
UTIA EdkDSP Platform
Firmware Programming Interface v2

PBBCELIB

Roman Bartosinski

bartosr@utia.cas.cz

Revision

Revision Date Author Description
0 01.10.2011 Bartosinski document creation

© 2011 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved.



Contents

1 Introduction 1

2 Content of the programming interface 1

3 How to use the programming interface 2
3.1 Include API header file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 Use functions from API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.3 Build firmware binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 Example of firmware with the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 User’s point of view to computation in DFU 4

5 Changes from the previous version 7

6 Application Programming Interface 8
6.1 enum dfu bce operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 enum dfu ag indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.3 enum dfu idxag indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.4 enum dfu data memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.5 enum dfu ag flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.6 function mbpb exchange data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.7 function pb2mb report running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.8 function write bce id to cmem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.9 function write dfu caps to cmem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.10 function read bce cmem u8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.11 function read bce cmem u16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.12 function write bce cmem u16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.13 function pcnt get dfutime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.14 function pcnt get prgtime lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.15 function pcnt get prgtime hi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.16 function pcnt reset prgtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.17 function get dfulic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.18 function pb2dfu wait4hw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.19 function pb2dfu start op . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.20 function pb2dfu restart op . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.21 function pb2dfu set cnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.22 function pb2dfu set addr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.23 function pb2dfu set bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.24 function pb2dfu set fulladdr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.25 function pb2dfu set inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.26 function pb2dfu set bound addr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.27 function pb2dfu set agflags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.28 function pb2dfu set repetitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



Acknowledgement

The research leading to these result has received funding from the ARTEMIS Joint Undertaking under
grant agreement n°100230 and from the MSMT 7H10001.

iii



1 Introduction

The application programming interface (API), described in this document, is one part of a software
development kit for hardware accelerators based on EdkDSP platform (EdkDSP SDK). The API version
2.0 (APIv2) for accelerator’s microcontroller is described in this document. In this case, a PicoBlaze
(PB) is used as a microcontroller and a 32bit processor MicroBlaze (MB) is used as the host CPU.

Figure 1: Basic Computing Element (BCE) - User’s View. Data paths from outside memory to BCE
and in BCE are represented by bold lines.

The API defines an interfaces between the microcontroller and data flow unit (PB2DFU) and be-
tween the accelerator and the host CPU from the side of the accelerator (PB2MB). It offers functions
for communication with the host CPU and functions to parameterize and control basic computing op-
erations in hardware.

The general concept of the EdkDSP platform is described in the deliverable D2.1 in SMECY
project [1].

The document is organized as follows: The first part contains general information about the PB API
and the second part contains description of all functions and constants in the APIv2 which is generated
from the source code.

2 Content of the programming interface

The firmware programming interface is distributed as one header file for C compiler pbbcelib.h and
library as one object file pbbcelib.psmo.

The programming interface is prepared for using with tools from EdkDSP SDK which are distributed
in package pb-toolchain. The toolchain compiles source codes in limited C to binary firmware for the
PicoBlaze microcontroller.

The PB2 APIv2 is distributed in the following directory structure

.

|-- api

‘-- 10-pb-firmware

|-- doc

| ‘-- pbbcelib.pdf

|-- pbbcelib.h

1/22



‘-- pbbcelib.psmo

Because both versions of accelerators and also their PB APIs can be used at the same time in the
same examples, this version of the API is distributed in subdirectory which begins with a digit one
10-pb-firmware (The previous version has been distributed in subdirectory 00-pb-firmware).

The following directory structure is considered in all examples in this document. All source codes
for accelerator’s firmware are in subdirectories 00-pb-firmware.

.

|-- api

| |-- 10-pb-firmware

| |-- 11-mb-standalone

| ‘-- 12-mb-petalinux

|-- example1

| |-- 10-pb-firmware

| |-- 11-mb-standalone

| ‘-- 12-mb-petalinux

3 How to use the programming interface

Usage of the API can be described in the following steps

• include API header file to the C source code,

• use functions from API in the source code,

• build firmware binary from source codes and the API library.

