
UTIA EdkDSP Platform
WAL - Worker Abstraction Layer

Roman Bartosinski

bartosr@utia.cas.cz

Revision

Revision Date Author Description
0 11.3.2011 Bartosinski document created from DocBook version
1 5.10.2011 Bartosinski added support for workers connected through DMA

© 2011 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved.

Contents

1 Introduction 1

2 How to use the programming interface in an application 1
2.1 Introduction . 1
2.2 Include header files of the programming interface . 1
2.3 Define worker structure . 2
2.4 Add interface to compilation process . 3
2.5 Initiate worker . 4
2.6 How to use worker . 4
2.7 Functions in the WAL API . 6

3 WAL Application Programming Interface 9
3.1 enum wal worker class ids . 9
3.2 enum wal bce ids . 9
3.3 function wal id class . 10
3.4 function wal id group . 11
3.5 function wal id family . 11
3.6 enum wal ctrl memories indices . 12
3.7 enum wal picoblaze indices . 12
3.8 struct wal worker . 13
3.9 function WAL REGISTER WORKER NATIVE . 14
3.10 function WAL REGISTER WORKER DMA . 15
3.11 enum wal bce jk family ids . 16
3.12 enum wal bce jk data memories . 16
3.13 enum wal bce jk support memories . 17
3.14 enum wal bce jk operation codes . 17
3.15 enum wal bce jk capabilities . 20
3.16 enum wal bce jsy data memories . 22
3.17 enum wal dma start modes . 22
3.18 function wal dma configure . 23
3.19 function wal dma start . 24
3.20 function wal dma isbusy . 24
3.21 function wal init worker . 25
3.22 function wal done worker . 25
3.23 function wal reset worker . 26
3.24 function wal start operation . 26
3.25 function wal end operation . 27
3.26 function wal is busy . 28
3.27 function wal mb2pb . 28
3.28 function wal pb2mb . 29
3.29 function wal mb2cmem . 29
3.30 function wal cmem2mb . 30
3.31 function wal mb2dmem . 31
3.32 function wal dmem2mb . 32
3.33 function wal set firmware . 33
3.34 function wal get id . 34
3.35 function wal get capabilities . 34
3.36 function wal get license . 35

ii

Acknowledgement

The research leading to these result has received funding from the ARTEMIS Joint Undertaking under
grant agreement n°100230 and from the MSMT 7H10001.

iii

1 Introduction

This document describes Worker Abstraction Layer (WAL) which is an application programming in-
terface for accessing hardware accelerators based on UTIA EdkDSP platform [1]. The interface is
designed to simplify and generalize access from user applications running on the host CPU. Working
with accelerators is partially the same for all accelerator and partially special for each type of acceler-
ator. Therefore the interface is divided into common part and a specific parts.

Figure 1: Basic Computing Element in a system on a chip - data paths through the host CPU and DMA

The document describes functions and constants in the API, it also describes how to use the API
in user applications. Version 1.0 of the API is described in the document.

2 How to use the programming interface in an application

2.1 Introduction

The WAL library offers generalised API for using in an application. The library is too close to hardware
and therefore it is divide into two parts - common functions and functions specific for each kind of
worker. The common part hides differences between workers.

The following steps must be done to use WAL in an application:

• Add library to compilation process

• Include header files of the library

• Define worker structure or use the WAL REGISTER WORKER macro

• Initiate worker

• Use common or specific functions from WAL to work with worker (set worker firmware, run oper-
ations, ...)

Workers with data memories connected through DMA need different informations in worker structure,
therefore specific issues for DMA are noted at the end of each subsection and labeled DMA: .

2.2 Include header files of the programming interface

The main wal.h header file must be included in the application. It contains the common part of the API.
The next header is a specific part for the used worker and the name of the specific header depends

1/37

on its implementation. In this example, the specific part of the interface for Basic Computing Element
(BCE) workers designed in UTIA is in the files wal bce jk.h, wal bce jk.c.

Other header file included to the application is from a hardware accelerator low-level driver gener-
ated by the Xilinx tools. In the example, it is file ’bce fp01 1x1 0 plbw.h’. Configuration structure of the
hardware accelerator is defined in the driver and declared in the included header files. Example of an
include part in the application for including WAL is in the following listing

#include <wal.h>

#include <wal_bce_jk.h>

#include <bce_fp01_1x1_0_plbw.h>

DMA
A new version of BCE which uses DMA needs defined symbol WAL NATIVE DMA

before including WAL header files.

#define WAL_NATIVE_DMA

#include <wal.h>

#include <wal_bce_dma.h>

#include <bce_dma_config.h>

2.3 Define worker structure

Worker structure can be defined and prepared by the WAL REGISTER WORKER macro. The macro de-
fines pointers to shared data/control memories, define worker structure and interconnect the worker
structure with configuration table defined in the driver of the hardware IP core and with a part of the
WAL library specific for the IP core. The macro is designed for static definition of the worker and it
defines all items in the scope of code where it is used, i.e. the worker can be defined globally for entire
application or locally in one function.

The WAL REGISTER WORKER macro has these arguments:

1. A name of the worker and a name of a pointer to the worker structure. The pointer is used as the
first argument of all other functions from the WAL API.

2. A name of the worker family specific for the hardware IP core. (In this example it is defined in the
wal bce jk.h.)

3. A name of the configuration structure of the hardware IP core defined in the generated low-level
driver. (In this example it is declared in the bce fp01 1x1 0 plbw.h.)

4. An index to the configuration structure of the hardware IP core. Normally it is equal to zero but if
more instances are used it is different for each instance of the same type of IP core.

5. Number of SIMD units enabled in the hardware accelerator. Maximal number is defined in the
worker family description structure in the specific part of the library (In this example it is defined
in the wal bce jk.h.).

6. Number of supported memories enabled in the worker. Maximal number is defined in the worker
family description structure in the specific part of the library (In this example it is defined in the
wal bce jk.h.).

Example of registering

WAL_REGISTER_WORKER(worker, BCE_JK_FP32M24,

BCE_FP01_1X1_0_PLBW_ConfigTable, 0, 1, 0);

2/37

DMA
Example of registering worker (BCE DMA family, 4 data memories)

WAL_REGISTER_WORKER(worker, BCE_DMA_GENERIC_4D, bce_dma_cfgtable, 0, 1, 0);

2.4 Add interface to compilation process

There are several ways how to add the WAL programming interface to compilation process. It depends
if the interface is as source codes or static library and if the compilation is under Xilinx XPS or from
command line.

