
Not using Ubuntu 20.04?

Choose a different version or distribution.

Introduction

In this guide, you will build a Python application using the Flask microframework on

Ubuntu 20.04. The bulk of this article will be about how to set up the Gunicorn

application server and how to launch the application and configure Nginx to act as a

front-end reverse proxy.

Prerequisites

Before starting this guide, you should have:

TUTORIAL

How To Serve Flask Applications with Gunicorn and
Nginx on Ubuntu 20.04

Nginx Ubuntu Python Python Frameworks Ubuntu 20.04

By Kathleen Juell and Jamon Camisso
Last Validated on May 20, 2020  16kOriginally Published on May 20, 2020·

 English 

Ubuntu 20.04 

6 DAYS Upcoming Tech Talk: All the Ways to Generate a Next.js Site



×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Enter your email address

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

1 of 18 1/21/21, 5:09 PM

Namecheap or get one for free on Freenom. You can learn how to point domains to

DigitalOcean by following the relevant documentation on domains and DNS. Be sure

to create the following DNS records:

An A record with your_domain pointing to your server’s public IP address.

An A record with www.your_domain pointing to your server’s public IP address.

Familiarity with the WSGI specification, which the Gunicorn server will use to

communicate with your Flask application. This discussion covers WSGI in more detail.

Step 1 — Installing the Components from the Ubuntu Repositories

Our first step will be to install all of the pieces we need from the Ubuntu repositories.

This includes pip , the Python package manager, which will manage our Python

components. We will also get the Python development files necessary to build some

of the Gunicorn components.

First, let’s update the local package index and install the packages that will allow us to

build our Python environment. These will include python3-pip , along with a few more

packages and development tools necessary for a robust programming environment:

With these packages in place, let’s move on to creating a virtual environment for our

project.

Step 2 — Creating a Python Virtual Environment

Next, we’ll set up a virtual environment in order to isolate our Flask application from the

other Python files on the system.

$ sudo apt update

$ sudo apt install python3-pip python3-dev build-essential libssl-dev libffi-dev python3-setuptools

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

2 of 18 1/21/21, 5:09 PM

Next, let’s make a parent directory for our Flask project. Move into the directory after

you create it:

Create a virtual environment to store your Flask project’s Python requirements by

typing:

This will install a local copy of Python and pip into a directory called myprojectenv

within your project directory.

Before installing applications within the virtual environment, you need to activate it. Do

so by typing:

Your prompt will change to indicate that you are now operating within the virtual

environment. It will look something like this: (myprojectenv)user@host:~/myproject$.

Step 3 — Setting Up a Flask Application

Now that you are in your virtual environment, you can install Flask and Gunicorn and

get started on designing your application.

First, let’s install wheel with the local instance of pip to ensure that our packages will

install even if they are missing wheel archives:

$ mkdir ~/myproject

$ cd ~/myproject

$ python3 -m venv myprojectenv

$ source myprojectenv/bin/activate

$ pip install wheel

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

3 of 18 1/21/21, 5:09 PM

activated, you should use the pip command (not pip3).

Next, let’s install Flask and Gunicorn:

Creating a Sample App

Now that you have Flask available, you can create a simple application. Flask is a

microframework. It does not include many of the tools that more full-featured

frameworks might, and exists mainly as a module that you can import into your

projects to assist you in initializing a web application.

While your application might be more complex, we’ll create our Flask app in a single

file, called myproject.py :

The application code will live in this file. It will import Flask and instantiate a Flask

object. You can use this to define the functions that should be run when a specific

route is requested:

This basically defines what content to present when the root domain is accessed. Save

(myprojectenv) $ pip install gunicorn flask

(myprojectenv) $ nano ~/myproject/myproject.py

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

return "<h1 style='color:blue'>Hello There!</h1>"

if __name__ == "__main__":

 app.run(host='0.0.0.0')

~/myproject/myproject.py

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

4 of 18 1/21/21, 5:09 PM

Now you can test your Flask app by typing:

You will see output like the following, including a helpful warning reminding you not to

use this server setup in production:

Output

* Serving Flask app "myproject" (lazy loading)

 * Environment: production

 WARNING: Do not use the development server in a production environment.

