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Abstract: This paper demonstrates the advantages of the multiple-input transconductor (MI-Gm)
in filter application, in terms of topology simplification, increasing filter functions, and minimizing
the count of needed active blocks and their consumed power. Further, the filter enjoys high input
impedance, uses three MI-Gms and two grounded capacitors, and it offers both inverting and non-
inverting versions of low-pass (LPF), high-pass (HPF), band-pass (BPF), band-stop (BS) and all-pass
(AP) functions. The filter operates under a supply voltage of 0.5 V and consumes 37 nW, hence it is
suitable for extremely low-voltage low-power applications like biosignals processing. The circuit was
designed in a Cadence environment using 180 nm CMOS technology from Taiwan Semiconductor
Manufacturing Company (TSMC). The post-layout simulation results, including Monte Carlo and
process, voltage, temperature (PVT) corners for the proposed filter correlate well with the theoretical
results that confirm attractive features of the developed filter based on MI-Gm.

Keywords: OTA; multiple-input MOS transistor; low-voltage low-power; universal filter;
biosignals processing

1. Introduction

The innovations in circuit design techniques for low-voltage supply and low-power
consumption for portable electronics, energy harvesting, biomedical monitoring, and au-
tonomous sensor applications are vital [1–4]. For biosignal processing electronics, where
the bio-signals spectrum lies between sub-hertz up to 10 kHz, the extremely low-voltage
supply and low-power consumption of such electronics are rather beneficial since it pro-
longs the operating lifetime of these applications. Figure 1 shows a conceptual diagram of
biosignals processing, where the biosignals with very low amplitude (in the range from
µV up to mV) are sensed by actuators/sensors. Then, the sensed signals are amplified
by a low-noise amplifier (preamplifier), and the unwanted noise is removed by a suitable
analog filter, which is the target of this paper. Next, the digital signal processing includes
an analog-to-digital converter (ADC) and a central processing unit (CPU). The resulting
data are displayed or wirelessly transmitted.

The operational transconductance amplifier (OTA), also known as the transconductor
(Gm stage), is a basic block for electronic applications like filters and oscillators [5–10]. Un-
like the standard and well-known single-input OTA, the multiple-input OTA/transconductor
(MI-OTA/MI-Gm) offers increased arithmetic operation at the input that results in a re-
duced number of active elements, power consumption, and simplification of the filter
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topology. It is worth noting that for designers in CMOS, it is a challenge to design a circuit
operating with supply voltage VDD around or even below the threshold voltage VTH of the
MOS transistor without scarifying the performance of the circuit. The use of multiple-input
transconductors to reduce the number of components in the design of OTA-C filters was
confirmed in the literature [5,6]. It was shown that the multiple-input OTA can reduce
the number of components, silicon area, and power dissipation by approximately factor k,
where k is the number of OTA inputs [5]. Multiple-input transconductor can be obtained
by the following techniques: 1. using extra differential pairs [5,6], or 2. using a multiple-
input floating-gate transistor (MIFG) [7–10]. While the first technique increases the count
of transistors, current branches, and the complexity of the design, the second technique
suffers from the high-voltage offset, incapability of processing DC signals, and becomes un-
suitable for modern deep-nanoscale CMOS technology with gate leakage [11]. A promising
technique that offers multiple-input OTA without the above-mentioned limitations is the
multiple-input MOS transistor (MI-MOS), firstly presented and experimentally confirmed
in [12–14]. The multiple-input MOS transistor is shown in Figure 2. The multiple-input
terminals V1, V2, etc. can be obtained from: a. the gate while the bulk is biased by voltage
VBB, b. from the bulk while the gate is biased by VBG, c. from the bulk-gate (known as
dynamic threshold MOS transistor “DTMOS”) without biasing or d. from the bulk-gate
(known as quasi-floating-gate “QFG”) with different biasing voltages VBB and VBG for bulk
and gate, respectively [15].

Sensors 2022, 22, x FOR PEER REVIEW 2 of 13 
 

 
Figure 1. The conceptual diagram for processing biosignals. 

