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1  INTRODUCTION

Industrial robot is a complex electromechanical system, its effective control is still a challenging
task. From systems point of view we can see four hierarchical levels of robot control.

The highest level of the control system contains elements of artificial intelligence and
sometimes it is called cognitive level. At this level the control system processes information from
external sensors (visual, tactile, acoustic etc.) to prepare global plan of the robot activity. Typical
problem at this level can be grasping of human commands e.g. "Pick up the blue ball and put it
into the yellow box", recognition that the "blue ball" and the "yellow box" is in the working space
of the robot, preparation of the global activity e.g. "first open the lid of the box, then pick up the
ball, avoid obstacles, put it in the box, close the lid" etc.

The next lower level is the strategic level at which the global task is divided into the elementary
operations in accordance with the solution generated by the superior level. What are the
elementary operations depends on the particular task of the robot. At the strategic level the most
frequently planned elementary operations belong to path planning i.e. determination of trajectory
to be followed by the robot gripper. At this control level the trajectory is planned with respect to
the absolute co-ordinate frame which is usually fixed to the robot's base.

At the majority of today's industrial robots both the mentioned control levels are performed by
a human operator.

While the motion of the gripper is planned in external co-ordinates the movement of the robot is
realized via the movements of robot's particular joints. Thus to perform planned trajectory it is
necessary to determine how to move individual joints of robot manipulator. This is the task
of tactical level of the control system. At the tactical level the external co-ordinates of the
trajectory are mapped to the robot's joint co-ordinates (internal co-ordinates). In different words at
the tactical level the motion of individual joint is calculated in such a way that the final motion
of the gripper follows trajectory determined by the strategic level.

Boundaries between cognitive, strategic and tactical levels are rather fuzzy and depend on the
nature of the task.

The lowest level of control is executive level. Task of the executive control is to realize
required motion of the individual joints to perform movement of the complete manipulator in way
which was planned by the tactical control level. While the upper levels use generally information
of external sensors the executive level uses generally information of inner sensors (potentiometers,
resolvers, incremental encoders, force sensors etc.). Movement of joints is realized by help
of actuators (electromotors, hydraulic motors, pneumatic motors). With exception of the most
primitive industrial robots actuators and sensors are grouped into servosystems. From the point
of view of the executive control level, a robot is a complex system with many inputs and outputs
having strong interactions between individual joints. This is the main reason why the synthesis
of executive control level is also complex and generally difficult task.

This paper deals only with problems of executive level and necessary problems of tactical
control level which can be encountered at today's industrial robots.

In order that analysis or synthesis of executive control can be done one must be well acquainted
with robot kinematics and dynamics.

2  ROBOT KINEMATICS

Robot manipulator consists of kinematic pairs. Each pair consists of two links and one joint
(revolute or prismatic). Majority of industrial robots uses kinematic pair with one degree
of freedom (d.o.f.) and usually six such kinematic pairs. Usually three pairs create arm of the
manipulator and other tree pairs create wrist of the manipulator. A gripper is placed at the end
of the manipulator wrist. Mutual position of links in kinematic pair with one d.o.f. is exactly given
by one value - joint co-ordinate q. Thus position of usual robot manipulator gripper is fully
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characterised by the vector q = [q1,q2,q3,q4,q5,q6]
T. Vectors of this type create internal or joint

space. More natural for human observer is the external space or task space which is usually
Cartesian space in which the position of gripper is characterised by position vector p = [x

g
,y

g
,z

g
]T.

Variables x
g
,y

g
,z

g represent usual x,y,z co-ordinates of gripper position in Cartesian system,

variables, α,β,γ represent angles of roll, pitch and yaw successively see fig. 1.1. Variables
x
g
,y

g
,z

g,α,β,γ represent together so called pose vector s = [x
g
,y

g
,z

g,α,β,γ]
Τ

. Trajectory of. the

gripper is usually planned in these co-ordinates in tactical control level. 

2.1 DIRECT KINEMATICS

The first problem in kinematics is to find mapping which transforms joint co-ordinates q to task
space co-ordinates s. This is done by help of homogeneous transformation. Homogeneous
transform is used to describe the position and orientation of co-ordinate frames in space.
A homogeneous transform is represented by 4x4 matrix T which consists of two submatrices, i.e.
3x3 rotational matrix A and 3x1 prismatic matrix p [25], [30], [31], [32], .

Fig. 2.1. Definition of mutual position of two frames (gripper  and base frame)
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From rotational matrix A one can find mutual rotation of frames and from prismatic matrix p
one can find mutual translation of origins of frames. To find homogeneous transform between
robot's gripper and robot's base one must

a) draw a kinematic scheme of the manipulator
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b) number each link from 0 to 6 starting at the base of the  manipulator as link 0 out to the last
link 6

c) number the joint between link 1 and i-1 as joint i
d) allocate a frame i to each link
e) find homogeneous transforms T

i-1,i between successive links

f) find product T
b,g 

= T
0,1 T1,2 

T
2,3 T3,4 

T
4,5 

T
5,6

Matrix T
b,g represents homogeneous transform between gripper frame and base frame. Position

of gripper frame origin x
g
,y

g
,z

g in base frame is given by values of p
x
,p

y
,p

z respectively. Individual

angles of orientation are given [32]

                                               α
g = atan2(n

y
,n

x
)

                                                β
g = atan2(-n

z
,n

x
cosα

g
+n

y
sinα

g
)                                               (2.2)

                                                θ
g = atan2(-a

x
sinα

g
-a

y
cosα

g
,o

y
cosα

g
+o

x
sinα

g
)

The allocation of frames to individual links should be done in a reasonable manner. Denavit
Hartenberg method is recommended in [32].

2.2 INVERSE KINEMATICS

Rather more difficult is another problem, inverse kinematic problem. The task is to find inverse
mapping from Cartesian space to joint space or better to say given the desired homogeneous
transform between the gripper and the base, find joint co-ordinates which give this transform.
Consider the situation shown in fig. 2.2. The robot is holding a peg which

Fig. 2.2. Manipulator putting a peg into a hole

should be put in a hole in a part. This is the final desired state. The base of the robot is the origin
of a frame R whose location is known to a universe frame U. That knowledge is embedded in the
transformation T

U,R
, assumed to be constant. When in the proper location, the gripper position will

be related to R by a transform T
R,G

. This is initially unknown. The tip of the peg is related to G by



8

a transform T
G,E

, assumed constant. Thus the location of the peg tip may be related to the universe

frame by
T
U,E  

= T
U,R 

T
R,G 

T
G,E                                                        (2.3)

Furthermore the location of the hole in the part may be related to U by
T
U,H  

=  T
U,P 

T
P,H                                                                                              

(2.4)

where T
U,P 

represents location of part to the universe and T
P,H 

represents location of the hole end to

the part. Thus when robot finishes its task it must be valid
 T

U,E 
= T

U,H                                                                                                            
(2.5)

From these equations the desired position of gripper to base is easily calculated

