
Citation: Tasneem, S.; Kumar

Sharma, P.; Kumar Ranjan, R.;

Khateb, F. Electronically Tunable

Memristor Emulator Implemented

Using a Single Active Element and Its

Application in Adaptive Learning.

Sensors 2023, 23, 1620. https://

doi.org/10.3390/s23031620

Academic Editor: Massimo Piotto

Received: 11 January 2023

Revised: 27 January 2023

Accepted: 30 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Electronically Tunable Memristor Emulator Implemented Using
a Single Active Element and Its Application in
Adaptive Learning
Sadaf Tasneem 1, Pankaj Kumar Sharma 1 , Rajeev Kumar Ranjan 1 and Fabian Khateb 2,3,4,*

1 Electronics Engineering Department, Indian Institute of Technology (Indian School of Mines) Dhanbad,
Dhanbad 826004, Jharkhand, India

2 Department of Microelectronics, Brno University of Technology, 601 90 Brno, Czech Republic
3 Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105,

272 01 Kladno, Czech Republic
4 Department of Electrical Engineering, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic
* Correspondence: khateb@vutbr.cz

Abstract: In recent times, much‑coveted memristor emulators have found their use in a variety of
applications such as neuromorphic computing, analog computations, signal processing, etc. Thus, a
100 MHz flux‑controlled memristor emulator is proposed in this research brief. The proposed mem‑
ristor emulator is designed using a single differential voltage current conveyor (DVCC), three PMOS
transistors, and one capacitor. Among three PMOS transistors, two transistors are used to implement
an active resistor, and one transistor is used as the multiplier required for the necessary memristive
behaviors. Through simple adjustment of the switch, the proposed emulator can be operated in in‑
cremental as well as decremental configurations. The simulations are performed using a 180 nm
technology node to validate the proposed design and are experimentally verified using AD844AN
and CD4007 ICs. The memristor states of the proposed emulator are perfectly retained even in the
absence of external stimuli, thereby ascertaining the non‑volatility behavior. The robustness of the
design is further analyzed using the PVT andMonte Carlo simulations, which suggest that the circuit
operation is not hindered by the mismatch and process variations. A simple neuromorphic adaptive
learning circuit based on the proposed memristor is also designed as an application.

Keywords: memristor emulator; DVCC; pinched hysteresis loop (PHL); Monte Carlo;
adaptive learning

