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Abstract

Cyber situation awareness has been recognized as a vital requirement for effective cyber de-
fense. The cyber situation awareness allows cybersecurity operators to identify, understand, and
anticipate incoming threats. Achievement of the cyber situation awareness requires an ability to
perceive the cyber environment, comprehend the processes in the environment, and to predict
its future state based on the gained perception and comprehension. Achieving and maintain-
ing the cyber situation awareness is a challenging task given the continuous evolution of the
computer networks. As the computer network evolves, the methods for achieving the cyber sit-
uation awareness need to evolve as well. The perception of the computer network needs to keep
up with increasing speed and scale of the networks. The large volume of data and information
transferred over the networks and the network’s dynamic open new challenges for the network
comprehension and results in a necessity for advanced techniques for information retrieval. The
prediction of the future state of a network demands novel approaches capable of dealing with
the high dynamics and volatility of the networks.

This thesis contributes to the continuous evolution of cyber situation awareness by the re-
search of novel approaches to the perception and comprehension of a computer network. We
concentrate our research efforts on the domain of IP flow network monitoring. We propose
improvements to the IP flow monitoring techniques that enable the enhanced perception of a
computer network. Further, we conduct detailed analyses of network traffic, which allows for
an in-depth understanding of host behavior in a computer network. Last, but not least, we pro-
pose a novel approach to IP flow network monitoring, that enables real-time cyber situation
awareness.

The first contribution of this thesis is a systematic overview of the cyber situation awareness
and IP flow network monitoring research fields. Apart from the definitions of basic terms, expla-
nation of the fundamental concepts, and description of the current state-of-the-art, the overview
includes a summary of contemporary challenges for both presented research fields. We conduct
the synthesis of the challenges, and the selected challenges are then addressed through the en-
tire thesis.

At the perception level, we increase the information value of the monitored data from net-
work traffic by enriching IP flow records with information from the HTTP protocol. The side
effects of the enrichment on the IP flow monitoring performance are explored to uncover the
information – performance trade-off. Next, we inspect the means of information retrieval from
the HTTPS protocol as the increasing share of encrypted network traffic is becoming a challenge
for cyber situation awareness and network monitoring in general. We present a method that al-
lows for a host identification in encrypted traffic that is built upon a dictionary of Cipher Suite
– User Agents pairs.

At the comprehension level, we present the results of several network traffic measurements.
First, we focus on the analysis of the Top N statistics. We describe its properties and carry out an
evaluation that focuses on application to host identification tasks. Next, we explore the proper-
ties of IPv6 tunneling mechanisms. Our analysis reveals the main characteristics of the tunneled
traffic such as HOP Limits distribution. Last, we investigate the available host-related informa-
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tion in network traffic. We innovate techniques for operating system fingerprinting in both static
and dynamic networks and show possibilities of host identification in encrypted network traffic.

Our main contribution to cyber situation awareness is an application of stream-based data
processing paradigm to the IP flow data processing. We research and design a concept for
stream-based IP flow data analysis, and present consequences originating in the shift from the
original batch-based approach. The stream-based IP flow monitoring allows for real-time moni-
toring of the computer network. The real-time network monitoring then provides real-time data
to a security operator enabling him/her to achieve a real-time situation awareness.

We conclude our research by a proposal of a general approach to real-time cyber situation
awareness based on the merge of a batch- and stream-based approaches. We also provide sug-
gestions for future research opportunities.
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1
Introduction

Computer networks have become an inherent part of our everyday life. They facilitate a great
variety of services ranging from the ones critical for a society, such as control systems of power
plants, communication systems, financial systems, over the ones that are useful in everyday
life, such as information portals, social networks, and e-shops, to the ones that serve purely
for entertainment, e.g., forums, games, video streaming platforms. As society has become in-
creasingly dependent on these services, the computer network facilitating these services have
become lucrative targets for various attackers and fraudsters. Protection of computer networks
from harms caused by the attackers has become an important topic. An essential prerequisite
for the adequate protection of a computer network is an ability to perceive the processes in the
network, comprehend their meaning and relations, and predict the future state of a network –
in other words, to gain a cyber situation awareness.

