

ACCELERATION OF IMAGE PROCESSING ALGORITHMS FOR MEETING SYSTEM

ABSTRACT

For the purpose of Multimodal Meeting Manager, an
approach based on omni-directional view system is
proposed. The acquired data need to be presented to the
human in the appropriate manner, however, not in the
“deformed” form obtained through the mirror. The
transformation algorithms working with HD resolution
are computationally expensive. Therefore specialized
hardware such as 3D graphics card is used. The practical
application presents the possibility of real-time HD image
processing by using common PC hardware.

KEY WORDS

Omni-directional system, 3D acceleration, tracking,
image processing, skin color detection.

1. Introduction

The computational load of algorithms for image
processing in higher resolution is exceeding the
possibilities of today’s processors. The Pentium 4
processor running on 3 GHz has theoretical power of
6 GFLOPS and its memory transfers have 5.96 GB/sec in
peak. The very strong processing unit in computers,
which is often overlooked, is 3D accelerator. Today’s
common graphical cards as GeForce 6800 Ultra has
observed (measured by long shader, consisting of nothing
but multiply instructions) power of 40 GFLOPS, with it‘s
memory bandwidth of 35.2 GB/sec in peak. Note
GF6800U is not one of top – of – the – line cards, we
have 7xxx series today. Graphics hardware computational
power is evolving faster than by processors. Moore‘s law
for processors says that performance of processor,
developed after single year is 1.5 times higher compared
to the older one. Performance of graphics cards doubles
every year. The other advantage is scalability of the 3D
accelerators to increase the computational power of the
whole system. The main aim of our work was to develop
real-time system, which is able to process omni-
directional video from HD camcorder in resolution
1440×1080 pixels. Among the main tasks belong the

omni-directional image transformation into the panoramic
or perspective view, parameter estimation for this
transformation and pre-processing of the transformed
image for tracking purposes as skin color detection etc.
The output of this work served as technological demo at
CeBit 2006 in Hannover. The following text contains
description of the algorithms for omni-directional image
transformation, process of 3D hardware programming and
technical description of the novel meeting system
architecture.

2. Omnidirectional system

In this chapter, we will study the system consisting of an
ordinary perspective video camera equipped with a
hyperbolic mirror, which allows capturing of a large
portion of the space angle - 360×105 degrees field of
view.

Fig. 1 Omni-directional meeting recording system

When the image is presented to a human, it needs to be a
perspective/panoramic image so as not to appear
distorted. A lot of approaches exist to solve this problem
depending on the used mirror and camera type.

The simplest transformation of omni-directional image
into the panoramic view uses unwrapping of the source
image. The necessary parameters are center and radius of
the projected circle from the mirror border. The
transformation of the output coordinates to coordinates of
the captured image can be written as:

)(*)
2

sin(

)(*)
2

cos(

yROffset
R
x

CenterYy

yROffset
R
x

CenterXx

INNER

OUTER

M

INNER

OUTER

M

+++=

+++=

π

π (1)

Offset parameter defines origin of the transformed
panoramic image. Parameters OUTERR and INNERR are radii
of the outer and inner circle, which define transformation
restriction. The last parameters CenterX and CenterY
specify the circle center, which is projected from the
mirror. The calculated pixels in the camera image do not
correspond “one to one” to the pixels of projected image
so sub pixel anti-aliasing methods should be used.

Geometry knowledge of the catadioptric system with
single effective point enables correct transformation of
the mirror image into the suitable form – panoramic,
perspective etc. One of the approaches is to use
geometrical properties of the mirror for image projection
on the cylindrical plane around the mirror axe or
perspective plane. Due to the rotational symmetry of the
system we only need to know information about the
mirror profile. The image formation can be expressed as a
composition of coordinate transformations and
projections.