 Use a production WSGI server instead.

 * Debug mode: off

 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

Visit your server’s IP address followed by :5000 in your web browser:

http://your_server_ip:5000

You should see something like this:

When you are finished, hit CTRL-C in your terminal window to stop the Flask

development server.

Creating the WSGI Entry Point

Next, let’s create a file that will serve as the entry point for our application. This will tell

(myprojectenv) $ sudo ufw allow 5000

(myprojectenv) $ python myproject.py

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

5 of 18 1/21/21, 5:09 PM

In this file, let’s import the Flask instance from our application and then run it:

Save and close the file when you are finished.

Step 4 — Configuring Gunicorn

Your application is now written with an entry point established. We can now move on

to configuring Gunicorn.

Before moving on, we should check that Gunicorn can serve the application correctly.

We can do this by simply passing it the name of our entry point. This is constructed as

the name of the module (minus the .py extension), plus the name of the callable within

the application. In our case, this is wsgi:app .

We’ll also specify the interface and port to bind to so that the application will be

started on a publicly available interface:

You should see output like the following:

Output

[2020-05-20 14:13:00 +0000] [46419] [INFO] Starting gunicorn 20.0.4

from myproject import app

if __name__ == "__main__":

 app.run()

(myprojectenv) $ cd ~/myproject

(myprojectenv) $ gunicorn --bind 0.0.0.0:5000 wsgi:app

~/myproject/wsgi.py

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

6 of 18 1/21/21, 5:09 PM

again:

http://your_server_ip:5000

You should see your application’s output:

When you have confirmed that it’s functioning properly, press CTRL-C in your terminal

window.

We’re now done with our virtual environment, so we can deactivate it:

Any Python commands will now use the system’s Python environment again.

Next, let’s create the systemd service unit file. Creating a systemd unit file will allow

Ubuntu’s init system to automatically start Gunicorn and serve the Flask application

whenever the server boots.

Create a unit file ending in .service within the /etc/systemd/system directory to begin:

Inside, we’ll start with the [Unit] section, which is used to specify metadata and

dependencies. Let’s put a description of our service here and tell the init system to

only start this after the networking target has been reached:

(myprojectenv) $ deactivate

$ sudo nano /etc/systemd/system/myproject.service

/etc/systemd/system/myproject.service

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

7 of 18 1/21/21, 5:09 PM

process since it owns all of the relevant files. Let’s also give group ownership to the

www-data group so that Nginx can communicate easily with the Gunicorn processes.

Remember to replace the username here with your username:

Next, let’s map out the working directory and set the PATH environmental variable so

that the init system knows that the executables for the process are located within our

virtual environment. Let’s also specify the command to start the service. This

command will do the following:

Start 3 worker processes (though you should adjust this as necessary)

Create and bind to a Unix socket file, myproject.sock , within our project directory.
We’ll set an umask value of 007 so that the socket file is created giving access to the
owner and group, while restricting other access

Specify the WSGI entry point file name, along with the Python callable within that file
(wsgi:app)

Systemd requires that we give the full path to the Gunicorn executable, which is

installed within our virtual environment.

Remember to replace the username and project paths with your own information:

[Unit]

Description=Gunicorn instance to serve myproject

After=network.target

[Service]

User=sammy

Group=www-data

[Unit]

Description=Gunicorn instance to serve myproject

/etc/systemd/system/myproject.service

/etc/systemd/system/myproject.service

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

8 of 18 1/21/21, 5:09 PM

Finally, let’s add an [Install] section. This will tell systemd what to link this service to

if we enable it to start at boot. We want this service to start when the regular multi-user

system is up and running:

With that, our systemd service file is complete. Save and close it now.

