
UTIA EdkDSP Platform
PB2 Firmware Programming Interface

Roman Bartosinski

bartosr@utia.cas.cz

Revision

Revision Date Author Description
0 11.3.2011 Bartosinski document creation

© 2011 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved.

Contents

1 Introduction 1

2 Content of the programming interface 1

3 How to use the programming interface 2
3.1 Include API header file . 2
3.2 Use functions from API . 2
3.3 Build firmware binary . 3
3.4 Example of firmware with the API . 3

4 Application Programming Interface 4
4.1 enum dfu fp01 operations . 4
4.2 enum dfu fp01 memories . 5
4.3 function pb2mb read data . 6
4.4 function pb2mb write data . 6
4.5 function pb2mb eoc . 7
4.6 function pb2mb req reset . 7
4.7 function pb2mb reset . 8
4.8 function pb2dfu wait4hw . 8
4.9 function pb2dfu start op . 9
4.10 function pb2dfu restart op . 9
4.11 function pb2dfu set cnt . 10
4.12 function pb2dfu set addr . 10
4.13 function pb2dfu set bank . 11
4.14 function pb2dfu set fulladdr . 11
4.15 function pb2dfu set inc . 12
4.16 function pb2dfu set restart addr . 13

Acknowledgement

The research leading to these result has received funding from the ARTEMIS Joint Undertaking under
grant agreement n°100230 and from the MSMT 7H10001.

ii

1 Introduction

The application programming interface (API), described in this document, is one part of a software
development kit for hardware accelerators based on EdkDSP platform (EdkDSP SDK). The API version
1.0 for accelerator’s microcontroller is described in this document. In this case, a PicoBlaze (PB) is
used as a microcontroller and a 32bit processor MicroBlaze (MB) is used as the host CPU.

SoC
with

MicroBlaze

BCE

controller DFU

FW0

FW1

Pico
Blaze

Ctrl&
Stat
Regs

Dmem
Z

Dmem
B

Dmem
A

DFU

The API defines an interfaces between the microcontroller and data flow unit (PB2DFU) and be-
tween the accelerator and the host CPU from the side of the accelerator (PB2MB). It offers functions
for communication with the host CPU and functions to parameterize and control basic computing op-
erations in hardware.

The EdkDSP platform is described in the deliverable D2.1 in SMECY project [1].
The document is organized as follows: The first part describes how to use the API in user firmwares

and the second part contains description of all functions and constants in the API which is generated
from the source code.

2 Content of the programming interface

The firmware programming interface is distributed as one header file for C compiler and library as one
object file. The API closely depends with the hardware data flow unit, therefore the API can be different
for each accelerator and therefore the files of the interface haven’t universal names. In this case, the
API contains two files dfu fp01 1x1.h and dfu fp01 1x1.psmo.

The programming interface is prepared for using with tools from EdkDSP SDK which are distributed
in package pb-toolchain. The toolchain compiles source codes in limited ANSI C to binary firmware
for the PicoBlaze microcontroller.

Version of the current PB C compiler doesn’t optimize output code and therefore the PB2 API con-
tains temporary specific versions of functions in files dfu fp01 1x1 fir. These functions are designed
to save space in accelerator’s firmware memories. This temporary version of the API is used only in a
large example for computation FIR and LMS filters in the accelerators.

The PB2 API is distributed in the following directory structure

1/14

.

|-- api

‘-- 00-pb-firmware

|-- doc

| ‘-- pb2_api.pdf

|-- dfu_fp01_1x1.h

|-- dfu_fp01_1x1.psmo

|-- dfu_fp01_1x1_fir.h

‘-- dfu_fp01_1x1_fir.psmo

The following directory structure is considered in all examples in this document. All codes for
accelerator’s firmware are in directories 00-pb-firmware.

.

|-- api

| |-- 00-pb-firmware

| ‘-- 01-mb-standalone

|-- example1

| |-- 00-pb-firmware

| ‘-- 01-mb-standalone

3 How to use the programming interface

Usage of the API is simple and can be described with the following steps

• include API header file to the C source code,

• use functions from API in the source code,

• Build firmware binary from source codes and the API library.

3.1 Include API header file

Functions in the programming interface are declared in the dfu fp01 1x1.h header file. It must be
included in the source code with the preprocessor directive #include.