Cyber situation awareness is a concept that supports cybersecurity operators in cyber de-
fense. The goal of this concept is to provide an operator with sufficient information that enables
him/her to make an informed decision on network protection. The mainstream approach to cy-
ber situation awareness defines three levels that form the awareness: perception, comprehension,
and prediction. The perception level serves to obtain data from a monitored environment, the
comprehension level aims to understand the information contained in the data, and the goal of
the prediction level is to predict the future state of the environment.

Computer networks are dynamic environments that evolve at a high pace. New technologies
are continuously deployed, the paradigms of service and network usage changes in time, and
new misuses and attacks are produced rapidly. Such a rapid development requires that cyber
situation awareness keeps pace with the evolution of computer networks. Techniques for per-
ception need to be updated to be able to obtain data from new protocols, new data processing
and analysis methods need to be developed to process and comprehend large volumes of data,
and methods with improved forecast accuracy need to be researched to model the future state
of a network.

IP flow monitoring represents a widely used approach for obtaining network visibility. It pro-
cesses information from packet headers and aggregates the packets into connection-like records,
so-called IP flows. Compared to other methods of network monitoring, e.g., deep packet inspec-
tion, the IP flow monitoring enables to process a significantly larger volume of network traffic
at higher speeds in exchange for the lower amount of information processed. Due to its proper-
ties, mainly the ability to provide a holistic view of a computer network, IP flow monitoring is
frequently used for the perception of information from computer networks. Moreover, analysis
of the collected IP flows serves well for network comprehension, and even for prediction of the
future state of a network, if relevant techniques are applied.

Continuous development of computer networks and the evolution of their usage imposed
several challenges and open issues that are shared by both IP flow monitoring and cyber sit-
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1. Introduction

uation awareness. Since IP flow monitoring serves as an approach to obtain cyber situation
awareness, resolving an open issue of IP flow monitoring can then improve the overall cyber
situation awareness as well. This thesis aims to address the current challenges of IP flow mon-
itoring that lead to enhancement of the cyber situation awareness. We propose improvements
of IP flow monitoring that enable a better perception of computer networks and provide the
results of several analyses that bring light into network processes and allow for deeper network
comprehension.

1.1 Problem Statement

IP flow monitoring was originally designed for network accounting and profiling. The account-
ing function of IP flow has determined the design of IP flow monitoring infrastructures. IP flows
and associated IP flow monitoring infrastructures are designed to provide a holistic view on a
network with the focus on regular network reporting. The original design and purpose of IP
flow, however, need to be continuously transformed from the original to a modern one due to
technological advances in networking area (faster networks, SDN), the shift in protocol usage
(rise of encrypted traffic), and new possibilities and paradigms for data processing in general.
The IP flow definitions, monitoring infrastructure, and related toolset, however, remain with
the original purpose, which introduces discrepancies in IP flow applications and other issues
in flow processing and analyses. The utilization of the IP flow monitoring in the cyber situation
awareness domain introduces additional challenges that need to be addressed. The holistic view
on the network is not sufficient anymore, as a detailed micro view that provides information of
all entities in a network is demanded.

We have identified three main open issues of IP flow network monitoring that affects the cy-
ber situation awareness. First, the IP flow monitoring needs to provide sufficient visibility and
information for effective cyber defense. Since the sophistication of the current attacks increases
and the cybercriminals form professionalized groups using advanced tools, the information
value of the exported IP flows is not sufficient anymore and needs to be increased. Second, the
IP flow monitoring is designed for holistic observation of a network from a connection per-
spective, not for monitoring hosts in a network. Cyber situation awareness would benefit from
having the host-oriented view on the network. Identification of a host from IP flow records is a
challenging task, though, due to dynamic addressing in a network and increasing share of en-
crypted traffic. Third, requirements for high analysis speed and real-time network monitoring
were not included in the design of the traditional IP flow monitoring infrastructure. Nowadays,
the real-time view of a network has become essential as the costs of service downtime rises.
Any delays in attack detection or identification of the cause of the downtime are costly and
undesirable. However, current IP flow monitoring architectures introduce several delays that
slow down the process of obtaining the cyber situation awareness and so does not allow for an
instant response.

