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ABSTRACT 

For the purpose of Multimodal Meeting Manager, an 
approach based on omni-directional view system is 
proposed. The acquired data need to be presented to the 
human in the appropriate manner, however, not in the 
“deformed” form obtained through the mirror. The 
transformation algorithms working with HD resolution 
are computationally expensive. Therefore specialized 
hardware such as 3D graphics card is used. The practical 
application presents the possibility of real-time HD image 
processing by using common PC hardware. 
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1. Introduction 

The computational load of algorithms for image 
processing in higher resolution is exceeding the 
possibilities of today’s processors. The Pentium 4 
processor running on 3 GHz has theoretical power of  
6 GFLOPS and its memory transfers have 5.96 GB/sec in 
peak. The very strong processing unit in computers, 
which is often overlooked, is 3D accelerator. Today’s 
common graphical cards as GeForce 6800 Ultra has 
observed (measured by long shader, consisting of nothing 
but multiply instructions) power of 40 GFLOPS, with it‘s 
memory bandwidth of 35.2 GB/sec in peak. Note 
GF6800U is not one of top – of – the – line cards, we 
have 7xxx series today. Graphics hardware computational 
power is evolving faster than by processors. Moore‘s law 
for processors says that performance of processor, 
developed after single year is 1.5 times higher compared 
to the older one. Performance of graphics cards doubles 
every year. The other advantage is scalability of the 3D 
accelerators to increase the computational power of the 
whole system. The main aim of our work was to develop 
real-time system, which is able to process omni-
directional video from HD camcorder in resolution 
1440×1080 pixels. Among the main tasks belong the 

omni-directional image transformation into the panoramic 
or perspective view, parameter estimation for this 
transformation and pre-processing of the transformed 
image for tracking purposes as skin color detection etc. 
The output of this work served as technological demo at 
CeBit 2006 in Hannover. The following text contains 
description of the algorithms for omni-directional image 
transformation, process of 3D hardware programming and 
technical description of the novel meeting system 
architecture. 

2. Omnidirectional system 

In this chapter, we will study the system consisting of an 
ordinary perspective video camera equipped with a 
hyperbolic mirror, which allows capturing of a large 
portion of the space angle - 360×105 degrees field of 
view.  

 

Fig. 1 Omni-directional meeting recording system 

When the image is presented to a human, it needs to be a 
perspective/panoramic image so as not to appear 
distorted. A lot of approaches exist to solve this problem 
depending on the used mirror and camera type. 



The simplest transformation of omni-directional image 
into the panoramic view uses unwrapping of the source 
image. The necessary parameters are center and radius of 
the projected circle from the mirror border. The 
transformation of the output coordinates to coordinates of 
the captured image can be written as: 
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Offset parameter defines origin of the transformed 
panoramic image. Parameters  OUTERR  and INNERR   are radii 
of the outer and inner circle, which define transformation 
restriction. The last parameters CenterX   and CenterY   
specify the circle center, which is projected from the 
mirror. The calculated pixels in the camera image do not 
correspond “one to one” to the pixels of projected image 
so sub pixel anti-aliasing methods should be used.  

Geometry knowledge of the catadioptric system with 
single effective point enables correct transformation of 
the mirror image into the suitable form – panoramic, 
perspective etc. One of the approaches is to use 
geometrical properties of the mirror for image projection 
on the cylindrical plane around the mirror axe or 
perspective plane. Due to the rotational symmetry of the 
system we only need to know information about the 
mirror profile. The image formation can be expressed as a 
composition of coordinate transformations and 
projections.  

 

Fig. 2 Imaging model of central panoramic camera with 
hyperbolic mirror 

The center of the coordinate system is chosen in the 
mirror focal point F. Line 1v  goes through the real world 
point X on the cylindrical plane and through the focal 

point F of the mirror. The line equation is qxy = . Then, 

we compute the intersection point MX on the mirror with 
the line 1v . The quadratic equation after induction is 
following: 
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The root x, which presents the x-coordinate of the mirror 
point, is computed from equation (3).  There are two 
possible solutions, which present two ray intersections 
with the mirror. We will use the proper one to compute 
ray reflection. 
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This equation is the key in the ray computation. When we 
know the incoming ray and reflected ray from the mirror, 
the transformation equations depends on the desired 
projection. Because the mirror contains the single view 
point, it is possible to construct geometrically correct 
perspective view from this point.  