Fig. 2 Imaging model of central panoramic camera with
hyperbolic mirror

The center of the coordinate system is chosen in the
mirror focal point F. Line 1v goes through the real world
point X on the cylindrical plane and through the focal

point F of the mirror. The line equation is qxy = . Then,

we compute the intersection point MX on the mirror with
the line 1v . The quadratic equation after induction is
following:

02)(222222222 =−+−− baebqebxaqbx MM (2)

The root x, which presents the x-coordinate of the mirror
point, is computed from equation (3). There are two
possible solutions, which present two ray intersections
with the mirror. We will use the proper one to compute
ray reflection.

)(2
22

222

222

2,1 aqb

aqeabqeb
xM −

−+±
= (3)

This equation is the key in the ray computation. When we
know the incoming ray and reflected ray from the mirror,
the transformation equations depends on the desired
projection. Because the mirror contains the single view
point, it is possible to construct geometrically correct
perspective view from this point.

3. Programmable part of OpenGL pipeline

Classical (or more precisely ‚fixed function‘) OpenGL
pipeline did not programmer allow to do very much.
Basically, it enabled drawing textured, lit and fogged
primitives. Recent graphics hardware introduces so called
programs or shaders, which are used to bypass certain
parts of fixed function pipeline. In fact we can bypass two
parts of pipeline – vertex processing (so we‘re talking
about vertex program / vertex shader) or fragment (pixel)
processing (fragment program / fragment shader). Note
program and shader differs in used language only, but the
functionality is basically the same. We will prefer word
program from now. The basic structure of OpenGL
pipeline looks like:

Fig. 3 Block diagram of OpenGL

d

V2

V1

q

X

XM

F’

F

2e

f

Vertex programs allow us to replace per-vertex
operations, namely all kinds of transformation (vertex,
normal, texture coordinate), texture and fog coordinate
generation, lighting and color material application. It does
not sound very impressive, but you do not need - for
example - to use texture coordinates for texture lookup
later on fragment processing stage. You can write
fragment program as well and use them as some data
input.

The following operations are not allowed in vertex
program: perspective division, view port mapping,
primitive assembly, clipping, backface culling, two-sided
lighting selection, polygon mode processing, depth range
nor polygon offset.

Fig. 4 OpenGL fragment processing pipeline

As you can see in fragment program, we get interpolated
values from vertex program (fragment is a single pixel
only, not the whole polygon scanline) or values provided
by fixed function pipeline in case vertex program is not
enabled. We can take those values and use them to
determine output color. We can output more values or
discard the fragment so nothing is written into the output
buffer(s).

4. Basic scheme of general-purpose computation in
OpenGL

Data provided to shaders can exist in several forms. Those
are textures, vertices, program variables and OpenGL
state information. OpenGL offers us:

• color texture border

• bilinear and trilinear filtering for free (OpenGL
texture coordinates are floating point numbers,
bottom left corner has coordinates [0, 0], upper right
corner [1, 1])

• mip-mapping, automatical level of detail selection,
based on spatial sampling density

• texture repeat modes (determine what to do when
texture coordinate is below 0 or above 1), modes are
repeated, mirrored repeated, clamp, clamp to edge,
clamp to border

• anisotropic texture filtering, levels of anisotropy up
to 16

In OpenGL offers us various kinds of textures:

• One-dimensional textures – basically a long strip of
values accesed by a single coordinate (in fact it‘s
just a special case of 2D texture and it has the same
limitations)

• Two-dimensional textures – classical images, but
with a few limitations. There‘s maximal texture size
limit (usually 2048×2048 or 4096×4096 pixels),
texture size is limited to powers of two as well, but
there are some extensions that enables use of non-
power of two sized textures.

• Three-dimensional textures – used for volumetric
data. Again, there is size limitation (512×512×512
on Nvidia cards, 4096×4096×4096 on ATI cards)
and dimensions are limited to power of two.