1.1.1 Lack of Network Visibility and Comprehension

When we started our research in 2013, the IP flow monitoring provided visibility only into the
network and transport layers except for Flexible NetFlow that used NBAR for application recog-
nition. However, the used application recognition only provided the type of an application pro-
tocol. No additional application data were available. The data from the application layer rep-
resents an information-rich source that enables advanced analysis and detection of network
threats targeting applications. The absence of application-aware IP flow monitoring prevents
us from obtaining the sufficient level of cyber situation awareness, e.g., to be aware of an ongo-
ing application network attack. Therefore, we found it essential to develop an application-aware

2



1. Introduction

IP flow monitoring that would allow for network-wide cyber situation perception even at the
application level.

The addition of the application information to the IP flow monitoring increases the volume
of the information available on the one hand. On the other hand, it could lead to a performance
decline as additional data needs to be retrieved from packets and processed. We believe that
the possible performance drop need to be investigated as it could make IP flow monitoring in-
effective considering the increasing speed of network traffic and the fact, that ability to process
a large volume of network traffic at high speed is the main advantage of IP flow monitoring.
Hence, the trade-off between the increased information value of IP flows and the associated de-
crease of IP flow monitoring performance should be studied. Moreover, the availability of the
information for the application layer does not imply the comprehension of the application infor-
mation straightforward. With new information, additional analyses and measurements need to
be conducted to reveal the nature and relations present in the application data.

1.1.2 Host Identification in Network Traffic

IP flow monitoring is generally valued for its ability to provide a holistic view of a network. The
holistic view is insufficient, though, if the IP flow monitoring is applied in the cyber situation
awareness domain. A deep cyber situation awareness requires a more detailed view of a net-
work than the holistic one. The detailed view should present information both on the whole
network and on all hosts in the network at the same time. IP flow monitoring results are usually
presented from the network line viewpoint, e.g., how much traffic is transferred over a line. A
host view on a network, e.g., a volume of outcoming traffic computed for each host in a network,
is usually not available. Nevertheless, the IP flow monitoring can provide information on hosts,
as IP flow records represent connections between hosts observed in a line in the network. If con-
veniently transformed, the IP flow records can provide all statistics that are usually computed
for a network line and a host as well.

The comprehension of host information from the transformed IP flow records is hindered
by the fact that a host is represented by an IP address in an IP flow record. A single IP address
can represent more hosts in a network. Dynamically addressed networks can assign a different
IP address to a host each time it connects to the network. Moreover, network translation devices
(NATs) are represented by a single IP address in IP flow records despite of the fact that they
represent more hosts. The fact that there is not only one-to-one host–IP address relation prevents
the correct assignment of relevant information from IP flow records to a host. Auxiliary methods
for host identification need to be explored so that we do not need to rely only on IP address as
a host’s identifier. Several host’s characteristics can be observed in network traffic. If correctly
defined, these characteristics could create a host’s fingerprint that could provide support for
IP address based host identification. The recent rise of the share of encrypted network traffic,
however, makes the identification of these characteristics impossible at the application layer.
Alternative approaches for host identification in encrypted traffic should be studied to be able
to identify hosts and to obtain a complete view of a network.

1.1.3 Delays in IP Flow Monitoring Workflow

As the costs of a service downtime increase, any delay present in the perception, comprehension,
or prediction of the computer network that postpones the achievement of the cyber situation
awareness and reduces response speed and capabilities is unwelcome. Network IP flow mon-
itoring includes several delays by design, however. The first delay occurs during the phase of
IP flow creation as the IP flow export is determined by timeouts in some cases. Next delay is
introduced during IP flow record analysis. The IP flow records are analyzed in batches which
requires to wait until a batch is complete before it enters the analysis. The combined delay of
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1. Introduction

the network IP flow monitoring workflow can reach over several minutes, which can lead to
substantial financial losses due to late response to an attack.