3. Programmable part of OpenGL pipeline 

Classical (or more precisely ‚fixed function‘) OpenGL 
pipeline did not programmer allow to do very much. 
Basically, it enabled drawing textured, lit and fogged 
primitives. Recent graphics hardware introduces so called 
programs or shaders, which are used to bypass certain 
parts of fixed function pipeline. In fact we can bypass two 
parts of pipeline – vertex processing (so we‘re talking 
about vertex program / vertex shader) or fragment (pixel) 
processing (fragment program / fragment shader). Note 
program and shader differs in used language only, but the 
functionality is basically the same. We will prefer word 
program from now. The basic structure of OpenGL 
pipeline looks like: 

 

Fig. 3 Block diagram of OpenGL 
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Vertex programs allow us to replace per-vertex 
operations, namely all kinds of transformation (vertex, 
normal, texture coordinate), texture and fog coordinate 
generation, lighting and color material application. It does 
not sound very impressive, but you do not need - for 
example - to use texture coordinates for texture lookup 
later on fragment processing stage. You can write 
fragment program as well and use them as some data 
input. 

The following operations are not allowed in vertex 
program: perspective division, view port mapping, 
primitive assembly, clipping, backface culling, two-sided 
lighting selection, polygon mode processing, depth range 
nor polygon offset.  

 

Fig. 4 OpenGL fragment processing pipeline 

As you can see in fragment program, we get interpolated 
values from vertex program (fragment is a single pixel 
only, not the whole polygon scanline) or values provided 
by fixed function pipeline in case vertex program is not 
enabled. We can take those values and use them to 
determine output color. We can output more values or 
discard the fragment so nothing is written into the output 
buffer(s).  

4. Basic scheme of general-purpose computation in 
OpenGL 

Data provided to shaders can exist in several forms. Those 
are textures, vertices, program variables and OpenGL 
state information. OpenGL offers us: 

• color texture border 

• bilinear and trilinear filtering for free (OpenGL 
texture coordinates are floating point numbers, 
bottom left corner has coordinates [0, 0], upper right 
corner [1, 1]) 

• mip-mapping, automatical level of detail selection, 
based on spatial sampling density 

• texture repeat modes (determine what to do when 
texture coordinate is below 0 or above 1), modes are 
repeated, mirrored repeated, clamp, clamp to edge, 
clamp to border 

• anisotropic texture filtering, levels of anisotropy up 
to 16 

In OpenGL offers us various kinds of textures: 

• One-dimensional textures – basically a long strip of 
values accesed by a single coordinate (in fact it‘s 
just a special case of 2D texture and it has the same 
limitations) 

• Two-dimensional textures – classical images, but 
with a few limitations. There‘s maximal texture size 
limit (usually 2048×2048 or 4096×4096 pixels), 
texture size is limited to powers of two as well, but 
there are some extensions that enables use of non-
power of two sized textures. 

• Three-dimensional textures – used for volumetric 
data. Again, there is size limitation (512×512×512 
on Nvidia cards, 4096×4096×4096 on ATI cards) 
and dimensions are limited to power of two.  

• Cube-map textures – special kind of texture. 
Basically it is a cube, assembled of six square 2D 
textures. Any 3d vector can be used for texture 
lookup (any means even un-normalized, so 
cubemaps can contain precomputed unit vector 
values and therefore be used for vector 
normalisation (so called normalisation cubemap); 
there‘s normalize instruction in shaders, but in some 
cases texture lookup is cheaper) There are basically 
the same limits as for 2D textures with adition that 
textures must be square (width equal to height). 

Texture pixel formats allow one, two three and four-
component textures, while all components must be of the 
same data type. Data types are signed or unsigned integers 
of widths 2, 4, 5, 8, 10, 12 and 16 bits or (signed) 
floating-point values with 16 bits (1 bit sign, 5 bit 
exponent and 16 bit mantissa) or 32 bits. Textures can be 
accessed in fragment programs and with certain limitation 
to texture format (floating-point textures only) and texture 
fetch speed even in vertex programs. 

OpenGL vertices are 2, 3 or 4-dimensional position 
(fourth dimension is w, for most vertices will be 1, you 
can move vertex into infinity by setting w to 0) 
accompanied (optionally) by: 



• vertex normal (3 component vector) 

• color (4 componens) 

• secondary color (3 components) 

• texture coordinates (4 component vectors, on most 
hardware there‘s 8 of them) 

• fog coordinate (single value). 