If the interface is in source codes, they can be simply added next to a source code of the application
and build together. In the XPS environment it is done by adding files of the interface as sources and
headers to a software project, low-level driver is automatically accessible and therefore it isn’t in the
project.

Software Projects

’- Project: Application

|- Processor: microblaze_0

|- Executable: application.elf

|- Compiler Options

|- Sources

| |- appl.c

| |- wal.c

| ’- wal_bce_jk.c

’- Headers

|- wal.h

’- wal_bce_jk.h

From command line, it can be done by compiling sources of the API to object files and then adding
them to link together with application object files. For our example it can be done with the following
commands (for standalone MicroBlaze system, all source codes are in the current directory).

compile library

mb-gcc -c -o wal.o wal.c

mb-gcc -c -o wal_bce_jk.o wal_bce_jk.c

compile low-level driver from EDK

mb-gcc -c -o bce_fp01_1x1_0_plbw.o bce_fp01_1x1_0_plbw.c

mb-gcc -c -o bce_fp01_1x1_0_plbw_g.o bce_fp01_1x1_0_plbw_g.c

compile application

mb_gcc -c -o appl.o appl.c

build application (link all objects together)

mb-gcc -o application.elf wal.o wal_bce_jk.o bce_fp01_1x1_0_plbw.o

bce_fp01_1x1_0_plbw_g.o appl.o

In case, when the API is distributed as a static library (as a file libwal.a and header files) the
header files must be accessible during compilation and the library (libwal.a) must be added to linker.
Under Xilinx XPS studio it is done by setting compilation options. Search paths for libraries and header
files must be set on the ’Path and Options’ pane. And name of the library ’wal’ must be added into the
’Libraries to Link against’ item.

From command line, the static library is added to compilation with the argument ’-l’ and the direc-
tory, where the library is, is added with the argument ’-L’. The low-level driver genereted with XPS tools
must be also compiled and link together.

3/37

compile low-level driver from EDK

mb-gcc -c -o bce_fp01_1x1_0_plbw.o bce_fp01_1x1_0_plbw.c

mb-gcc -c -o bce_fp01_1x1_0_plbw_g.o bce_fp01_1x1_0_plbw_g.c

compile application

mb_gcc -c -I../libwal -o appl.o appl.c

build application (link all objects and the library together)

mb-gcc -o application.elf -lwal -L../libwal appl.o

bce_fp01_1x1_0_plbw.o bce_fp01_1x1_0_plbw_g.o

2.5 Initiate worker

The worker initialization is done by calling the function wal init worker with pointer to the worker
structure, which must have filed at least pointer to worker family description structure; arrays of pointers
to shared memories and their quantities; and pointer to an IPcore configuration structure defined in the
IP core low-level driver generated by XPS. The function get the IP core interface structure and then
obtain pointers to shared memories according to their names.

Example of worker initialization in the application:

if (wal_init_worker(worker)!=WAL_RES_OK) {

printf("Init worker failed\n");

return -1;

}

DMA
A new version of BCE accelerator can be reseted by application. It should be done
directly after worker initiation.

wal_init_worker(worker);

wal_reset_worker(worker);

2.6 How to use worker

The worker can be used immediately after its initialization by calling functions from WAL API. Because
the worker mostly doesn’t contain any firmware at beginning and it needs a firmware for working, the
first called function is for setting firmware. Then the application can obtain worker capabilities, writes
data to worker data memories, runs operations on the worker and reads results from worker data
memories.

A simple application for sum operation in the hardware accelerator is in the following listing

#include <stdio.h>

#include <wal.h>;

#include <wal_bce_jk.h>;

#include <bce_fp01_1x1_0_plbw.h>;

#include <worker_firmware.h>;

/* data array with worker firmware prepared with pb-toolchain */

/* define worker - BCE_JK_FP32M24 family, first instance of the

BCE_FP01_1X1_0_PLBW HW core, with one SIMD, no support memories */

WAL_REGISTER_WORKER(worker, BCE_JK_FP32M24,

BCE_FP01_1X1_0_PLBW_ConfigTable, 0, 1, 0);

4/37

int main(void) {

unsigned int caps;

float input1[5] = {123.456, 23.45, 3.4, 0.123, 1.23};

float output = 0;

/* initiate worker */

if (wal_init_worker(worker)!=WAL_RES_OK) {

printf("Init WAL failed");

return -1;

}

/* set firmware (array of uint with PB program) to the worker */

if (wal_set_firmware(worker, WAL_PBID_P0, worker_firmware, -1)

printf("Couldn’t load fw to PB0\n");

return -1;

}

/* get worker capabilities - they are defined in the ’wal_bce_jk.h’ */

if (wal_get_capabilities(worker, WAL_PBID_P0, &caps)) {

printf("Couldn’t read hw capabilities\n");

return -1;

}

printf("Worker capabilities are %x\r\n", caps);

/* write data to worker - copy 5 values from input1 to the accelerator

first data memory B (SIMD=1 therefore we have only first set of

memories) with offset 10 */

wal_mb2dmem(worker, 0, WAL_BCE_JK_DMEM_B, 10, &input1[0], 5);

/* run operation on the accelerator - it depends on the PB firmware */

wal_start_operation(worker, WAL_PBID_P0);

/* send 8bit parameters to PB firmware through control register -

it depends on the PB firmware */

wal_mb2pb(worker, SUM_OPERATION); /* do SUM of input data */

wal_mb2pb(worker, 5); /* from 5 values */

wal_mb2pb(worker, WAL_BCE_JK_DMEM_B); /* from data memory B */

wal_mb2pb(worker, 10); /* with offset 10 */

wal_mb2pb(worker, WAL_BCE_JK_DMEM_Z); /* result save into Z memory */

wal_mb2pb(worker, 0); /* with offset 0 */

/* wait for accelerator is done and stop operation -

it depends on the PB firmware */

result = wal_pb2mb(worker, NULL);

wal_end_operation(worker);

/* read result from accelerator data memory */

wal_dmem2mb(worker, 0, WAL_BCE_JK_DMEM_Z, 0, &output, 1);

/* print output */

printf("Result of the SUM hw operation is %f\n", output);

}

DMA

5/37

There are two ways how to transfer data between shared outside memory (DDR
memory) and worker’s local memories. The first way is the same as for the pre-
vious version of BCE accelerator with functions wal mb2dmem and wal dmem2mb.
This functions always use the first free DMA channel and wait for finishing of the
transfer.
The second way is based on using special functions for configuring and starting
DMA transfers and checking when transfers finish. Example how can be function
wal mb2dmem replace:

float a[5];

wal_mb2dmem(worker, 0, WAL_BCE_JSY_DMEM_B, 10, &a[0], 5);

⇓

float a[5];

int chan = 0;

wal_dma_configure(worker, chan, &a[0], 0, WAL_BCE_JSY_DMEM_B, 10, 5);

wal_dma_start(worker, chan, WAL_DMA_REQ_RD);

while(wal_dma_isbusy(worker, 0x01))

;

2.7 Functions in the WAL API

The interface contains several functions for using in an application. These functions can be divided
into groups according to their purpose (see the table below). All functions have a pointer to the worker
as the first argument and therefore there can be more workers (and also more instancies of the same
worker) in an application. All functions in the library have names which begin with the ’wal ’ prefix.
Detailed descriptions of all functions are in the next chapter.