1. Introduction
In 1971, Leon Chua speculated the fourth fundamental passive element [1], present‑

ing the essential relation between charge and flux, and called it a memristor. Later, in
2008, Strukov et al. [2] developed the first successful fabrication of a memristor using TiO2
at Hewlett Packard (HP). This fabricated memristor attracted many researchers across the
globe, and since then, many attempts have been made to further explore the domain of
memristors. Typically, memristors store information in the form of resistance states [3,4].
These states are maintained even in the absence of applied input which is regarded as an
essential criterion for non‑volatility. Memristors can be used in many applications such
as chaotic circuits, adaptive filters, programmable analog circuits, non‑volatile memories,
neuromorphic circuits, andmanymore analog circuits [5–8]. However, asmemristive tech‑
nologies are still considered fairly recent technology, their commercialization at a larger
scale remains elusive. Moreover, owing to their fabrication complexity, the physical re‑
alization of these memristors poses a lot of challenges. Hence, to overcome these chal‑
lenges with an aim to exploit its potential uses, many researchers came up with memristor
emulators capable of mimicking the attributes of a real memristive device. Several mem‑
ristor models have been implemented using various analog building blocks (ABB), such
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as second‑generation current conveyors (CCII) [9,10], operational transconductance am‑
plifiers (OTA) [11–13], voltage differencing current conveyors (VDCC) [14], current back‑
ward transconductance amplifiers (CBTA) [15], current conveyor transconductance ampli‑
fiers (CCTA) [16], and voltage differential buffered amplifiers (VDBA) [17]. Similar blocks,
i.e., voltage differencing transconductance amplifiers (VDTA), were utilized in refs. [18,19],
with the emulators operating up to 50MHz. Gupta et al., in ref. [20], designed a current dif‑
ferencing transconductance amplifier (CDTA) and anOTA‑basedmemristor emulatorwith
an operating frequency range of 600 kHz to 2MHz for application in the currentmode filter.
A differential voltage current conveyor transconductance amplifier (DVCCTA) [21] based
a memristor design in incremental as well as decremental configuration and operating up
to 12.8 MHz was also proposed. Sagar and his team also presented a current follower
transconductance amplifier (CFTA)‑based [22] resistor‑less emulator model. Furthermore,
apart from ref. [20], mixed ABB has also been employed in designing various memristor
models, such as in refs. [23–26]. Along with ABB, these emulators also incorporate a few
passive elements such as resistors and capacitors. Some researchers developed a MOS‑
based memristor emulator [27,28], but those designs had certain limitations, such as a lack
of tunability features. A differential voltage current conveyor (DVCC) is an active element
which is an extension of the widely used CCII block. DVCC emerge as a useful choice in
applicationswhere differential inputs or two high‑input impedance terminals are required.
Thus, we chose DVCC to implement the proposed memristor emulator. Therefore, this ar‑
ticle proposes a flux‑based memristor emulator operating up to 100 MHz using only one
DVCC as an active element. The proposed emulator also contains an electronically tunable
active resistor, one grounded capacitor, and one PMOS. The active resistor was designed
using two PMOS transistors. Simulations of the proposed emulator were conducted using
a 180 nm CMOS process in the Analog Design Environment (ADE) of Cadence Virtuoso
Software. The experimental results have also been presented using commercially available
AD844AN and CD4007 ICs to validate the theoretical propositions. Further, a summary of
the various existing designs and highlights of the proposed design are listed in Table 1. A
few significant merits of this new memristor model proposed herein are listed as follows:
1. A single active block, i.e., DVCC, is used to implement the memristive behavior that

comprises only one capacitor as a passive element.
2. The operating frequency achieved here is the highest (up to 100 MHz) when com‑

pared to other recently available emulator models.
3. The tunability is an additional advantage achieved using two PMOS serving as an

active resistor.
4. Lastly, the transistor count is the least among all the available designs, i.e.,

15 transistors.

Table 1. Comparison of proposed memristor with available designs.

Ref. & Year
Active

Components
Power

Supply (V) No. of MOS
Passive
Comp.
(R, C)

Operating
Freq. (Hz) I/D * Exp. Results Tech. Used

Power
Dissipation (W)

[9] 2017 1 CCII, 1
Multiplier ±10 ‑ 1, 1 860 k ‑ Yes BJT –

[12] 2017 1 MO‑OTA,
1 Multiplier ±1.25/±5 >38 1, 1 1 k ‑ Yes CMOS/BJT –

[13] 2018 2 OTA ±1.2 34 0, 1 8 M Both Yes CMOS –

[14] 2019 1 VDCC, 2
Transistors ±0.9 26 0, 1 2 M Both Yes CMOS –

[15] 2017 1 CBTA, 1
Multiplier ±0.9 23 2, 1 460 k ‑ No CMOS –

[17] 2021 1 FB‑VDBA ±0.9 19 0, 1 1 M Both No CMOS –

[18] 2018 1 VDTA ±0.9 16 0, 1 50 M Both Yes CMOS –

[19] 2020 1 VDTA ±0.9 16 1, 1 50 M Both Yes CMOS 8 µ

[20] 2020 1 CDTA, 1
OTA ±0.9 36 0, 1 2 M Both No CMOS –
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Table 1. Cont.