You can keep vertices in system memory (which is 
slower) or in graphics card memory (which require some 
extensions, but is significantly faster). Having vertices in 
graphics card memory offers possibility to copy texture 
data into vertex buffer or vice-versa (again, certain 
extensions are necessary). Programs can define set of 
variables (more on variable types later) that can be set 
before calling program. It means they can not be changed 
during the rasterization of a single primitive, which is 
purpose of vertex properties. Programs can read OpenGL 
state variables, such as transformation matrices, material 
and light properties, point properties, depth range, texture 
environment and generation parameters as well as to fog 
parameters. Specific limits such as maximal number of 
lights, clip planes, texture units, texture coordinates and 
draw buffers are made available trough constants. 

Classical OpenGL data output is frame buffer, visible 
trough some window. This has some limitations, such as 
maximal window size, pixel format (pixel format 
limitations arise from need to be able to display frame 
buffer contents) and sometimes we simply don‘t want 
user to see what is being computed.  

As response to problems mentioned in paragraph above, 
two extensions supporting rendering to off-screen buffer 
originated. Namely, they are pixel-buffer (or P-buffer) 
and frame-buffer object (FBO). Offscreen buffer size is 
limited only by maximal size. Pixel formats are 
implementation specific, but basically you should be able 
to set the same pixel formats as for textures. 

Pixel buffers are older and more widely supported 
extensions, but it has a big disadvantage – they are not 
cross-platform extension. There are two similar 
extensions for both linux and windows, but you need to 
write two code paths. 

On the other hand, FBO‘s are pure OpenGL extension, 
which means that they are platform independent 
extension. 

There was already mentioned rendering to several outputs 
simultaneously. It is possible trough extension 
GL_ARB_draw_buffers and we can have one, two, four, 
eight or sixteen draw buffersv (we have an array of 16 
values we can write to in fragment program so we can not 
bind different fragment program nor set different OpenGL 
state for separate draw buffers). 

Sometimes, we will need to process data in multiple steps 
(for example, we could want to outputs form more steps, 
or simply because implementation of certain algorithms is 
simpler this way). We need to somehow copy data from 
our rendering buffer to either texture or to vertex buffer 
(rendering to OpenGL state is impossible). 

FBO‘s have native direct rendering to texture capability, 
which means instead of allocating data for frame buffer. 
We specify classical OpenGL texture which is going to be 
written to. Pixel-buffer objects can render to texture 
trough extension. We have to bind multiple textures to 
render for multiple draw buffers (they need to have the 
same dimensions). Up to now, the rendering to 2D texture 
was described. Note that 1D texture is just a case of 2D so 
we can render to 1D texture as well. Rendering to cube-
map or 3D texture is done in multiple passes as rendering 
to cube sides or volume slices respectively. 

Direct rendering to vertex array is possible trough 
GL_ATI_superbuffer, which is nowadays supported on 
ATI cards only. The other cards enable rendering to 
texture and copy its data to vertex buffer. 

5. Performance and implementation description 

Transformation shaders used in the meeting system can be 
divided into two categories. The first one is group of 
fragment shaders, taking texture with mirror image as 
source and directly drawing transformed result. The 
fullscreen quad is drawn with proper texture coordinates, 
which are used as input for calculations. This way of 
calculation is not very effective, because of the 
computational redundancy. The distance from the center 
of the mirror is function of y-coordinate in resulting 
image, whereas the angle of half-axis is function of 
corresponding x-coordinate, so we theoretically only need 
to transform all x-coordinates and all y-coordinates to get 
the very same results, but that would require some 
additional textures and context switches. That is why we 
decided for such kind of simpler solution. 

Shaders that calculate transformed texture coordinates in 
vertex shader (i.e. not for every pixel on-screen) and are 
linearly interpolated fall into second category. Of course, 
the transformations we are working with are everything 
but linear so we can not get away with fullscreen quad 
any longer. We need quite a good subdivision for our 
fullscreen quads. Our implementation uses vertex buffer 
object to store big quad strip vertices (in fast memory of 
the graphics card) which we draw instead of fullscreen 
quad. It is not ideal solution, but as an advantage we can 
use anisotropic filtering, provided by the hardware. 
Anisotropic filter is taking sampling density in account 
which results into elliptic samples (multiple points are 
sampled) rather than circular ones. This was considered 
quite a good solution, because with quad tesselation to 
128×128 sub-quads and perspective correct projection, 



the whole transformation does not take much more than 
1.5 milliseconds (see the table Tab.1).  

Additional image processing 
Transformation 

none grey Skin det. 

Simple 4.3ms 4.4ms 9.2ms 

Geometric 5.8ms 5.9ms 8.9ms 

Tesselation 128×128 2.0ms 2.0ms 5.3ms 

Tessellation_128×128, 
Perspective correction 

1.6ms 1.7ms 5.1ms 

Tab. 1 Speed tests for various image 
transformations 

When looking back, it is quite a lot of time saved so we 
are reconsidering transformations of x and y coordinates 
separately. In the end, we can cache results in texture until 
parameters of transformation change. 

