are formed by consecu-
tive values of one band time trajectory are used for the computation of across-class covariance and
within-class covariance matrices. A typical length of the vector corresponds to one second of signal
(101 points of a band time trajectory for 10ms frame rate). Vectors with central point representing
frames labeled by the same phoneme belong to the same class.

The way how the basis (eigen vectors of AC×WC−1 matrix) are applied for data transformation
(across time) corresponds to linear filtering using a convolution of a signal with a filter impulse
response. In other words, every eigen vector represents one impulse response (inverted in the time)
of a filter for filtering the time trajectory of one filter bank band.

11



Chapter 3

LDA filters for recognition of Czech

First experimental part of this text is devoted to the application of LDA-derived filters to feature
extraction for Czech telephone-speech recognition.

3.1 Experimental setup

Databases OGI Multilanguage Telephone Speech Corpus and Czech SpeechDat-E (Eastern Eu-
ropean Speech Databases for Creation of Voice Driven Teleservices) were used for tests. Detailed
description of the experimental protocol is available in the full version of the habilitation thesis [30].

Recognizer and reference results Isolated word recognizer based on context-independent phoneme
models defined in the diploma thesis of Petr Schwarz [26] was used in this work for evaluation of
LDA filtering. The recognizer is trained on isolated, phonetically balanced words (2777 items)
and tested also on isolated phonetically balanced words (1394 items). The recognition vocabulary
contains 2175 words. Two flavors of training and testing were used: (1) using full-length items,
including sometimes long portions of silence at the end. (2) “cut” version of the database where
silence portions were stripped using GMM-based voice activity detector, boot-strapped by a simple
energy-based segmentation. The diploma thesis of Petr Schwarz [26] presents this speech/silence
segmentation in detail. The recognizer was built on standard HTK [31] tools. Recognition perfor-
mance was evaluated using the word recognition accuracy.

To evaluate baseline performance of our recognizer, the very standard feature extraction: MFCC,
appended with log-energy and velocity and acceleration features was tested first. The second exper-
iment consisted in replacing the log-energy by the 0-th cepstral coefficient, a trick, that, according
to experience of ASP group at OGI, improves the recognition performance in real noise conditions.
This experiment provided superior results and is used as baseline in this work (MFCC 0).

3.2 Computing and use of LDA filters

Features for LDA filters The choice of features for deriving LDA filters was quite obvious: we
wanted the LDA features to be as compatible with MFCC’s as possible. The choice were therefore
log-energies after Mel-scale filterbank, that are used as a mid-product in MFCC computation. They
can be output by standard HTK tool HCopy using the FBANK feature type, they can be then pro-
cessed by non-HTK software (Matlab in our case), and then converted to MFCC again by HCopy

12
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Figure 3.1: Output from 10-th Mel filter

with proper specification of the input type. The only problem we have faced was the 0-th cepstral
coefficient, that had to be computed ’by hand’. The number of filters in Mel-filterbank was the HTK
default: 20. Figure 3.1 shows an example of temporal trajectory in the 10-th band.

Classes for derivation of LDA filters 43 phonetic classes were available for STORIES, however,
two of them were excluded: (1) the ’other’ class oth where some rarely occurring phonemes were
put and which was not very consistent. (2) the silence pau with its huge proportion in the database
(almost 20%). This class with its broad distribution could heavily bias the within-class covariance
matrix. Therefore it was discarded too and the derivation of filters was done using 41 classes.

Handling edges As everything, each speech file begins and ends. For derivation and subsequent
use of LDA filters, in case we consider 1 second trajectories, we need 50 acoustical frames of left
context and 50 frames of right one. There is no exact answer — experiments have shown that the
optimal solution is to concatenate the the consecutive files in the database. This approach that is the
most natural (usable however only in the case we dispose of all the files at the same moment) and
was used in most of the recognition experiments.

Using LDA filters After computation of LDA filter, the filtering is done by

y(n) =
101∑

m=1

x(n + m − 50)h(m),

where x(n) is the filtered trajectory and h(m) is the LDA filter. As this equation does not contain
n − m term that we would expect in a convolution, a more precise term would be a projection of
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time-trajectory onto LDA eigen vector. It would be however easy to invert h(n) in time and obtain
proper filtering equation.

We are motivated to use velocity and acceleration parameters. There are two approaches to
compute them while using LDA filtering: (1) to apply LDA filtering for band energies only with the
static coefficients, then de-correlate using DCT and compute ∆ and ∆∆ at the end of processing in
standard way, using approximations of first and second derivative. (2) to use LDA filters related not
only to the first, but also second and third biggest eigen-values. We have seen that they present some
similarities to the first and second derivative of the first filter. The outputs of all filters have to be
de-correlated by DCT or PCA.

Another issue is the computation of energy-related 0-th cepstral coefficient, which is actually a
sum of log-energies in bands. This can be computed from LDA-filtered energy trajectories or from
original ones.