Ref. & Year
Active

Components
Power

Supply (V) No. of MOS
Passive
Comp.
(R, C)

Operating
Freq. (Hz) I/D * Exp. Results Tech. Used

Power
Dissipation (W)

[22] 2021 1 CFTA ±1.2 28 0, 1 9 M Both Yes CMOS –

[23] 2020 1 CCII, 1
OTA ±1.2 24 1, 1 25.3 M Both Yes CMOS 9.56 m

[24] 2020 1 CDBA, 1
OTA ±0.9 27 0, 1 1 M Both No CMOS –

[25] 2020
1 DO‑OTA, 1
DVCC, 2
Transistors

±0.9 29 0, 1 1.5 M I Yes CMOS –

[26] 2021 1 VDCC, 1
OTA – 35 2, 1 1 M I Yes CMOS –

[29] 2022 1 DVCC, 1
OTA ±0.9 23 1, 1 30 M Both Yes CMOS 591 µ

[30] 2021 2 MVDCC ±0.9 52 2, 1 500 k I Yes CMOS –

[31] 2022 1 DVCCTA ±1 27 2, 1 12.8 M Both Yes CMOS 8.74 m

[32] 2022 1 VDCC, 2
MOS ±0.9 24 0, 1 10 M Both No CMOS –

[32] 2022 2 VDCC, 2
MOS ±0.9 46 0, 1 50 M Both No CMOS –

Proposed
Design

1 DVCC, 3
Transistors ±1.25 15 0, 1 100 M Both Yes CMOS 7.64 µ

* I/D: Incremental/Decremental.

2. Differential Voltage Current Conveyor (DVCC) Block
The DVCC element is a widely used active analog signal processing block. It is the

advanced extension of CCII, which provides both differential voltage at the input side and
current copying capability at the output. The DVCC has four terminals Y1, Y2, X, and Z.
Among these four terminals, the Y1 and Y2 terminals have high input impedance, X has
low input impedance, and Z has high output impedance. The block diagram of DVCC is
introduced in Figure 1.
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Figure 1. DVCC block diagram.

The port relation of DVCC is listed in Equation (1). TheMOSFET realization of DVCC
is shown in Figure 2, where the differential voltage of terminals Y1 and Y2 appears at
terminal X. The current through terminals X and Z is equal.

IY1 = IY2 = 0, VX = VY1 − VY2, IZ = IX . (1)
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3. Proposed Memristor Emulator Design
The memristor essentially presents the essential relation between charge and flux

and turns out to be the fourth fundamental circuit element. The proposed design con‑
tains one DVCC, one capacitor, and three PMOS transistors. Among three PMOS transis‑
tors, two transistors are used to obtain an active resistor, and one PMOS transistor, along
with the capacitor, is used to develop memristor emulator functionality. Alternatively,
the variable flux caused by the capacitor voltage is responsible for creating the variable
resistance states, which shows the hysteretic memristive behavior. In this article, we pro‑
pose a flux‑controlledmemristor emulator. The proposed emulator design is shown in Fig‑
ure 3. The equivalent resistance (Req) can be adjusted using control voltageVP, as described
in Equation (2).

Req =
1

2µpCox(W/L)13,14(VP − VTH)
. (2)
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3.1. Mathematical Analysis of Memristor Emulator
The mathematical analyses of the proposed emulator are described below:
From the DVCC port relationship, we have

VX = VY1 − VY2. (3)

Input voltage is exerted at terminal Y1 or Y2. Therefore, the VX value can be ex‑
pressed as:

VX = ±Vin(t). (4)

The current equation at X terminal is:

IX =
±Vin(t)

Req
= IZ. (5)
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The capacitor voltage VC is equal to VZ and can be calculated as:

VZ = VC = ± 1
C

∫ (
±Vin(t)

Req

)
dt = ± ϕ(t)

CReq
. (6)

The capacitor voltage VC drives the MOS M15. Ignoring the output resistance of the
PMOS, conductance (gm) at the input port can be achieved as follows:

Iin(t)
Vin(t)

= gm = µpCox

(
W
L

)
15
(VG − VS − VTP), (7)

where Cox is the gate‑oxide capacitance per unit area, µp is the mobility,W/L is the aspect
ratio of MOSM15, VG and VS are the gate and source voltages of the M15 transistor, respec‑
tively, and VTP is the threshold voltage of the PMOS transistor, which has a negative value.
The input signal is exerted at the source of the transistor, and the DC value of the input
voltage is zero. Therefore, gm can be rewritten as:

gm =
Iin(t)
Vin(t)