All constants in the WAL API have names which begins with the ’WAL ’ prefix. In the following
table there are prefixes for all common group of constants and for some of constants specific for
implemented worker families. All constants are listed in detail in the next section.

All functions in the WAL library should return a return code. A positive value of the code means
’warning’, i.e. the function hasn’t been processed correctly but probably regarding to wrong input
arguments. A negative value means ’error’, and the returned zero means processing of the function
was successful. One exeption is function wal is busy which returns either error code WAL RES Exx or
0/1 as result of test. All defined return codes are in the following table:

6/37

Table 1: Functions in WAL API for using in applications
Function Description

Init/Done functions
wal init worker Initiate worker
wal done worker Cleanup and release worker (not used)
Basic control functions
wal reset worker Send hard reset to the worker - set control part to the default state
wal start operation Select and run preloaded firmware in the worker
wal end operation Send request with reset to the worker (stop operating)
wal is busy Test if the worker is currently busy (It is a non-blocking operation)
wal mb2pb Set control word of the worker (and also send data to accelerator’s

controller)
wal pb2mb Read status word of the worker (and also read data from acceler-

ator’s controller)
Functions for working with control memories
wal mb2cmem Copy block of data to any shared control memory (worker

firmwares, control registers, support memories)
wal cmem2mb Copy block of data from any shared control memory (status regis-

ters, support memories)
Functions for working with data memories
wal mb2dmem Copy block of data to any shared data memory (specific for each

worker)
wal dmem2mb Copy block of data from any shared data memory (specific for each

worker)
Common support functions
wal set firmware Copy worker firmware to selected position
wal get id Read worker ID (it can be read from the hardware or returned as a

constant from software - it depends on implementation
wal get capabilities Read worker capabilities (it depends on implementation of the

worker)
wal get license Read worker license (it depends on implementation of the worker)
Data transfer through DMA
wal dma configure Configure DMA channel to transfer data between DDR and

worker’s data memory
wal dma start Start DMA transfer for selected worker and DMA channel
wal dma isbusy Read state of DMA channels

7/37

Table 2: Constants declared in the WAL library
Group of constants Description
Common groups of constants
WAL ID IDs of worker classes
WAL BCE ID IDs of worker groups of families for the BCE class
WAL GCE ID IDs of worker groups of families for the GCE class
WAL OP IDs of common operations which all new worker should use.

There are three common operations: get id, get capabilities and
get license.

WAL RES returned codes of all functions in the WAL API. See to the next
table

WAL CMEM IDs of all common control memories (probably they shouldn’t be
used directly in applications)

WAL PBID IDs of firmware of the PicoBlaze which is run with in the function
WAL WRK STATE IDs of the current state of workers
Constants specific for BCE JK worker families
WAL BCE JK ID IDs of worker families in the BCE JK group of families
WAL BCE JK DMEM IDs of data memories in the BCE JK group of families
WAL BCE JK SMEM IDs of support memories in the BCE JK group of families
WAL BCE JK V codes of hardware accelerator operations in the BCE JK group of

families
WAL BCE JK CAP V codes of accelerator capabilities of workers from the BCE JK

group of families
Constants specific for BCE JSY and BCE DMA worker families
WAL BCE JSY DMEM IDs of data memories in BCE JSY and BCE DMA group of families
WAL DMA REQ flags which set DMA transfer

Table 3: Error codes returned by all functions in the WAL library
Name Value Description
Success
WAL RES OK 0 Function finished with success
Warnings
WAL RES WNULL 1 An unimportant argument is NULL
Errors
WAL RES ERR -1 Generic unspecified error
WAL RES ENOINIT -2 Worker hasn’t be initiated
WAL RES ENULL -3 A mandatory argument is equal to NULL
WAL RES ERUNNING -4 The function cannot be processed if the worker is working
WAL RES ERANGE -5 Value of any function argument is out of the allowed bound-

eries

8/37

3 WAL Application Programming Interface

This section contains detailed description of all functions and constants in the API.

3.1 enum wal worker class ids

Purpose

enum wal worker class ids - List of IDs of known worker classes

Synopsis

enum wal worker class ids {
WAL ID UNKNOWN,
WAL ID BCE,
WAL ID GCE,
WAL ID DEVEL

};

Constants

WAL ID UNKNOWN
unknown or unassigned class

WAL ID BCE
Basic Computing Elements class

WAL ID GCE
Graphic Computing Elements class

WAL ID DEVEL
Special ID for a new CE under development unfiled to WAL

Description

This IDs identify the worker class. The (8bit) class ID is the first byte (MSB) of a returned 32bit value
from the wal get id function.

3.2 enum wal bce ids

Purpose

enum wal bce ids - List of IDs of known groups of families under the BCE class

9/37

Synopsis

enum wal bce ids {
WAL BCE ID UNKNOWN,
WAL BCE ID JK,
WAL BCE ID HK,
WAL BCE ID RB,
WAL BCE ID JSY,
WAL BCE ID DMA

};

Constants

WAL BCE ID UNKNOWN
unknown or unassigned group of BCE worker families

WAL BCE ID JK
worker group of families provided by J.Kadlec

WAL BCE ID HK
worker group of families provided by H.Kloub

WAL BCE ID RB
worker group of families provided by R.Bartosinski

WAL BCE ID JSY
– undescribed –

WAL BCE ID DMA
– undescribed –

Description

This IDs identify worker group of families in the BCE class. In this version, a worker group of families
implemented and provided by one author or maintainer. The (8bit) ID of group of families is the second
byte (big endian) of a returned 32bit value from the wal get id function.

3.3 function wal id class

Purpose

wal id class - macro for extracting the class ID from full ID

Synopsis

wal id class (id)

Arguments

id
full worker ID

10/37

Description

The macro extracts the 8bit ID of worker class from a full 32bit ID returned by the wal get id function.