3.1 Include API header file

Functions in the programming interface are declared in the pbbcelib.h header file. It must be included
in the source code with the preprocessor directive #include.

#include "../../api/10-pb-firmware/pbbcelib.h"

3.2 Use functions from API

All functions and constants from the API can be used after including API header file. They can be
divided into three groups.

The first group performs communication between accelerator and host CPU (which should use
WAL API for communication with BCE accelerators). Against the previous version, only one function
mbpb exchange data (section 6.6) is designed for this purpose. This function can receive and send
8bit value in one transaction. The second function in this group is pb2mb report running (section
6.7) which must be used at the beginning of the firmware to inform host CPU that accelerator is
programmed and alive. Next functions (read bce cmem u8, read bce cmem u16, write bce cmem u16 -
sections 6.10, 6.11, 6.12) read and write data to control memory which is accessible to host CPU.

The second group contains functions for collecting information about BCE and DFU. It contains the
following functions: write bce id to cmem (6.8), write dfu caps to cmem (6.9), pcnt get dfutime

(6.13), pcnt get prgtime lo (6.14), pcnt get prgtime hi (6.15), get dfulic (6.17).
The third group contains functions for controlling DFU, i.e. settings of a following operation (pb2dfu set ),

operation execution (pb2dfu start op, pb2dfu restart op) and waiting to its finishing (pb2dfu wait4hw).
These functions begin with prefix ’pb2dfu ’. Parameters of the next operation can be set before the

2/22



previous operation is done, but it cannot be launched before the previous operation is done. This
feature allows to launch operation with minimal delay caused by microcontroller. The data flow unit
remember the last settings and therefore only changed parameters can be set for the next operation.

3.3 Build firmware binary

Firmwares in C source codes must be compiled with the EdkDSP SDK toolchain distributed in the
package pb-toolchain. The simplest way how to compile and build firmware binary is in the following
listing. In the listing, we consider that the toolchain is installed and we compile the example1 in
directory ./example1/10-pb-firmware with directory structure as shown in section 2.

pbcc ../../api/10-pb-firmware/pbbcelib.psmo fw_ex1.c -o fw_ex1.h

In this example, the output binary has form of C header file with array of binary codes of firmware.
Such file will be used to compile application for the host CPU as described in the documentation of the
WAL API [2].

3.4 Example of firmware with the API

This part shows simple example of firmware, which waits for operation required by the host CPU and
if the operation is wal get capability the operation is starts in the accelerator. When the operation
is finished the controller send return code to the host CPU.

/* include PBBCE library for BCE accelerator */

#include "../../api/10-pb-firmware/pbbcelib.h"

#define MY_MULT_OP 0x10

void main()

{

unsigned char op;

unsigned char rc;

pb2mb_report_running();

do {

/* waiting for data from MB (the first byte is a required operation) */

op = mbpb_exchange_data(0);

rc = 0xff;

if (op==WAL_OP_GETCAP) { /* FW support only this one operation */

/* read DFU capability and write it into the control/status memory (8 words) */

write_dfu_caps_to_cmem();

rc = 0;

} else if (op==MY_MULT_OP) {

int l = mbpb_exchange_data(0);

pb2dfu_set_bank(DFUAG_0, MBANK_A);

pb2dfu_set_addr(DFUAG_0, 0x100);

pb2dfu_set_fulladdr(DFUAG_1, MBANK_B, 0x08);

pb2dfu_set_inc(DFUAG_0, 1);

pb2dfu_set_inc(DFUAG_1, 2);

3/22



pb2dfu_start_op(DFU_VMUL, l);

rc = pb2dfu_wait_hw();

}

/* send result/return code to MB */

mbpb_exchange_data(rc);

} while(1);

return 0;

}

4 User’s point of view to computation in DFU

All functions from the third group affect settings and processing of the next operation computed in DFU.
The DFU basically performs the following code

Algorithm 1 User’s view to process operation in DFU
loop

if start operation op then
prepare processing

{ set memory crossbar and address generators from DFU control registers
- assign physical data memories (A,B,C,D) to virtual vectors M0..7