• Cube-map textures – special kind of texture.
Basically it is a cube, assembled of six square 2D
textures. Any 3d vector can be used for texture
lookup (any means even un-normalized, so
cubemaps can contain precomputed unit vector
values and therefore be used for vector
normalisation (so called normalisation cubemap);
there‘s normalize instruction in shaders, but in some
cases texture lookup is cheaper) There are basically
the same limits as for 2D textures with adition that
textures must be square (width equal to height).

Texture pixel formats allow one, two three and four-
component textures, while all components must be of the
same data type. Data types are signed or unsigned integers
of widths 2, 4, 5, 8, 10, 12 and 16 bits or (signed)
floating-point values with 16 bits (1 bit sign, 5 bit
exponent and 16 bit mantissa) or 32 bits. Textures can be
accessed in fragment programs and with certain limitation
to texture format (floating-point textures only) and texture
fetch speed even in vertex programs.

OpenGL vertices are 2, 3 or 4-dimensional position
(fourth dimension is w, for most vertices will be 1, you
can move vertex into infinity by setting w to 0)
accompanied (optionally) by:

• vertex normal (3 component vector)

• color (4 componens)

• secondary color (3 components)

• texture coordinates (4 component vectors, on most
hardware there‘s 8 of them)

• fog coordinate (single value).

You can keep vertices in system memory (which is
slower) or in graphics card memory (which require some
extensions, but is significantly faster). Having vertices in
graphics card memory offers possibility to copy texture
data into vertex buffer or vice-versa (again, certain
extensions are necessary). Programs can define set of
variables (more on variable types later) that can be set
before calling program. It means they can not be changed
during the rasterization of a single primitive, which is
purpose of vertex properties. Programs can read OpenGL
state variables, such as transformation matrices, material
and light properties, point properties, depth range, texture
environment and generation parameters as well as to fog
parameters. Specific limits such as maximal number of
lights, clip planes, texture units, texture coordinates and
draw buffers are made available trough constants.

Classical OpenGL data output is frame buffer, visible
trough some window. This has some limitations, such as
maximal window size, pixel format (pixel format
limitations arise from need to be able to display frame
buffer contents) and sometimes we simply don‘t want
user to see what is being computed.

As response to problems mentioned in paragraph above,
two extensions supporting rendering to off-screen buffer
originated. Namely, they are pixel-buffer (or P-buffer)
and frame-buffer object (FBO). Offscreen buffer size is
limited only by maximal size. Pixel formats are
implementation specific, but basically you should be able
to set the same pixel formats as for textures.

Pixel buffers are older and more widely supported
extensions, but it has a big disadvantage – they are not
cross-platform extension. There are two similar
extensions for both linux and windows, but you need to
write two code paths.

On the other hand, FBO‘s are pure OpenGL extension,
which means that they are platform independent
extension.

There was already mentioned rendering to several outputs
simultaneously. It is possible trough extension
GL_ARB_draw_buffers and we can have one, two, four,
eight or sixteen draw buffersv (we have an array of 16
values we can write to in fragment program so we can not
bind different fragment program nor set different OpenGL
state for separate draw buffers).

Sometimes, we will need to process data in multiple steps
(for example, we could want to outputs form more steps,
or simply because implementation of certain algorithms is
simpler this way). We need to somehow copy data from
our rendering buffer to either texture or to vertex buffer
(rendering to OpenGL state is impossible).

FBO‘s have native direct rendering to texture capability,
which means instead of allocating data for frame buffer.
We specify classical OpenGL texture which is going to be
written to. Pixel-buffer objects can render to texture
trough extension. We have to bind multiple textures to
render for multiple draw buffers (they need to have the
same dimensions). Up to now, the rendering to 2D texture
was described. Note that 1D texture is just a case of 2D so
we can render to 1D texture as well. Rendering to cube-
map or 3D texture is done in multiple passes as rendering
to cube sides or volume slices respectively.

Direct rendering to vertex array is possible trough
GL_ATI_superbuffer, which is nowadays supported on
ATI cards only. The other cards enable rendering to
texture and copy its data to vertex buffer.

