dm.attrs package

Submodules

dm.attrs.AbstractPrepareAttr module

Calculates number of positive differences in given time points, geometric mean, arithmetic mean, variance and standard deviation of differences.

class dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr(row_selector, interval_selector, tr=None)

Bases: abc.ABC

arithmetic_mean(new_column_name, precision, values_before, values_after, prefix)

It computes arithmetic mean from given values before and after event.

Parameters
  • new_column_name – name of attribute

  • precision – precision of calculation

  • values_before – list of values before event

  • values_after – list of values after event

  • prefix – prefix of attribute name

Returns

pair of lists, each list contains pairs of attribute name and arithmetic mean

attr_name(column_name, prefix, interval_type, interval)

It generates a name of attribute.

Parameters
  • column_name – name of attribute

  • prefix – prefix of attribute name

  • interval_type – type of interval - before or after

  • interval – time interval from which the attribute is calculated

Returns

name of attribute

abstract execute(**kwargs)

It ensures calculation of the required attribute.

Parameters

kwargs

Returns

pair of lists, each list contains pair of attribute name and its value

geometric_mean(new_column_name, precision, values_before, values_after, prefix)

It computes geometric mean from given values before and after event.

Parameters
  • new_column_name – name of attribute

  • precision – precision of calculation

  • values_before – list of values before event

  • values_after – list of values after event

  • prefix – prefix of attribute name

Returns

pair of lists, each list contains pairs of attribute name and geometric mean

standard_deviation(new_column_name, precision, values_before, values_after, prefix)

It computes standard deviation from given values before and after event.

Parameters
  • new_column_name – name of column

  • precision – precision of calculation

  • values_before – list of values before event

  • values_after – list of values after event

  • prefix – prefix of attribute name

Returns

pair of lists, each list contains pairs of attribute name and standard deviation

variance(new_column_name, precision, values_before, values_after, prefix)

It computes variance from given values before and after event.

Parameters
  • new_column_name – name of column

  • precision – precision of calculation

  • values_before – list of values before event

  • values_after – list of values after event

  • prefix – prefix of attribute name

Returns

pair of lists, each list contains pairs of attribute name and variance

dm.attrs.CO2VentilationLength module

Gets current value CO2 and measured value CO2 in a given time point.

class dm.attrs.CO2VentilationLength.CO2VentilationLength(row_selector, interval_selector, tr=None)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(timestamp_start, timestamp_end, compute_timestamp, intervals, method, co2_out, column, precision, prefix, enable_actual_value=True)

It computes how long ventilation was performed to decrease a CO2 concentration.

Parameters
  • timestamp_start – timestamp when ventilation started

  • timestamp_end – timestamp when ventilation finished

  • compute_timestamp – selected timestamp during ventilation

  • intervals – deprecated

  • method – deprecated

  • co2_out – concentration of outside CO2

  • column – name of column that contains required values

  • precision – precision of calculation

  • prefix – prefix of attribute name

  • enable_actual_value – if the actual value should be included in output

Returns

pair of lists, the first list contains at most two pairs, the first one (optional) includes attribute name and actual value, the second one includes attribute name and ventilation length

dm.attrs.DiffInLinear module

Calculates difference between quantity values after linearization (selects linearized values at the moment of window opening and closing).

class dm.attrs.DiffInLinear.DiffInLinear(row_selector, interval_selector, tr=None)

Bases: dm.attrs.InLinear.InLinear

execute(timestamp_before, timestamp_after, column, precision, start_before, end_before, start_after, end_after, prefix, new_column_name)

It computes difference between quantity values after linearization.

After linearization time points at the moment of window opening and window closing are selected to compute difference.