The operational transconductance amplifier (OTA), also known as the transconduc-
tor (Gm stage), is a basic block for electronic applications like filters and oscillators [5–10]. 
Unlike the standard and well-known single-input OTA, the multiple-input OTA/trans-
conductor (MI-OTA/MI-Gm) offers increased arithmetic operation at the input that results 
in a reduced number of active elements, power consumption, and simplification of the 
filter topology. It is worth noting that for designers in CMOS, it is a challenge to design a 
circuit operating with supply voltage VDD around or even below the threshold voltage VTH 
of the MOS transistor without scarifying the performance of the circuit. The use of multi-
ple-input transconductors to reduce the number of components in the design of OTA-C 
filters was confirmed in the literature [5,6]. It was shown that the multiple-input OTA can 
reduce the number of components, silicon area, and power dissipation by approximately 
factor k, where k is the number of OTA inputs [5]. Multiple-input transconductor can be 
obtained by the following techniques: 1. using extra differential pairs [5,6], or 2. using a 
multiple-input floating-gate transistor (MIFG) [7–10]. While the first technique increases 
the count of transistors, current branches, and the complexity of the design, the second 
technique suffers from the high-voltage offset, incapability of processing DC signals, and 
becomes unsuitable for modern deep-nanoscale CMOS technology with gate leakage [11]. 
A promising technique that offers multiple-input OTA without the above-mentioned lim-
itations is the multiple-input MOS transistor (MI-MOS), firstly presented and experimen-
tally confirmed in [12–14]. The multiple-input MOS transistor is shown in Figure 2. The 
multiple-input terminals V1, V2, etc. can be obtained from: a. the gate while the bulk is 
biased by voltage VBB, b. from the bulk while the gate is biased by VBG, c. from the bulk-
gate (known as dynamic threshold MOS transistor “DTMOS”) without biasing or d) from 
the bulk-gate (known as quasi-floating-gate “QFG”) with different biasing voltages VBB 
and VBG for bulk and gate, respectively [15]. 

 
Figure 2. Symbol of the multiple-input MOS transistor: gate (a), bulk (b), DTMOS (c) and QFG (d). 

The realization of the multiple-input with bulk-driven MOS device is shown in Fig-
ure 3. The multiple-input is constructed by a capacitive summing circuit using capacitors 
Ci (i = 1,…,N) connected to the bulk terminal of a MOS transistor. To provide proper bias-
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Figure 2. Symbol of the multiple-input MOS transistor: gate (a), bulk (b), DTMOS (c) and QFG (d).

The realization of the multiple-input with bulk-driven MOS device is shown in Figure 3.
The multiple-input is constructed by a capacitive summing circuit using capacitors Ci
(i = 1, . . . ,N) connected to the bulk terminal of a MOS transistor. To provide proper
biasing of the bulk terminal for DC operation, the high resistance resistors RMOS is used.
These RMOS are realized as the anti-parallel connection of two minimum-size transistors
ML, operating with VGS = 0. For AC signals, and for frequencies f >> 1/2πCiRMOSi,
i = 1 . . . N, resistors RMOS are shunted by capacitances Ci, which create an analog voltage
divider/voltage summing circuit, with the gain coefficients determined solely by the ratio
of capacitances [15].

In this work, the multiple-input bulk-driven MOS transistor is implemented using
a CMOS structure of the Gm to build a multiple-input voltage-mode analog filter. As a
result, the number of used active devices is reduced while offering more filtering responses
compared to conventional Gm-based filters.
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2. Methods

In this section, the design of the multiple-input Gm and the universal filter based on it
will be described.

2.1. The Multiple-Input Gm

The symbol and CMOS structure of the MI-Gm stage are shown in Figure 4a,b, respec-
tively. In an ideal case, the transfer characteristic of the MI-Gm stage of Figure 4a can be
expressed by:

Iout = Gm(V+1 + V+2 −V−1 −V−2), (1)

where Gm is the transconductance gain, V+1 and V+2 are signals at the non-inverting inputs,
V−1, V−2 are signals at the inverting inputs, and Iout is the output current.
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The particular realization of the MI-Gm stage discussed here was first presented and
experimentally verified in [15]. The circuit employs the MI-bulk-driven differential pair M1,
M2, with the source-degenerative bulk-driven transistors M11, M12, which operate in the
triode region and improve the circuit linearity. Note, that VGS as well as VBS voltages for
M11, M12 and M1, M2 are identical for any common-mode input voltage and biasing current.
The single-input gate-driven counterpart of the input stage was first proposed in [16], and
its weak-inversion version was discussed in [17]. Here, due to the use of bulk-driven
transistors, and an additional capacitive voltage divider, both, the input linear range, as
well as the input common-mode range are significantly increased, as compared with the
conventional gate-driven (GD) version operating in a weak-inversion region. Moreover,
the application of MI transistors allows realizing MI-Gms without multiplying the input
differential pair, as in classical solutions, which saves power and simplifies the overall
structure of such circuits.