 T
R,G 

= T
U,R

-1 
T
U,P

T
P,H 

T
G,E

-1                                                                  
(2.6)

and tactical control must calculate joint positions accordingly.
Here we only mention that three cases are possible in relation to this problem.
a.) Unique inverse mapping can be found. Usually this is  possible when number of task co-

ordinates equals to  number of internal co-ordinates. In majority of  practical problems it requires 6
d.o.f. manipulator  with gripper which axes of motion intersects in one  point [32].

b.) It is not possible to find any mapping. Usually number  of manipulator's d.o.f. is not
sufficiently high to fulfil required task or desired position is out of the  robot's task space.

c.) It is possible to find several solutions to the problem.  Usually number of manipulators d.o.f.
is higher than  necessary for the given task

Sometimes robot control requires calculation of joint velocity and acceleration too. In such
a case numerical method using Jacobian of the robot is used. Let the direct kinematics is expressed
by equations

)(qfs =                                                                (2.7)
Then we can find relation between velocities of joint and  pose coordinates according to the

following formula

qqJq
q

f
s &&& )(][ =

∂

∂
=                                                       (2.8)

where ][)(
q

f
qJ

∂

∂
=  denotes the Jacobian matrix of the system f.

If the velocities of the pose vector are given, the joint velocities could be calculated from the
above equation. Let s is mx1 vector and q is nx1 vector. Now three cases may occur :

a) m=n, in that case Jacobian is squared matrix and problem is solved by help of Jacobian
inversion.

sqJq && )(
1−

=                                                              (2.9)
It is known that the Jacobian inversion exists except for singular positions of the robot. Various

procedures for solving the singular problem have been described in the literature.
b) m>n , generally it is not possible to solve the problem except some special cases.
c) m<n, this is the case of redundant manipulators and solution of inverse problem is not

unique. One of possibilities is to use so called minimal inverse solution
sJJJq &&

TT 1

)(
−

=                                                        (2.10)
which gives solution closest to “exact” solution according to criterion of minimum quadratic

error.
An inverse Jacobian can be used for numerical solution of the inverse kinematic problem with

respect to position wit use of Newton method. Let we know pose s and an approximate solution
of the inverse problem q(k) in step k. Then solution of inverse problem in step k+1 is given as

}(k))({(k)1)(k 1

sqfJqq −−=+
−                                                      (2.11)



9

The Newton method gives only one solution to the inverse kinematic problem. this solution is
the closest to the initial guess q(k). Problems of inverse transform are discussed in detail in [32],
[41]. Practical use of inverse transform is demonstrated in [37]. Speed of calculations is very
important if on line computing must be used.

2.3 TRAJECTORY PLANNING

Another problem which belongs partially to tactical control is trajectory planning. Trajectory
of a robot gripper can be assigned in many different ways. Generally speaking we can say that any
method must produce physically feasible trajectory i.e. all accelerations and velocities of the
manipulator must be attainable. The planning is usually done in Cartesian co-ordinates and when
we plan the trajectory with limited acceleration and velocity of individual elements of vector s we
shall receive limited joint accelerations and velocities too (if the manipulator is not in singular
position where inverse kinematic gives infinitely high value of a q component). Trajectories are
planned with help of control polynomials and splines very often [31],[25].

2.3.1 SPLINES FOR TRAJECTORY PLANNING

In order to approximate a Cartesian path, m functions of approximation are needed – one for
each joint. The function of approximation for a particular joint must pass through the value
calculated for that joint at each way point in Cartesian space. in addition the function should be
continuous in position, velocity and acceleration in order to be physically feasible. These
conditions could be met by deriving a single polynomial which passed through the way point in
joint space. Such a polynomial would likely contain extrema between way points which might
cause significant deviations from the desired Cartesian path.

A better solution is to define separate polynomial for each segment of the path and ensure the
continuity constraints at each way point. This requires third order polynomials for the intermediate
segments and fourth order polynomials for the first and the last segment, since the velocity and
acceleration at the start and end points are to be zero.

Let us suppose that we have n way points in joint space of robot, i.e. we know n vectors qk

k=1,2,3….n. Let the dimension of the vector is 6x1 (our robot consists of 6 joints). Motion of  one
joint (joint i for example) is planned as a sequence  of way points qi,1; qi,2;…. qi,n as shown in
fig.2.3. (index i is omitted for simplicity).

Fig. 2.3. Planned way points.

To each way point there is allocated time tk until now tentatively, because way points are
planned by teach in method usually.  During teach-in planning, times at which individual way
points are memorized are generally random. Thus we suppose only that tk<tk+1. In intervals k=1;n-
1 we use fourth order polynomial for path approximation, thus

sec
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4

2

321k
tBtBtBtBB(t)q ++++=        for k=1;n-1                          (2.12)

In other intervals we use third order polynomial, thus
3

4

2

321k
tBtBtBB(t)q +++=        for k=2;…n-2                          (2.13)

Time considered in k-th polynomial is between 0 and ∆k+1=tk+1-tk. Thus
)t(tqq(t)

kk
−=  for 〉〈∈

+1kk
t;tt                                                 (2.14)

Coefficients of individual polynomials are calculated I such a way that values of positions
(velocities, accelerations) of polynomials qk and qk+1 in tk+1 are equal, for k=1,2..n-2. Values
of velocities and accelerations are zero for initial point of polynomial q1 and end point of poly-
nomial qn.

Before we put the robot into operation according to so far planned trajectory we can accelerate
or decelerate its motion with use of time scale factor. Instead using so far programmed trajectories
by using functions q(t) we use q(Kt) instead. For K>1 we accelerate, for K<0 we decelerate robot
motion. Value K can be tuned according velocity and/or acceleration limits valid for individual
joints. Differentiating q(t) yields expression for velocity and acceleration

2

2

2

dt

q(t)d
Ka(t)

dt

dq(t)
Kv(t)

=

=

                                                             (2.15)

Denoting Vi , Ai maximum velocity, maximum acceleration in the i-th joint respectively, the
following formula for K must be valid

K < min(Kv , Ka)                                                                (2.16)
where

)
)(t)amax(max

V
(minK

)
)(t)vmax(max

V
(minK

ki,
tk

i

i
a

ki,
tk

i

i
v

=

=

)(max
,

tv
ki

t

 represents maximum velocity of k-th polynomial of i-th joint. Similarly )(max
,

ta
ki

t

represents maximum acceleration of k-th polynomial of i-th joint. If the maximum velocity of k-th
polynomial is outside time interval of that polynomial i.e. out of <tk , tk+1>, its value need not be
considered in search for maximum because of continuous acceleration requirement follows that in
neighbour section the velocity i.e. k-1 or k+1 the velocity will be higher than in section k..
maximum acceleration for inner polynomials (k = 2, … n-2) - sections is estimated in their end
points, maximum acceleration of the first and the last section must be searched in their definition
interval.