- set initial indices of elements in vectors M ik(1) = Ok, k ∈ 0..7 }

for r=1 to REP do
for n=1 to N do

perform operation op for element n
( M0(i0) = op(Mk(ik); k ∈ 1..3) )
update address generators

end for
end for
update DFU status register

end if
end loop

Algorithm of updating address of the next vector element in physical data memory is the same for
all address generators. This version of the accelerator supports several modes of updating address.
The mode is selected with function pb2dfu set agflags (6.27). Each address generator contains two
counters: the main counter (marked DFUAG 0, DFUAG 1, DFUAG 2, DFUAG 3 in API functions) and slave
counter (marked DFUAG 4, DFUAG 5, DFUAG 6, DFUAG 7 in API functions).

The following pseudo-algorithms (algorithm 2-5) show updating address in an address generator.
The main generator is marked with subscript 0 and the slave generator is marked with subscript 4.
Table 1 shows how functions from the API affect settings. In algorithms and the table, meaning of
parameters are:

• the previous value of the main generator i0(k − 1) and the slave generator i4(k − 1)

• data from virtual vector M4[i4(k)]

• updating mode MODE

• increments of both generators I0, I4

• lower and upper boundaries of both generators L0, U0, L4, U4

4/22



Algorithm 2 Update address of the next element i0(k) in a data memory.
MODE = 0

i0(k) = i0(k − 1) + I0
if I0 < 0 ∧ i0(k) < L0 then

i0(k) = U0

else if I0 > 0 ∧ i0(k) > U0 then
i0(k) = L0

end if

Algorithm 3 Update address of the next element i0(k) in a data memory.
MODE = USE IDX

i4(k) = i4(k − 1) + I4
if I4 < 0 ∧ i4(k) < L4 then

i4(k) = U4

else if I4 > 0 ∧ i4(k) > U4 then
i4(k) = L4

end if
i0(k) = i0(k − 1) + I0
if I0 < 0 ∧ i0(k) < L0 then

i0(k) = U0

else if I0 > 0 ∧ i0(k) > U0 then
i0(k) = L0

end if
i0(k) = i0(k) +M4[i4(k)]

Algorithm 4 Update address of the next element i0(k) in a data memory.
MODE = STEP IDXBND

i4(k) = i4(k − 1) + I4
if I4 < 0 ∧ i4(k) < L4 then

i4(k) = U4

i0(k) = i0(k − 1) + I0
else if I4 > 0 ∧ i4(k) > U4 then

i4(k) = L4

i0(k) = i0(k − 1) + I0
end if
if I0 < 0 ∧ i0(k) < L0 then

i0(k) = U0

else if I0 > 0 ∧ i0(k) > U0 then
i0(k) = L0

end if

5/22



Algorithm 5 Update address of the next element i0(k) in a data memory.
MODE = (USE IDX|STEP IDXBND)

i4(k) = i4(k − 1) + I4
if I4 < 0 ∧ i4(k) < L4 then

i4(k) = U4

i0(k) = i0(k − 1) + I0
else if I4 > 0 ∧ i4(k) > U4 then

i4(k) = L4

i0(k) = i0(k − 1) + I0
end if
if I0 < 0 ∧ i0(k) < L0 then

i0(k) = U0

else if I0 > 0 ∧ i0(k) > U0 then
i0(k) = L0

end if
i0(k) = i0(k) +M4[i4(k)]

Table 1: Overview of DFU operation parameters
Parameter Description Default Value API function

op DFU operation - pb2dfu start op,
pb2dfu restart op

N length of the input vectors 0 pb2dfu set cnt,
pb2dfu start op

REP the number of times the fol-
lowing DFU operation will be
restarted

1 pb2dfu set repetitions

Mi mapping of virtual vector
Mi to physical data memory
A,B,C,D

Mi = A pb2dfu set bank,
pb2dfu set fulladdr

Oi address of the first element in
virtual vector Mi

0 pb2dfu set addr,
pb2dfu set fulladdr

Ii increment of address genera-
tor i

0 pb2dfu set inc

Li lower boundary of address
generator i

0 pb2dfu set bound addr

Ui upper boundary of address
generator i

0xffff pb2dfu set bound addr

MODEi mode of address updating in
address generator i

0 pb2dfu set agflags

6/22



5 Changes from the previous version

The previous version of firmware API (PB2 API) has been prepared for the previous version of BCE
accelerator (called DFU FP01). A new version of BCE accelerators has more features which can help
to compute more complex functions easier.

