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Abstract. In this paper, we present a novel, easy-to-use ROS2-based
real-time sensor fusion framework capable of making high-level detec-
tions from raw sensor data provided by their respective drivers. This
framework is a direct successor of Atlas Fusion [8] developed by Brno
University of Technology robotics lab. As opposed to its predecessor, it
is based on ROS2 and more in line with its philosophy - each functionality
is encapsulated in its own process (node). This allows for the composition
of a unique sensor-fusion pipeline, code testing in isolation, better pro-
filing, and easier usage of the state-of-the-art ROS2 packages developed
by other research teams. Algorithms used are real-time, so the frame-
work can be used in development, simulations (with previously collected
dataset), deployed to a physical autonomous agent and the high-level
detections can be shared between multiple agents. The Atlas-Fusion-2.0
framework has been developed in a way that allows for code distribution
between several physical devices which helps with dividing responsibility
and building redundancy into the system. With RVIZ and PlotJuggler,
one can visualize every part of the processing chain from raw data up
to high-level detections to assess current performance. It also has inbuilt
basic profiling capabilities to publish the current delay each algorithm
introduces to the system. This framework has been evaluated and tested
on a sensory framework used to collect the Brno Urban Dataset [6] and
its winter extension [7]. As the boundary of the state-of-the-art algo-
rithms in sensor data processing is pushed rapidly, this package, in our
opinion, provides a very streamlined way of experimenting with them
and testing their performance.

Keywords: ROS2, Real-Time, Sensor Fusion, Framework, Experimen-
tation, Instrumentation, Testing

1 Introduction

In recent years, the field of sensor fusion in robotics has undergone a significant
transformation. The rapid advancements in state-of-the-art technology have re-
sulted in sensors capable of capturing and processing high-precision data with
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increased information density. However, this enhanced sensing capability comes
at the cost of higher computational requirements for extracting appropriate infor-
mation relevant to specific robotic tasks. While chip manufacturers have made
efforts to address this need with faster CPUs and GPUs, there is still a de-
mand for novel approaches to meet the real-time processing requirements of
most robotic applications.

Conventional algorithms often fall short of providing a comprehensive under-
standing of the robot’s environment as they struggle to achieve the necessary
robustness for practical production use. This limitation necessitates the inte-
gration of a wide range of neural network models, which offer the ability to
perform advanced analysis and detection on data that was previously inaccessi-
ble. By leveraging these neural network models, we can bridge the gap between
raw sensor data and high-level interpretations, enabling a more accurate and
comprehensive understanding of the robot’s surroundings.

Integrating all software packages from sensor drivers and preprocessing al-
gorithms, to fusion and detection algorithms in a clean, testable, expandable
and maintainable manner ready to be deployed in a production environment has
always been a challenge. The go-to framework in recent years has definitely been
ROS2 as it provides the roboticists with tools to split their software solution
into separate programs (called "nodes" in ROS2 jargon) and to set up commu-
nication between them. This separation of concerns leads, on top of previously
mentioned characteristics, to the ability to easily share and reuse code. ROS2,
unlike its predecessor ROS1, is fully decentralized, gracefully handles lossy net-
works and has built-in security mechanisms thanks to the usage of DDS (Data
Distribution Service) [12].

ROS2 also supports "Node Composition" - meaning the roboticist can choose,
during compile-time or run-time, which nodes should be contained together in
a single process and which should be separated. In high-bandwidth paths of the
system like image or lidar data, it is beneficial to circumvent the DDS imple-
mentation and communicate directly using smart pointers, which results in much
greater throughoutput and lower latency which is crucial for every real-time ap-
plication [10]. Other parts of the system could benefit from separation (either
separate processes or even different physical devices on the same network) as it
helps with fault isolation and analysis on a smaller scope.