3  ROBOT DYNAMICS

While kinematics deals with geometry and time dependent aspects of motion without
considering the forces causing motion, dynamics is based on kinetics and includes the effects
of forces on the motion of masses.

As it was explained above the executive control has to ensure implementation of trajectories
(or, only positions) of joint co-ordinates of a manipulator e.g. trajectories given by fig.2.3. The
implementation of the trajectories involves dynamic behaviour of the manipulator. In order that the
executive control system may be correctly designed we must know the manipulator dynamic
(differential equations describing manipulator motion).
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3.1 MODEL OF MANIPULATOR

Several methods are used for dynamic model construction e.g. method based on Lagrange's
equations, method based on Newton-Euler equations etc. Generally the complete model of mani-
pulator dynamics can be expressed in the following form

H(q)q
. .

h(q
.
,q) P+ =                                                        (3.1)

where P = (P1,P2,P3,P4,P5,P6)
T represents the vector of driving forces (torques), H(q) is 6x6

inertia matrix which is the function of joint variables and h(q
.
,q)is 6x1 vector function of joint

variables and their derivatives. H(q) consists of moments of inertia around individual joints H
ii and

cross-inertia terms Hij which represents inertial effects of movement of j-th joint on i-th joint.

h(q
.
,q) represents effects of centrifugal and Coriolis forces and effect of gravity forces. Generally

the dynamic model of the manipulator represents a set of non-linear differential equations. From
system point of view it is complex dynamic system with intercoupling. The following example
explains briefly Lagrange's method in construction of model of manipulator from fig.3.1.

Let us suppose that mass of the manipulator is concentrated in points according to fig.3.1.

Fig.3.1. Simplified scheme of manipulator for dynamic  modelling
(l1=0.6m; l1

*=0.36m; l3=0.2m; m1=7kg; m3=4kg)

Let us develop manipulator's model by help of Lagrange's equations

i

i
i

Q
q

K
.
q

K

dt

d
=−















∂

∂

∂

∂
                                                    (3. 2)
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where K is total kinetic energy of the system, qi is i-th joint variable and Qi is working force

(torque) in i-th joint. After some calculations one can find that the kinetic energy of the system is

]}/2q)cosqqq(ql2l)qq(l)q[(lm)q(l{mK 2

3221131

2

21

2

3

2

113

2

1
1
*

1
&&&&&&&& ++++++=         (3.3)

Individual values Qi are

 Q
1 

= T
1
; Q

2 
= T

2
; Q = F

3 
- m

3
g                                       (2.4)

where T
1,

T
2 

are torques in joint 1,2 respectively, F
3 

is force in joint 3, and g is gravity acce-

leration.
When we do the differentiation prescribed in eq.(3.2) we can construct differential equations

(3.1) where
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)
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We can see that even in this very simple example the model of the system is rather complicated.
If we want to represent model of the manipulator in state variable form we shall find that it is
a system of the 6th order. It is strongly recommended to verify validity of the model at least by
help of several examples.

3.2 MODELS OF ACTUATORS

Knowledge of dynamic model of mechanical part only is not sufficient for control synthesis.
One must know also model of actuators which develop the driving torques or forces. At majority
of industrial robots each joint is driven by a separate actuator. Majority of robots use D.C.
permanent magnet electromotors. Generally the model of such an actuator is in form (see also
fig.3.2.)

iiiEiiiii

iiMiiiviiMi

2

i

u

.

NCiR

.

iL

iNCM

.

F

..

JN

=Θ++

=+Θ+Θ
                                                     (3.6)
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Fig.3.2. Equivalent scheme of the permanent magnet D.C.  electromotor

Subscript i represents i-th joint. The first equation is equation of mechanical equilibrium at the
output shaft of the gearbox which couples motor with corresponding joint. The second equation
expresses electrical equilibrium in the motor's armature circuit. The meaning of used symbols is as

follows: 
.

/

.

N
ii Mi

ΘΘ=  where Θi  is gearbox output angle corresponding to gearbox input angle ΘMi

(inverse of gear ratio), J
Mi 

is moment of inertia of the motor armature, F
vi 

is viscous damping

constant reduced to gearbox output shaft, M
i 

is external torque at the gearbox output shaft

(includes also inertial torques), C
Mi 

is torque constant of the motor, C
Ei 

is electric constant of the

motor, L
i 
is inductance of the motor armature, R

i 
is resistance of the motor armature, i

i 
is armature

current, u
i 
is armature control voltage. In case that rotational to prismatic motion gearbox is used

one must substitute instead Θi, di 
which is position of gearbox output rod. No non-linear effects

(Coulomb friction, backlash , non-linear gear ratio) are included in the model. These non-linear
effects severely complicate the model and generally all precautions are done in order that these
effects may be neglected. Anyhow one must be aware of existence of them and control system
must be designed to be robust enough to suppress their effects.

Similar models can be built for other kinds of actuators.
Each actuator is generally controlled via electrical power amplifiers. Actuator together with the

electrical power amplifier makes a joint drive. Generally dynamics of electrical part of the drive is
negligible, but power amplifier introduces another non-linear factor - saturation which can
considerably influence robot's behaviour.

Model (3.6) can be easily transformed into state variable form.

idiididididi Mu
.

fbxAx ++=                                                   (3.7)

Where T

iiidi
]i,

.
,[ ΘΘ=x
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Thus the drive is a system of the 3rd order. Generally it is possible to neglect inductance
of armature of the D.C. motor, then the order of the drive model is reduced to magnitude 2.

3.3 COMPLETE DYNAMICS

Because executive control is done by help of voltages u
i 
we must construct integrated dynamic

model input of which is vector u = [u
1
,u

2
,u

3
,u

4
,u

5
,u

6
]
T 

and output vector is q or s.

Let us consider the simplest case in which the movement of actuator shaft Θi is equal to the
movement of the corresponding joint q

i 
i.e.

 Θi = qi                                                                  (3.10)
In general case the relation between these two variables can be more complex.
If this simple relation is valid the following equation holds true as well

 M
i 
= P

i                                                                                                         
(3.11)

Since states of mechanical part of the manipulator are equal to some states of the actuators we
can define vector of the complete system (manipulator with 6 d.o.f. and six drives) in form

 x
c 
= [x

c1

T

,x
c2

T

,x
c3

T

,x
c4

T

,x
c5

T

,x
c6

T

]
T                                                                   

(3.12)

where individual components of x
c 

represent state vectors of drives. Thus if we consider drives

to be system of the 3rd order the order of the complete system will be 18.

Individual components of the vector q
.

can be expressed according to the following equation

cii
q kx=&                                                                  (3.13)

where k is row vector [0,1,0] (in case of reduced model of drives i.e. model of 2nd order
k = [0,1]).

Thus complete vector q
.

 can be expressed in form

 q
.

= Tx
c                                                                                                          

(3.14)

where T is matrix consisting of 6 vectors k , T=diag(k)























=

k0

0.