We believe that novel approaches to IP flow metering and analysis need to be researched
to obtain a real-time cyber situation awareness and instant response and recovery. The delays
presented in the IP flow monitoring should be reduced. We cannot reduce the delay without a
significant redesign of the IP flow monitoring workflow. It is essential to keep in mind that the
redesign of IP flow monitoring workflow changes the nature of the generated IP flow records.
Hence, apart from the redesign of the IP flow monitoring process, also the approach to IP flow
analysis needs to be revised to provide real-time cyber situation awareness.

1.2 Research Goals

The previous section highlights the current problems of IP flow monitoring that influence the
cyber situation awareness. These problems are addressed in this thesis and problems can be
summarized into the following main objective of this thesis:

Investigate how IP flow monitoring can be improved to enhance the cyber situation aware-
ness.

In other words, the objective of this thesis is to propose improvements to the network IP
flow monitoring that enhance the perception and comprehension of a computer network. The
prediction stage of cyber situation awareness is out of the scope of this thesis and is left for
future research.

In light of the main objective of this thesis, we identify the following research goals (RG) that
are motivated by the discovered research problems:

RG1: Propose and evaluate IP flow monitoring methods that enhance network per-
ception and comprehension and respond to the emerging trends in the cyber
situation awareness and the IP flow monitoring.

RG2: Develop methods for host identification in both unencrypted and encrypted
network traffic.

RG3: Provide an option for reducing the delays in the network IP flow monitoring
workflow leading to the real-time cyber situation awareness.

The identified research goals have been addressed since 2013. Figure 1 presents the research
timeline to display when we addressed our research goals along with relevant author’s publi-
cations. So that the novelty and contribution of our research results can be assessed relative to
a time they were delivered.

 [A9]RG1

RG2

RG3

2013 2014 2015 2016 2017 2018

[A4]

[A7] [A6] [A5] [A10]

[A8]

[A11] [A3] [A1,2]

Figure 1: Timeline of the presented research.

4
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1.3 Contributions

In the course of our research, the following original contributions to the state-of-the-art were
made in the area of cyber situation awareness and IP flow monitoring:

1. An overview of the cyber situation awareness and summary of its open issues. An application of
situation awareness to the cyber domain is not straightforward. We provide an overview
of the main approaches to the situation awareness and show an application of the selected
approach to the cyber domain. The overview summarizes the current open issues of the
cyber situation awareness. (Chapter 2)

2. An overview of the network IP flow monitoring and its use in the cyber situation awareness. We
describe the main ideas of the network IP flow monitoring. We extend the overview with
an additional analysis of the IP flow monitoring workflow that focuses on the time aspects
of the workflow. We identify current trends and open issues in this domain and present an
application of the IP flow monitoring in the cyber situation awareness domain including
the synthesis of the open issues. (Chapter 3)

3. Evaluation of the impact of extending IP flow records with application layer information. We
compare contemporary parsers for application protocols and design flex-based parser
for HTTP protocol. We evaluate the performance of the application layer IP flow probe
and demonstrate the effects of the addition of HTTP information to IP flow records on
the throughput of the IP flow probe. We show that the performance decrease depends on
the distribution of network traffic and it is nearly independent of the number of parsed
application layer fields. (Chapter 4)

4. Creation of a dictionary for host identification in encrypted traffic. We analyze encrypted net-
work traffic, namely HTTPS – an HTTP protocol over SSL/TLS. Based on the analysis,
we propose a dictionary of Cipher Suite Lists and User-Agents pairs that can provide
additional information on a host communicating via encrypted traffic. We determine the
coverage of the dictionary in the network traffic and the cardinality of the Cipher Suite
Lists–User-Agent relations. (Chapter 4)