Parameters
  • timestamp_before – timestamp selected from linearized time interval before event

  • timestamp_after – timestamp selected from linearized time interval after event

  • column – name of column that contains required values

  • precision – precision of calculation

  • start_before – time shift before event that denotes start of time interval that is linearised (in seconds)

  • end_before – time shift before event that denotes end of time interval that is linearised (in seconds)

  • start_after – time shift after event that denotes start of time interval that is linearised (in seconds)

  • end_after – time shift after event that denotes end of time interval that is linearised (in seconds)

  • prefix – prefix of attribute name

  • new_column_name – name of attribute

Returns

pair of lists, the first list contains pair including attribute name and difference between quantity values after linearization

dm.attrs.DifferenceBetweenRealLinear module

Calculates differences between real and linearized values of quantity in given time points.

class dm.attrs.DifferenceBetweenRealLinear.DifferenceBetweenRealLinear(row_selector, interval_selector, tr=None)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(timestamp, column, precision, intervals_before, intervals_after, window_size_before, window_size_after, prefix, new_column_name)

It computes difference between real and linearised course of given quantity.

Parameters
  • timestamp – timestamp which is in the middle of time interval used for calculation

  • column – name of column that contains real values

  • precision – precision of calculation

  • intervals_before – list of time points before event

  • intervals_after – list of time points after event

  • window_size_before – time interval before event used to calculate linearised course

  • window_size_after – time interval after event used to calculate linearised course

  • prefix – prefix of attribute name

  • new_column_name – name of attribute

Returns

pair of lists, each list contains pairs of attribute name and difference between real and linearised course of given quantity

dm.attrs.FirstDifferenceAttrA module

Calculates first differences using quantity values (not only successive values).

class dm.attrs.FirstDifferenceAttrA.FirstDifferenceAttrA(row_selector, interval_selector, tr=None)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(timestamp, column, precision, intervals_before, intervals_after, normalize, enable_count, prefix, selected_before, selected_after, new_column_name)

It computes the first differences using quantity values.

Not only successive values are used for computation.

Parameters
  • timestamp – timestamp when event occurred

  • column – name of column that contains required values

  • precision – precision of calculation

  • intervals_before – list of time points before event

  • intervals_after – list of time points after event

  • normalize – if the computed should be normalized

  • enable_count – if number of positives values should be computed

  • prefix – prefix of attribute name

  • selected_before – list of lists of selected time points before event

  • selected_after – list of lists of selected time points after event

  • new_column_name – name of attribute

Returns

pair of lists, each list contains pairs of attribute name and the first difference

dm.attrs.FirstDifferenceAttrB module

Calculates first differences using quantity values (only successive values).

class dm.attrs.FirstDifferenceAttrB.FirstDifferenceAttrB(row_selector, interval_selector, tr=None)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(timestamp, column, precision, intervals_before, intervals_after, normalize, enable_count, prefix, selected_before, selected_after, new_column_name)

It computes the first differences using quantity values.

Only successive values are used for computation.

Parameters
  • timestamp – timestamp when event occurred

  • column – name of column that contains required values

  • precision – precision of calculation

  • intervals_before – list of time points before event

  • intervals_after – list of time points after event

  • normalize – if the computed should be normalized

  • enable_count – if number of positives values should be computed

  • prefix – prefix of attribute name

  • selected_before – list of lists of selected time points before event

  • selected_after – list of lists of selected time points after event

  • new_column_name – name of attribute

Returns

pair of lists, each list contains pairs of attribute name and the first difference

dm.attrs.GrowthRate module

Calculates growth rates.

The growth rate is calculated as y_t/y_t_-1, where y_t is selected based on forward/backward shift and y_t_-1 is calculated as y_t - value_delay.

class dm.attrs.GrowthRate.GrowthRate(row_selector, interval_selector, tr=None)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(timestamp, column, precision, intervals_before, intervals_after, value_delay, prefix, new_column_name)

It computes growth rates.

Parameters
  • timestamp – timestamp when event occurred

  • column – name of column that contains required values

  • precision – precision of calculation

  • intervals_before – list of time points before event

  • intervals_after – list of time points after event

  • value_delay – time shift used to get a value marked as y_t_-1

  • prefix – prefix of attribute name

  • new_column_name – name of attribute

Returns

pair of lists, each list contains pairs of attribute name and growth rate

dm.attrs.InLinear module

Calculates quantity values after linearization.

class dm.attrs.InLinear.InLinear(row_selector, interval_selector, tr=None)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(timestamp_before, timestamp_after, column, precision, start_before, end_before, start_after, end_after, prefix, new_column_name)

It computes quantity values after linearization.