3.3 Derivation of LDA filters on STORIES

LDA filters were computed on STORIES. Leading 50 and trailing 50 vectors of each were used just
as context. LDA filters were applied to filter-bank outputs without any modifications and different
setups were tested depending on the dealing with edges and processing of c0. In the following steps,
different kinds of processing of “edges” of filters were tested (these edges are not reliably estimated):
(1) Weighting filters by a Hann window [17], (2) Influencing first 5 and last 5 samples by a sharply
raising and falling function, (3) zeroing of first and last sample.

The results, including the baseline, are summarized in Table 3.5 in [30]. All modifications do
approximately as well as original filters. The “winner” is the simplest processing - just zeroing the
first and last sample in each LDA filter. We have also confirmed, that the results on original database
(silences included) is consistently better than on the “cut” version and that the c0 should be computed
from the original energy trajectories. The best result so far is recognition accuracy of 91.32%.

3.4 LDA filters trained on SpeechDat

So far, we have tested the recognition of Czech isolated words with features computed using LDA
filters derived on US-English. As a next step, we wanted to train those filters directly on SPEECH-
DAT to see the influence of: (1) training of LDA filters on the target language. (2) training of LDA
filters on the target database.

Unfortunately, other telephone Czech database was not at our disposal, so that we could not in-
vestigate into those two points independently. The following results will therefore present a situation,
where the derivation of LDA’s is very closed to the target task (language and channel characteristics
are the same). For the training of LDA filters, the 101-point vectors with centers situated in silence
sil (41.55% in the database) were not used for similar reasons as for STORIES (section 3.2). Inter-
word short pauses sp and oth class were not used as well, so that the so that the number of phonetic
classes was 41, accidentally the same as in previous experiments. The LDA filters were computed in
the same way as in previous case.

Similar experiment as for filters derived on STORIES were conducted with the summary of
results in Table 3.7 in [30]. The best result obtained with the same setup as for the STORIES
training. It outperforms the baseline by more than 2% absolute.
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3.5 LDA filtering – conclusions

Conducted experiments In the experiments conducted, Mel-filterbank output trajectories were
processed by LDA-derived filter filtering. The filters were first trained on US-English OGI-Stories
database, then on the recognizer’s target data: Czech SpeechDat-E database.

The results have clearly shown the advantage of LDA filtering even for filters derived on a dif-
ferent database (outperforming MFCC 0 baseline by more than 1% absolutely). The filters derived
on the target data have shown superior performance, and gave more than 2% absolute improvement
over the baseline.

We may conclude, that LDA filtering of temporal trajectories is a cheap and efficient way to
improve the performance of simple speech recognizers. This is confirming the results the ASP group
at OGI has obtained in numerous experiments during the dissertation of Sachin Kajarekar [20] and
during the AURORA project [1].

Open problems and questions Even if the results were encouraging, we should not forget that
there are many unresolved problems in this work necessitating further research. From the more
technical to more general they include:

(1) in this work, we have not investigated the possibility to use LDA-filters corresponding to the
2-nd and 3-rd eigenvalues for computation of ∆ and ∆∆ approximations. When trying to use those,
we should cope with the correlation of those features: (a) in MFCC, the discrete cosine transform
is used to convert the estimate of log-spectrum back to temporal domain, but its main purpose is to
decorrelate the features. Will the use of DCT be justified also for features filtered by the 2-nd and
3-rd filters ? (b) there is of course a possibility to train a PCA to decorrelate the features. Should this
transform be trained per-stream (ie. separately for 1-st, 2-nd and 3-rd filter) or as a whole ?

(2) the current work does not make any use of feature normalization while we know, that off-line
or on-line normalization dramatically improves the recognition accuracies for noise conditions [15].
On the other hand, this normalization can behave in quite unpredictable way for clean conditions,
and for scenarios with some non-standard features (see for example the work of Petr Motlı́ček on
all-pole modeling of log-spectra [23]).

(3) there are many engineering choices to be made while computing/implementing the LDA
filters: (a) selection of classes was done by a brief investigation of how do the phoneme proportions
look like. We have not at all investigated using of broad phonetic classes, that are known to perform
well for TRAP-based systems [16]. Also, the ASP group at OGI reports to obtain slightly smoother
filters and better results while dividing each phoneme into 3 sub-classes. The original work of Kafka
[19] however reports quite discouraging results of such experiments. Kafka has argued that there
is too little data to estimate the covariance matrices reliably for this method. (b) post-processing
of filter coefficients was found to be quite important for good performance. However, only a few
“ad-hoc” experiments were performed, based on “looking at the filter”.

(4) The final point questions the very base of this work: the linear discriminant analysis LDA.
The basic problem of this method is that it expects the same statistical distribution of data in all
classes. This is obviously never satisfied, so that the derived filters are globally optimal, but they can
perform very badly for the discrimination of some classes.