0.0

k0

0k

T                                                    (3.15)
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The model of mechanical part (3.1) can be expressed using complete state vector x
c 

in the

following form

 H(xc)Tx

.

c + h(xc) = P                                                     (3.16)

Now we can combine model of mechanical part and model of drives together. Because of eq.
(2.11) and (2.12) we can write the model of all actuators in form

x

.

c = Axc + Bu + FP                                                     (3.17)

where A = diag (A
di

); B = diag(b
di

) and F = diag(f
di

).

If we substitute x
c 
from (3.17) into (3.16) and solve (3.16) to express P we get

 P = (I - H(x
c
)TF)

-1

[H(x
c
)T(Ax

c 
+ Bu) + h(x

c
)]                             (3.18)

where I is 6x6 unit matrix. Inverse of matrix I - H(x
c
)TF always exists because control u can

produce only physically realizable forces. Now when we substitute P from eq.(3.18) into eq.(3.17)
we get the complete model in form

 x
.

c = Ac (xc) + Bc u                                                    (3.19)
where

A
c
(x

c
)=[A+F(I-H(x

c
)TF)

-1

H(x
c
)TA]x

c
+F(I-H(x

c
)TF)

-1

h(x
c
)                  (3.20)

is 18x1 or 12x1 vector function depending on the drive model order

B
c 
= B + F(I-H(x

c
)TF)

-1

H(x
c
)TB                                         (3.21)

is 18x6 or 12x6 matrix depending on the drive model order.
This model of manipulator together with drives is called centralized model.

We can see that the state space model of the complete system is rather complicated. Little bit
more transparent model is block scheme model from fig.3.3. Construction of this model is based
on equations (3.7) and (3.1). But when we try to simulate the system expressed by the above
drawn block scheme we shall find that we must solve for several algebraic loops which occur in
the scheme [35]. An algebraic loop going through blocks without dynamics (blocks k, H(q), fdiki)
is clearly seen in the scheme. To avoid solution of this problem which can result in many errors,
we can use simulation of the robot with help of matrix model (3.19). Block scheme of such
a model in MATLAB Simulink is shown on the figure 3.4. Figure shows modelling scheme for
robot with two joints only. In Matlab function blocks ac and bc there are calculated matrices Ac

and Bc which were derived in the above section of the text. Construction of these Matlab functions
is very easy so that  programming of the model is fast and practically without any error.

Even from these simple examples one can see urgent need for computerisation of the model
development procedure. Several procedures are developed in [42],[35],[38]. One can use also
MATLAB-SIMULINK which is an universal CACSD package [9].
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MANIPULATOR

q

q

Fig.3.3. Block model of the manipulator together with drives.

Fig.3.4. Matrix model simulation scheme
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4  ROBOT CONTROL

In the following chapter we shall discuss executive robot control. As it was explained above,
the task of the executive control level is to drive the robot joints into the desired positions or to
drive them along a prescribed trajectories.

4.1 DECENTRALIZED ROBOT CONTROL

First of all we shall discuss the simplest control strategy which is based upon assumption that
crosscoupling between individual joints is negligible, such control strategy is called dencentralized
or local control. Thus control law for each joint is designed independently on movement of other
joints. Simply we assume that all other joints are locked. Influence of disturbing forces stemming
from movement of other joints is reduced only to gravity effects. Model of mechanical part is in
this case reduced into the following form

H ( q h ( ,q
.
) P

ii i i

*

i i
q q
* )

..
+ =                                           (4.1)

where q
* 

denotes fixed position of all joints (except joint i) and is constant. h ( ,q
.
)

i

*

i
q  represents

gravity effects which can depend on position of all joints. The effect given by speed q
.

i  (viscous
friction in mechanical part) is generally negligible due to relatively small velocity of mechanical
part. State variable diagram of the system is shown in the following figure then.

Fig.4.1. State variable diagram of the controlled system
(electrical drive plus locked mechanical part)

From state variable form we can easily derive transfer functions between individual input and
output variables of the controlled system.

q (s)

u (s)

K

[T T s (1 T F )T s 1]s

i

i

di

ei mi

2

ei di mi

=

+ + +

                                      (4.2)

( )

( )

( )

( )[ ]
q s

h s

T s 1 K

T T s 1 T F T s 1 s

i

i

ei mi

ei mi

2

ei di mi

=

− +

+ + +

                  (4.3)

where
T
ei 

= L
i
/R

i 
is the electrical time constant of the drive
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( )
T =

R J N +  H

R F +  C C N
                 

mi 

i Mi i ii

i vi Mi Ei i

2

2

is the electromechanical time constant of the drive with the load H
ii
.

F
di

= F
v
/(J

Mi
N

i

2

+ H
ii
)

Gains K
di 

and K
mi 

are

K =
C N

R F +  C C N
di 

Mi i 

i vi Mi Ei i

2  ; K =
R K

C N
mi

i di

Mi i

Generally one can neglect electrical time constant T
ei 

of the drive. The influence of this time

constant on dynamics of the system is usually small.
There are several control schemes which can be used for control of such decentralized system.

One which is used frequently is proportional plus velocity controller with control law

qKq)(qKu vdpi
&−−=                                                           (4.4)

which yields the following transfer functions of the system

( )
( )

 

K K+ sK K+ 1)+ss(T

K K
=

sq

sq
 

PdVdm

dP

D
                                       (4.5)

( )
( )

  

K K+ sK K+ 1)+ss(T

K-
=

sh

sq

PdVdm

m

                                        (4.6)

By comparison with standard second order system we shall find damping ratio, frequency
of undamped oscillations and steady state error caused by external disturbance.

 

KKT2

KK + 1
=  ,

T

KK
 =

Pdm

dV

 m

 dP

0
ξω

                       (4.7)

( ) q =  
-K

K K
h( ) 

m

d P

∞ ∞                                                       (4.8)

Generally we want to have undamped frequency of the closed loop system lower than the
structural frequency ωm of the manipulator. In case that both mentioned frequencies are close each
other, resonant oscillations of the complete system will appear, which is not acceptable. Generally
we want to have

 m0
ω 0.5  ω 〈        (4.9)

which yields

 d

m

2

m

p
K

T0.25ω
K 〈                 (4.10)

Knowing K
P 

we can calculate K
V 

from (4.7) to reach critical damping ratio ξ=1, for this case we

get
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 K =  
2 T K K  -  1

K
V 

m P d

d

                   (4.11)

To fulfil requirement on steady state error previously derived eq. (4.19) should be used to
secure q(∞) < eD.

In order that transients are without overshoots we must consider that during robot motion the
moments of inertia change significantly thus during the design procedure we must choose such
locked positions q* which will secure that design requirements will be met in any other possible
locked position q+. In accordance with equations (4.7) K

P 
should be calculated for such position

which gives the smallest value of T
m 

(the smallest moment of inertia). Then with fixed K
P
, K

V

should be calculated with the highest value of T
m 

(the highest moment of inertia).