5. Evaluation of the Top N statistics. We research the characteristics of the Top N statistics and
display information that can be retrieved from this statistics. We evaluate the statistics
with regard to its availability, uniqueness of the information, and time stability – char-
acteristics that are fundamental for comprehension of host behavior. We show, that Top
N statistic’s stability depends on the aggregation window and that HTTP based Top N
statistics can identify a host in network traffic with 59.5 % true positive rate. (Chapter 5)

6. Analysis of transition mechanisms for IPv6 tunneling. We provide a coherent investigation
of IPv6 network traffic tunneled via Teredo and 6to4 transition mechanisms. On a data
gathered from real-world measurement, we explore the Time to Live distributions both of
the tunneling and tunneled network traffic, IP flow characteristics, and location of Teredo
endpoint servers. The results of the exploration enable a deeper comprehension of the
behavior transition mechanisms for IPv6 in the real-world networks. (Chapter 5)

7. Novel approaches to host-based information retrieval from network traffic. We propose several
enhancements for the retrieval of host-based information from IP flow records used for
host identification. We analyze retrieval of operating system specific information from
both static and dynamic networks and demonstrate the possibilities of the information
retrieval from encrypted traffic. (Chapter 5)
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8. Real-time IP flow monitoring and cyber situation awareness. We propose an approach for real-
time IP flow monitoring that is based on distributed data stream processing and reduces
the delays present in IP flow monitoring workflow. We develop a prototype framework
Stream4Flow and discuss the implications of the usage of the stream-based approach for
IP flow record analysis. We propose a next-generation IP flow monitoring that combines
the advantages of stream-based IP flow monitoring with the advantages of the traditional
batch-based approach. We show, that the next-generation IP flow monitoring infrastruc-
ture can be used, if slightly modified, to obtain the real-time cyber situation awareness.
(Chapter 6)

1.4 Thesis Outline

This thesis is organized to reflect our contributions to the cyber situation awareness. Figure 2
depicts the thesis structure. The chapters are grouped according to their topic from the cyber
situation awareness field. Where relevant, we highlight sections and present their relation to
the defined research goals.

Introduction

Ch. 1 Ch. 2 Ch. 3 Ch. 4

S. 4.1 S. 4.2

Data Perception

Ch. 6

S. 6.3S. 6.2S. 6.1

Real-time Cyber 
Situation Awareness

Ch. 5

S. 5.1 S. 5.3S. 5.2

Data Comprehension

Ch. 7 

Conclusion

RG1 RG2 RG3

S. 4.2

Ch. 6

S. 5.1

Figure 2: Thesis structure.

The remainder of this thesis is organized as follows:

• Chapter 2 – Cyber Situation Awareness discusses three main models for situation aware-
ness. The Endsley’s three-level model of situation awareness is then applied to the cyber
security domain. We discuss the specifics of this application, present relevant state-of-
the-art, and identify current open issues.

• Chapter 3 – IP Flow Network Traffic Monitoring presents a comprehensive tutorial on
IP flow monitoring. We present both IP flow monitoring and IP flow record analysis and
identify their open issues. Further, we show the network IP flow monitoring in the context
of cyber situation awareness and revise and merge the current open issues from both
research areas.

• Chapter 4 – Data Perception presents our contribution to network perception. We inves-
tigate how the addition of an application-level information into IP flow influences the
performance of IP flow probes, and focus on improvement of data collection for client
identification from encrypted network traffic.

• Chapter 5 – Data Comprehension displays our research effort in the following three
areas: evaluation of properties of Top N statistics, analysis of tunneled network traffic,
and retrieval of host-related information.

• Chapter 6 – Towards Real-time Cyber Situation Awareness describes our contribution
to the improvement of the speed of analysis process in the cyber situation awareness. We
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reduce the time needed for IP flow analysis by introducing a stream-based IP flow mon-
itoring, present next-generation IP flow monitoring workflow, and propose an approach
how to gain real-time cyber situation awareness.

• Chapter 7 – Conclusion summarizes our achieved results and elaborates on various di-
rections for future research.