Regarding the rest of the structure, the circuit can be seen as a classical current-mirror
OTA, where all current mirrors are realized with the use of self-cascode transistors. This
improves their output resistances, and consequently, also the DC voltage gain of the
proposed OTA, with negligible limitation of the output voltage swing. Note, that the
current gain of all current mirrors in this design was assumed to be equal to unity.
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Assuming that a p-MOS transistor is operating in a weak-inversion region, the drain
current can be described by the following equation, [18]:

ID = IT

(
W
L

)
exp
(

VSG + VTH
npUT

)[
1− exp

(
−VSD

UT

)]
(2)

where IT is the technology current, W and L are the transistor channel width and length,
respectively, np is the subthreshold slope factor, UT is the thermal potential and VTH is the
threshold voltage, which can be linearly approximated as:

VTH = VTO −
(
np − 1

)
VBS (3)

where VTO is the threshold voltage for VBS = 0.
Assuming that the circuit is controlled with i-th differential input, with other inputs

grounded for AC signals, the low-frequency large-signal transfer characteristic of the Gm
can be expressed as:

Iout = 2Isettanh
(

βiη
V+i −V−i

2npUT
− tanh−1

[
1

4m + 1
tanh

(
βiη

VV+i−V−i

2npUT

)])
(4)

where η = (np − 1)=gmb1,2/gm1,2 at the operating point, m= (W11/L12)⁄(W1/L1) is the relative
aspect ratio of the two matched transistor pairs M11–M12 and M1–M2. βi is the voltage gain
of the input capacitive divider from one input, which neglects the second order effects and
for f >> 1/CiRMOSi can be approximated as:

βi
∼=

Ci

∑n
i=1 Ci

(5)

where n is the total number of differential inputs (in the discussed design n = 2).
For optimum linearity, the coefficient m should be equal to 0.5, as for the GD counter-

part, of the discussed circuit. This value does not depend on the biasing voltage Iset [17].
As it can be concluded from (4), as compared to its single-input GD counterpart, the

linear range of the proposed circuit is extended by a factor of 1⁄βiη, which for the discussed
case (βi = 0.5, η = 0.34) means that the linear range is extended around 6 times.

The small-signal transconductance of the Gm can be calculated from (4) as:

Gm = βiη·
4m

4m + 1
· Iset

npUT
(6)

thus, the small-signal transconductance is equal to the gate transconductance of the input
transistors M1 and M2, multiplied by a factor of [4m⁄(4m + 1)] βiη, which for the proposed
design in the optimal case (m = 0.5) is equal to around 1⁄9.

The low-frequency voltage gain of the Gm can be approximated as:

AVO ∼= Gm[(gm9rdsD9rds9c)||(gm6rds6rds6c)] (7)

Its value is negatively affected by the low transconductance of the MI-Gm. On the other
hand, however, self-cascode connections allow for enlarging the output resistance of the
MI-Gm, thus improving its voltage gain and at least partially compensating the losses caused
by the input capacitive divider and the small bulk transconductance of MOS transistors.

Assuming that the noise current of an i-th MOS transistor in a weak inversion region
can be expressed as:

I2
ni = 2qIDi +

1
f COX

(
Kg2

mi
WiLi

)
(8)
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where q is the electron charge, COX is the oxide capacitance per unit area and K is the flicker
noise constant, the input-referred noise of the MI-Gm, referred to as one of the differential
inputs, is given by:

v2
n = 1

G2
m

[
2I2

n1,2

(
2G

gm1,2+2G

)2
+ 2I2

n7,8SC

(
gm1,2

gm1,2+2G

)2

+I2
nG

(
2 gm1,2

gm1,2+2G

)2
+ 4I2

n3−6SC + 2I2
n9,10SC

] (9)

where G = 1⁄(rds11||rds12) at the operating point.
As it can be concluded from (9), the input-referred noise of the MI-Gm is increased,

as compared to its single-input GD counterpart, due to the lower transconductance Gm.
However, the input noise is increased in the same proportion as the input linear range,
therefore, the dynamic range will not be affected and remains the same in both realizations.