#include "../../api/00-pb-firmware/dfu_fp01_1x1.h"

3.2 Use functions from API

All functions and constants from the API can be used after including API header file. The firmware
must perform communication between accelerator and host CPU. Functions with prefixes ’pb2mb ’ and
’mb2pb ’ in the API are designed for this purpose. Using of these functions defines the communication
protocol.

Functions with prefix ’pb2dfu’ serve to control data flow unit in the accelerator. These func-
tions set parameters of the next operation (pb2dfu set), launch the operation (pb2dfu start op,
pb2dfu restart op) and wait for finishing the operation (pb2dfu wait4hw). Parameters of the next
operation can be set before the previous operation is done, but it can be launched not before the pre-
vious operation is done. This feature allows to launch operation with minimal delay. The data flow unit
remember the last settings and therefore only changed parameters can be set for the next operation.

2/14

3.3 Build firmware binary

Firmwares in C source codes must be compiled with the EdkDSP SDK toolchain distributed in the
package pb-toolchain. The simplest way how to compile and build firmware binary is in the following
listing. In the listing, we consider that the toolchain is installed and we compile the example1 in
directory ./example1/00-pb-firmware with directory structure as shown in section 2.

pbcc ../../api/00-pb-firmware/dfu_fp01_1x1.psmo fw_ex1.c -o fw_ex1.h

In this example, the output binary has form of C header file with array of binary codes of firmware.
Such file will be used to compile application for the host CPU as described in the documentation of the
WAL API [2].

3.4 Example of firmware with the API

This part shows simple example of firmware, which waits for operation required by the host CPU and
if the operation is get capability the operation is starts in the accelerator. When the operation is
finished the controller sends messages End of Computation, Request for Reset and Reseted to
the host CPU.

/* include library for FP01 DFU */

#include "../../api/00-pb-firmware/dfu_fp01_1x1.h"

void main()

{

unsigned char op;

/* waiting for data from MB (the first byte is a required operation) */

op = mb2pb_read_data();

if (op==DFU_OP_VVER) { /* FW support only this one operation */

/* start DFU with required operation */

pb2dfu_start_op(DFU_OP_VVER, 1);

}

/* waiting for operation is done */

pb2dfu_wait4hw();

/* send message ’end of computation’ to the host CPU (MB) */

pb2mb_eoc(’.’);

/* send message ’require reset’ to the host CPU (MB) - communication uses handshaking */

pb2mb_req_reset(’.’);

/* reset PB and set status register for the host CPU (MB) */

pb2mb_reset();

/* endless loop - waiting to hardware reset of PB */

while (1)

;

}

3/14

4 Application Programming Interface

4.1 enum dfu fp01 operations

Purpose

enum dfu fp01 operations - codes of operations supported by accelerator DFU FP01

Synopsis

enum dfu fp01 operations {
DFU OP VVER,
DFU OP VZ2A,
DFU OP VB2A,
DFU OP VZ2B,
DFU OP VA2B,
DFU OP VADD,
DFU OP VADD BZ2A,
DFU OP VADD AZ2B,
DFU OP VSUB,
DFU OP VSUB BZ2A,
DFU OP VSUB AZ2B,
DFU OP VMULT,
DFU OP VMULT BZ2A,
DFU OP VMULT AZ2B,
DFU OP VPROD,
DFU OP VMAC,
DFU OP VMSUBAC

};

4/14

Constants

DFU OP VVER
ask about HW version

DFU OP VZ2A
copy vector a[i] = z[j]

DFU OP VB2A
copy vector a[i] = b[j]

DFU OP VZ2B
copy vector b[i] = z[j]

DFU OP VA2B
copy vector b[i] = a[j]

DFU OP VADD
add vectors z[i] = a[j] + b[k]

DFU OP VADD BZ2A
add vectors a[i] = b[j] + z[k]

DFU OP VADD AZ2B
add vectors b[i] = a[j] + z[k]

DFU OP VSUB
sub vectors z[i] = a[j] - b[k]

DFU OP VSUB BZ2A
sub vectors a[i] = b[j] + z[k]

DFU OP VSUB AZ2B
sub vectors b[i] = a[j] + z[k]

DFU OP VMULT
mult vectors z[i] = a[j] * b[k]

DFU OP VMULT BZ2A
mult vectors a[i] = b[j] * z[k]

DFU OP VMULT AZ2B
mult vectors b[i] = a[j] * z[k]

DFU OP VPROD
vector product z = a[i..i+nn]*b[i..i+nn]

DFU OP VMAC
vector MAC z[i] = z[i] + a[j]*b[k] 1..13

DFU OP VMSUBAC
vector MSUBAC z[i] = z[i] - a[j]*b[k] 1..13

Description

These codes are used with functions pb2dfu start op and pd2dfu restart op to select operation
performed in the accelerator.