3.4 function wal id group

Purpose

wal id group - macro for extracting ID of group of families from full ID

Synopsis

wal id group (id)

Arguments

id
full worker ID

Description

The macro extracts the 8bit ID of worker group of families from a full 32bit ID returned by the wal get id
function. The family ID is dependent on the worker class.

3.5 function wal id family

Purpose

wal id family - macro for extracting worker family(user) ID from full ID

Synopsis

wal id family (id)

Arguments

id
full worker ID

Description

The macro extracts the 16bit worker family/user ID from a full 32bit ID returned by the wal get id
function. The user ID is dependent on the worker class and group of families. It should contain
number of SIMD for dynamically allocated resources.

11/37

3.6 enum wal ctrl memories indices

Purpose

enum wal ctrl memories indices - list of the control memories of the worker

Synopsis

enum wal ctrl memories indices {
WAL CMEM MB2PB,
WAL CMEM PB2MB,
WAL CMEM P0,
WAL CMEM P1,
WAL CMEM NUM MEMORIES

};

Constants

WAL CMEM MB2PB
index to MB2PB control memory (the control register of the worker)

WAL CMEM PB2MB
index to PB2MB control memory (the status register of the worker)

WAL CMEM P0
index to P0 control memory (PicoBlaze program memory 1)

WAL CMEM P1
index to P1 control memory (PicoBlaze program memory 2)

WAL CMEM NUM MEMORIES
number of all defined control memories

Description

These indices correspond to an array of names of the control memories. Each family and its members
can define their own control memories and their names in the family description structure.

3.7 enum wal picoblaze indices

Purpose

enum wal picoblaze indices - list of indices of the PicoBlaze firmwares

Synopsis

enum wal picoblaze indices {
WAL PBID P0,
WAL PBID P1,
WAL PBID NUM

};

12/37

Constants

WAL PBID P0
index of the PicoBlaze firmware 0

WAL PBID P1
index of the PicoBlaze firmware 1

WAL PBID NUM
number of all defined PB firmwares

Description

These indices are used as one parameter in some wal functions, where PB firmware must be select
(e.g. wal set firmware).

3.8 struct wal worker

Purpose

wal worker - structure describes instance of a worker family

Synopsis

struct wal worker {
int struct ver ;
const char * name ;
const struct wal family desc * fm desc ;
void * inst cfg tbl ;
union wal worker memgroup ctrl mems ;
union wal worker memgroup data mems ;
int num simd ;
int num smems ;
unsigned int op state ;
int op runmode ;
void * userdata ;

};

13/37

Members

struct ver
version of the worker description structure - should be set when structure is cre-
ated (registered) (the current version is WAL DESC STRUCT VERSION 1)

name
name of worker instance

fm desc
pointer to worker family description structure

inst cfg tbl
pointer to worker IPcore instance config table - must be set before calling init
function

ctrl mems
pointer to an array of pointers to shared memories for control and support memo-
ries

data mems
pointer to on array of pointers to shared memories for data

num simd
number of used SIMD in the worker instance (the value cannot be greater than
fm desc->nmax simd.

num smems
number of support memories used in the worker instance (the value cannot be
greater than fm desc->nmax supp mems).

op state
the current state of operation in the instance

op runmode
HW runmode used in the current operation (automatically saved by the start op
function and cleared in end op function)

userdata
pointer to a user data or NULL

Description

The worker structure describes instance of a worker family. It interconnect worker family description
structure (description of shared memories and control functions) with IPcore configuration table (de-
scription of hardware) and arrays of pointers to initiated shared memories.

3.9 function WAL REGISTER WORKER NATIVE

Purpose

WAL REGISTER WORKER NATIVE - macro for statical registering worker instance

Synopsis

WAL REGISTER WORKER NATIVE (wname, wtype, wcfgtbl, winstidx, wsimd num, wnum smems)

14/37

Arguments

wname
name of a new worker (and name of the worker structure

wtype
type of worker - part of name used to identify worker family descriptions

wcfgtbl
name of IPcore config table (only name without index)

winstidx
value of instance (used as index to IPcore config table)

wsimd num
number of SIMD used in the worker

wnum smems
number of support memories used in the worker

the following values and structure must be defined

WAL <wtype> MAX SIMD WAL <wtype> DMEM NUM MEMORIES WAL <wtype> CMEM NUM MEMORIES
WAL <wtype> SMEM NUM MEMORIES wal <wtype> description structure

Description

The macro declares all required shared memories and prepares structure of the worker instance and
pointer to the structure with specified name wname.

3.10 function WAL REGISTER WORKER DMA

Purpose

WAL REGISTER WORKER DMA - macro for statical registering worker instance

Synopsis

WAL REGISTER WORKER DMA (wname, wtype, wcfgtbl, winstidx, wsimd num, wnum smems)

Arguments

wname
name of a new worker (and name of the worker structure

wtype
type of worker - part of name used to identify worker family descriptions

wcfgtbl
name of IPcore config table (only name without index)

winstidx
value of instance (used as index to IPcore config table)

wsimd num
number of SIMD used in the worker

wnum smems
number of support memories used in the worker

15/37

the following values and structure must be defined

WAL <wtype> MAX SIMD WAL <wtype> DMEM NUM MEMORIES WAL <wtype> CMEM NUM MEMORIES
WAL <wtype> SMEM NUM MEMORIES wal <wtype> description structure

Description

The macro declares all required shared memories and prepares structure of the worker instance and
pointer to the structure with specified name wname.

3.11 enum wal bce jk family ids

Purpose

enum wal bce jk family ids - family identifications in the BCE JK group of families

Synopsis

enum wal bce jk family ids {
WAL BCE JK ID UNKNOWN,
WAL BCE JK ID FP32M24

};

Constants

WAL BCE JK ID UNKNOWN
unknown family in the BCE JK worker group of families

WAL BCE JK ID FP32M24
the original family with 32bit floating point, 24bit mantisa

3.12 enum wal bce jk data memories

Purpose

enum wal bce jk data memories - indices to BCE JK data memories

Synopsis

enum wal bce jk data memories {
WAL BCE JK DMEM A,
WAL BCE JK DMEM B,
WAL BCE JK DMEM Z,
WAL BCE JK DMEM NUM MEMORIES

};

16/37

Constants

WAL BCE JK DMEM A
index of the A data memory

WAL BCE JK DMEM B
index of the B data memory

WAL BCE JK DMEM Z
index of the Z data memory

WAL BCE JK DMEM NUM MEMORIES
number of data memories in the BCE JK families

3.13 enum wal bce jk support memories

Purpose

enum wal bce jk support memories - indices to BCE JK support memories

Synopsis

enum wal bce jk support memories {
WAL BCE JK SMEM MB2SM1,
WAL BCE JK SMEM MB2SM2,
WAL BCE JK SMEM MB2SM3,
WAL BCE JK SMEM MB2SM4

};

Constants

WAL BCE JK SMEM MB2SM1
index to the first support memory for the BCE JK families family. It is the
first index after indices to control memories (WAL BCE JK SMEM MB2SM1 =
WAL CMEM NUM MEMORIES)

WAL BCE JK SMEM MB2SM2
index to the second support memory for the BCE JK families

WAL BCE JK SMEM MB2SM3
index to the third support memory for the BCE JK families

WAL BCE JK SMEM MB2SM4
index to the fourth support memory for the BCE JK families

Description

All BCE JK support memories are used for cosimulation only.