1.5 Further Remarks

The observed network traffic contains privacy-sensitive information. Hereby, we declare that the
monitored data used for our research were processed in accordance with the EU General Data
Protection Regulation 2016/679. The monitored data were collected for specified purposes, and
the appropriate technical and organizational measures were taken to safeguard the rights of the
data subjects. We processed the data in a manner that ensured appropriate security of the data
including protection against unauthorized or unlawful processing, accidental loss, destruction
or damage. We implemented appropriate technical and organizational measures to ensure a
level of security appropriate to the risk, including the pseudonymization and encryption of
the data, assurance of confidentiality, integrity, availability, and resilience of data processing
systems. If used, personal data were processed in a manner that ensured appropriate security
and confidentiality of the personal data, including preventing unauthorized access to or use of
personal data and the equipment used for the processing.

We are aware that pursuing the RG 2 can lead to the development of new techniques, that
enable identification of a device in network traffic. We develop these techniques to serve for
network management and security, if necessary. However, considering the purpose of these
techniques, they can be naturally misused for tracking and spying on a device or a person. We
are aware of this fact. Nevertheless, we still believe, that the overall benefits for the society that
brings our research when used for intended, lawful purposes, outweigh the costs of the misuses
of our results.
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2
Cyber Situation Awareness

Cyber situation awareness is an essential part of cyber defense processes. As computer networks
and systems continue to increase in complexity and sophistication, the requirements and demands
on a cybersecurity operator increase as well. A concept of cyber situation awareness aims to pro-
vide an operator with a coherent methodology to cope with the network’s and system’s complexity,
gather all necessary information, and to comprehend underlying processes in these systems. De-
veloping a cyber situation awareness, an operator is capable of making strategic decisions even in
case of complex and sophisticated systems.
This chapter aims to provide a basic introduction to cyber situation awareness to an unfamiliar
reader. Situation awareness is a broad research field covering numerous approaches and applica-
tions in various areas. Its application to the cyber domain is not straightforward, though. In the
first part of the chapter, we offer a brief overview of situation awareness to present fundamental
ideas and basic terminology. We provide relevant definitions, outline history, and introduce its
essential aspects relevant to this thesis. The purpose of the overview is to provide basic general
concepts that we further narrow to an application in the cyber domain. Application to the cyber
domain using Endsley’s three-level definition is described in the rest of the chapter. We discuss sev-
eral viewpoints on cyber situation awareness and outline specifics of the application in the cyber
domain. A literature review is presented to display state-of-the-art and current research directions
in the cyber situation awareness area. Last, but not least, we list open issues of cyber situation
awareness. These issues will be addressed throughout this thesis.
Relevant author’s publication to this chapter is [A1, A2].
This chapter is structured as follows:

• Section 2.1 presents a basics concepts and definitions of situation awareness.
• Section 2.2 discusses an application of situation awareness in the cyber domain, presents

a literature review, and identifies open issues.
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2. Cyber Situation Awareness

2.1 Situation Awareness

2.1.1 Origins

Situation awareness (SA) has always been in need in everyday day life. A prehistoric hunter
undoubtedly needed to capture and understand various inputs from his environment to effi-
ciently hunt down a pray bigger and stronger than him, and not to become a pray himself at
the same time. For many years, SA principles were used in everyday life intuitively. They were
developed mainly by learning and experiences. However, the intuitive SA began insufficient as
the technology improved and the complexity of the world increased. People had to start using
SA consciously.

The first formulation of a concept that can be referred to as situation awareness dates back to
the beginning of the 20th century. During World War I, Oswald Boelke realized the importance
of "gaining an awareness of the enemy before the enemy gained a similar awareness and devise
methods for accomplishing this" [1]. A famous pilot of WWI Red Baron is reported to have an
ability to achieve and maintain the situation awareness during air combats, which made him
successful in many dogfights. He is said to be able to give accurate re-creations and critiques of
his fellow pilots even though he was fighting hundreds of meters away [1].