Main changes are mentioned in the following list. The previous version is on the first line and the
current version is on the second line.

• source and destination data memories

1. They are specified by operation (function pb2dfu start op, pb2dfu restart op)

2. They are assigned to virtual vectors with functions pb2dfu set bank and
pb2dfu set fulladdr

• address in data memory

1. is consist of memory bank and 8bit address (pb2dfu set bank, pb2dfu set addr,
pb2dfu set fulladdr)

2. is one 16bit address (pb2dfu set addr, pb2dfu set fulladdr)

NOTE: Behaviour of the function pb2dfu set bank is changed.

• Mode of addressing vectors

1. only basic linear addressing of elements in all vectors (pb2dfu set bank, pb2dfu set addr,
pb2dfu set fulladdr, pb2dfu set inc, pb2dfu set restart addr)

2. several addressing modes - linear and indexed (pb2dfu set addr, pb2dfu set fulladdr,
pb2dfu set inc, pb2dfu set bound addr, pb2dfu set agflags)

• Communication protocol between accelerator and the host CPU

1. is more complicated - more functions pb2mb read data, pb2mb write data, pb2mb eoc,
pb2mb req reset, pb2mb reset must be used

2. is simpler. There is also another way how to transfer data. Functions mbpb exchange data,
read bce cmem u8, read bce cmem u16, write bce cmem u16.

7/22



6 Application Programming Interface

6.1 enum dfu bce operations

Purpose

enum dfu bce operations - codes of operations supported by accelerator’s data flow unit

Synopsis

enum dfu bce operations {
DFU VCOPY,
DFU VADD,
DFU VMUL,
DFU VMAC,
DFU DPROD,
DFU VSUB,
DFU VMSUBAC

};

Constants

DFU VCOPY
vector copying M0[i] = M1[j]

DFU VADD
vector addition M0[i] = M1[j] + M2[k]

DFU VMUL
vector multiplication M0[i] = M1[j] * M2[k]

DFU VMAC
vector multiply-accumulation M0[i] = M3[l] + (M1[j] * M2[k])

DFU DPROD
vector dot product M0[i] = sum(M1[j] * M2[k])

DFU VSUB
vector subtraction M0[i] = M1[j] - M2[k]

DFU VMSUBAC
vector multiply-accumulation M0[i] = M3[l] - (M1[j] * M2[k])

Description

These codes are used with functions pb2dfu start op and pd2dfu restart op to select operation
performed in the accelerator.

6.2 enum dfu ag indices

Purpose

enum dfu ag indices - Indices of DFU Arguments / Address Generators.

8/22



Synopsis

enum dfu ag indices {
DFUAG 0,
DFUAG 1,
DFUAG 2,
DFUAG 3

};

Constants

DFUAG 0
address generator 0 - virtual vector M0 - result of an operation

DFUAG 1
address generator 1 - virtual vector M1 - the first argument of an oper-
ation

DFUAG 2
address generator 2 - virtual vector M2 - the second argument of an
operation

DFUAG 3
address generator 3 - virtual vector M3 - the third argument of an oper-
ation

Description

These codes are used for selection which address generator will be adjusted with functions pb2dfu set ...
( addr, bank, fulladdr, inc, bound addr, agflags).

6.3 enum dfu idxag indices

Purpose

enum dfu idxag indices - Indices of slave (auxiliary) DFU Arguments / Address Generators.