The problem is not only to find mathematical methods that relax the assumption of equal dis-
tribution of data within classes, but also to implement them and test their performances on speech
recognition tasks. See [30] for the overview of current work on LDA-based features.
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Chapter 4

TempoRAl Patterns – TRAPs

“Classical” features for speech processing (as MFCC’s) provide information about the entire spec-
trum of speech signal for a very limited time (the spectrum is usually computed in frames of 20-25 ms
with a window-shift of 10 ms) [31]. If noise is present in the speech signal, it affects the entire fea-
ture vector, and impairs the accuracy of the recognizer. Multi-stream approach [28, 3] overcomes
this problem by running several speech recognizers independently in different frequency bands, and
recombining their results. The recognition in bands and recombination of results is mostly done
using an HMM-ANN hybrid speech recognizer.

In recent years, people around Hynek Hermansky have shown [13, 27, 11, 6] that non-linear
mapping using ANN can be used in conventional HMM-GMM recognizers. The net simply produces
a stream of probabilities, which is, after post-processing, used as input to HMMs. This opens the
possibility to use such non-traditional features with “standard architecture” speech recognizer, as
HTK (in the Aurora task) or Sphinx (in the SPINE project).

4.1 TRAP architecture

Briefly described, a TRAP system (Fig. 4.1) classifies long (for example 1 second) temporal trajec-
tories of spectral features into classes using neural networks (NN). Then, band-outputs are merged
by another NN to form the final probability vector. If used with an HMM recognition system, those
probabilities are post-processed to better fit HMM requirements (feature independence and Gaussian
distribution).

In more detail, the TRAP system consists of the following: (1) input features - log of energies
in critical bands. We used 15 Bark-scale critical bands from 0 to 4000 Hz, the log energies were
computed by the ’rasta’ executable from ICSI. We need to have phonetic labels for the input data. (2)
generation of TRAPS. (3) TRAP- or band-classifiers perform classification of TRAPs into phonetic
classes or broad phonetic categories. (4) post-processing of band-classifier outputs. This involves
conversion of linear probabilities to logs. (5) merging net putting all the band-classifier outputs
together. (6) post-processing of the merger output (again phoneme probabilities) to form features
suitable for an HMM recognizer. (7) HMM recognizer. We worked with two HMM recognizers
(Digits built using HTK and Sphinx on SPINE).

The input: Log energies are in all experiments computed on Bark-scale using the rasta exe-
cutable from ICSI: (1) the signal is divided into frames of 25 ms with widow shift of 10 ms. For
8000 Hz sampling frequency, this means 200-sample frames with shift of 80 samples. (2) power
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Figure 4.1: TRAP system.

FFT spectrum is taken. (3) filter energies are computed using a 15-band Bark-scaled filterbank. (4)
log is taken.

We should note, that the TRAPs used need fairly long context (50 past and 50 future frames for
101-point TRAPs), so that a special care must be given to the beginning and end of each file.

In experiments, we used pre-generated phonetic labels: (1) converted from Stories and Numbers
label-files by Sharma for the Stories-Numbers-Digits (SND) experiments. (2) converted and re-
mapped from TIMIT and Stories for the reference setup by Lukáš Burget. (3) generated by Sunil
Sivadas for SPINE.

Generation of TRAPS A TRAP is nothing but a piece of temporal trajectory of a given band en-
ergy of certain length. Most of experiments were conducted with 101-point (1 second) TRAPs. The
label of the TRAP is the original label of its central frame. In addition to a mechanical re-arranging
of 101-point trajectories into an output matrix, the following options were tested:
(1) mean and variance normalization: mostly done independently for each TRAP. Sentence-based
mean and variance normalization were tested too (and proved to give similar results as the TRAP-
based in SND experiment). Advantage of the sentence-based normalization is that we can tell the
NN training software (Quicknet) to select TRAPs on-line (just by specifying left and right context)
rather than to create huge input files. For multi-band TRAPs, the normalization is always indepen-
dent band-by-band.
(2) Hamming windowing of TRAPs was done rather for historical reasons (when Sharma did ex-
periments with distance-based classification of TRAPs, the Hamming windowing helped to pre-
accentuate the center of TRAP in the distance computation). As the NN training software does a
global mean and variance normalization of each feature prior to NN training, the effect of Hamming
windowing is canceled.
(3) Discarding some labels. It was found advantageous to discard TRAPs carrying some data from
the training. In the SND experiments, all phonemes not appearing in Numbers had to be discarded.
In reference experiments, frames carrying the ’other’ label were discarded.
(4) Balancing the data. The amounts of frames per class in the training set are mostly heavily unbal-
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anced (most of silence frames, followed by long vowels, little data for phonemes like ’th’, etc.). The
data can be balanced prior to NN training by specifying down-sampling factors per class.