Set of tests were performed to show the computational 
power of 3D accelerators. In the beginning we feared of 
too long time spent on image transfers from and to 
graphics card, but we implemented asynchronous 
transfers which are effective. Along with the 
transformation, shaders can precalculate some data for 
image recognition stage (skin colour tracking). The results 
we get allows us to perform better texture filtering (like 
cubic spline filter which we are currently implementing) 
we couldn’t afford on CPU. 

6. Experimental system 

A demonstration application for so-called mobile meeting 
room was developed for an evaluation of proposed 
approaches. The application processes a high resolution 
video stream acquired through an omnidirectional system. 
The particular frames are transformed with unwrapping 
algorithm into the panoramic view and the human 
detection and tracking algorithms are applied on this 
picture for highlighting of the meeting participants.  
Additionally, speech processing is used for identification 
of active speaker and keyword detection. The application 
have to work in real-time, so efficient implementation is 
the key issue. The structure of the implemented 
application is presented in Fig. 5.  

 

Fig. 5 Internal structure 

Source video and audio streams are acquired through a 
grabber based on Microsoft DirectShow technology [7]. 
Input signals from camera and microphones are processed 
through a graph containing some filters for 
demultiplexing of MPEG2 streams that is provided by 
camera, decompression of video frames, and grabbers for 
audio/video frames. In addition, audio streams are passed 
through delay filters to players. Implemented graph is 
presented in. 

 

Fig. 6 DirectShow graph 

Grabbed video frames are together with timestamps 
stored into the frame queue. Following blocks can work 
on their sets of data from the certain time point. The main 
effort was to all blocks work in parallel, so the multi-core 
CPU can be efficiently used. The queue is also necessary 
for synchronization of audio/video streams during 
presentation of the results. At first, a stabilization of the 
given frame is evaluated, in fact the centre of 
omnidirectional mirror is found. Further, picture 
unwrapping algorithm is applied and the panoramic view 
is stored into the queue. Finally, meeting participants are 
detected and tracked using [2]. The results of this 
detection are also stored into the queue with current 
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timestamp. In addition, speech processing part evaluate 
active speaker and checks some keywords. These two 
blocks are running on a secondary computer connected 
via TCP/IP server, because as experiments shown the 
image processing utilizes whole CPU on main computer. 
Distribution of video processing across several computers 
is unacceptable, because data flow of transferred frames 
would be too big. However, a multiprocessor computer 
can be used as well. 

Processing of high resolution data is quite demanding, the 
data rate of source video stream in 1440×1080 pixels is 
approximately 148 MB/s (4 byte per pixel). The memory 
transfers of source frames have to be minimized, because 
every memory transfer of the picture consume some time. 
Therefore, source frames are stored only once in the 
frame queue and the references are used instead of coping 
of the data. Also, if the panoramic view is generated, it is 
stored into the queue, and the references to parts of this 
picture are used in “Detection & tracking” block and 
“Presentation” block. In addition, the memory allocation 
of such big images is also problematic. Therefore, the 
own memory manager was implemented. Pictures, which 
have been already presented, are not freed but stored into 
the “Frame repository” and grabber then uses these 
frames instead of new allocated frames. 

The application is being executed on a computer with 
AMD Athlon 64 X2 Dual 4400+ CPU with 2 GB of 
RAM. NVIDIA GeForce 6600 graphic card is used for 
unwrapping of omnidirectional pictures, HDV Sony 
camera HDR-FX1E acquires picture from hyperbolic 
mirror, and professional sound card RME Fireface 800 
records four sound channels for speech processing. 
Together with the source video stream in HDV resolution 
is in the application displayed (see Fig. 7) whole 
unwrapped picture in 1024×324 resolution and four views 
in resolution 204×324 pixels, one for each meeting 
participant. The application is able to process up to 25 
frames per second(FPS) at this configuration. The same 
computation, but only on the CPU, has about 1.6 FPS. 

 

Fig. 7 Application interface 

7. Conclusion 

The goal of this contribution was to present a process how 
to accelerate algorithms for meeting system and practical 
application. It has been shown that the 3D graphics card 
can significantly speed up the whole computation process. 
The proposed approaches were verified in experimental 
system for mobile meeting room. The system, where the 
graphic card was used, is about 20 times faster than 
computation only on CPU. The significant part of 
computation was processing of the HD video. 
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