2.2. Universal Filter Design

The voltage-mode analog filter is a commonly used analog signal processing block,
that is well-known for a long time. This is due to the versatility of operational amplifiers that
are commonly used in the synthesis of analog electronic circuits [19]. Over the last decades,
some other active elements such as operational transconductance amplifiers (OTAs), second-
generation current conveyors (CCIIs), and current feedback operational amplifiers (CFOAs)
have received considerable attention for designing voltage- and current-mode analog
filters [20–28]. To design voltage-mode filters, multiple-input type filters can reduce the
number of active devices compared with single-input type filters, because variant filtering
responses can be obtained by appropriately applying the input signal, depending on the
conditions of the required filtering responses. To avoid loading effects, the input terminals
of the voltage-mode filter must have high impedance. To avoid additional circuits such as
inverting amplifiers, the minus-type input signal of voltage-mode filters must be available.

For the purpose of illustration, Figure 5a shows a universal filter design using five
standard Gm blocks, and two grounded capacitors and it offers five standard filtering func-
tions [26]. In this work, a multiple-input voltage-mode analog filter using multiple-input
transconductors MI-Gm is proposed as shown in Figure 5b. The structure will show that the
multiple-input Gm-based filter can reduce the number of used active devices and can offer
more filtering responses compared with conventional Gm-based filters. The filter employs
three multiple-input Gm stages and two grounded capacitors, which is desirable in integrated
solutions. Thanks to the MI-Gm elements that offer noninverting/inverting multiple-input ter-
minals, noninverting/inverting transfer functions of five types of filtering responses, namely,
low-pass, high-pass, band-pass, band-stop, and all-pass can be easily obtained. Moreover,
the input signals are connected to the high-impedance inputs of MI-Gm, hence the additional
buffer circuits to avoid the loading effects are not required. It is worth noting that although
both filters in Figure 5a,b offer the five standard filtering functions, the count of active elements
is reduced from 5 to 3 thanks to the MI-Gm. This results in power consumption reduction
and filter topology simplification, and in offering more transfer functions (including both
non-inverting and inverting versions of five standard filtering functions).

Using (1) and nodal analysis, the output voltages of Figure 5b are given by

Vo1 =
(sC2Gm1 + Gm1Gm2)(Vin1 −Vin2) + Gm1Gm2(Vin4 −Vin3 + Vin5 −Vin6)

s2C1C2 + sC1Gm2 + Gm1Gm2
(10)

Vo2 =
Gm1Gm2(Vin1 −Vin2) + C1Gm2(Vin3 −Vin4 + Vin6 −Vin5)

s2C1C2 + sC1Gm2 + Gm1Gm2
(11)

Vo3 =
Gm1Gm2(Vin1 −Vin2) + C1Gm2(Vin3 −Vin4) +

(
s2C2C2 + Gm1Gm2

)
(Vin5 −Vin6)

s2C1C2 + sC1Gm2 + Gm1Gm2
(12)
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The conditions for obtaining variant filtering responses by the appropriate connection
of input signals are shown in Table 1.

Table 1. Variant filtering functions of the universal filter.

Filtering Function Input Output

LP
Non-inverting Vin4Vin5Vin1Vin1 Vo1Vo1Vo2Vo3

Inverting Vin3Vin6Vin1Vin2 Vo1Vo1Vo2Vo3

BP
Non-inverting Vin1 and Vin6

Vin3Vin6Vin3
Vo1Vo2Vo2Vo3

Inverting Vin2 and Vin5
Vin4Vin5Vin4

Vo1Vo2Vo2Vo3

HP
Non-inverting Vin5 and Vin2 Vo3

Inverting Vin6 and Vin1 Vo2

BS
Non-inverting Vin5 Vo3

Inverting Vin6 Vo3

AP
Non-inverting Vin5 and Vin4 Vo3

Inverting Vin5 and Vin3 Vo3

Note: the unused inputs should be grounded.

The natural frequency (ωo) and the quality factor (Q) are given by:

ωo =

√
Gm1Gm2

C1C2
(13)
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Q =

√
C2Gm1

C1Gm2
(14)

It is apparent that the parameter ωo can be controlled electronically by Gm1 = Gm2
while the parameter Q is controllable orthogonally by the ratio of C2/C1.

Taking into account the non-idealities of MI-Gm, there are three major non-idealities
that should be considered [29]: (i) the frequency-dependent transconductance, (ii) the input
parasitic resistances and capacitances, (iii) the output parasitic resistances and capacitances.