Unfortunately the control scheme has not enough variable parameters to meet all requirements,
but steady state error can be removed or at least suppressed by help of feedforward.

The control scheme which includes gravity error compensation is drawn in fig.4.2.

Fig.4.2. Position plus velocity control servo with direct  compensation for gravity error

Simple block algebra calculations will show us that if h
cal 

(calculated disturbance) is precisely

equal to real disturbance h then the effect of the disturbance on the system is zero.
Control law for such a control system is given by the following equation

dm

*

vDp K/K)h(qqKq)(qKu +−−= &
                             

(4.12)

where h (q
*

) is computed gravity effect on joint i.
 This control scheme may work well in case that inertia crosscoupling between individual joints

is negligible (generally when robot movements are slow and drives use high gear ratios) and robot
is used for positioning only (PTP control).

u
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4.1.1 DECENRALIZED CONTROL FOR TRAJECTORY TRACKING

Previous control scheme is designed to secure simple position control. Modern robots are
generally designed for trajectory tracking (CP control). Desired values q

Di 
are complex functions

of time in this case. It is well known that the control scheme from fig.4.2. produces constant steady
state error when the desired value is linear function of time e.g. q

D
= vt then

 v
KK

KK1
 = q)-(qlim

Pd

Vd

D
t

+

∞→

                            (4.13)

When the desired value is quadratic function of time than the steady state error is infinitely
high. These errors in tracking of desired trajectories are caused by delays in the servosystem. The
delays can be compensated by introducing feedforward compensating signal. The simplest
explanation of feedforward compensation is done by help of state equations.

Let us consider the second order model of a drive of one joint together with manipulator which
has other joints locked. We shall not consider gravity effects in this case they can be compensated
by already described way. State variable model of the system is

 &x Ax bu= +                   (4.14)

where









=









222
b

0

a0

10
 = bA                           (4.15)

 a = -
RF +  C C N

R(J N +  H )
= -

1

T
     ,  b =  

 C N

R(J N +  H ) 
=

K

  T
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ii

d

m

Let us try to find control u = u
D 

which will secure desired trajectory x
D
(t). Certainly such

control must fulfil the following equation

 x Ax bu&
D D D 
= +               (4.16)

This control scheme is so called open loop control and works well only when model of system
is accurate, system starts from initial conditions x(0)=x

D
(0) and there are no additional

disturbances. Let us denote ∆x = x - x
D 

; ∆u = u- u
D 

differences between the desired and real

trajectory and between the desired and real control. Taking into  account equations (4.14) and
(4.16) we can write

 ∆ ∆ ∆&x A x b u= +               (4.17)

This state variable equation describes behaviour of the difference between desired and real state
when there exists a difference between desired and real control. Introducing full state variable
feedback into this system we can secure stable behaviour of ∆x with steady state ∆x=0. Let us
have

 ∆ ∆u k x=
T 

         (4.18)
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where k
T

=[K
P 

; K
v
]. Substituting (4.18) into (4.17) we get

∆ ∆&x A +  bk x =  ( ) 
T                         (4.19)

Equations (4.26) and (4.23) describe the same dynamic system. But system which described by
equation (4.23) was in fact controlled by full state feedback scheme (see figs.4.1 and 4.2) thus we
can calculate K

P 
and K

V 
by the same way as we did in the previous control scheme (see equations

(4.10) and (4.11)). u
D 

can be calculated easily from equation (4.16).

 u =
x - a x

b
D 

2D 22 2D

2

&
                (4.20)

Where x
2D 

is the second component of the vector x
D
.

Thus we can write equation for control voltage of the drive

 u = u
D 

+ K
P
(x

1D 
- x

1
) + K

V
(x

2D 
- x

2
)                             (4.21)

Substituting from (4.29) to (4.30) and taking into account that [x
1
;x

2
] = [q;q& ] (the same is valid

for desired values), we shall come to the following control law

  u =
q -  a q

b
+  K (q -  q) +  K (q -  q)

D 22 D

2

P D V D 

&& &
& &                 (4.22)

Block diagram of this control scheme is drawn in fig.4.3.

Fig.4.3. Block diagram of local servo system for trajectory  tracking

Signal uD which can be calculated from equation (4.20) is called nominal control and that is
why this control scheme is also called local nominal control scheme [32],[42] . The control scheme
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takes into account constant moment of inertia around the controlled joint and its parameters do not
vary with the robot motion. While gains KP and KV should be designed for minimum and
maximum moment of inertia, the local nominal control signal uD should be designed for the
minimum possible value of the moment of inertia.

4.2 CONTROL OF SIMULTANEOUS MOTIONS OF ROBOT

Previous control schemes can be effectively used only when inertial crosscoupling in robot
manipulator is negligible. This is in fact true only when the motion of the robot is done
successively one by one joint. The condition is fulfilled approximately when the used gear ratios in
drives are high. If all joints of the manipulator move simultaneously the movement of each joint
generally affect the movement of other joints especially when the robot performs fast movements
and used gearboxes have small gear ratios. If we use the above described decentralized control
scheme for trajectory tracking we must investigate what will be the effect of crosscoupling, mainly
we must investigate if it can destabilize the whole system or not. The question of stability should
be investigated for the complete non-linear system, but because this is very complicated problem
one must at least investigate stability of the linearized model of the complete system along desired
trajectories. The linearized model of the complete controlled system can be calculated by similar
manner as it was calculated the complete system model in chapter about complete dynamics. We
can see that in the complete system only the manipulator is non-linear, thus we need to linearize
only equation (3.1.). Let us consider nominal trajectory q

o
(t). Along this trajectory the following

equation must be fulfilled
 H q q h q q P( ) + ( , ) =

o o o o o
&& &  (4.23)

where P
o 

are forces which cause the nominal trajectory. Let us consider trajectory and

corresponding forces which slightly differ from the nominal case i.e. q = q
o
+ ∆q and P = P

o
+ ∆P

thus the following equation is true

PPqqqqhqqqqH ∆∆∆∆∆  + = )) +(), +(( + ) +)( +( 
ooooo

&&&&&&              (4.24)

Now we can express both sides of this equation in form of Taylor series along the nominal
values. If we retain in the series only its linear portion we shall obtain ed model of the manipulator

 ( )
∂

∂

∂

∂

∂

∂
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q
q q H q q
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where   
∂

∂

H

q
q&&

0

0




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


   is matrix which i-th column is given by 

∂
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∂

∂

H

q

kj

i q q
0

=
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∂

∂

h

q










0
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∂

∂

h

q&


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
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

0

are matrices elements k, j, of which are

∂

∂

h

q

k

j
q q=

0

; 
∂

∂

h

q

k

j
&

q q=
0

 successively.

Model of drives is linear, thus if we introduce for individual drive its nominal state x
dio

, and

difference between real state and nominal state for which it is valid ∆x
di 

= x
di 

- x
dio 

we shall receive

the following state equation for difference between nominal and real state

 ∆&x
di 

= A
di
∆x

di
+ b

di
∆u

i
+ f

di
∆P

i              
(4.26)
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Now we can proceed by the same way as we did in calculation of the complete dynamics and
we shall obtain linearized model of the complete system.