Synopsis

enum dfu idxag indices {
DFUAG IDX 0,
DFUAG IDX 1,
DFUAG IDX 2,
DFUAG IDX 3

};

9/22



Constants

DFUAG IDX 0
slave (index) address generator 0

DFUAG IDX 1
slave (index) address generator 1

DFUAG IDX 2
slave (index) address generator 2

DFUAG IDX 3
slave (index) address generator 3

Description

These codes are used for selection which auxiliary address generator will be adjusted with functions
pb2dfu set ... ( addr, bank, fulladdr, inc, bound addr, agflags).

6.4 enum dfu data memories

Purpose

enum dfu data memories - Physical Local memory banks.

Synopsis

enum dfu data memories {
MBANK A,
MBANK B,
MBANK C,
MBANK D

};

Constants

MBANK A
Use data memory A

MBANK B
Use data memory B

MBANK C
Use data memory C

MBANK D
Use data memory D

Description

These constants are used with function pb2dfu set bank to assign a physical memory to an address
generator.

10/22



6.5 enum dfu ag flags

Purpose

enum dfu ag flags - Address generator flags/modes.

Synopsis

enum dfu ag flags {
AGFL USE IDX,
AGFL STEP IDXBND

};

Constants

AGFL USE IDX
Offset each address produced in the main AG by an index delivered
from the slave AG.

AGFL STEP IDXBND
Increment address of the main AG only when the slave AG is reaching
boundary.

Description

This is used in pb2dfu set agflags .

NOTE

The AGFL USE IDX and AGFL STEP IDXBND flags can be used independently. That is, it is possible
to step the main AG by the boundary condition of the slave AG, while not using the indices received
from it. However, the slave AG will still read data from the BRAM even if they are not used in the main
AG.

6.6 function mbpb exchange data

Purpose

mbpb exchange data - Exchange data with the host CPU.

Synopsis

unsigned char mbpb exchange data (unsigned char data)

Arguments

data
8bit data sending to the host CPU

Description

Exchange byte with microblaze using the barrier synchronization. This function blocks.

11/22



Return Value

The function returns 8bit data received from the host CPU.

6.7 function pb2mb report running

Purpose

pb2mb report running - Inform the host CPU that firmware is running

Synopsis

void pb2mb report running ()

Description

Sets the R and B bits in the CFG Status register to report that the firmware has sucessfully started
and is busy. This function does NOT block. It should be called immediately when picoblaze starts up.

NOTE

This could be integrated into picoblaze C library to be called automatically upon startup.

Return Value

The function doesn’t return any value.

6.8 function write bce id to cmem

Purpose

write bce id to cmem - Write the BCE ID into the cfg output memory.

Synopsis

void write bce id to cmem (unsigned char fam1)

Arguments

fam1
BCE ID which can be read with function wal get id in the host CPU
application.

Description

This function should be used as reaction to WAL OP GETID operation.

12/22



Return Value

The function doesn’t return any value.

6.9 function write dfu caps to cmem

Purpose

write dfu caps to cmem - copy DFU bitmap of capabilities from DFU to control memory

Synopsis

void write dfu caps to cmem ()

Description

Write the whole DFU capabilities bitmap (256bits = 32 B = 8 words) into the cfg output memory,
starting at address 0x81 of the ctrl/status memory. This function should be used as reaction to
WAL OP GETCAP operation.

Return Value

The function doesn’t return any value.

6.10 function read bce cmem u8

Purpose

read bce cmem u8 - Read u8 value from the BCE input cfg region.

Synopsis

unsigned char read bce cmem u8 (unsigned char cfgaddr, unsigned char byteidx)

Arguments

Description

cfgaddr = word address in the config mem. byteidx = [0; 3] Byte index, 0 = LL, 3 = HH

Return Value

The function doesn’t return any value.

13/22



6.11 function read bce cmem u16

Purpose

read bce cmem u16 - Read u16 value from the BCE input cfg region.

Synopsis

unsigned int read bce cmem u16 (unsigned char cfgaddr, unsigned char widx)

Arguments

Description

cfgaddr = word address in the config mem. widx = 0; 2 Word index, 0 = Lo, 2 = Hi

Return Value

The function doesn’t return any value.

6.12 function write bce cmem u16

Purpose

write bce cmem u16 - Write u16 value into BCE cfg memory.