There are several ROS2-based packages that either implement sensor fusion
only as a small part of a much larger autonomous navigation system [17,9].
Those packages are very powerful, but their learning curve is steep, and trying
to implement and use a novel sensor fusion algorithm will take a lot of time
and there is no direct way of benchmarking its performance. On the other hand,
there are many packages that implement a very specific algorithm, but their
usage on their own does not provide the full picture of the robot’s surroundings
[14,11]. To take advantage of their popularity, extensive testing, community of
contributors and to exploit the inherent property of ROS2, those packages can
be integrated into a larger system.
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2 Contribution

The goal of this work has been to solve the issue of having to set up a system
of ROS2 nodes every time we wanted to test a particular idea or test a new
open-source algorithm. We wanted this system to be widely applicable, both
for small robots and autonomous vehicles, so we didn’t go down the road of
previously mentioned bigger frameworks. We are also aware, that if the system
needs to have a shallow learning curve and be quick to use, it needs to take
advantage of already existing, well-known packages. For this reason, we’ve cre-
ated a ROS2 framework consisting of a basic sensor-fusion pipeline incorporating
data from GNSS, IMU, Lidars, Radars, RGB and IR cameras that can be eas-
ily reconfigured and expanded. At the same time, we’ve created a very basic
tool for code instrumentation, that publishes runtime information straight to
ROS2 via lightweight topic. This instrumentation can be turned off when not
needed without any changes to the code itself. For deeper tracing analysis we
recommend using the ros2_tracing package, which can analyze timings inside
the ROS2 middleware layer as well as provide memory usage analysis.

3 Architecture Overview

The architecture of our solution is designed to be as simple as possible, maintain-
ing one way direct path between the raw sensor data on the input and high-level
detections on the output. This allows for easy pipeline reorganization, swapping
out parts of a pipeline for different algorihms or even running multiple in parallel
to compare their performance in the simulation. The block diagram in the figure
1 depicts the overall pipeline. The data frame is first loaded in the driver, ros2
bag or dataloader. More on dataloading in the following section. When needed,
it is then preprocessed - in the current version only the lidar data gets prepro-
cessed so the motion distortion gets suppressed [20,13]. Lidar data can also be
filtered so the ground plane that doesn’t necessarily carry valuable information
is stripped off, making following ROS2 messages smaller, thus decreasing com-
munication latency. There could also be a preprocessing step for other sensors,
but that’s application specific and doesn’t apply to our use case. The lidar data
are then fused together, possibly normalized to a voxel grid.

Next layer in the architecture is responsible for making the high-level detec-
tion out of the preprocessed data. We’re currently using two neural networks.
One for the detection of vehicles, pedestrians and cyclists in pointclouds and one
for rgb camera based detections that can distinguish between even more classes.
In our case, with the Brno Urban Dataset [6], a single instance of the pointcloud
based neural network is run on the aggregated lidar data and single instance of
rgb camera based neural network is run for every camera (4 instances).

On the very end of our simple pipeline, there is a detection matching node to
fuse the detections that come from different modalities into a single more robust
one.
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Fig. 1: Atlas Fusion 2.0 - the simplistic extensible pipeline backbone. Nodes built
on top of Atlas Base Node (rounded ones) are capable of automatically measuring
their runtime performance.

4 Data Loading

Loading the data into the sensor fusion pipeline can be done in various ways
depending on the application. As stated above, the minimal pipeline presented
is able to run in real-time on physical hardware as well as in the simulation,
from previously recorded ROS2 bags or even datasets saved in a different format.
Every data frame originates from one of three sources:

(a) Physical or simulated sensor (device driver)
(b) ROS2 bag previously recorded
(c) File on the drive (dataset)

The first option is the most straightforward. Data generated by the sensor are
serialized into ROS2 messages and they directly enter the sensor fusion pipeline.
This way we can really ensure the end-to-end latencies are suitable for the specific
robotic task given the algorithms we are testing. On the other hand, this option
isn’t very suitable for tuning the algorithms as we cannot easily reproduce the
same input data on every run.

For this reason, it is also possible (inherently thanks to the ROS2 framework)
to record the data output from the device driver into the ROS2 bag, which is
an SQLite database with ROS2 messages in binary format. That way we get
easily reproducible, fast to search through, real-world or simulated situations on
which the algorithms under test can be evaluated and tuned. One downside is
that this can lead to a huge file on your system depending on the number of
sensors included in the robotic platform.