 ∆&x
c 
= A

cL
∆x

c 
+ B

cL 
∆u                      (4.27)

where

A
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Matrices T
1
=diag(k

1
), T

2
=diag(k

2
) are diagonal matrices of row vectors k

1
=[1,0,0] or k

1
=[1,0],

k
2
=[0,1,0] or k

2
=[0,1] depending on the order of the drive model.

We can see that the linearized model (4.27) is generally linear time variant. Investigation
of stability of the linear time variant systems is not an easy task as well, thus we generally
investigate stability only in several typical points of the trajectory.

 It is well known that stability of linearized model is the necessary condition for stability
of corresponding non-linear model. Thus we can confirm only instability of the control system by
this way.

Let us now investigate behaviour of robot with previously designed control schemes in

trajectory tracking. Robot should follow desired trajectory q
D
(t)=[q

1D
(t);..q

6D
(t)]

T
. When we

consider second order model of drives we receive easily desired trajectory of complete state vector

x
D
(t)= [ x

1D

T
(t); .... x

6D

T
(t) ]

T 
= [ q

1D
(t); &q

1D
(t); .. q

6D
(t); &q

6D
(t) ]

T

where    x
iD

(t) = [ q
iD

(t); &q
iD

(t) ]
T
.

Let us now consider control scheme with local controllers only. Local control scheme was
designed under assumption that the following equations describe the real motion of the system

 &x
i 
= A

i
x
i 
+ b

i
u
i 
+ f

i
H

ii
&&q
i                (4.28)

where H
ii 

was taken as constant (the highest possible value of moment of inertia) ,then state

variable feedback u
i
= k

i 
x
i, 

where k
i 

= [ -K
pi

, -K
vi 

] was introduced to secure desired dynamics

of the system. Thus we supposed the following equations are true for each drive

&x
i 
= A

i
x
i 
+ b

i
k
i
x
i 
+ f

i
H

ii
&&q
i 
+ b

i
K

Pi
q
iD   

(4.29)

Items A
i
x
i 

+ b
i
k
i
x
i 

+ f
i
H

ii
&&q
i 

represents the dynamics of the system. But real motion of the

system is described by the following set of equations for each drive i=1,2,...6.

 &x
i 
= A

i
x
i 
+ b

i
k
i
x
i 
+ b

i
K

Pi
q
iD 

+ f
i
P
i
(x)                (4.30)

The difference between real and desired trajectory behaves according to the following equation

 &x
i
- &x

iD 
= A

i
x
i 
+ b

i
k
i
x
i 
+ b

i
K

Pi
q
iD 

+ f
i
P
i
(x) - &x

iD                                
(4.31)

When we introduce differences ∆x
i
=x

i
-x

iD 
; ∆P

i
=P

i
(x)-P

i
(x

D
), we shall obtain from (4.31) the

following differential equations describing development of difference between real and desired
trajectory
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                        ∆ &x
i 
= A

i 
∆x

i 
+ b

i 
k
i 
∆x

i 
+ f

i 
∆P

i
(x

D
)

+ A
i
x
iD 

+ b
i
k
i
x
iD 

+ b
i
K

Pi
q
iD 

+ f
i
P
i
(x

D
) - &x

iD              
(4.32)

Now we can consider equation (4.32) as a dynamic system. The first row on the right hand side
of the equation represents dynamics of the difference. The second row on the right hand side of the
equation can be considered as a disturbance acting upon the system. When we denote the
disturbance as a 2x1 vector D

i
(x

D
) and when we express ∆P

i
(x

D
) by help of equation (4.25) than

we can obtain linear state equations for difference by similar way as we did in case of equation
(4.27)

∆ &x  = A
cL 
∆x + B

cL
K ∆x + D

c
(x

D
)                     (4.33)

or
∆ &x  = A

T 
∆x + D

c
(x

D
)                              (4.34)

Where A
T 

= A
cL

+ B
cL
K and matrices A

cL 
and B

cL 
are the same as in equation (4.27) just instead

of subscript 
o 

we use subscript 
D
. Matrix K is matrix of state feedback. In the main diagonal of this

matrix there are row vectors [-K
Pi

,-K
Vi

] where K
Pi 

and K
Vi 

are position and velocity gains for

individual drives.
Vector

 D
c
(x

D
) = F[I+H(q

D
)]
-1
T
2
FH(q

D
)T

2
D + D            (4.35)

where D =diag(D
i
(x

D
)).

When we compare equations (4.32) with equation (4.29) we can see that their dynamic is very
different and in fact the system (4.32) can be unstable. What will be the stability of the system
during trajectory tracking we can judge from eigenvalues of system (4.33). Unless the disturbance
D

c 
in (4.33) and simultaneously initial conditions are zero the system must exercise considerable

differences from desired trajectory.
Now we shall investigate behaviour of local nominal control scheme. Control law for each

drive is given by the following equation

 u
i 
= u

iL 
+ K
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i
) + K
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( &q
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i
)                    (4.36)

where nominal control u
iL 

is calculated from the following equation
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and feedback gains K
Pi 

and K
Vi 

are calculated to stabilize system
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where k
i 
=[-K

Pi
;-K

vi
].

Real motion of the complete system behaves according to the following equations.
&x
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= A

i
x
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+ b
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+ f

i
P
i
(x)                (4.39)

where u
i 
is given by equation (4.36). Now we can calculate differential equation for difference

between real and desired trajectory simply by subtracting equation (4.37) from equation (4.39) and
by introducing differences as in the previous case. We shall obtain the following equations
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&&q
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]                 (4.40)

When we compare this equation with equation (4.32) we can see that we came to system with
the same dynamics as in case of system (4.32) but with much simpler disturbance, namely
disturbance is expressed by f

i 
[ P

i
(x

D
) - H

ii
&&q
iD 

] in our system now. When we use equation (4.25)
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for ∆P
i
(x

D
) we shall obtain from (4.40) linearized equation for difference ∆x which will be the

same as the equation (4.34) only the disturbance effect will be different. We can see that if
P
i
(x

D
) - H

ii
&&q
iD

 = 0 i.e. crosscoupling is negligible and when we start our trajectory precisely from

the desired trajectory starting point i.e. initial conditions in equation (4.40) are ∆x
i
(0) = 0 the

difference between real and desired trajectory will be zero. But even if the disturbance is zero the
dynamics of system (4.40) differs from dynamics of system (4.38) for which the feedback k

i 
was

calculated. Thus the difference of real trajectory from the desired trajectory can exercise some
overshoots or in some critical cases it can be unstable.