5. Performance and implementation description

Transformation shaders used in the meeting system can be
divided into two categories. The first one is group of
fragment shaders, taking texture with mirror image as
source and directly drawing transformed result. The
fullscreen quad is drawn with proper texture coordinates,
which are used as input for calculations. This way of
calculation is not very effective, because of the
computational redundancy. The distance from the center
of the mirror is function of y-coordinate in resulting
image, whereas the angle of half-axis is function of
corresponding x-coordinate, so we theoretically only need
to transform all x-coordinates and all y-coordinates to get
the very same results, but that would require some
additional textures and context switches. That is why we
decided for such kind of simpler solution.

Shaders that calculate transformed texture coordinates in
vertex shader (i.e. not for every pixel on-screen) and are
linearly interpolated fall into second category. Of course,
the transformations we are working with are everything
but linear so we can not get away with fullscreen quad
any longer. We need quite a good subdivision for our
fullscreen quads. Our implementation uses vertex buffer
object to store big quad strip vertices (in fast memory of
the graphics card) which we draw instead of fullscreen
quad. It is not ideal solution, but as an advantage we can
use anisotropic filtering, provided by the hardware.
Anisotropic filter is taking sampling density in account
which results into elliptic samples (multiple points are
sampled) rather than circular ones. This was considered
quite a good solution, because with quad tesselation to
128×128 sub-quads and perspective correct projection,

the whole transformation does not take much more than
1.5 milliseconds (see the table Tab.1).

Additional image processing
Transformation

none grey Skin det.

Simple 4.3ms 4.4ms 9.2ms

Geometric 5.8ms 5.9ms 8.9ms

Tesselation 128×128 2.0ms 2.0ms 5.3ms

Tessellation_128×128,
Perspective correction

1.6ms 1.7ms 5.1ms

Tab. 1 Speed tests for various image
transformations

When looking back, it is quite a lot of time saved so we
are reconsidering transformations of x and y coordinates
separately. In the end, we can cache results in texture until
parameters of transformation change.

Set of tests were performed to show the computational
power of 3D accelerators. In the beginning we feared of
too long time spent on image transfers from and to
graphics card, but we implemented asynchronous
transfers which are effective. Along with the
transformation, shaders can precalculate some data for
image recognition stage (skin colour tracking). The results
we get allows us to perform better texture filtering (like
cubic spline filter which we are currently implementing)
we couldn’t afford on CPU.

6. Experimental system

A demonstration application for so-called mobile meeting
room was developed for an evaluation of proposed
approaches. The application processes a high resolution
video stream acquired through an omnidirectional system.
The particular frames are transformed with unwrapping
algorithm into the panoramic view and the human
detection and tracking algorithms are applied on this
picture for highlighting of the meeting participants.
Additionally, speech processing is used for identification
of active speaker and keyword detection. The application
have to work in real-time, so efficient implementation is
the key issue. The structure of the implemented
application is presented in Fig. 5.

Fig. 5 Internal structure

Source video and audio streams are acquired through a
grabber based on Microsoft DirectShow technology [7].
Input signals from camera and microphones are processed
through a graph containing some filters for
demultiplexing of MPEG2 streams that is provided by
camera, decompression of video frames, and grabbers for
audio/video frames. In addition, audio streams are passed
through delay filters to players. Implemented graph is
presented in.