Figure 6 shows the non-ideal model with parasitic elements of the MI-Gm, where
R+, R−, C+, C− are the input parasitic resistances and capacitances, and Ro, Co is the
output parasitic resistance and capacitance, respectively. Considering Figure 5b the
parasitic resistances at nodes Vo1 and Vo2 are, respectively, Ro1//R+1 and Ro2//R+3,
thus the value of these parallel resistances is very high and can be neglected. Consider
the parasitic capacitances at nodes Vo1 and Vo2, they can be expressed respectively as
C′1 = C1 + Co1 + C+2 and C′2 = C2 + Co2 + C−1 + C+3.
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Considering the non-ideality of transconductance, the output current can be rewritten as

Iout = Gmnj(V+1 + V+2 −V−1 −V−2), (15)

where Gmnj is the non-ideal transconductance gain of the j-th MI-Gm that is frequency-
dependent, and can be approximately given by [29,30]:

Gmnj(s) ∼= Gmj
(
1− Tjs

)
(16)

From Figure 5 and (16), denominators of (10)−(12) can be expressed by:

s2C′1C′2

(
1− C1Gm2T2 − Gm1Gm2T1T2

C1C2

)
+ sC′1Gm2

(
1− Gm1Gm2T1 + Gm1Gm2T2

C′1Gm2

)
+ Gm1Gm2 (17)

The non-idealities of the transconductance Gmnj can be neglected, if the following
condition is satisfied:

C′1Gm2T2 − Gm1Gm2T1T2

C′1C′2
� 1 (18)

Gm1Gm2T1 + Gm1Gm2T2

C′1Gm2
� 1 (19)

In such a case, the parameters ωo and Q become as follows:

ωo =

√
Gm1Gm2

C′1C′2
(20)

Q =

√
C′2Gm1

C′1Gm2
(21)
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The parasitic capacitances will decrease the value of ωo as compared to the ideal case.

3. Results and Discussion

The filter circuit was designed in a Cadence environment using 180 nm TSMC CMOS
technology. The voltage supply was 0.5 V, and the power consumption of the filter was
37 nW. The MI-Gm stage first presented in [15] was used. The transistor aspect ratios
W/L are presented in Table 2. The input metal-insulator-metal (MIM) capacitor Ci with a
capacitance value of 0.5 pF was used. The layout of the MI-Gm is shown in Figure 7, with a
silicon area of 116.3 µm × 99.2 µm.

Table 2. Transistor Aspect Ratio of the Gm.

Device Name W/L (µm⁄µm)

M1, M2, M7–M10, M13 2 × 15/1
M3–M6 2 × 10/1

M3c–M6c 10/1
M7c–M10c, M13c, M11, M12 15/1
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Figure 7. The layout of the MI-Gm.

The DC transfer characteristics of the used MI-Gm for Iset = [2, 5, 10, 15, 20, 25] nA are
shown in Figure 8. The enhanced linearity in the Vin range of ±500 mV is clearly observable.
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Figure 8. DC transfer characteristic of the MI-Gm.

For the filter application, the simulated frequency responses of the proposed filter
are shown in Figure 9. The values of C1 = C2 = 15 pF and the setting current Iset = 5 nA.
The simulated cut-off frequency value of 153 Hz is very close to the calculated value of
154.9 Hz. The power consumption of the filter was 37 nW.
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Figure 9. The simulated frequency responses of the proposed filter.

Figure 10 shows the tuning capability of the LPF (a), HPF (b), BPF (c), and BSF (d) with
C1 = C2 = 15 pF. The setting current was Iset = 2 nA, 5 nA, 10nA, and 20 nA and the cut-off
frequency values were 62.3 Hz, 153 Hz, 301.9 Hz, and 595.6 Hz, respectively. Results shown
in Figure 10 confirm the wide tuning capability of the proposed filter for low-frequency
biomedical applications.
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Figure 10. The simulated tuning capability of the proposed LPF (a), HPF (b), BPF (c) and BSF (d).

The Monte Carlo process and mismatch analysis was performed with 200 runs.
Figure 11 shows the simulated results for the LPF and BPF. The low-frequency gain at 1 Hz
of the LPF was in the range from−1.39 dB to 0.47 dB, and the gain of the BPF at a frequency
of 153 Hz was in the range from −0.438 dB to 0.168 dB.
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Figure 11. The Monte Carlo simulation of the LPF (a) and BPF (b).

Figure 12 shows the simulation results of the LPF and BPF with the process, voltage,
and temperature variations. The process corners were fast-fast, fast-slow, slow-fast, and
slow-slow, the voltage supply corners were in the range of VDD ± 10%, and the temperature
corners were 0 ◦C and 70 ◦C.
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Figure 12. The PVT simulation of the LPF (a) and BPF (b).