From the previous discussion one can see that it would be wise to design nominal control which
would consider crosscoupling effects and to retain stabilizing feedback. Such nominal control
signal u

C 
should fulfil the following equations

 &x
iD 

= A
i
x
iD 

+ b
i
u
iC 

+ f
i
P
i
(x

D
)                    (4.41)

Control u
C 

is called centralized nominal control and control scheme which uses control law

 u
i 
= u

iC 
+ K

Pi
(q

iD
-q

i
) + K

Vi
( &q

iD
- &q

i
)                (4.42)

is called local control with centralized nominal control signal. Now we shall repeat the same
procedure and we shall find linearized equations for difference between real and desired trajectory
in case of this control law. When we subtract equations of desired motion (4.41) from equations
of real motion (4.39) in which we substitute u

i 
from eq. (4.42) we shall obtain equation

 ∆&x
i 
= A

i
∆x

i 
+ b

i
k
i
∆x

i 
+ f

i
∆P

i
(x

D
)                          (4.43)

Again we compare this equation with the equations (4.32) and (4.40). We can see that in this
case there is no disturbance in system (4.43) thus if we start with real trajectory in starting point
of the desired trajectory the robot will follow the desired trajectory without any error. The
dynamics of the system (4.43) is the same as the dynamics of systems (4.32) and (4.40) and we
can meet similar problems with stability. If we add and simultaneously subtract from left hand part
of equation (4.43) term f

i
H

ii
&&q
i 
we shall obtain equation
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from which we can see the term f
i
[∆P

i
(x

D
) - H

ii
&&q
i
] which was not considered when

stabilization feedback was calculated.
Finally how shall we calculate u

ic
. For the second order model of drives we know that matrices
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Thus for calculation of u
ic 

one can consider only the second row of the matrix equation (4.41).

When we consider relation between vectors x and q we come to equation

2

)Dii2 iDi22 iD
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(Pf -qa -q
 =u 

i
b

x&&&
                  (4.46)

where a
i22 

is element 2,2 of matrix A
i
, and similarly b

i2
,f
i2 

are elements 2,1 of matrices b
i 
and f

i

respectively. P
i
(x

D
) is calculated according to the following equation
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(q
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where H
i
(q

D
) is the i-th row of matrix H(q

D
) and h

i
(q

D
; &q

D
) is the i-th row of the vector

   h(q
D
; &q

D
) from equation (3.1.).

4.3 FEEDBACK LINEARIZATION CONTROL SCHEME

The basic of feedback linearization is to construct a non-linear control law as so called inner
linearization control loop which in ideal case, exactly linearizes the non-linear system after
a suitable state space change of co-ordinates. Then the designer can design a second outer control
loop in the new co-ordinates to satisfy the traditional linear control system design specification.
Generally not all non-linear systems can be linearized, but dynamics of manipulators (3.1.) is
of such a type that a relatively simple  linearization method can be used. The method is described
in the following text.

Let us define the control error between the desired and real trajectory in form
e q q

e

.

q

.

q

.

e

..

q

..

q

..

( ) ( ) ( )

( ) ( ) ( )
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t t t

t t t

t t t

d

d

d
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= −
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                                                                (4.48)

Then substituting from (3.1.) for q&&  in the last equation one comes to the following equation

e
..

q
..

H q h q q
.

P( ) ( ) ( )[ ( ( ), ( )) ]t t t t
d

= + −
−1                                          (4.49)

The left hand part of the equation can be taken as a control variable which governs the control
error e(t). Thus

e

..

u( )t =                                                                    (4.50)
where

u q
..

H q h q q
.

P= + −
−

d
t t t( ) ( )[ ( ( ), ( )) ]1                                           (4.51)

Equation (4.50) can be expressed in state variable form

E

.

AE Bu= +                                                              (4.52)
where
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Matrix E is 2nx1 matrix of control errors and their time derivatives. Matrices 0n and In are nxn
zero and unit matrices respectively. Thus A is 2nx2n matrix and B is 2nxn matrix.

Now the designer can design classical linear control scheme in form
u = KE                                                                          (4.54)

where K is nx2n matrix of control gains. Thus new dynamics of the error will be

E

.

A BK E= +( )                                                                  (4.55)
Matrix (A+BK) is to be stable, possibly with all eigenvalues real.
Combining equations (4.51),(4.54) one receives the final control law for torques an forces in

form

P H q q
..

KE h q q
.

= − +( )[ ] ( , )
d

                                                     (4.56)

Time is omitted in the equation for better readability.

4.4 ADAPTIVE CONTROL SCHEMES

There are many adaptive control schemes [3]. The main idea of all adaptive control schemes is
to design variable structure control to cope with uncertainty either in parameters or in payload or
both together. For a given manipulator the adaptive control will find  „the best“ control law from
given point of view. While classical or robust control has a fixed structure which is suitable for
a whole class of manipulators.

Generally all adaptive schemes can be divided into two groups.
The first group is called indirect adaptive control. The basic idea of the indirect adaptive control

schemes is that the controlled plant parameters are estimated by some identification procedure, and
from the estimates of these parameters, the control gains are computed at each sampling period of
adaptation. This approach may be time consuming in case of robot control, because of the large
number of the controlled system parameters. Thus usage of this adaptive control for real time
control of speedy robots is questionable.

The second approach is the so called direct adaptive control. Direct adaptive control does not
use identification of the controlled plant parameters. However the control gains are adjusted
directly by an adaptation mechanism, so that the control objective is achieved. The direct adaptive
control  generally results in a relatively simple adaptive law, as for complexity of computing
algorithms. Thus this approach is more convenient for control of robots then the first one. In the
design of the direct adaptive control two approaches can be used, namely the Lyapunov direct
method and hyperstability theory.

In the following chapter, adaptive control scheme based on the Lyapunov direct method  will be
described.  Full non-linear model of the manipulator will be used in the analysis and design of the
control scheme. The choice of the control law is motivated by the classical and computed torque
control philosophy.

Dynamic model of manipulator will be described similarly as in the previous chapters

H(q)q C (q,q)q h(q,q) P
.. . . .

+ + =
v

                                             (4.57)
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4.4.1 REFERENCE MODEL ASSUMPTION - GAIN SCHEDULING

With the reference model adaptive control approach, a  reference model described by the
following set of differential equations is assumed

q A q A q B r
.. .

d d m d m
t t t t( ) ( ) ( ) ( )+ + =

m1 0 1
                                        (4.58)

where Am0, Am1, Bm1 are nxn matrices. The matrices are chosen such that the reference model is
stable (possibly with all eigenvalues real) . The reference input r(t) is nx1 vector of continuous
functions, qd are vectors of desired position, velocity and acceleration with dimension nx1.

The reference model can be written also in state space form

X A X B r

.

m
M m M

t t t( ) ( ) ( )= +                                                      (4.59)
where Xm(t) is the 2nx1 state vector defined as
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AM is the 2nx2n matrix in form
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and BM is the 2nxn matrix in form
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where On and In are zero and unit matrices of size nxn respectively.
Let us define the position tracking error vector

e q q( ) ( ) ( )t t t
d

= −                                                                  (4.63)
Similarly the velocity and acceleration errors nx1 vectors can be defined.
To drive the errors to zero, the applied torque P(t) is generated as

P K q K q
.