Lastly, when using open source datasets, the data usually comes in formats
that can be viewed outside of ROS2 (usually .csv for text-based data, .pcd for
point clouds and H.264 or H.265 encoded video or individual frames as .jpeg
images). For those, it is important that they provide a precise timestamp of the
time the data has been taken. In this case, our framework provides an extensible
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dataset loader, that can accommodate any practical number of input sensors
and outputs data frames into ROS2 in the correct order. The block diagram in
the figure 2 shows its working principle.

Every data source (sensor) has its own node, much like the physical sensor
would. This node continuously loads data frames from the hard drive to the
system memory and reads ahead a pre-defined number of frames. The dataset
loader controller is a node that handles the synchronization between all of them,
retransmitting the data frames in the correct order and informing them back
about the timestamp of the last data frame published. This way only a small
amount of data is ever loaded in the system memory. This method, when com-
pared to the previous two, is relatively slow and takes a considerable amount of
system resources that could be otherwise utilized by the processing algorithms.
For this reason, we often use this only to convert an open-source dataset into
the ROS2 bag, which is much quicker to work with.

Dataset

Camera Data Loader

Lidar Data Loader

IMU Data Loader

GNSS Data Loader

Radar Data Loader

Data Loader Controller

Last Published Timestamp

Dataset Loader

Fig. 2: Block diagram showing how the loading of a proprietary dataset is done
enforcing the correct order of data frames read from different sources. This config-
uration also allows for dynamically adding/removing data sources when needed.
This doesn’t allow for real-time performance with a practical number of sensors,
so recording the output of a Dataset Loader into a ROS2 bag and replaying it
with an increased speed is often utilized.
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5 Pose Estimation

Precise positioning is a crucial aspect of every robotic task. Without a pose
estimate at every point in time, it would be impossible to fuse or aggregate
data reliably. Pose estimation is something that has already been researched
extensively and software packages that provide a very reasonable performance
are readily available. We’ve used a robot_localization package [14] in this work
since it is very popular and has the ability to fuse GNSS with IMU and odometry
while having a ton of configuration options. In our case, while using the sensory
framework used for the creation of the Brno Urban Dataset, we’re fusing an
RTK GNSS with IMU.

As we didn’t collect any odometry data in this dataset, which would have re-
quired hijacking onto the CAN bus in the vehicle, we use the navsat_transform_-
node from this package to convert our RTK GNSS sensor_msgs/NavSatFix mes-
sages into the vehicle coordinate frame to get a position relative to its start-
ing point. This node also uses the IMU data to guide its heading estimation.
The IMU and the GNSS data transformed into the coordinate frame of the ve-
hicle are then fused using an Extended (EKF) or Unscented (UKF) Kalman
filter resulting in a high-frequency pose estimate. Ideally, most robots should
have at least one source of odometry, which would make things easier with
this package. Robot Localization estimates 15 dimensional state of the robot
(X,Y, Z, roll, pitch, yaw, Ẋ, Ẏ , Ż, ˙roll, ˙pitch, ˙yaw, Ẍ, Ÿ , Z̈)

There is also an option to generate the odometry from visual or lidar data,
but that is not yet implemented in our solution as in most robotic tasks there
is a better odometry source that doesn’t impose such computational burden.
Conceptually, the pose estimation is shown in figure 3.

Navsat Transform

Odometry/FilteredEKF/UKF Localization

GNSS

IMU

Odometry/Gnss

Odometry

Pose Estimation

Fig. 3: IMU + GNSS Fusion using the ROS2 robot_localization package. To
convert GNSS into a local coordinate system the Navsat Transform node is
used. To get the estimated heading, this node is also aided by the IMU. The
final state estimate is done in EKF/UKF localization node. Odometry sources
are also supported by this package.
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6 Lidar Preprocessing

Lidar data are preprocessed in multiple ways, depending on the application.
When using 360° rotating lidar for tasks when the robotic platform movement
speeds are not negligible compared to the scanning speed of the lidar, it is
necessary to remove the motion distortion, which could significantly affect the
following processing algorithms [20,13]. There is a plethora of ways to tackle
this problem, but they all have the same foundation - estimating the trajectory
between successive lidar scans. As this platform is only experimental, we’ve
settled on assuming that the motion between the lidar scans is linear and since we
already have a high-frequency pose estimation output from the robot_localization
package, we split the incoming point cloud into N batches (each batch represents
a sector of a circle) and transform them into the pose estimated at the end of
the scan. Figure 4 shows one of the possible defects we need to correct for.