We can now start the Gunicorn service we created and enable it so that it starts at

boot:

Let’s check the status:

You should see output like this:

Environment="PATH=/home/sammy/myproject/myprojectenv/bin"

ExecStart=/home/sammy/myproject/myprojectenv/bin/gunicorn --workers 3 --bind unix:myproject.sock -m 007

[Unit]

Description=Gunicorn instance to serve myproject

After=network.target

[Service]

User=sammy

Group=www-data

WorkingDirectory=/home/sammy/myproject

Environment="PATH=/home/sammy/myproject/myprojectenv/bin"

ExecStart=/home/sammy/myproject/myprojectenv/bin/gunicorn --workers 3 --bind unix:myproject.sock -m 007

[Install]

WantedBy=multi-user.target

$ sudo systemctl start myproject

$ sudo systemctl enable myproject

$ sudo systemctl status myproject

/etc/systemd/system/myproject.service

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

9 of 18 1/21/21, 5:09 PM

 Active: active (running) since Wed 2020-05-20 14:15:18 UTC; 1s ago

 Main PID: 46430 (gunicorn)

 Tasks: 4 (limit: 2344)

 Memory: 51.3M

 CGroup: /system.slice/myproject.service

 ├─46430 /home/sammy/myproject/myprojectenv/bin/python3 /home/sammy/myproject/myprojectenv/bin/gunicorn -

 ├─46449 /home/sammy/myproject/myprojectenv/bin/python3 /home/sammy/myproject/myprojectenv/bin/gunicorn -

 ├─46450 /home/sammy/myproject/myprojectenv/bin/python3 /home/sammy/myproject/myprojectenv/bin/gunicorn -

 └─46451 /home/sammy/myproject/myprojectenv/bin/python3 /home/sammy/myproject/myprojectenv/bin/gunicorn -

If you see any errors, be sure to resolve them before continuing with the tutorial.

Step 5 — Configuring Nginx to Proxy Requests

Our Gunicorn application server should now be up and running, waiting for requests

on the socket file in the project directory. Let’s now configure Nginx to pass web

requests to that socket by making some small additions to its configuration file.

Begin by creating a new server block configuration file in Nginx’s sites-available

directory. Let’s call this myproject to keep in line with the rest of the guide:

Open up a server block and tell Nginx to listen on the default port 80 . Let’s also tell it to

use this block for requests for our server’s domain name:

Next, let’s add a location block that matches every request. Within this block, we’ll

$ sudo nano /etc/nginx/sites-available/myproject

server {

 listen 80;

 server_name your_domain www.your_domain;

}

/etc/nginx/sites-available/myproject

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

10 of 18 1/21/21, 5:09 PM

Save and close the file when you’re finished.

To enable the Nginx server block configuration you’ve just created, link the file to the

sites-enabled directory:

With the file in that directory, you can test for syntax errors:

If this returns without indicating any issues, restart the Nginx process to read the new

configuration:

Finally, let’s adjust the firewall again. We no longer need access through port 5000 , so

we can remove that rule. We can then allow full access to the Nginx server:

You should now be able to navigate to your server’s domain name in your web

server {

 listen 80;

 server_name your_domain www.your_domain;

 location / {

 include proxy_params;

 proxy_pass http://unix:/home/sammy/myproject/myproject.sock;

}

}

$ sudo ln -s /etc/nginx/sites-available/myproject /etc/nginx/sites-enabled

$ sudo nginx -t

$ sudo systemctl restart nginx

$ sudo ufw delete allow 5000

$ sudo ufw allow 'Nginx Full'

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

11 of 18 1/21/21, 5:09 PM

If you encounter any errors, trying checking the following:

sudo less /var/log/nginx/error.log : checks the Nginx error logs.

sudo less /var/log/nginx/access.log : checks the Nginx access logs.

sudo journalctl -u nginx : checks the Nginx process logs.

sudo journalctl -u myproject : checks your Flask app’s Gunicorn logs.