= µpCox

(
W
L

)
15
(VG − VTP). (8)

The gate voltage of transistor M15 is a function of input flux (φ(t)) equal to the capac‑
itor voltage VC expressed in Equation (6) and can be rewritten as:

VG = VC = ± ϕ(t)
CReq

. (9)

The conductance value of transistor M15 from Equation (8) can be modified after set‑
ting the gate voltage from Equation (8) as:

Iin(t)
Vin(t)

= µpCox

(
W
L

)
15

(
± ϕ(t)

CReq
− VTP

)
. (10)

The memductance equation of the proposed emulator design is provided as:

W(ϕ(t)) =
Iin(t)
Vin(t)

= −µpCox

(
W
L

)
15

1st Part

VTP ± µpCox

(
W
L

)
15

ϕ(t)
CReq

2nd Part

. (11)

Equation (11) has two parts, the first part is the time‑independent part, and second
part is the time‑dependent part which depends on input flux. Therefore, the proposed
memristor emulator is the flux‑controlled memristor. The positive and negative sign of
the second part of thememductance equation indicates that thememristor emulator works
in both decremental and incremental configurations depending upon the position of the
switch “S0”.

3.2. Frequency Response Analysis
To test the dependency of the design on the operating frequency, we applied a sinu‑

soidal input:
Vin(t) = Am sin ωt. (12)

The input flux can be obtained by integrating input voltage as:

ϕ(t) =
∫

Am sin ωtdt =
Am cos(ωt − π)

ω
. (13)
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By substituting the flux value from Equation (13) in Equation (11), we can obtain the
memductance value of the proposed memristor emulator as:

W(ϕ(t)) =
Iin(t)
Vin(t)

= −µpCox

(
W
L

)
15

1st Part

VTP ± µpCox

(
W
L

)
15

Am cos(ωt − π)

ωCReq

2nd Part

. (14)

From Equation (14), it is visible that it has two parts: the first part is the time‑invariant
part, and the second part is the time‑variant part. Since it is evident from Equation (14) that
thememductance holds an inverse relationwith frequency, the second part decreases with
increasing frequency. Subsequently, with frequency tending to infinity, the second part is
completely lost, and only the first part is retained, suggesting that the non‑linear behavior
of the emulator transforms to a single‑valued linear resistor characteristic. Hence, it can
be stated that the memristor at high frequency fails to contain any hysteresis, eventually
losing its memory‑storing capacity and behaving like a simple resistor.

The parameter ‘α’ is basically the ratio of the modulus values of the amplitude of a
time‑dependent part to that of a time‑independent part and can be calculated as:

α =
Am

ωCReq|VTP|
=

Am

2π f CReq|VTP|
=

1
τ f

=
T
τ

, (15)

where T and τ are time period and time constant, respectively. The time constant (τ) is
written as:

τ =
2π f CReq|VTP|

Am
. (16)

Based on Equation (15), we can conclude that: when f approaches infinity, α ap‑
proaches zero, and the linear time‑invariant conductance part dominates the memristor
behavior.

4. Discussion
Thememristor emulator based on a single DVCCpresented in Figure 3was simulated

using cadence virtuoso software with 180 nm CMOS technology. The DC supply for the
DVCC was chosen as VDD = −VSS = 1.25 V with the biasing voltages as VB1 = 0.8 V and
VB2 = 0.4 V. The aspect ratio of all the transistors is listed in Table 2. Most of all PMOS is
connected to VDD, and for NMOS, it is connected to VSS. To design an active resistor, Vp
is chosen as 0.5 V. As the memristor is a passive element, the current becomes zero when
the input voltage is zero, as depicted in Figure 4. Transient analysis runs over five cycles
at 1 MHz frequency and 15 pF capacitor value. The memristor PHL in the V‑I plane at
several frequencies for both incremental and decremental configurations are presented in
Figures 5 and 6. These PHLs clearly depict the distinguishable resistance states, i.e., high
resistance and low resistance states at lower frequencies.