K r P( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t
p v r c

= + + +                                         (4.64)

where Kp(t) and Kv(t) are the nxn time varying position and velocity feedback matrices, Kr(t) is
the nxn time varying feedforward matrix, and Pc(t) is the compensating torque vector. The time
feedback, feedforward and compensating vectors will be adjusted according to an adaptive
algorithm.

Applying the controller (4.64) to the manipulator dynamic model the closed loop system
equation will be
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From the reference model and the closed loop equations the position error satisfies the
following differential equation
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              (4.66)

where B=H
-1

(q).
It can be seen that position error will become zero if the right side of the error equation will be

zero, that is if
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The structure of this type of controller is illustrated in fig.3.18.

Fig.4.4. Adaptive control with inverse model reference feedforward

Obviously adjusting the control gains in the described way requires a knowledge of the

manipulator parameters in order to compute H(q), C q q
.

v
( , ) and h q q

.

( , ) .

4.4.2 MODEL REFERENCE ADAPTIVE CONTROL - MRAC

Let Kp0, Kv0, Kr0,  and Pc0 are ideal values of control gains and compensation torques or forces.
The differences between real values and ideal values of control gains can be written as

                     K*
p =Kp - Kp0 ,  K

*
v =Kv - Kv0 ,  K

*
r =Kr - Kr0.                                   (4.68)

The difference between real and ideal values of compensation torques can be written in form

K
*
cin = Pc - Pc0                                                                                                           (4.69)

where K*
c is nxn matrix and in is nx1 unit vector in=[1,0,....0]T. Then the error equation can be

written as

e A e A e B K q K q K r K i
.. . .

+ + = − + + +m m p v r c n1 0 [ ]
* * * *                                    (4.70)

The error equation can be written in state space form as follows

E

.

A E B K w( ) ( ) ( ) ( ) ( )t t t t t
M d

= +                                                     (4.71)

where E(t) is the 2nx1 state vector defined as
TTT (t)](t),[(t) eeE &=                                                                    (4.72)

AM is 2nx2n matrix defined above and Bd(t) is 2nxn matrix defined as
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K(t) is the nx4n parameter matrix defined in form

K(t)=[K0, K1, K2, K3]                                                               (4.74)

where K0 = K
*
p , K1 = K

*
v , K2 = K

*
r , K3= K

*
c

w(t) is 4nx1 signal vector defined as
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where

w0 = q(t), 
.

qw =
1

(t), w2 = r(t), w3  = in
Let a positive definite Lyapunov function V be chosen in form
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where Mi is defined as
Mi  =K i  - L i                                                                            (4.77)

P is a 2nx2n symmetric positive definite matrix, Fi , i=0,1,..3 are nxn weighting matrices
chosen such that BF-1

 is symmetric and positive definite, Li , i=0,1,..3 are nxn matrices which will
be chosen later. The argument t is dropped for convenience.

Since the rate of change of the robot dynamic in each adaptation sampling interval is much
slower than that of the controller gains in the adaptive controller, it is reasonable to assume that the
matrices from the manipulator equation are constant i. e. B = const., Cv = const., h = const. For
this case the time derivative of the Lyapunov function along any trajectory yields

V
.
= TE A P PA E M BF w z B K M BF L( ) ([

.
] ) (

.
)

M

T

M i

T

i i

T

i

i

i

T

i i

i

Tr Tr+ + − −
−

=

−

=

∑ ∑2 21

0

3

1

0

3

           (4.78)

where z(t) is the nx1 weighted error vector defined as
z = [ On  In ]PE                                                                        (4.79)

Where On , In  are nxn zero and unit matrices respectively.
From the Lyapunov stability theory is known that the necessary condition which guarantees

stability of the dynamic system (in our case error E) is that the time derivative of the Lyapunov
function is negative definite.

Thus let the matrix P be the solution of the Lyapunov equation
A P PA Q

M

T

M
+ = −                                                                       (4.80)

where Q is a 2nx2n positive definite matrix. Now let us chose Li; Mi, i = 0,1,..3 such that
L G zw

i i i

T
=                                                                         (4.81)

where Gi, i = 0,1,...3 are weighting matrices chosen such that any BGi is at least positive
semidefinite matrix, and

M
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T
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Then the time derivative of the Lyapunov function (4.76) yields
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which is negative definite. One can observe that this result is true even if Gi = 0, but if BGi  is
positive definite then the time derivative of the Lyapunov function becomes more negative
definite. Now using (4.77), (4.81), and (4.75) the following adaptive algorithm is obtained
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The structure of this type of controller is illustrated in fig.4.5.

Fig.4.5. Structure of the model reference adaptive control MRAC.
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5  CONCLUSIONS

The work describes and explains methods of modelling and control of industrial robots i.e. rigid
mechanical manipulators, which are mainly controlled by help of electrical drives.

Basic model of mechanical part is given in form of set of differential equations that is
developed by help of Lagrange equations. These equations describe time evolution of mechanical
systems subjected to holonomic constraints, when the constraint forces satisfy the principle
of virtual work. Simulation of the resulting system of second order differential equations brings
a problem of algebraic loop. Usually these loops are to be solved analytically or numerically
before simulation of the whole system, which is a source of many mistakes. Matrix model
described in the work solves the problem and enables relatively simple simulation of the complex
system. The matrix model enables also elegant inclusion of model or equations of drives into the
complete model of the robot. Such a complete matrix model may be used for control system
analysis and/or design then.

In the work there are described some of the classical and modern control schemes of robot
control. The intent was not to give an exhaustive treatment of all methods of robot control as
practically any control techniques are mentioned in the research literature on the subject. Many of
the control methods are taken from area of process control and applied for robot control, but they
have minor practical usage in area of robotics either because of unacceptable chattering of control
variable or because of long computing times of complicated control algorithm. The intent of the
work is to investigate only several methods that are of practical use and to perform analysis
of their behaviour with help of developed matrix modelling technique. All the described control
schemes were tested by simulation with help of MATLAB-Simulink and proved to be of practical
use.
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ABSTRACT

Habilitation thesis deals with modelling and control of stationary (industrial) robots. A matrix
method of modelling of open kinematic chains together with electrical drives is developed and
explained in the thesis together with several practical methods of control. All the described
control schemes are tested by simulation with help of MATLAB-Simulink . Some of them were
tested in practice.
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ABSTRAKT

Habilitační práce se zabývá problematikou modelování a řízení stacionárních (průmyslových)
robotů. V práci je uvedena maticová metoda modelování otevřených kinematických řetězců
řízených elektrickými pohony. Současně jsou uvedeny a analyzovány některé praktické metody
řízení takových systémů. Jednotlivé metody řízení jsou prověřeny simulací v prostředí MATLAB-
Simulink. Některé metody byly ověřeny i v praxi.
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