4.2 enum dfu fp01 memories

Purpose

enum dfu fp01 memories - identifiers of data memories in DFU FP01 accelerator

5/14

Synopsis

enum dfu fp01 memories {
DFU MEM A,
DFU MEM B,
DFU MEM Z

};

Constants

DFU MEM A
target memory is data memory A

DFU MEM B
target memory is data memory B

DFU MEM Z
target memory is data memory Z

Description

The identifiers are used with functions pb2dfu set ... to select target data memory.

4.3 function pb2mb read data

Purpose

pb2mb read data - read (blocking) data from a host CPU (MB)

Synopsis

unsigned char pb2mb read data ()

Description

The function communicates with a host CPU (MB) and waits for one data byte which is acknowledged.

Return Value

The function returns value of the received data byte.

4.4 function pb2mb write data

Purpose

pb2mb write data - send (blocking) data to a host CPU (MB)

Synopsis

void pb2mb write data (unsigned char data)

6/14

Arguments

data
one byte which will be send to MB

Description

The function sends one data byte and wait for acknowledgement.

Return Value

The function doesn’t return any value.

4.5 function pb2mb eoc

Purpose

pb2mb eoc - send (blocking) a message ’End Of Computation’ to a host CPU (MB)

Synopsis

void pb2mb eoc (unsigned char data)

Arguments

data
one data byte which will be send to MB with the EOC message

Description

The function sends message End of Computation (EOC) with an optional data byte to a host CPU
(MB). Then it waits for acknowlegement from the host CPU. The message should be send anytime the
accelerator wants to synchronize computation with a host CPU. Usually, the message is sent after the
entire computation.

Return Value

The function doesn’t return any value.

4.6 function pb2mb req reset

Purpose

pb2mb req reset - send (blocking) a message ’Request for Reset’ to a host CPU (MB)

Synopsis

void pb2mb req reset (unsigned char data)

7/14

Arguments

data
one data byte which will be send to MB with the RR message

Description

The function sends message ’Request for Reset’ (RR) with an optional data byte to a host CPU (MB).
Then it waits for acknowlegement from the host CPU. The message should be send before reseting
controller to inform the host CPU that the accelerator’s controller will be reset to the initial state.

Return Value

The function doesn’t return any value.

4.7 function pb2mb reset

Purpose

pb2mb reset - reset accelerator itself

Synopsis

void pb2mb reset ()

Description

The function sets accelerator’s controller to the initial state and set the accelerator’s status bit.

Return Value

The function doesn’t return any value.

4.8 function pb2dfu wait4hw

Purpose

pb2dfu wait4hw - PB will wait for end of computation

Synopsis

void pb2dfu wait4hw ()

Description

The function waits for finishing computation in the accelerator. The function should be called before
subsequent run of the next operation. The next operation can be prepared before the waiting to speed
up the entire computation.

8/14

Return Value

The function doesn’t return any value.

4.9 function pb2dfu start op

Purpose

pb2dfu start op - start operation in DFU with specified length of data vectors

Synopsis

void pb2dfu start op (unsigned char op, unsigned char cnt)

Arguments

op
DFU operation (constants DFU OP xxx)

cnt
length of input data vectors

Description

The function covers two functions (pb2dfu set cnt and pb2dfu restart op).

Return Value

The function doesn’t return any value.

4.10 function pb2dfu restart op

Purpose

pb2dfu restart op - start operation in DFU

Synopsis

void pb2dfu restart op (unsigned char op)

Arguments

op
DFU operation (constants DFU OP xxx)

Description

All parameters of the operation must be set before this function. All parameters are registered and
so only changed parameters from previous operations must be set. On the other hand, the operation
must be always set because the function starts a required operation in the DFU.

9/14

Return Value

The function doesn’t return any value.

4.11 function pb2dfu set cnt

Purpose

pb2dfu set cnt - set length of input data vectors for the next operation

Synopsis

void pb2dfu set cnt (unsigned char cnt)

Arguments

cnt
length of input data vectors

Description

The function sets length of the input data vectors. The simple operations (as VADD, VMULT) will be
performed cnt-times as one pipelined operation.