Synopsis

void write bce cmem u16 (unsigned char cfgaddr, unsigned char widx, unsigned int dt)

Arguments

Description

The cfgaddr shall be in the output status region, ie. 0x80 - 0xff. widx = 0; 2 Word index, 0 = Lo, 2 = Hi

Return Value

The function doesn’t return any value.

6.13 function pcnt get dfutime

Purpose

pcnt get dfutime - Get time of the last DFU operation.

14/22



Synopsis

unsigned int pcnt get dfutime ()

Description

Get the running time in clock-cycles of the last DFU operation executed.

Return Value

The function returns value of 16bit DFU operation-time counter.

6.14 function pcnt get prgtime lo

Purpose

pcnt get prgtime lo - Get value of the programm running-time counter (lower 16bit).

Synopsis

unsigned int pcnt get prgtime lo ()

Description

Get the program running time in clock-cycles. The counter is 32b in total, thus we provide two functions
to access its lo/hi part.

Return Value

The function returns lower 16bit of the program running-time counter.

6.15 function pcnt get prgtime hi

Purpose

pcnt get prgtime hi - Get value of the programm running-time counter (higher 16bit).

Synopsis

unsigned int pcnt get prgtime hi ()

Description

Get the program running time in clock-cycles. The counter is 32b in total, thus we provide two functions
to access its lo/hi part.

15/22



Return Value

The function returns higher 16bit of the program running-time counter.

6.16 function pcnt reset prgtime

Purpose

pcnt reset prgtime - Reset the program running-time counter.

Synopsis

void pcnt reset prgtime ()

Description

Return Value

The function doesn’t return any value.

6.17 function get dfulic

Purpose

get dfulic - Read licence flag from DFU.

Synopsis

unsigned int get dfulic ()

Description

The function reads and returns DFU license counter.

Return Value

The function returns flag which indicates that the DFU licence is run out.

6.18 function pb2dfu wait4hw

Purpose

pb2dfu wait4hw - PB will wait for end of computation

Synopsis

unsigned char pb2dfu wait4hw ()

16/22



Description

The function waits for finishing computation in the accelerator. The function should be called before
subsequent run of the next operation. The next operation can be prepared before the waiting to speed
up the entire computation.

Return Value

Zero if ok, Non-zero on DFU error

6.19 function pb2dfu start op

Purpose

pb2dfu start op - start operation in DFU with specified length of data vectors

Synopsis

void pb2dfu start op (unsigned char op, unsigned int cnt)

Arguments

op
DFU operation (constants DFU xxx)

cnt
length of input data vectors

Description

The function covers two functions (pb2dfu set cnt and pb2dfu restart op).

Return Value

The function doesn’t return any value.

6.20 function pb2dfu restart op

Purpose

pb2dfu restart op - start operation in DFU

Synopsis

void pb2dfu restart op (unsigned char op)

Arguments

op
DFU operation (constants DFU xxx)

17/22



Description

All parameters of the operation must be set before this function. All parameters are registered and
so only changed parameters from previous operations must be set. On the other hand, the operation
must be always set because the function starts a required operation in the DFU.

Return Value

The function doesn’t return any value.

6.21 function pb2dfu set cnt

Purpose

pb2dfu set cnt - set length of input data vectors for the next operation

Synopsis

void pb2dfu set cnt (unsigned int cnt)

Arguments

cnt
length of input data vectors

Description

The function sets length of the input data vectors. The simple operations (as VADD, VMULT) will be
performed cnt-times as one pipelined operation.

Return Value

The function doesn’t return any value.

6.22 function pb2dfu set addr

Purpose

pb2dfu set addr - set the base address of vector for the given DFU argument

Synopsis

void pb2dfu set addr (unsigned char dfuag, unsigned int addr )

18/22



Arguments

dfuag
select the DFU argument number (constant DFUAG x)

addr
the initial address of the vector

Return Value

The function doesn’t return any value.

6.23 function pb2dfu set bank

Purpose

pb2dfu set bank - select bank for specified memory

Synopsis

void pb2dfu set bank (unsigned char dfuag, unsigned char mbank)

Arguments

dfuag
select the DFU argument number (constant DFUAG x)

Return Value

The function doesn’t return any value.