3.14 enum wal bce jk operation codes

Purpose

enum wal bce jk operation codes - worker operations known to BCE JK group of families

17/37

Synopsis

enum wal bce jk operation codes {
WAL BCE JK VVER,
WAL BCE JK VZ2A,
WAL BCE JK VB2A,
WAL BCE JK VZ2B,
WAL BCE JK VA2B,
WAL BCE JK VADD,
WAL BCE JK VADD BZ2A,
WAL BCE JK VADD AZ2B,
WAL BCE JK VSUB,
WAL BCE JK VSUB BZ2A,
WAL BCE JK VSUB AZ2B,
WAL BCE JK VMULT,
WAL BCE JK VMULT BZ2A,
WAL BCE JK VMULT AZ2B,
WAL BCE JK VPROD,
WAL BCE JK VMAC,
WAL BCE JK VMSUBAC,
WAL BCE JK VPROD S2,
WAL BCE JK VFP2SP,
WAL BCE JK VSP2FP,
WAL BCE JK VDIV

};

18/37

Constants

WAL BCE JK VVER
return version of HW (capabilities) in the Z data memory (simdID=0)

WAL BCE JK VZ2A
copy vector a[i] ≤ z[j]

WAL BCE JK VB2A
copy vector a[i] ≤ b[j]

WAL BCE JK VZ2B
copy vector b[i] ≤ z[j]

WAL BCE JK VA2B
copy vector b[i] ≤ a[j]

WAL BCE JK VADD
add vectors z[i] ≤ a[j] + b[k]

WAL BCE JK VADD BZ2A
add vectors a[i] ≤ b[j] + z[k]

WAL BCE JK VADD AZ2B
add vectors b[i] ≤ a[j] + z[k]

WAL BCE JK VSUB
sub vectors z[i] ≤ a[j] - b[k]

WAL BCE JK VSUB BZ2A
sub vectors a[i] ≤ b[j] - z[k]

WAL BCE JK VSUB AZ2B
sub vectors b[i] ≤ a[j] - z[k]

WAL BCE JK VMULT
mult vectors z[i] ≤ a[j] * b[k]

WAL BCE JK VMULT BZ2A
mult vectors a[i] ≤ b[j] * z[k]

WAL BCE JK VMULT AZ2B
mult vectors b[i] ≤ a[j] * z[k]

WAL BCE JK VPROD
vector product z ≤ a’[i..i+nn]*b[i..i+nn]

WAL BCE JK VMAC
vector MAC z[i] ≤ z[i] - a[j]*b[k] 1..13.

WAL BCE JK VMSUBAC
vector MSUBAC z[i] ≤ z[i] - a[j]*b[k] 1..13.

WAL BCE JK VPROD S2
vector product extended z ≤ (a1’[i..i+nn]*b1[i..i+nn]
+ a2’[i..i+nn]*b2[i..i+nn]) the same code has the
WAL BCE JK VPROD S4 operation z ≤ (a1’[i..i+nn]*b1[i..i+nn]
+ a2’[i..i+nn]*b2[i..i+nn])+ (a3’[i..i+nn]*b3[i..i+nn] +
a4’[i..i+nn]*b4[i..i+nn]) and the WAL BCE JK VPROD S8 op-
eration z ≤ ((a1’[i..i+nn]*b1[i..i+nn]+a2’[i..i+nn]*b2[i..i+nn])+
(a3’[i..i+nn]*b3[i..i+nn]+a4’[i..i+nn]*b4[i..i+nn])) +
((a5’[i..i+nn]*b5[i..i+nn]+a6’[i..i+nn]*b6[i..i+nn])+
(a7’[i..i+nn]*b7[i..i+nn]+a8’[i..i+nn]*b8[i..i+nn]))

WAL BCE JK VFP2SP
vector conversion from proprietary FP to 32m24 single precision FP

WAL BCE JK VSP2FP
vector conversion from 32m24 single precision FP to proprietary FP

WAL BCE JK VDIV
vector division

19/37

3.15 enum wal bce jk capabilities

Purpose

enum wal bce jk capabilities - BCE JK possible worker capabilities

Synopsis

enum wal bce jk capabilities {
WAL BCE JK CAP VVER,
WAL BCE JK CAP VZ2A,
WAL BCE JK CAP VB2A,
WAL BCE JK CAP VZ2B,
WAL BCE JK CAP VA2B,
WAL BCE JK CAP VADD,
WAL BCE JK CAP VADD BZ2A,
WAL BCE JK CAP VADD AZ2B,
WAL BCE JK CAP VSUB,
WAL BCE JK CAP VSUB BZ2A,
WAL BCE JK CAP VSUB AZ2B,
WAL BCE JK CAP VMULT,
WAL BCE JK CAP VMULT BZ2A,
WAL BCE JK CAP VMULT AZ2B,
WAL BCE JK CAP VPROD,
WAL BCE JK CAP VMAC,
WAL BCE JK CAP VMSUBAC,
WAL BCE JK CAP VPROD S2,
WAL BCE JK CAP VFP2SP,
WAL BCE JK CAP VSP2FP,
WAL BCE JK CAP VDIV

};

20/37

Constants

WAL BCE JK CAP VVER
worker supports getting version of HW (capabilities)

WAL BCE JK CAP VZ2A
worker supports function copy vector a[i] ≤ z[j]

WAL BCE JK CAP VB2A
worker supports function copy vector a[i] ≤ b[j]

WAL BCE JK CAP VZ2B
worker supports function copy vector b[i] ≤ z[j]

WAL BCE JK CAP VA2B
worker supports function copy vector b[i] ≤ a[j]

WAL BCE JK CAP VADD
worker supports function add vectors z[i] ≤ a[j] + b[k]