Band classifiers Band classifiers (also called TRAP classifiers, small nets, first step, band-posterior
estimators) classify the TRAPs into phonetic classes, or, in some experiments, into broad phonetic
categories. Each band classifier is a standard multi-layer perceptron (MLP) with 3 layers: (1) the
input layer’s size is determined by the length of TRAP (mostly 101 points). (2) the hidden layer,
with sigmoid non-linearities, having 300 neurons in most experiments. (3) the output layer whose
size is given by the number of classes. The softmax [3] non-linearity was used in final layer in
band-classifiers.

The training data is split into a training and cross-validation (CV) sets. The learning rate of
the net is determined upon the accuracy on the CV set after each epoch by the “new-Bob” (see the
documentation to QuickNet training executable qnstrn) algorithm.

Post-processing of band-classifiers output Before being introduced to the merger, the following
processing is done on class posteriors: (1) log is taken to gaussianize the posteriors. An experiment
was conducted also with letting the softmax output intact, but it gave slightly worse performance.
(2) multiplication by priors (some experiments) done physically as the addition of priors in the log-
domain. This is again a historical step, which does not have sense while training the merger: before
training, the data are globally mean and variance normalized so that any prior effect is canceled.

Merger The merger is generally trained on different data from those used for training band-
classifiers. It implies that for this training data, TRAPs must be generated and forward-passed
through the band classifiers. Resulting posteriors (after post-processing described above) are then
used to train the merger. The classifier is an MLP with 3 layers: (1) the input layer’s size is de-
termined by the product of number of bands times the number of classes per band. For example,
for 15 bands and 42 phonemes, the input layer size is 630. (2) the hidden layer, with sigmoid non-
linearities. We used mostly 300 neurons in the hidden layer, which seems quite few compared to
the input layer size. Unfortunately, more neurons in the hidden layer result in very long training
files. (3) the output layer whose size is given by the number of classes. Softmax was used in final
layer for training. In the forward-pass, the softmax was kept and followed by an additional off-net
non-linearity (log or atanh), or it was removed.

The training of the merger was also driven by the “new-Bob” algorithm for determination of the
learning rate.

Merger output post-processing We want to convert the output of the merger to feature files suit-
able for HMM recognizer. Two steps are necessary:

(1) Gaussianization: the outputs of softmax are not Gaussian at all, they have bi-modal distribu-
tion with sharp peaks closed to 0 and 1 for most represented classes (as silence) and peaky uni-modal
distribution (peak closed to 0) for the other classes. The Gaussianization can be done (a) by taking
log of the softmax output (this is going to expand the probabilities closed to 0 to an approximately
Gaussian shape, but the problem of probabilities closed to 1 persists: they are going to create a sharp
edge in the resulting distribution, or even a peak), (b) by taking hyperbolic arcus-tangens of softmax
output: atanh(2x + 1), where x is the softmax output (produces more Gaussian-like distribution),
(c) by removing the softmax from the output layer of the net (which is the simplest solution – no
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Gaussianization necessary – and gave the best results), (d) by an explicit Gaussianization [22] (not
used in the TRAP framework).

(2) De-correlation. HMM’s with diagonal covariance matrices “like the features de-correlated”.
Therefore a PCA is computed on the training data, and then applied to the entire data. Experiments
were done on the PCA using raw or normalized covariance matrix.

In addition to those two steps, we can test some processing known from “standard” features, as
delta and acceleration coefficient computation, mean and variance normalization, etc.

4.2 Visuzation and performance testing of TRAPs

It is difficult to visualize weights and biases of a trained net. Mean TRAPs were generated to
see, if they are consistent with Sharma’s results and also if they are consistent among experiments.
In addition, the analysis software ’trapalyzer’ can produce variance (or better standard-deviation)
TRAPs, that tell us, how much variability we can expect at which place of the time trajectory.

Phoneme recognition accuracies are the quickest way to learn, if nets are classifying TRAPs
well or bad. Cross-validation set accuracy is the figure to look at both in band-classifier and merger
training. Also, phoneme recognition accuracy per class is helpful. Quicknet software can not output
this per-class accuracy, but it can be obtained using the in-house ’ffrapalyzer’ software.

Phoneme confusion matrices are the way to see how precisely the net is able to classify, and
where it makes most of the errors. Consider number of classes L, and a data set with N frames. We
have correct labels for this set, so that we know, that class i has Ni frames. The priors of classes are
therefore given: Pl = Nl

N
. For each frame, we have a vector of net outputs giving class posteriors:

x = [x1, x2 . . . xL].

Hard confusion matrix for each posterior vector, the highest posterior determines the classifi-
cation of the frame. We can compute how many times a phoneme of correct class i was classified as
class j (in ideal case, i would be always equal to j): counts Cij. The hard confusion matrix is then
given by a simple division by prior counts: Hij =

Cij

Ni
. Ideally, this matrix would be unity (everything

correctly classified).