Step 6 — Securing the Application

To ensure that traffic to your server remains secure, let’s get an SSL certificate for your

domain. There are multiple ways to do this, including getting a free certificate from

Let’s Encrypt, generating a self-signed certificate, or buying one from another provider

and configuring Nginx to use it by following Steps 2 through 6 of How to Create a Self-

signed SSL Certificate for Nginx in Ubuntu 20.04. We will go with option one for the

sake of expediency.

Install Certbot’s Nginx package with apt :

Certbot provides a variety of ways to obtain SSL certificates through plugins. The

Nginx plugin will take care of reconfiguring Nginx and reloading the config whenever

necessary. To use this plugin, type the following:

This runs certbot with the --nginx plugin, using -d to specify the names we’d like the

$ sudo apt install python3-certbot-nginx

$ sudo certbot --nginx -d your_domain -d www.your_domain

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

12 of 18 1/21/21, 5:09 PM

requesting a certificate for.

If that’s successful, certbot will ask how you’d like to configure your HTTPS settings:

Output

Please choose whether or not to redirect HTTP traffic to HTTPS, removing HTTP access.

1: No redirect - Make no further changes to the webserver configuration.

2: Redirect - Make all requests redirect to secure HTTPS access. Choose this for

new sites, or if you're confident your site works on HTTPS. You can undo this

change by editing your web server's configuration.

Select the appropriate number [1-2] then [enter] (press 'c' to cancel):

Select your choice then hit ENTER . The configuration will be updated, and Nginx will

reload to pick up the new settings. certbot will wrap up with a message telling you the

process was successful and where your certificates are stored:

Output

IMPORTANT NOTES:

 - Congratulations! Your certificate and chain have been saved at:

 /etc/letsencrypt/live/your_domain/fullchain.pem

 Your key file has been saved at:

 /etc/letsencrypt/live/your_domain/privkey.pem

 Your cert will expire on 2020-08-18. To obtain a new or tweaked

 version of this certificate in the future, simply run certbot again

 with the "certonly" option. To non-interactively renew *all* of

 your certificates, run "certbot renew"

 - Your account credentials have been saved in your Certbot

 configuration directory at /etc/letsencrypt. You should make a

 secure backup of this folder now. This configuration directory will

 also contain certificates and private keys obtained by Certbot so

 making regular backups of this folder is ideal.

 - If you like Certbot, please consider supporting our work by:

 Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

13 of 18 1/21/21, 5:09 PM

Was this helpful? Yes No   

Report an issue

To verify the configuration, navigate once again to your domain, using https:// :

https://your_domain

You should see your application output once again, along with your browser’s security

indicator, which should indicate that the site is secured.

Conclusion

In this guide, you created and secured a simple Flask application within a Python

virtual environment. You created a WSGI entry point so that any WSGI-capable

application server can interface with it, and then configured the Gunicorn app server to

provide this function. Afterwards, you created a systemd service file to automatically

launch the application server on boot. You also created an Nginx server block that

passes web client traffic to the application server, relaying external requests, and

secured traffic to your server with Let’s Encrypt.

Flask is a very simple, but extremely flexible framework meant to provide your

applications with functionality without being too restrictive about structure and

design. You can use the general stack described in this guide to serve the flask

applications that you design.

$ sudo ufw delete allow 'Nginx HTTP'

5

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

14 of 18 1/21/21, 5:09 PM

RELATED

DigitalOcean App Platform

You bring your web app in a
GitHub repo
App Platform handles deployments and builds
DNS, HTTPS, CDN, DDoS Mitigation, Vertical Scaling, Horizontal Scaling, and more.

More Info

What is nginx?

Tutorial

Still looking for an answer?

 Ask a question  Search for more help

About the authors

Kathleen Juell

Developer
@digitalocean/community

Jamon Camisso

has authored 34 tutorials.

×Sign up for our newsletter Get the latest tutorials on SysAdmin and open source topics.

Sign Up

How To Serve Flask Applications with Gunicorn and N... https://www.digitalocean.com/community/tutorials/how-...

15 of 18 1/21/21, 5:09 PM