WAL BCE JK CAP VADD BZ2A
worker supports function add vectors a[i] ≤ b[j] + z[k]

WAL BCE JK CAP VADD AZ2B
worker supports function add vectors b[i] ≤ a[j] + z[k]

WAL BCE JK CAP VSUB
worker supports function sub vectors z[i] ≤ a[j] - b[k]

WAL BCE JK CAP VSUB BZ2A
worker supports function sub vectors a[i] ≤ b[j] - z[k]

WAL BCE JK CAP VSUB AZ2B
worker supports function sub vectors b[i] ≤ a[j] - z[k]

WAL BCE JK CAP VMULT
worker supports function mult vectors z[i] ≤ a[j] * b[k]

WAL BCE JK CAP VMULT BZ2A
worker supports function mult vectors a[i] ≤ b[j] * z[k]

WAL BCE JK CAP VMULT AZ2B
worker supports function mult vectors b[i] ≤ a[j] * z[k]

WAL BCE JK CAP VPROD
worker supports function vector product z ≤ a’[i..i+nn]*b[i..i+nn]

WAL BCE JK CAP VMAC
worker supports function vector MAC z[i] ≤ z[i] - a[j]*b[k] 1..13.

WAL BCE JK CAP VMSUBAC
worker supports function vector MSUBAC z[i] ≤ z[i] - a[j]*b[k] 1..13.

WAL BCE JK CAP VPROD S2
worker supports function vector product extended z ≤
(a1’[i..i+nn]*b1[i..i+nn] + a2’[i..i+nn]*b2[i..i+nn]) the same flag is for
SIMD 4 (WAL BCE JK CAP VPROD S4) and the same flag is for
SIMD 8 (WAL BCE JK CAP VPROD S8)

WAL BCE JK CAP VFP2SP
worker supports function vector conversion from proprietary FP to
32m24 single precision FP

WAL BCE JK CAP VSP2FP
worker supports function vector conversion from 32m24 single precision
FP to proprietary FP

WAL BCE JK CAP VDIV
worker supports function vector division

21/37

3.16 enum wal bce jsy data memories

Purpose

enum wal bce jsy data memories - indices to BCE JSY data memories

Synopsis

enum wal bce jsy data memories {
WAL BCE JSY DMEM A,
WAL BCE JSY DMEM B,
WAL BCE JSY DMEM C,
WAL BCE JSY DMEM D,
WAL BCE JSY DMEM NUM MEMORIES

};

Constants

WAL BCE JSY DMEM A
index of the A data memory

WAL BCE JSY DMEM B
index of the B data memory

WAL BCE JSY DMEM C
index of the C data memory

WAL BCE JSY DMEM D
index of the D data memory

WAL BCE JSY DMEM NUM MEMORIES
number of data memories in the BCE JSY families

3.17 enum wal dma start modes

Purpose

enum wal dma start modes - flags to configure DMA transfer between a DDR memory and a worker’s
data memory

Synopsis

enum wal dma start modes {
WAL DMA REQ WR,
WAL DMA REQ RD,
WAL DMA REQ STRUPDATE,
WAL DMA REQ BRAMUPDATE

};

22/37

Constants

WAL DMA REQ WR
DMA will transfer data from a worker to the DDR memory

WAL DMA REQ RD
DMA will transfer data from the DDR memory to worker’s data memory

WAL DMA REQ STRUPDATE
starting DDR address in DMA channel configuration will be automati-
cally updated after transfer

WAL DMA REQ BRAMUPDATE
starting address of worker’s data memory in DMA channel configuration
will be automatically updated after DMA transfer

3.18 function wal dma configure

Purpose

wal dma configure - Configure DMA channel to transfer data between DDR and worker’s data memory

Synopsis

int wal dma configure (struct wal worker * wrk, uint8 t channel, void * ddraddr, unsigned int

simdidx, unsigned int bramidx, unsigned int bramaddr, uint16 t len)

Arguments

wrk
pointer to the worker structure

channel
index of DMA channel (it can be from range 0-WAL DMA MAX CHANNELS;
WAL DMA MAX CHANNELS depends on implementation in hardware)

ddraddr
Address of a block of data in DDR. The address must be aligned to
64bit. It addresses byte.

simdidx
Index of SIMD unit in worker (the first SIMD unit has index 0)

bramidx
Index of data memory. Indices of data memories are usually defined in
specific header files, e.g. WAL BCE JSY DMEM x in wal bce jsy.h.

bramaddr
Address into worker’s data memory. It addresses words (32bit words for
worker with single FP data path)

len
Number of words (32bit for single FP worker) to transfer.

Description

The function configures DMA controller to transfer data between DDR memory and worker’s data
memory. The function doesn’t start the transfer. It starts with function wal dma start and this function
also select direction of the transfer.

23/37

Return Value

The function returns zero if successful and a negative value if eny error occurs.

3.19 function wal dma start

Purpose

wal dma start - Start DMA transfer for selected worker and DMA channel

Synopsis

int wal dma start (struct wal worker * wrk, uint8 t channel, uint8 t mode)

Arguments

wrk
pointer to the worker structure

channel
index of DMA channel

mode
mode of transfer. ORed flags from wal dma start modes

Description

The function starts DMA transfer. This function finishs immediately (it isn’t blocking). The selected
channel for the worker wrk must be configured with function wal dma configure before.

Return Value

The function returns zero if successful.

3.20 function wal dma isbusy

Purpose

wal dma isbusy - Read state of DMA channels

Synopsis

uint8 t wal dma isbusy (struct wal worker * wrk, uint8 t chmask)

Arguments

wrk
pointer to the worker structure

chmask
bitmap of channels which will be checked

24/37

Description

The function checks required DMA channels of worker wrk. The chmask selects which channels will
be checked. Each bit in chmask is for one DMA channels and bit index in chmask corresponds index
of DMA channel (b0 is for channel 0, b1 for channel 1, ...). The function reads actual state and returns
immediately.

Return Value

The function returns bitmap of busy channels. Zero bits for channels which weren’t checked or isn’t
busy, ones for channels which are busy.

3.21 function wal init worker

Purpose

wal init worker - generalised function for worker initialising

Synopsis

int wal init worker (struct wal worker * wrk)

Arguments

wrk
pointer to the worker structure

Description

This function is designed for calling from user application. The function checks if the wrk structure is
prepared to initiate worker (the family description structure must be set). Then the assigned family
function (init wrk) is called. In the called function all arrays of pointers to shared memories should be
initiated.

Return Value

The function returns return code WAL RES OK if successful and WAL RES E... if any error occurs.