After World War I and II, the concept of SA did not receive too much attention in academic
or technical literature till late 1980s [2]. The first push for the research came from the aviation do-
main. In the aviation domain, there is a continuous pressure on pilots and air traffic controllers
to process and understand much information from various sources to retrieve the flight status.
To ease the pressure, advanced applications of flight deck automation were introduced. How-
ever, the introduction of automation had a negative effect on pilots. The automation systems
were no longer optimized for human operation and even overstepped the human’s capability to
keep track of the current situation in some cases [3]. The idea of separation between the human
operators understanding of system status and actual system status emerged and became a crux
of the definition of SA [4].

In the late 1980’s, a temporal dimension of Situation Awareness has been introduced. It was
observed, that for people to maintain adequate awareness of system status, it is necessary to
track the development of the events. The incidents evolve and propagate over time. If a human
operator fails to follow and adapt to a new system state, it may lead to misunderstanding of the
systems status and wrong situation assessment as depicted in Figure 3. Decisions made on the
basis of incorrect situation assessment could potentially lead to even worse incident, e.g., events
preceding the Chernobyl explosion [5].

The conceptual basis SA had been cloudy before 1990, though. The main theoretic founda-
tions were laid during the last decade of the 20th century. During the decade, underlying the-
oretical works were published by Endsley (1995) [6], Smith and Hancock (1995) [7], and Bedny
and Meister (1999) [8]. The research of SA earned considerable attention in the literature, e.g.,
special issue on SA published in Human Factors Journal in 1995. Although SA being concep-
tually defined, it still met with a fair amount of criticism claiming that SA is "too subjective
phenomenon to be measured objectively" [3]. Nevertheless, SA represented promising, and use-
ful concept with considerable significance for operational research and thus remained a worthy
research topic. Approaches to objective SA measurement were discussed and introduced (e.g.,
in [9]), and researchers kept their interest in the topic.

Since then, the application of SA concept has quickly spread to other domains than original
aviation one. The most prominent driver of this widespread has been the technology. The com-
plexity of systems and their automation increase rapidly due to introduced technologies, e.g.,
robotics, SCADA systems, and so forth. As a result of the technological progress, the dynamics
of systems also increases. The automation of these areas has moved an operator from an active
role of searching information in a decision process to a decision maker that consumes informa-
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Figure 3: Temporal dimension of situation awareness (adapted from [4]).

tion from systems and based on the information formulates his decision. SA is being introduced
to various areas (power grids, strategic tactical systems, medicine, and also cyberspace) to en-
sure, that an operator assesses a situation correctly based on received data and can make an
informed decision.

2.1.2 Definitions

Three main definitions dominate the Situation(al) Awareness1 [2]. All three definitions are un-
derpinned by more general models of human cognitive functioning. We present all three def-
initions and describe the main conceptual differences in the definitions. Particular attention is
devoted to the Endsley’s definition of SA as her’s definition is widely adopted in the literature
and serves as a base ground for further research in cyber situation awareness.

The Perceptual Cycle Definition

Situation Awareness is the invariant in the agent-environment system that generates the
momentary knowledge and behavior required to attain the goals specified by an arbiter of
performance in the environment.

Smith and Hancock, 1995 [2]

The authors of [2] take SA as adaptive externally directed consciousness. The SA is neither
resided in the environment nor the person, but it resides through an interaction of a person with
an environment. The definition characterizes SA in terms of perception-action cycle introduced
by Neisser in [10]. The perception-action cycle puts forward a view of how human thought is
closely connected to personal interaction with the world as depicted in Figure 4. The interactions
go around the depicted cycle. Starting at the top, the environment informs an agent modifying
its knowledge. The knowledge determines an agent’s actions in the environment. The actions
samples and eventually changes the environment which in turn informs the agent and so forth.
The invariant at the core of the cycle specifies the agent’s adaptation to its environment. The
authors of the definition claim that the informed directed actions capture the essence of the
behavior characteristics of SA.

1. Both terms "Situation Awareness" and "Situational Awareness" are used in literature. These terms appear inter-
changeable. For the sake of simplicity, the term Situation Awareness has been adopted in this thesis.
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Figure 4: Perception-action cycle (adapted from [2, 10]).