Soft confusion matrix Rather than taking a decision, this matrix takes into account all the
posteriors, and sums them up for each class. Each row of the soft confusion matrix is then defined:

Si,: =
∑

∀i
x

Ni
, where

∑
∀i x means the sum of all posterior vectors for frames with correct label i. This

matrix is therefore going to give more ’blurred’ picture of how the posteriors look like for different
classes. Ideally, this matrix would be again unity (net each time sure, that it is the correct class and
no else).

Variance matrix of posteriors per class The motivation to compute this matrix was: “if a
variance of the posterior for a given correct class is low, it does not matter, if this posterior is high
where it should not be – the net works consistently and the merger will take care of it”. It is defined
by: Vi,: = E{(x∀i − µi)

2}, where E denotes the expectation, x∀i all posterior vectors for correct
class i and µi the mean posterior vector for this correct class. Unfortunately, we found this matrix
not very representative, as the variances of posteriors depend on their values (higher variances for
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posteriors � 0 and very low for posteriors closed to 0). The resulting matrix is therefore very similar
to the soft confusion one.

Output covariance matrix Here, we do not use any knowledge of the correct classes, we just
compute the correlation of posteriors at the output of the net. The covariance matrix is given by
definition: C = E{(xTx − µT µ)}, where µ is the global posterior mean. For the visualization and
class clustering, we have computed normalized covariance-matrix, with elements: ρij =

cij√
ciicjj

. The
ideal form of this matrix is again unity (no outputs correlated with each other).

Note on visualization of matrices Except for the normalized covariance matrix, the visual-
ization suffers from silence class being recognized more precisely than the other classes. The other
elements then do not have sufficient resolution. It is then a good idea to visualize the matrices
without the row and column corresponding to the silence.

Word error rate of HMM recognizer The ultimate number while using TRAPs is the word-error
rate (WER) of the HMM recognizer using merger-posteriors as features (after some post-processing).
This number should be compared to the WER obtained using “classical” features, as MFCC’s.

4.3 Basic experiments: Stories–Numbers–Digits

Those experiments were conducted exactly on the same data Jain and Sharma used in their work,
the results are therefore directly comparable. Due to limited coverage of this shortened version
of habilitation thesis, it was not possible to include all experimental results (also for the following
section). Interested reader is refered to the complete version [30].

First experiments were conducted in order to verify and reproduce Jain’s results. Finally, her
experiment was successfully reproduced including porting of the code to standard Linux environment
(no use os specialized SPERT boards). Furthermore, a software for work with TRAPs – trapper
– was written. The example of mean TRAPs generated on Stories (5th band) is shown in Fig. 4.2.
They correspond to Sharma’s results in [28].

Following experiments concentrated on the effect of sentence-based mean and variance normal-
ization. We have shown that sentence-based normalization gives better results than TRAP-based
one. As for “classical” methods, this is probably due to more reliable estimation of mean and vari-
ance on the length of a sentence rather than on 101-point TRAP. Unfortunately, this also brings
sentence-latency and is not suitable for latency-critical tasks.

Broad phonetic categories in bands were also investigated. We have observed that training and
recognition performance in bands increased from phonemes to broad categories. Unfortunately,
given the probabilities only for 4 categories per band, the merger is not able to recognize phonemes
reliably and this is translated into a big hit on the overall recognition performance.

A set of experiments was also conducted with “balanced training” where numbers of TRAPs per
class were artificially equalized. We have can concluded, that the band-nets should be trained with
all the available data.

Stories-Numbers-Digits: Conclusions We have reproduced the baseline experiment with satis-
factory results and performed some other experiments with broad phonetic classes and balancing of
the training data. The results were represented in terms of band-classifier cross-validation accuracy,
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Figure 4.2: Mean TRAPs on Stories

phoneme recognition accuracy on Numbers, CV accuracy when training the merger and finally of
word recognition accuracy of the HMM recognizer.

There are however the following problems with the SND experiments: (1) the phoneme set for
band-classifier training is not full and contains only the 29 phonemes present in Numbers. There
are lots of ’bad labels’ we have to discard. (2) Although Stories provide good phonetic coverage,
Numbers contain a very limited vocabulary, so that the phonemes appear all the time in the same
context. This may heavily bias the phoneme recognition accuracies. (3) Global numbers are biased
by the distribution of data among classes. We need more detailed analysis of what is happening in
bands and in the merger.

4.4 Reference experiments: Timit and Stories

The reasons for switching to this experimental setup from SND were: (1) to have a coherent phoneme
set for both band-classifier and merger training. (2) to dispose of phonemes in various context for
both band-classifier and merger training. Also, some visualization tools were produced for this setup
allowing to see the confusion matrices and to do detailed per-class analysis. Those experiments are
called ’Reference-TRAPs’.