3.22 function wal done worker

Purpose

wal done worker - generalised function for worker cleanup

Synopsis

int wal done worker (struct wal worker * wrk)

25/37

Arguments

wrk
pointer to the worker structure

Description

This function is designed for calling from user application. The function calls done function (done wrk)
assigned to family description structure. In the called function all dynamically allocated worker struc-
tures, memories and resources should be cleanup and released if they have been created in the worker
init function.

Return Value

The function returns WAL RES ... codes.

3.23 function wal reset worker

Purpose

wal reset worker - generalised function for worker hard reset

Synopsis

int wal reset worker (struct wal worker * wrk)

Arguments

wrk
pointer to the worker structure

Description

This function is designed for calling from user application. The function calls reset function (reset wrk)
assigned to the family description structure. In the called function the worker control registers should
be reset (by HARD RESET bit in the worker control register). The reset is not acknowledged by
accelerator.

Return Value

The function returns WAL RES ... codes.

3.24 function wal start operation

Purpose

wal start operation - generalised function for starting operation on the accelerator

26/37

Synopsis

int wal start operation (struct wal worker * wrk, unsigned int pbid)

Arguments

wrk
pointer to the worker structure

pbid
index of used PB firmware (WAL PBID ...)

Description

This function is designed for calling from user application. The function checks if the accelerator is
in the idle state and then it calls function for starting operation (start op) assigned to the family de-
scription structure. The called function should start a new accelerator operation by setting accelerator
control register and checking status register. This function is blocking, i.e. it waits for acknowledgement
from accelerator.

Return Value

The function returns WAL RES ... codes.

3.25 function wal end operation

Purpose

wal end operation - generalised function for finishing operation on the accelerator

Synopsis

int wal end operation (struct wal worker * wrk)

Arguments

wrk
pointer to the worker structure

Description

This function is designed for calling from user application. The function checks if the accelerator is
in processing state and then it calls function for ending operation (end op) assigned to the family
description structure. The called function should stop processing operation on the accelerator. And it
waits for synchronization with the accelerator, therefore the function is blocking.

Return Value

The function returns WAL RES ... codes.

27/37

3.26 function wal is busy

Purpose

wal is busy - generalised function for testing accelerator if it is done

Synopsis

int wal is busy (struct wal worker * wrk)

Arguments

wrk
pointer to the worker structure

Description

The function tests if a computation in the accelerator is still running. The function is non-blocking. If
the accelerator doesn’t inform about its state, the function returns always 1 (it means accelerator is
busy).

Return Value

The function returns WAL RES Exx if any error occurs, zero if the accelerator is done and a positive
value if acelerator is busy.

3.27 function wal mb2pb

Purpose

wal mb2pb - generalised function for setting worker control register

Synopsis

int wal mb2pb (struct wal worker * wrk, const uint32 t data)

Arguments

wrk
pointer to the worker structure

data
user data sends to worker control register

Description

This function is designed for calling from user application. The function calls function for setting worker
control register (mb2pb) assigned to the family description structure. The called function should send
user data through control register with controlling READ bit. It should also waits for synchronization
with accelerator.

28/37

Return Value

The function returns WAL RES .. codes.

3.28 function wal pb2mb

Purpose

wal pb2mb - generalised function for reading worker status register

Synopsis

int wal pb2mb (struct wal worker * wrk, uint32 t * data)

Arguments

wrk
pointer to the worker structure

data
pointer to an output buffer where read user data is written

Description

This function is designed for calling from user application. The function calls function for reading worker
status register (pb2mb) assigned to the family description structure. The called function should read
user data through worker status register with waiting for synchronization with accelerator.

Return Value

The function returns WAL RES .. codes.

3.29 function wal mb2cmem

Purpose

wal mb2cmem - generalised function for writing block of data to any worker control or support memory

Synopsis

int wal mb2cmem (struct wal worker * wrk, unsigned int memid, unsigned int memoffs, const
uint32 t * outbuf, unsigned int len)

29/37

Arguments

wrk
pointer to the worker structure

memid
index of control/support memory where data are written to (WAL CMEM ...
or WAL ... SMEM ...)

memoffs
offset in selected memory (in words not in bytes)

outbuf
pointer to memory where data are read from

len
number of words to copy from outbuf to accelerator control memory

Description

This function is designed for calling from user application. The function checks index of the required
memory and then it calls function for writing data to any control/support memory (mb2cmem) assigned
to the family description structure. The called function should get pointer to the right memory according
to the required index memid. For accessing support memories they have to defined indices greater then
indices to control memories. Then the called function should copy block of data from CPU memory
outbuf to an accelerator control/support memory selected by memid and offset in selected memory
memoffs.

Return Value

The function returns WAL RES ... codes.

3.30 function wal cmem2mb

Purpose

wal cmem2mb - generalised function for reading block of data from any worker control or support mem-
ory

Synopsis

int wal cmem2mb (struct wal worker * wrk, unsigned int memid, unsigned int memoffs, uint32 t

* inbuf, unsigned int len)

30/37

Arguments

wrk
pointer to the worker structure

memid
index of control/support memory where data are read from (WAL CMEM ...
or WAL ... SMEM ...)

memoffs
offset in selected memory (in words not in bytes)

inbuf
pointer to memory where data are written to

len
number of words to copy from outbuf to accelerator control memory

Description

This function is designed for calling from user application. The function checks index of the required
memory and then it calls function for reading data from any control/support memory (cmem2mb)
assigned to the family description structure. The called function should get pointer to the right memory
according to the required index memid. For accessing support memories they have to defined indices
greater then indices to control memories. Then the called function should copy block of data from the
accelerator control/support memory selected by memid and offset in selected memory memoffs.

Return Value

The function returns WAL RES ... codes.

3.31 function wal mb2dmem

Purpose

wal mb2dmem - generalised function for writing block of data to any worker data memory

Synopsis

int wal mb2dmem (struct wal worker * wrk, unsigned int simdid, unsigned int memid, unsigned
int memoffs, const void * outbuf, unsigned int len)

31/37

Arguments

wrk
pointer to the worker structure

simdid
index of SIMD which data memories are indexed

memid
index of control/support memory where data are written to (WAL CMEM ...
or WAL ... SMEM ...)

memoffs
offset in selected memory (in words not in bytes)

outbuf
pointer to memory where data are read from

len
number of words to copy from outbuf to accelerator control memory

Description

This function is designed for calling from user application. The function checks index of the required
memory and then it calls function for writing data to any data memory (mb2dmem) assigned to the
family description structure. The called function should get pointer to the right memory according to
the required SIMD simdid and memory index memid. Then the called function should copy block of
data from CPU memory outbuf to the accelerator data memory with offset inside the selected memory
memoffs.