Table 2. Aspect Ratio of MOSFET used in DVCC.

MOSFET W (in µm) L (in nm)

M1–M4 5 360

M5–M6, M11–M12 4 360

M7–M9, M15 10 360

M13–M14 20 360

M10 9 360
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The PHL of the proposed memristor and its resistance states at considerably higher
frequencies are included in Figure 7. From Figure 7, it can be deduced that the proposed
emulator design operates up to 100 MHz. It is clearly observed from Figures 5–7 that the
non‑linear nature of the memristor circuit starts changing as the frequency changes. With
an increase in frequency, the hysteresis behavior starts to cease until it eventually vanishes
at high frequency, i.e., greater than 100 MHz in this case. Such a behavior of the loop is
attributed simply to the frequency that controls the second part of Equation (14).
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Figure 7. PHL at 20, 50, and 100 MHz with 5 pF capacitor value for incremental configuration.

Figure 8 shows the current–voltage curve for constant frequency and capacitance
product at 1 MHz, 4 MHz, and 5 MHz frequencies with 100 pF, 25 pF, and 20 pF capacitor
values, respectively. In all the aforementioned values of the frequency and capacitor pair,
the frequency–capacitance product remains unchanged, hence there is no deviation in the
PHL of Figure 8.
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To observe the robustness of the proposed memristor, the PHL at different process
corners is obtained at 27 ◦C of temperature. From Figure 9, it is evident that the loop area
of PHL for the slow–slow (SS) corner is less compared to the fast–fast (FF) corner, justifying
the fact that the current flow in the SS corner will be less than the FF corner. Memristor be‑
havior for different supply voltages is observed and presented in Figure 10. It is observed
that the slope of PHL changes as supply changes, but the memristance nature remains in‑
tact. Figure 11 displays the proposed designworks for awide range of temperatures. From
Figure 11, it is evident that the current through the memristor emulator decreases with in‑
creased temperature. The Monte Carlo simulation was carried out for 200 runs with 5%
passive element variation to check the ambiguity and robustness of the proposed design.
It can be witnessed in Figure 12 that the workability of the proposed design is quite stable
and can operate within a tolerable limit.
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Figure 12. Monte Carlo simulation at 5 MHz with 10 pF.

The layout of the proposedmemristor design, excluding the capacitor (C), is depicted
in Figure 13a. It utilizes a chip area of 17 µm × 26 µm. The comparison between pre‑
layout and post‑layout simulation in the I‑V plane is depicted in Figure 13b. It is observed
that there is a slight deviation in the simulation result due to the presence of parasitic
elements, which became evident when we extracted the parameters of the layout. The
power consumption of the proposed memristor is 7.5 µWwhich is quite low, making this
design suitable for low‑power applications.

Various connections of the proposed design are tested in Figure 14. Parallel connec‑
tions have lessmemristance value and conductmore current than singlememristors. From
Figure 14, it is clearly observable that parallel connections have a bigger loop and a large
current value compared to singlememristor PHLs. Figure 15 demonstrates the PHL behav‑
ior for different values of VP. From Figure 15, it can be inferred that the proposed design
exhibits a tunability feature by varying values of VP voltage; resistance value changes and
thus PHL area changes.
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Figure 14. PHL for parallel and single memristor at 5 MHz with 10 pF capacitor. 
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Figure 15. PHL for different values of VP at 5 MHz with 10 pF capacitor value.
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To reflect the memory effect of the memristor, the non‑volatility test was performed
for both configurations. To achieve non‑volatility, we took a 200‑mV pulse with a 5 ns pe‑
riod and 0.5 ns ON time. The capacitor value taken for the non‑volatility test was 5 pF. Fig‑
ure 16a,b shows the non‑volatility test for incremental and decremental configurations, re‑
spectively.
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Figure 16. Memductance variation with input pulse for (a) incremental configuration and (b) dec-
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5. Experimental Results 
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5. Experimental Results
No commercial IC is available for DVCC, but it can be realized using AD844AN ICs.