Another optional way of preprocessing point clouds is ground removal. De-
pending on the task, the ground could carry no relevant information and thus
the points only consume valuable bandwidth. For ground robotic platforms, the
basic ground removal just filters out points with Z coordinates below the set
threshold. From experience, the result of this naive approach is quick and often
good enough.

Last, but arguably the most important step is to actually merge point clouds
from multiple sensors together. We’ve, once again, implemented a very basic
algorithm because of its fast runtime speeds. A ROS2 node listens to all prepro-
cessed point cloud topics and once it has the latest scan from each of them, it
transforms them into a common coordinate system, concatenates and retransmits
them. For our use case (2 Velodyne HDL32-e on each side and a forward-pointing
Livox Horizon) this effectively creates a relatively dense 360° point cloud with
higher density in the most critical direction. Optionally, since for all point cloud
manipulations we’re using PCL library [16], we can easily downsample the point
cloud on a voxel grid using the pcl::VoxelGrid.

We’ve also stripped the core of Spatio-Temporal Voxel Layer (STVL) [11]
package from the Nav2 framework [9] it was meant to be used with because of
its high customizability and great short-term aggregation capabilities, but since
our primary use case during development has been to fuse autonomous vehicle
data in real-time, the surrounding environment has been so dynamic, that any
short-term aggregation would immediately result in blurring. We’ve still kept
this adapted package for completeness as it can be of great use for different
applications.

7 Lidar Detections

The primary reason behind preprocessing the lidar scans has been to allow for an
efficient neural-network-based vehicle, cyclist and pedestrian detection. As of the
publication of this paper, the quickest at inference time and amongst state-of-
the-art in terms of accuracy is the PointPillars encoder [5]. It is the only one that
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Fig. 4: Merriaux [13] demonstrates one of the possible defects on point clouds
while the vehicle is moving. The left image shows a duplicated fence due to the
vehicle rotating in the same direction as the lidar. The right image shows the
corrected point cloud in red

(a) Motion compensated point
clouds

(b) Aggregated point cloud

Fig. 5: The difference between 3 compensated lidar sensor scans and an aggre-
gated downsampled point cloud. Visually there’s not much of a difference, but
the latter contains about 4x fewer points when downsampled by 15cm voxels
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can keep up with the 20Hz lidar scans reliably and even has a 3-6 times margin
(60-100 Hz). We’ve created a Python ROS2 node that utilizes a very helpful
framework OpenPCDet [18]. With this implementation of PointPillars and a
model trained on the KITTI dataset [3] that it provides, we were able to achieve
10 ms of inference time on an Nvidia RTX 3080 graphics card. OpenPCDet has
an abstraction above the point cloud-based neural networks so it is possible and
very easy to try out different models, although none of them achieves a real-time
performance.

After inference, we’re publishing the detections as oriented bounding boxes in
the form of visualization_msgs/MarkerArray for RViz visualization and vision_-
msgs/Detection3DArray for further processing. An example of lidar detection
visualization is shown in figure 6.

Fig. 6: Lidar detections projected into the local coordinate system. The Point-
Pillars encoder implemented in the OpenPCDet framework has been used. The
model used has been trained on the KITTI dataset.

8 Camera Detections

For the RGB camera-based detections, we’ve employed the YOLO V8 model
[4]. YOLO V8 is the latest iteration of a model originally published by Redmon
et al. in 2015 [15]. Since that, it has evolved and 5 different pre-trained model
sizes for object detection and even segmentation are now available. This work
[19] nicely summarizes the differences between each YOLO version. YOLO V8
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models are trained on 80 different classes, but we only use a small subset of
them, sometimes binning multiple classes into a single one. Our subset contains
vehicles (all sorts), pedestrians, cyclists, traffic signs and animals, but any other
configuration can be quickly set up to support different robotic tasks.