6.24 function pb2dfu set fulladdr

Purpose

pb2dfu set fulladdr - set full address (bank and offset) of the first element in the vector

Synopsis

void pb2dfu set fulladdr (unsigned char dfuag, unsigned char mbank, unsigned int addr )

Arguments

dfuag
select the DFU argument number (constant DFUAG x)

mbank
the memory bank which will be used for the next operation (constant
MBANK x)

addr
the initial address of the vector

19/22



Return Value

The function doesn’t return any value.

6.25 function pb2dfu set inc

Purpose

pb2dfu set inc - set the stride of the vector for the DFU argument

Synopsis

void pb2dfu set inc (unsigned char dfuag, int inc)

Arguments

dfuag
select the DFU argument number (constant DFUAG x)

inc
increment between two elements of vector

Return Value

The function doesn’t return any value.

6.26 function pb2dfu set bound addr

Purpose

pb2dfu set bound addr - set boundary addresses for vector accesses

Synopsis

void pb2dfu set bound addr (unsigned char dfuag, unsigned int lo bound, unsigned int hi bound )

Arguments

dfuag
select the DFU argument number (constant DFUAG x)

lo bound
lower addres boundary

hi bound
higher addres boundary

Return Value

The function doesn’t return any value.

20/22



6.27 function pb2dfu set agflags

Purpose

pb2dfu set agflags - set operation flags/mode of the specified address generator (DFU argument)

Synopsis

void pb2dfu set agflags (unsigned char dfuag, unsigned char agflags)

Arguments

dfuag
select the DFU argument number (constant DFUAG x)

agflags
bitmap of flags to set (constants AGFL x)

Return Value

The function doesn’t return any value.

6.28 function pb2dfu set repetitions

Purpose

pb2dfu set repetitions - set the number of repetitions of a DFU operation.

Synopsis

void pb2dfu set repetitions (unsigned char nrep)

Arguments

nrep
the number of times the following DFU operation will be restarted.

Return Value

The function doesn’t return any value.

21/22



References

[1] J. Kadlec and all, “D2.1 - preliminary report on platform dependent parameters and optimizations,”
August 2010. SMECY project deliverable D2.1.

[2] R. Bartosinski, “UTIA EdkDSP Platform, WAL - Worker Abstraction Layer,” March 2011. SMECY
project deliverable D2.2.

22/22


	1 Introduction
	2 Content of the programming interface
	3 How to use the programming interface
	3.1 Include API header file
	3.2 Use functions from API
	3.3 Build firmware binary
	3.4 Example of firmware with the API

	4 User's point of view to computation in DFU
	5 Changes from the previous version
	6 Application Programming Interface
	6.1 enum dfu_bce_operations
	6.2 enum dfu_ag_indices
	6.3 enum dfu_idxag_indices
	6.4 enum dfu_data_memories
	6.5 enum dfu_ag_flags
	6.6 function mbpb_exchange_data
	6.7 function pb2mb_report_running
	6.8 function write_bce_id_to_cmem
	6.9 function write_dfu_caps_to_cmem
	6.10 function read_bce_cmem_u8
	6.11 function read_bce_cmem_u16
	6.12 function write_bce_cmem_u16
	6.13 function pcnt_get_dfutime
	6.14 function pcnt_get_prgtime_lo
	6.15 function pcnt_get_prgtime_hi
	6.16 function pcnt_reset_prgtime
	6.17 function get_dfulic
	6.18 function pb2dfu_wait4hw
	6.19 function pb2dfu_start_op
	6.20 function pb2dfu_restart_op
	6.21 function pb2dfu_set_cnt
	6.22 function pb2dfu_set_addr
	6.23 function pb2dfu_set_bank
	6.24 function pb2dfu_set_fulladdr
	6.25 function pb2dfu_set_inc
	6.26 function pb2dfu_set_bound_addr
	6.27 function pb2dfu_set_agflags
	6.28 function pb2dfu_set_repetitions