These experiments were run on parts #2 and #3 of 4 data-sets defined by Lukáš Burget:
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part purpose sub-division source amount comment

1 eventually for LDA training train Stories 165 min -
2 Band-classif. training train TIMIT 106 min -

(tnn-timit) CV TIMIT 20 min -
3 Merger training train Stories 145 min same data as for part 1

(mnn-stories) CV Stories 20 min -
4 phoneme HMM recognizer train TIMIT 84 min -

test TIMIT 49 min different data from part 2

No HMM recognizer was trained at the top of Reference TRAPs. The evaluation of results was based
on what we have seen during the training and cross-validation of nets: (1) final phoneme recognition
accuracy on the cross-validation set of tnn-timit while training the band-classifiers for 3 bands (0-
th, 5-th and 10-th). (2) phoneme recognition accuracy while forward-passing Stories through the
band-classifiers for 3 bands (0-th, 5-th and 10-th). (3) final phoneme recognition accuracy on the
cross-validation set of Stories in merger training.

Baseline experiments were performed with the same TRAP generation and net configuration as
for SND, to assess the phoneme recognition accuracy in bands and at the output of the merger, and to
do class-based analysis. The CV accuracies sound in bands were lower than in the SND setup, which
is understandable, as we have much less silence in TNN-Timit than in the original Stories (14% here
versus 27% before). What is more shocking is the accuracy after training the merger: from 80% for
the SND experiment, we go down to mere 50%. A smaller proportion of silence in MNN-Stories
(19% versus 25% before in Numbers) can be blamed, but is not solely responsible for 30% hit. The
variability of contexts is probably the factor responsible for this huge difference.

On this baseline experiment, new visualization and analysis tools were tested. To asses the
performance of TRAPs in bands, hard and soft confusion matrices and output normalized covariance
matrices were computed for each band, based on the MNN-Stories data forward-passed through the
band-classifiers. For band #5, the soft confusion matrix can be seen in Figure 4.3. We can see, that
the phonemes form clusters similar to broad phonetic categories. It is impossible to include all the
figures for all the bands in this report, but it is interesting to see, how certain phonemes (especially
liquids) “travel” among classes from band to band.

The y-axis of figures is completed by two important numbers: the first is the percentage of
occurrences of the given phoneme in MNN-Stories while the second is the recognition accuracy
(’hit-rate’) of this phoneme. Not surprisingly, we see, that the silence is hit in most cases (82%).

The following experiments were conducted again with automatically generated broad phonetic
classes. The band accuracies are not comparable with the previous setup, as we have lower number
of broader classes. Obviously, the accuracy is higher. At the output of the merger, we have 4% hit.
As it was mentioned erlier, by limiting the number of classes per band, we have also limited the
number of merger’s parameters. A fair comparison would require increasing the size of the hidden
layer. Also, a simpler experiment with uniform classes for all bands should be conducted.

The effect of frequency-context was studied in experiments with 2-band TRAPs. Theoretically,
this approach is supported by the studies of co-modulation masking. To ensure comparable number
of net parameters with the previous experiments, we have made the TRAPs shorter- just 51-frames
instead of original 101. This brings the size of a 2-band TRAP to 102, which is almost the same as
101. In this experiment, the 2 bands were adjacent, e.g. 0-1, 1-2, . . . 13-14. The total number of
couples was 14. We see a nice improvement from isolated bands to couples of bands. At the output
of the merger, the improvement is however not spectacular: just 0.7%.

Another flavor of the previous experiment is the use of 2 bands with 1-band skip: we should
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Figure 4.3: Soft confusion matrix of band #5 (reference TRAPs–baseline experiment).

remember that the frequency characteristics for adjacent bands overlap, so that the 2 adjacent band
outputs are necessarily correlated. Therefore, we conducted an experiment with couples of bands
with the skipping of one band. The couples are: 0-2, 1-3, . . . 12-14, and their total number is 13.
We have seen again an improvement in bands and again a slight improvement at the output of the
merger.

The last reference experiment was performed with a bit of “brute force” on 2-band TRAPs: we
have increased the hidden layer size for band-classifiers was increased to 500 neurons, that for the
merger to 1000 neurons. As result, we have neat improvement in bands, and what is the best, a 4%
improvement at the output of the merger. As it was mentioned at the beginning of this section, the
question “Which of the changes is responsible for most of the improvement” is open.

Reference TRAPs – Conclusions TRAP experiments were conducted on a set of databases pro-
viding, in our opinion, more reliable and realistic assessment of their performance than Stories–
Numbers–Digits. It was found, that on a database with phonemes occurring in varying context, the
phoneme recognition accuracy at the output of the merger is rather around 50% than 80% (SND
experiments).