Figure 13 shows the transient response of the LPF with an applied input signal of
100mVpp @ 50Hz and its output spectrum. The total harmonic distortion (THD) of 0.33%
was achieved, which was kept still below 1% for the input signal of 200 mVpp @ 50 Hz. The
output integrated noise of the LPF was 220 µVrms which resulted in a 50 dB dynamic range
(DR = 20 × log (Vrms-max/Vrms-onoise)) of the filter with 1% THD.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 13 

(a) (b) 

Figure 12. The PVT simulation of the LPF (a) and BPF (b). 

Figure 13 shows the transient response of the LPF with an applied input signal of 
100mVpp @ 50Hz and its output spectrum. The total harmonic distortion (THD) of 0.33% 
was achieved, which was kept still below 1% for the input signal of 200 mVpp @ 50 Hz. The 
output integrated noise of the LPF was 220 µVrms which resulted in a 50 dB dynamic range 
(DR = 20 × log (Vrms-max/Vrms-onoise)) of the filter with 1% THD. 

(b) 

(a) (b) 

Figure 13. The transient response of the LPF (a) and its spectrum (b). 

Table 3 shows a comparison of the proposed filter with the others [26–28]. It is evi-
dent that the proposed filter offers the largest amount of filtering functions with a mini-
mum count of active elements, and the lowest voltage supply, and is the only one with 
nanopower consumption. All these facts confirm the usability of the multiple-input Gm 
stage in filter applications mainly by means of reducing the count of active blocks and 
power consumption. The figure of merit (FoM) is also presented, where a lower FoM im-
plies the better performance of the filter.  

Table 3. Comparison with other filters. 

This Work [26] [27] [28]
Technology (nm) 180 commercial IC 180 180 

VDD (V) 0.5 ±15 1.2 ±0.3
Power consumption 

(nW) 37 860 × 106 0.96 × 106 5770

DR (dB) 50 - 53.2 
Filter function 22 (VM) 13 (VM) 22(VM) 20 (MM) 

-50

-40

-30

-20

-10

0

10

1 10 100 1,000 10,000

M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

-50

-40

-30

-20

-10

0

10

1 10 100 1,000 10,000

M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60

0 20 40 60 80 100

A
m

pl
itu

de
 (m

V
)

Time (ms)

-120

-80

-40

0

0 200 400 600 800 1,000

M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

-120

-70

-20

0 100 200

-76.3 -81.7

Figure 13. The transient response of the LPF (a) and its spectrum (b).
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Table 3 shows a comparison of the proposed filter with the others [26–28]. It is
evident that the proposed filter offers the largest amount of filtering functions with a
minimum count of active elements, and the lowest voltage supply, and is the only one
with nanopower consumption. All these facts confirm the usability of the multiple-input
Gm stage in filter applications mainly by means of reducing the count of active blocks
and power consumption. The figure of merit (FoM) is also presented, where a lower FoM
implies the better performance of the filter.

Table 3. Comparison with other filters.

This Work [26] [27] [28]

Technology (nm) 180 commercial IC 180 180
VDD (V) 0.5 ±15 1.2 ±0.3

Power consumption (nW) 37 860 × 106 0.96 × 106 5770
DR (dB) 50 53.2

Fter function 22 (VM) 13 (VM) 22(VM) 20 (MM)
Offer inverting and non-inverting of five

standard responses Yes No Yes No

Natural frequency (kHz) 0.153 217 1 5
Number of active and passive element 3-OTA, 2-C 5-OTA, 2-C 4-OTA, 2-C 8-OTA, 2-C

Total harmonic distortion (%) 0.33@100 mVpp 1.93@200 mVpp 1.67@600 mVpp <2@200 mVpp

FOM = Pdiss
fo×N×DR 2.41 × 10−12 - 78.6 1.26 × 10−12

where Pdiss is the power dissipation, fo is the center frequency, N is the order of filter, and DR is the dynamic range.

4. Conclusions

This paper demonstrates the advantages of the MI-Gm in filter application, in terms of
topology simplification, increasing filter functions, and minimizing the count of the needed
active blocks and their power consumption. Therefore, the developed circuit is a good
candidate for extremely low-power low-voltage applications like biosignals processing.
The filter application offers the largest amount of filtering functions with a minimum count
of active elements. The post-layout simulations prove the presented advantages of MI-Gm.
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