AnAD844AN IC is a commercially available current feedback operational amplifier (CFOA)
manufactured by Analog Devices. To establish the circuit connections of a DVCC, three
AD844AN ICs are required. An IC‑basedDVCC‑implemented circuit is shown in Figure 17.
The experimental setup for the proposedmemristor is implemented using threeAD844AN
and one CD4007 ICs. Among the available PMOS in the CD4007 IC pin configuration, we
made use of a single PMOS from this IC. The supply voltage obtained for the experiments
is ±10 V. The input signal has a 1.4 V peak at 5 kHz. The complete experimental setup is
shown in Figure 18. The observed outcome is illustrated in Figure 19.
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6. Application
Thememristive system can provide in‑memory computing similar to that of the brain

since it lacks a separate memory and processing unit. Neuromorphic computing has be‑
come one of the potential applications of memristive systems. The memristors store the
information in the formof resistance. As a result, neuromorphic computing predominantly
uses this memristor feature. The simplest eukaryotic life, an amoeba, has evolved a prim‑
itive nervous system. The decision‑making capacity of the amoeba allows it to change its
locomotive speed in response to changes in the surrounding environment’s temperature.
The memristor‑based simple RLC analogous model of the neuromorphic adaptive learn‑
ing circuit [27] is derived from the behavioral response of amoeba. Using the proposed
memristor and the RLC circuit, as illustrated in Figure 20a, it is possible to demonstrate
the adaptive behavior of amoebas. The output voltage (Vout) across the capacitor (C) corre‑
sponds to the amoeba’s locomotive speed, whereas the input voltage (Vin) that drives the
amoeba’s locomotion corresponds to the temperature and humidity. The inductor (L) and
capacitor (C) store the energy in the form of magnetic and electric fields causing energy to
shift from one form to another and do so oscillatory, which can result in resonance. In con‑
trast, the parallel connection of thememristor stores the prior state. Resistance (R)‑induced
damping in the RLC circuit, which dictates its resonance nature, is utilized to simulate the
movements of an amoeba using the oscillations of the stated RLC circuit. To anticipate the
events observed for amoebas, a train of voltage signals was applied to the circuit. Reso‑
nance begins as the temperature and the variable resonance frequency (f) become equal.
The applied temperature variation (Vin) changes the memductance value until it meets the
circuit resonance. The component values are considered to beR = 1 k, L = 10mH, and 0.1 nF
for the capacitor. As the temperature declines, the output indicating voltage proportional
to locomotive speed decreases, as shown in Figure 20b,c. The temperature decreases many
times during the first learning phasewhen the locomotive slows down, after which themo‑
tions become sluggish. Additionally, as a result of the amoeba’s capacity for learning, the
locomotive speed begins to slow down immediately following a change in temperature
starting with the next episode. As a result, from an application standpoint, the proposed
memristor architecture is suitable for an adaptive learning circuit.
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Figure 20. Proposed memristive model‑based (a) adaptive amoeba‑learning circuit (b) input voltage
pulse (c) acquired speed response.

7. Summary
In this article, an attempt to design a 100MHz high‑frequency flux‑controlledmemris‑

tor emulator using only one DVCCwas carried out. Along with a DVCC, three PMOS and
one capacitor were used to design the memristor emulator with an added feature of exter‑
nal tunability. Even the transistor count was significantly low. The PVT and Monte Carlo
simulations point to the robust design of the proposed emulator. Furthermore, the PHL
obtained through simulation corroborates with the experimental result, thereby validat‑
ing the theoretical aspects of the design. Henceforth, it can be inferred that this emulator
is capable enough to find its use in various real‑world applications such as in signal pro‑
cessing, chaotic circuits, communication systems, neural computations, etc. A memristor‑
based adaptive amoeba‑learning circuit was also implemented to justify that the proposed
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circuit is suitable for real‑world application. Although this design is suitable for various
real‑world applications, it cannot be used in applications requiring a floating memristor,
as the proposed design implements only grounded configuration.
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