Experiments with automatically generated broad phonetic classes showed that the overall pho-
neme recognition accuracy is inferior to baseline results. The following issues are open: (1) as
mentioned, limitation of number of classes in bands implies the limitation of merger parameters. For
a fair comparison, the size of hidden layer should be increased to match the number of parameters
of the baseline. (2) there are many ways to generate the classes: manual creation, and automated
creation uniform for all bands should be tested. (3) we need not necessarily have the same number
of classes per band. Instead of a “hard” number, a variable number based on a distance measure
(or mutual information) could be used. (4) finally, the merger could be trained not to recognize
phonemes but also broad phonetic classes. Those probabilities (after post-processing) could serve as
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input to an HMM recognizer [16].
2-band TRAPs have shown a huge potential in performance. While testing 51-point TRAPs, we

should remember that the normalization of input features was TRAP-based - the estimation of mean
and variance was therefore on 2× less data than for the baseline. This calls for a normalization using
a different window, or whole sentence.

In SND experiments, sentence-based normalization provided good results (the mean and vari-
ance are more reliably estimated). This approach was not tested with the reference setup, those
experiments should be completed.

4.5 TRAPs on SPINE

SPINE (Speech in Noisy Environments) is an evaluation run by the Naval Research Laboratory.
The task a medium-sized vocabulary recognition on several military environments. The training and
evaluation data from 2000 were used to assess performances of our features. These data come as
stereo-recordings, but we disposed of data pre-segmented into speech and silence regions at CMU
[29]. The recognizer – SPHINX – came also from CMU [24].

Several experiments were run with the TRAP-based feature extraction using neural nets trained
on TIMIT and STORIES (previous section) or with TRAPs derived directly from SPINE data. Sig-
nificant efforts were devoted to te study of post-processing of merger output (de-correlation and
Gaussianization using various methods). Full description is again available in [30].

TRAPs on SPINE: Conclusions In the last experiments on SPINE, only TRAP-based mean and
variance normalization were used. In the SND experiments, we have seen some improvement when
going from TRAP based to sentence-based normalization. This should be tested on SPINE. We can
go even beyond: we know, that one speaker is always at one side of a conversation, so that the
normalization could be conversation and channel based. That would provide us with more reliable
estimates of means and variances.

The training of band-classifiers on SPINE was abandoned, as they did not perform so good as
those trained on other database. This approach was unfortunately no more tested in the “improved”
data (silence regions deleted), which should make the band-classifier training more consistent. Re-
cent results of Jain show, that especially for 2-band TRAPs, this should be a very promising way.

4.6 TRAP summary

Although being comparable MFCC’s on the small vocabulary task with context-independent phone-
mes, TRAPs seem to have hard time to reach the performance of “classical” features on LVCSR task
using context-dependent tied models. The SPINE experiments however show promising approaching
of TRAP performance to the MFCC (41.2 versus 36.7% WER).

The availability and quality of labels seems to play crucial role in the TRAP work. We have
seen a dramatic improvement from 53.7 to 47.9% just by re-mapping the ICSI 56 phoneme set to
a smaller one containing 34 phonemes. We are however still far from optimum, as we tune the
TRAPs to context-independent (CI) phonemes (often not the same, as the recognizer is using) while
the LVCSR systems use CI-models just for the initialization. It is however difficult to train any net
aiming at the discrimination of classes finer than CI-phonemes due to their big numbers (e.g. 2600
tied states in SPHINX).
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We have done experiments with processing of the output of the merger, but similar care should
be taken while processing the band-classifier outputs for the input to the merger. Currently, a log of
softmax output is taken. We have tested that log performs better than taking just the raw output. It
would be worth to investigate if a hyperbolic arcus-tangens or removing the softmax do not bring
similar improvement as at the output of the merger.

We use the neural nets as a black box, without changing their architecture (which is determined
by Quicknet), number of hidden layers (Quicknet supports just 1), learning strategies, etc. There is
certainly a potential of improvement here.

PCA applied at the output of all the processing is the simplest and probably also the worst way to
de-correlate the features for HMM recognizer. LDA and newly MLLT (Maximum-likelihood linear
transforms) are certainly of interest. As it was already mentioned, the mean normalization could be
done on conversation and channel basis for SPINE, where this information is available. See [30] for
the discussion of current and future work on TRAPs at OGI Portland, VUT Brno and ICSI Berkeley.
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Chapter 5

Conclusions

As each of the experimental parts ended by a conclusive section, those global conclusions will be
quite brief.

We have shown, that the feature extraction is of great importance in nowadays speech recognition
systems, and that quite a simple operation, as filtering of temporal trajectories using 101-tap filters,
can bring important increase in recognition performance (2% absolute improvement over the baseline
of 90% indeed is a very important increase). But even more interesting than this is the verification
of the basic idea: it is possible to train filters on labeled speech data, those filters resemble to the
ones obtained previously by studies of human auditory periphery, and they even improve recognition
accuracy! Of course, the experiments conducted are far from complete1 and it should be for example
appended by a thorough study of LDA-filter behavior in different types of noise.