The Brno Urban Dataset contains 4 RGB cameras at 10 frames per second,
so we’ve created a Python ROS2 node that runs a YOLO V8 nano segmenta-
tion model for a single camera. This node, just like the lidar detection node
has two outputs. One output is purely for visualization in the form of sen-
sor_msgs/Image and the second one for further processing is of type vision_-
msgs/Detection2DArray. A screenshot from our dataset with the output of the
YOLO V8 nano segmentation model can be seen in figure 7.

These 2D detections can be then projected into the coordinate system of
the aggregated lidar scan and from the points that lie inside of the segmented
area, the median depth is calculated. With this information we can transfer our
2D detection into the 3D bounding box, the same representation as the lidar
detections, so they can be matched together to create a more robust one.

Fig. 7: Segmentation of the onboard camera done using YOLO V8 nano segmen-
tation model. We’re running this 4 times, once for every camera on the vehicle,
in real-time.

9 Detection Fusion

As we already have, after reprojecting the RGB camera-based detections, data
of an identical modality, we can compare it or fuse it easily. Currently, we employ
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a basic intersection-over-union (IOU) metric to know, whether two detections
overlap. If they do and the overlap is over a set threshold, the two (or more)
detections get fused.

To comment on the detection reliability, we observe that the detection itself is
much more reliable in the RGB domain. However, reprojecting the 2D detection
into the 3D space is troublesome as the depth estimation is not always reliable
when the detected object is partly obstructed. Detections in the lidar modality
are a bit jumpy, but we think that if we’ve fine-tuned the pre-trained model to
our data, the detections would get considerably better.

In the near future, we would like to implement an algorithm to track those
fused detections between frames.

10 Instrumentation Layer

As this framework has been created mainly for testing new ideas and algorithms,
we need a reliable way of measuring their runtime performance no matter which
device they’re currently running on. One of our requirements has been that this
instrumentation is lightweight and doesn’t have a noticeable impact on the per-
formance while providing the information in real-time as the processing happens.
To leverage the tool we are already using, ROS2, we’ve implemented an abstrac-
tion layer below every ROS2 node called AtlasBaseNode. This simple abstraction
provides every node in our framework with common utility information like topic
names from the config file and two timer functions.

Calls to the functions StartTimer(const std::string timerName) and End-
Timer(const std::string timerName) can be inserted anywhere in the code where
we want to measure runtime performance. Multiple running timers are also pos-
sible, each having a unique name. On EndTimer() call, the Node publishes std_-
msgs::Float32 message onto a /instrumentation/timer/{timerName} topic. This
can be then inspected in multiple ways, but our preferred is using the PlotJug-
gler tool [2]. This allows us to plot multiple time series in real-time and even
filtering or averaging the incoming data. This way it is easy to gain basic insight
into the system and quickly iterate with solutions to bottlenecks.

As ROS2 has multiple layers and we can really only use this to instrument
the application built on top of the ROS2 client library, there is a need for a tool
that is able to measure the time between the publisher publishing the message
and the subscriber’s callback invoking. For these tracing needs the ros2_tracing
[1] framework is really useful. Its main disadvantage is that it cannot run in real-
time and the analysis of trace files can take some time, but there’s really no way
around this problem. With this framework, one can also gain more insight into
how much system memory is the algorithm using and if there are any memory
leaks.
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11 Conclusion

For the use in our day-to-day testing and optimization of sensor fusion algo-
rithms we’ve created a framework built on top of ROS2, that is able to process
a practical number of sensor data in real-time. This framework contains a very
comprehensive set of sensor-fusion algorithms that act as a backbone for the al-
gorithms currently in the testing process. The pipeline is heavily reconfigurable,
allowing for the use of multiple data sources, ROS2 bags, or even live sensor
data directly from the driver. The framework is built in a way that allows for
running parts of the system on different physical devices to split the workload.
It also contains an instrumentation layer that allows for real-time measurement
of runtime performance for quick evaluation. Though we’ve developed, tested
and used our framework on the Brno Urban Dataset which is a dataset collected
from a moving vehicle, it can be used for any type of robotic application.
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