Return Value

The function returns WAL RES ... codes.

3.32 function wal dmem2mb

Purpose

wal dmem2mb - generalised function for writing block of data to any worker data memory

Synopsis

int wal dmem2mb (struct wal worker * wrk, unsigned int simdid, unsigned int memid, unsigned
int memoffs, void * inbuf, unsigned int len)

32/37

Arguments

wrk
pointer to the worker structure

simdid
index of SIMD which data memories are indexed

memid
index of control/support memory where data are read from (WAL CMEM ...
or WAL ... SMEM ...)

memoffs
offset in selected memory (in words not in bytes)

inbuf
pointer to memory where data are written to

len
number of words to copy from outbuf to accelerator control memory

Description

This function is designed for calling from user application. The function checks index of the required
memory and then it calls function for reading data from any data memory (dmem2mb) assigned to
the family description structure. The called function should get pointer to the right memory according
to the required SIMD simdid and memory index memid. Then the called function should copy block of
data from the accelerator data memory with offset inside the selected memory memoffs.

Return Value

The function returns WAL RES ... codes.

3.33 function wal set firmware

Purpose

wal set firmware - generalised function for writing PicoBlaze firmware

Synopsis

int wal set firmware (struct wal worker * wrk, int pbid, const unsigned int * fwbuf, int fw-
size)

Arguments

wrk
pointer to the worker structure

pbid
index of used PB firmware (WAL PBID ...)

fwbuf
pointer to a firmware in CPU memory

fwsize
size of the firmware in words, it can be a negative value to set full
firmware (1024 words)

33/37

Description

This function is designed for calling from user application. The function checks if all arguments are
correct and then it calls function for writing PB firmware (set fw). The called function should copy
firmware from CPU memory fwbuf to Picoblaze program memory in the accelerator. The PB program
memory is selected by the argument pbid. The firmware needn’t be full 1024 word long. The firmware
length (in words) can be set by the argument fwsize. If the fwsize is a negative value (you can use
defined value WAL FW WHOLE) the function assumes the FW length is 1024 words.

Return Value

The function returns WAL RES ... codes.

3.34 function wal get id

Purpose

wal get id - generalised function for getting ID from the worker

Synopsis

int wal get id (struct wal worker * wrk, int pbid, unsigned int * outval)

Arguments

wrk
pointer to the worker structure

pbid
index of used PB firmware (WAL PBID ...)

outval
pointer to an output buffer for read worker ID

Description

This function is designed for calling from user application. The function checks arguments and calls
function for getting ID from hardware (get id) assigned to the family description structure. The called
function should start, process and end entire worker operation for getting ID. The 32bit ID of the worker
wrk is returned in the output buffer outbuf. The ID is merged in this order (big endian - MSB first): the
worker class ID (8bit), worker group of family ID (8bit) and worker family/user ID (16bit).

Return Value

The function returns WAL RES ... codes

3.35 function wal get capabilities

Purpose

wal get capabilities - generalised function for getting capabilities of the worker

34/37

Synopsis

int wal get capabilities (struct wal worker * wrk, int pbid, unsigned int * outval)

Arguments

wrk
pointer to the worker structure

pbid
index of selected PB firmware (WAL PBID ...)

outval
pointer to an output buffer for read worker capabilities

Description

This function is designed for calling from user application. The function checks arguments and calls
function for getting capabilities from the hardware (get cap) assigned to the family description struc-
ture. The called function should start, process and end entire worker operation for getting capabilities.
The 32bit capabilities of the worker wrk is a family specific bitmap and it is returned in the output buffer
outbuf.

Return Value

The function returns WAL RES ... codes

3.36 function wal get license

Purpose

wal get license - generalised function for getting license of the worker

Synopsis

int wal get license (struct wal worker * wrk, int pbid, unsigned int * outval)

Arguments

wrk
pointer to the worker structure

pbid
index of used PB firmware (WAL PBID ...)

outval
pointer to an output buffer for read license

Description

This function is designed for calling from user application. The function checks arguments and calls
function for getting license code from the hardware (get lic) assigned to the family description struc-
ture. The called function should start, process and end entire worker operation for getting license cap.

35/37

The license is dependent on implementation of the worker family, it can be a counter or information in
bitmap, but the returned value = 0 should mean that the license is expired. The license is returned in
the outbuf buffer. If the family function (get lic) is set to NULL the function returns license=1.

Return Value

The function returns WAL RES ... codes.

36/37

References

[1] J. Kadlec and all, “D2.1 - preliminary report on platform dependent parameters and optimizations,”
August 2010. SMECY project deliverable D2.1.

37/37

	1 Introduction
	2 How to use the programming interface in an application
	2.1 Introduction
	2.2 Include header files of the programming interface
	2.3 Define worker structure
	2.4 Add interface to compilation process
	2.5 Initiate worker
	2.6 How to use worker
	2.7 Functions in the WAL API

	3 WAL Application Programming Interface
	3.1 enum wal_worker_class_ids
	3.2 enum wal_bce_ids
	3.3 function wal_id_class
	3.4 function wal_id_group
	3.5 function wal_id_family
	3.6 enum wal_ctrl_memories_indices
	3.7 enum wal_picoblaze_indices
	3.8 struct wal_worker
	3.9 function WAL_REGISTER_WORKER_NATIVE
	3.10 function WAL_REGISTER_WORKER_DMA
	3.11 enum wal_bce_jk_family_ids
	3.12 enum wal_bce_jk_data_memories
	3.13 enum wal_bce_jk_support_memories
	3.14 enum wal_bce_jk_operation_codes
	3.15 enum wal_bce_jk_capabilities
	3.16 enum wal_bce_jsy_data_memories
	3.17 enum wal_dma_start_modes
	3.18 function wal_dma_configure
	3.19 function wal_dma_start
	3.20 function wal_dma_isbusy
	3.21 function wal_init_worker
	3.22 function wal_done_worker
	3.23 function wal_reset_worker
	3.24 function wal_start_operation
	3.25 function wal_end_operation
	3.26 function wal_is_busy
	3.27 function wal_mb2pb
	3.28 function wal_pb2mb
	3.29 function wal_mb2cmem
	3.30 function wal_cmem2mb
	3.31 function wal_mb2dmem
	3.32 function wal_dmem2mb
	3.33 function wal_set_firmware
	3.34 function wal_get_id
	3.35 function wal_get_capabilities
	3.36 function wal_get_license