On the other hand, TRAP experiments have not yet shown brilliant improvement over MFCC’s
in this work, and for some tasks they are well behind. An attempt to excuse ourselves would be
stating that researchers needed more than 20 years to come up with today’s form of MFCC’s with
their ∆s and ∆∆s, and that TRAP efforts started only two-three years ago. Also, there is quite a
number of questions in TRAP system design (summarized in 4.6) ranging from label selection to
neural net architecture. We believe however that we are on a very promising way and that temporal
trajectories and non-linear classifiers will have a significant role in future speech feature-extraction
algorithms. Last experiments of Grézl [9] show that TRAPs, derived from 3 frequency bands or
obtained by spectro-temporal operators, outperform MFCC’s for some tasks.

To conclude this work, I would like to express my great will to continue in the speech processing
research and teaching, a field that I consider very interesting, challenging from the scientific point of
view but also bringing quite a lot of fun. I hope to be a good tutor to my pre- and post-grad students.
I hope to take part in international projects, bringing not only a huge amount of know-how and lots
of work, but also visits of nice places and meeting smart and funny people. I sincerely believe that
Czech republic will get new possibilities by joining the EC — by the work of myself, and of my
group, I would like to make a contribution to the success of our country in the common Europe.

1But is a set of experiments ever complete?
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I. Kopeček, and K. Pala, editors, Proc. of the 5th International Conference on Text, Speech
and Dialogue—TSD 2002, Lecture Notes in Artificial Intelligence LNCS/LNAI 2448, pages
321–324, Brno, Czech Republic, Sep 2002. Springer-Verlag.
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Abstract

Speech recognition is a booming research field, having large number of applications in telecommu-
nications (especially mobile), automobile industry, consumer electronics, military and security, etc.
Speech recognition systems are classically built from three basic blocks: feature extraction, acous-
tic matching and language modeling. While the last two are trained on data (annotated databases
for acoustics and large speech corpora for the LM), feature extraction block is often neglected and
most often, mel-frequency cepstral coefficients (MFCC) are used. This work concentrates on two
techniques that should improve the feature extraction.

The first one is temporal filtering of feature trajectories using filters designed on data using
Linear Discriminant Analysis (LDA). This technique is shown to improve the recognition accuracy
of isolated Czech words, confirming previous results on US-English obtained by our colleagues from
OGI Portland.

The second part of the work concentrates on more revolutionary approach of feature extraction
using TRAPs (temporal patterns) whose fundamentals were also laid at OGI. Several experiments
were conducted on three databases during author’s stay at OGI. Although we have shown that TRAPs
are comparable to MFCC’s only on a small vocabulary recognition task, we believe that combination
of frequency-band processing and neural nets will become very important in the next decade, and
that they will become standard blocks of feature extraction.

Abstrakt

Rozpoznávánı́ řeči je rychle se rozvı́jejı́cı́m oborem s množstvı́m aplikacı́ v telekomunikacı́ch (zvlá-
ště mobilnı́ch), automobilovém průmyslu, spotřebnı́ elektronice, vojenské a bezpečnostnı́ oblasti,
atd. Rozpoznávače řeči se klasicky skládajı́ ze třı́ základnı́ch bloků: výpočtu přı́znaků (parametrizace),
akustického srovnávánı́ a jazykového modelu. Zatı́mco poslednı́ dva bloky jsou trénovány na datech
(akustika na anotovaných řečových databázı́ch, LM na korpusech textových dat), parametrizace je
často zanedbávána a na vstupech rozpoznávačů najdeme nejčastěji mel-frekvenčnı́ cepstrálnı́ koefi-
cienty (MFCC). Tato práce se zaměřuje na dvě techniky, které by měly parametrizaci zkvalitnit.

Prvnı́ z nich je časová filtrace trajektoriı́ parametrů pomocı́ LDA-filtrů. Tyto jsou zı́skány z
řečových dat pomocı́ Lineárnı́ diskriminačnı́ analýzy (LDA). V práci ukážeme, že tato technika
zlepšuje úspěšnost rozpoznávače při rozpoznávánı́ izolovaných českých slov. Potvrdili jsme tak
předchozı́ výsledky na americké angličtině, zı́skané našı́ partnerskou skupinou na OGI Portland.

Druhá část práce se zaměřuje na “revolučnějšı́” přı́stup k parametrizaci pomocı́ časových tra-
jektoriı́ (TRAPs). Základ této metody byl rovněž položen skupinou na OGI a experimenty popsa-
né v této práci byly provedeny během autorova sedmiměsı́čnı́ho pobytu v Portlandu. I když jsme
prokázali, že TRAP-přı́znaky jsou srovnatelné s MFCC pouze na rozpoznávánı́ omezeného souboru
slov, věřı́me, že kombinace zpracovánı́ v jednotlivých kmitočtových pásmech s neuronovými sı́těmi
nabude v následujı́cı́ dekádě na důležitosti a že se tyto techniky stanou standardnı́mi bloky v para-
metrizaci řeči.
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