Parameters
  • timestamp_before – timestamp selected from linearized time interval before event

  • timestamp_after – timestamp selected from linearized time interval after event

  • column – name of column that contains required values

  • precision – precision of calculation

  • start_before – time shift before event that denotes start of time interval that is linearised (in seconds)

  • end_before – time shift before event that denotes end of time interval that is linearised (in seconds)

  • start_after – time shift after event that denotes start of time interval that is linearised (in seconds)

  • end_after – time shift after event that denotes end of time interval that is linearised (in seconds)

  • prefix – prefix of attribute name

  • new_column_name – name of attribute

Returns

pair of lists, each list contains pairs of attribute name and value after linearization

dm.attrs.InOutDiff module

Calculates differences between quantity values measured indoor and outdoor.

class dm.attrs.InOutDiff.InOutDiff(row_selector, interval_selector, tr=None)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(timestamp, column, precision, intervals_before, intervals_after, prefix, new_column_name)

It computes differences between quantity values measured indoor and outdoor.

Parameters
  • timestamp – timestamp when event occurred

  • column – name of column that contains required values

  • precision – precision of calculation

  • intervals_before – list of time points before event

  • intervals_after – list of time points after event

  • prefix – prefix of attribute name

  • new_column_name – name of attribute

Returns

pair of lists, each list contains pairs of attribute name and geometric mean

dm.attrs.Regression module

Calculates exponential regression from given CO2 values.

class dm.attrs.Regression.Regression(row_selector, interval_selector, method)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(timestamp_start, timestamp_end, column, precision, prefix, enable_error, new_column_name)

It computes exponential regression from given CO2 values.

Parameters
  • timestamp_start – timestamp that denotes the start of time interval from which the regression is computed

  • timestamp_end – timestamp that denotes the end of time interval from which the regression is computed

  • column – name of column that contains required values

  • precision – precision of calculation

  • prefix – prefix of attribute name

  • enable_error – if an error of exponential regression is in the output

  • new_column_name – name of attribute

Returns

pair of lists, the first list contains pair of attribute name and exponential regression from given CO2 values and pair of attribute name and error of exponential regression (optional)

static gen_f_lambda(co2_start, co2_out)
static gen_f_prietok(co2_start, co2_out, volume)

dm.attrs.SecondDifferenceAttr module

Calculates second differences using quantity values.

class dm.attrs.SecondDifferenceAttr.SecondDifferenceAttr(row_selector, interval_selector, tr=None)

Bases: dm.attrs.FirstDifferenceAttrB.FirstDifferenceAttrB

execute(timestamp, column, precision, intervals_before, intervals_after, normalize, enable_count, prefix, selected_before, selected_after, new_column_name)

It computes the second differences using quantity values.

Parameters
  • timestamp – timestamp when event occurred

  • column – name of column that contains required values

  • precision – precision of calculation

  • intervals_before – list of time points before event

  • intervals_after – list of time points after event

  • normalize – if the computed should be normalized

  • enable_count – if number of positives values should be computed

  • prefix – prefix of attribute name

  • selected_before – list of lists of selected time points before event

  • selected_after – list of lists of selected time points after event

  • new_column_name – name of attribute

Returns

pair of lists, each list contains pairs of attribute name and the second difference

dm.attrs.VentilationLength module

Assigns given ventilation length to a class.

class dm.attrs.VentilationLength.VentilationLength(row_selector, interval_selector, tr=None)

Bases: dm.attrs.AbstractPrepareAttr.AbstractPrepareAttr

execute(event_start, event_end, intervals, threshold, prefix)

It assigns given ventilation length to a class.

Parameters
  • event_start – timestamp that denotes the start of the event

  • event_end – timestamp that denotes the end of the event

  • intervals – intervals representing classes to which the events can be assigned

  • threshold – threshold used in evaluation to which class the event should be assigned

  • prefix – prefix of attribute name

Returns

pair of lists, each list contains pairs of attribute name and assigned interval (class)

Module contents