Return Value

The function doesn’t return any value.

4.12 function pb2dfu set addr

Purpose

pb2dfu set addr - set address of the first element in the vector

Synopsis

void pb2dfu set addr (unsigned char mem, unsigned char addr)

Arguments

mem
select data memory (constant DFU MEM xxx)

addr
address of the first element in vector saved in memory mem in the current
bank

10/14

Description

The function sets lower part of the initial pointer (index of the first element of vector in the specified
memory bank) to addr for memory mem and bank which is set with function pb2dfu set bank. All data
memories are organized into memory banks with 256 elements. The value will be used with the next
operation.

Return Value

The function doesn’t return any value.

4.13 function pb2dfu set bank

Purpose

pb2dfu set bank - select bank for specified memory

Synopsis

void pb2dfu set bank (unsigned char mem, unsigned char bank)

Arguments

mem
select data memory (constant DFU MEM xxx)

bank
bank which will be used for the next operation

Description

The function sets higher part of the initial pointer (bank of memory mem used for the next operation) to
bank for memory mem. Lower part of the initial pointer can be set with function pb2dfu set addr. The
value will be used with the next operation.

Return Value

The function doesn’t return any value.

4.14 function pb2dfu set fulladdr

Purpose

pb2dfu set fulladdr - set full address (bank and offset) of the first element in the vector

Synopsis

void pb2dfu set fulladdr (unsigned char mem, unsigned char bank, unsigned char addr)

11/14

Arguments

mem
select data memory (constant DFU MEM xxx)

bank
bank of memory mem which will be used for the next operation

addr
address of the first element in vector saved in memory mem in the se-
lected bank

Description

The function sets full address of the initial pointer (the first element of a vector) in memory mem. Each
full address consists of bank and address in the bank which can be also set separately with functions
pb2dfu set bank and pb2dfu set addr. The address will be used with the next operation.

Return Value

The function doesn’t return any value.

4.15 function pb2dfu set inc

Purpose

pb2dfu set inc - set increment of offset for vector in selected memory

Synopsis

void pb2dfu set inc (unsigned char mem, unsigned short inc)

Arguments

mem
select data memory (constant DFU MEM xxx)

inc
increment between two elements of vector in the memory mem

Description

The function sets address increment to inc for vector from memory mem. Pointer to memory mem is
increment about inc before processing the next vector element. The value will be used with the next
operation.

Return Value

The function doesn’t return any value.

12/14

4.16 function pb2dfu set restart addr

Purpose

pb2dfu set restart addr - set restart address for using vector elements in loop

Synopsis

void pb2dfu set restart addr (unsigned char mem, unsigned char addr)

Arguments

mem
select data memory (constant DFU MEM xxx)

addr
restart address (lower part of the full address)

Description

The restart address addr is used if elements of the vector in memory mem are used in a loop. When
the pointer to the next element overflow to the other bank it is set (lower part of the full address) to the
restart address addr. The value will be used with the next operation.

Return Value

The function doesn’t return any value.

13/14

References

[1] J. Kadlec and all, “D2.1 - preliminary report on platform dependent parameters and optimizations,”
August 2010. SMECY project deliverable D2.1.

[2] R. Bartosinski, “UTIA EdkDSP Platform, WAL - Worker Abstraction Layer,” March 2011. SMECY
project deliverable D2.2.

14/14

	1 Introduction
	2 Content of the programming interface
	3 How to use the programming interface
	3.1 Include API header file
	3.2 Use functions from API
	3.3 Build firmware binary
	3.4 Example of firmware with the API

	4 Application Programming Interface
	4.1 enum dfu_fp01_operations
	4.2 enum dfu_fp01_memories
	4.3 function pb2mb_read_data
	4.4 function pb2mb_write_data
	4.5 function pb2mb_eoc
	4.6 function pb2mb_req_reset
	4.7 function pb2mb_reset
	4.8 function pb2dfu_wait4hw
	4.9 function pb2dfu_start_op
	4.10 function pb2dfu_restart_op
	4.11 function pb2dfu_set_cnt
	4.12 function pb2dfu_set_addr
	4.13 function pb2dfu_set_bank
	4.14 function pb2dfu_set_fulladdr
	4.15 function pb2dfu_set_inc
	4.16 function pb2dfu_set_restart_addr