Fig. 6 DirectShow graph

Grabbed video frames are together with timestamps
stored into the frame queue. Following blocks can work
on their sets of data from the certain time point. The main
effort was to all blocks work in parallel, so the multi-core
CPU can be efficiently used. The queue is also necessary
for synchronization of audio/video streams during
presentation of the results. At first, a stabilization of the
given frame is evaluated, in fact the centre of
omnidirectional mirror is found. Further, picture
unwrapping algorithm is applied and the panoramic view
is stored into the queue. Finally, meeting participants are
detected and tracked using [2]. The results of this
detection are also stored into the queue with current

Video
stabilization

Detection
&

tracking

Frame repository

Speaker
identification

Keyword
spotting

Video
&

audio
grabber

Video
stream

Presentation

Audio
stream

TCP/IP server

Picture
unwrapping

Frame queue

Audio queue

timestamp. In addition, speech processing part evaluate
active speaker and checks some keywords. These two
blocks are running on a secondary computer connected
via TCP/IP server, because as experiments shown the
image processing utilizes whole CPU on main computer.
Distribution of video processing across several computers
is unacceptable, because data flow of transferred frames
would be too big. However, a multiprocessor computer
can be used as well.

Processing of high resolution data is quite demanding, the
data rate of source video stream in 1440×1080 pixels is
approximately 148 MB/s (4 byte per pixel). The memory
transfers of source frames have to be minimized, because
every memory transfer of the picture consume some time.
Therefore, source frames are stored only once in the
frame queue and the references are used instead of coping
of the data. Also, if the panoramic view is generated, it is
stored into the queue, and the references to parts of this
picture are used in “Detection & tracking” block and
“Presentation” block. In addition, the memory allocation
of such big images is also problematic. Therefore, the
own memory manager was implemented. Pictures, which
have been already presented, are not freed but stored into
the “Frame repository” and grabber then uses these
frames instead of new allocated frames.

The application is being executed on a computer with
AMD Athlon 64 X2 Dual 4400+ CPU with 2 GB of
RAM. NVIDIA GeForce 6600 graphic card is used for
unwrapping of omnidirectional pictures, HDV Sony
camera HDR-FX1E acquires picture from hyperbolic
mirror, and professional sound card RME Fireface 800
records four sound channels for speech processing.
Together with the source video stream in HDV resolution
is in the application displayed (see Fig. 7) whole
unwrapped picture in 1024×324 resolution and four views
in resolution 204×324 pixels, one for each meeting
participant. The application is able to process up to 25
frames per second(FPS) at this configuration. The same
computation, but only on the CPU, has about 1.6 FPS.

Fig. 7 Application interface

7. Conclusion

The goal of this contribution was to present a process how
to accelerate algorithms for meeting system and practical
application. It has been shown that the 3D graphics card
can significantly speed up the whole computation process.
The proposed approaches were verified in experimental
system for mobile meeting room. The system, where the
graphic card was used, is about 20 times faster than
computation only on CPU. The significant part of
computation was processing of the HD video.

Acknowledgements

This work was partly supported by the European Union
6th FWP IST Integrated Project AMI (Augmented Multi-
party Interaction, FP6-506811, publication).

References

[1] I., Potú�ek, Automatic Image Stabilization for Omni-
Directional Systems, In: Proceedings of the Fifth IASTED
International Conference on VISUALIZATION,
IMAGING,AND IMAGE PROCESSING, Benidorm, ES,
ACTA Press, 2005, s. 338-342.

[2] M. Hradis, R. Juranek, Real-time Tracking of
Participants in Meeting Video, Proceedings of CESCG,
Wien, 2006.

[3]] S., Sumec, I., Potú�ek, P., Zem�ík, AUTOMATIC
MOBILE MEETING ROOM, In: Proceedings of
3IA'2005 International Conference in Computer Graphics
and Artificial Intelligence, Limoges, FR, 2005, s. 171-
177, ISBN 2-914256-07-8.

[4] M., Segal, K., Akeley, Ch., Frazier, J., Leech, P.,
Brown, The OpenGL(R) Graphics System, A
Specification, Version 2.0, 2004

[5] I., Elhassan (NVIDIA Corp), Technical brief - Fast
Texture Downloads and Readbacks using Pixel Buffer
Objects in OpenGL, s.1-5, 2005.

[6] European research AMI - Augmented multi-party
interaction, http://www.amiproject.org/

[7] Microsoft DirectX Developer Manual,
http://msdn.microsoft.com/directx/