To be able to quantify the SA, authors of the definition relate an agent with goals, behavior,
and knowledge to match agent’s performance specified by dicta from its environment. Unless an
external goal and criteria for achieving it are defined, examination of lesser or greater degrees
of SA is impossible. The degree an agent reach in meeting the expectations in fulfilling the
goals given by an external arbiter of performance then serves as a mean for quantification of SA
degree.

The SA definition by Smith and Hancock is suitable for explaining the dynamic aspect of
SA, such as how the momentary knowledge is updated and how the search for information is
initiated. The definition provides a high-level overview of a person interacting with an environ-
ment. This view can be used to explain human information processing in, e.g., control rooms of
power plants, or in the cockpit of an air fighter.

The Interactive Sub-system Definition

Situation Awareness is the conscious dynamic reflection on the situation by an individual.
It provides dynamic orientation to the situation, the opportunity to reflect not only the past,
present, and future, but the potential features of the situation. The dynamic reflection con-
tains logical-conceptual, imaginative conscious and unconscious components which enable
individuals to develop mental models of external events.

Bedny and Meister, 1999 [8]

The definition by Bedny and Meister [8] presents the SA as one of many components of
a reflective-orientational activity in the theory of activity [2]. The activity theory explains the
human-psychological process of decision making in a system in a theoretical way. According to
the theory, an activity can be psychological and internal or practical and external. An activity
serves to achieve a given goal. The activity used to achieve a goal can change during the reaching
the goal due to increasing knowledge of the situation. Further, within the situation, the actors
can develop their own goals based on their past experience and knowledge. Moreover, authors
claim that an objectively given goal is interpreted subjectively, so the perceived goal is not always
synchronized with the given goal.

The activities performed during situation assessment according to the theory of activity are
depicted in Figure 5. As stated in [8] and interpreted by [2], new information is supplied to
function block 1 and is interpreted using both the individuals conceptual models of the world
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Figure 5: Activity theory situation assessment.

(function block 8 ) highly dependent on past experience (function block 7 ) and images of the
purpose of the task goals (function block 2 ) along with their orientation about what type of
activity is required (function block 5 ). This interpretation informs the person’s pure image of
the task goals (function block 2 ). The individual then determines which world features are per-
tinent in function block 3 based on the significance and motivation toward task goals (function
block 4 ) as well as their engagement with the world (function block 5 ). The extent to which
they engage the task goals are influenced by the criteria of evaluation (functional block 6 ), and
the current state of the world (function block 3 ). The outcome of this evaluation directs per-
formance and the person’s engagement with the world (function block 5 ) from which further
criteria are developed (function block 6 ). Interaction with the world is stored in past experi-
ence (functional block 7 ). Authors of [8] state that processes forming situation awareness are
the combination of conceptual model (function block 8 ), the image-goal (function block 2 )
and the subjective task conditions (functional block 3 ).

The interactive sub-system definition of SA is suitable when considering underlying func-
tions and how they interact [2]. This view focuses on the processes that are used by an individual
during situation assessment.

Three-level Model Definition

Situation Awareness is the perception of the elements in the environment within a volume
of time and space, the comprehension of their meaning and the projection of their status in
the near future.

Endsley, 1988 [11]

Definition of SA by Endsley has been widely accepted and is used in a great variety of func-
tional areas, for example in medicine or vehicle operations [12]. Endsley apprehends SA as a
state of knowledge and distinguishes it from the processes used to achieve the state. The pro-
cesses for achieving SA varies across contexts, and she refers them to as situation assessment. The
SA is also distinguished from subsequent processes, e.g., decision making.

The definition consists of three ascending primary components referred to as levels (see Fig-
ure 6). The levels should not be taken as definitive categories of SA into which it should be
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Figure 6: Three-level model (adapted from [6]).

possible to divide SA of any environment. The levels serve as general descriptions that help in
thinking about SA [12].

Level 1: Perception of the elements in the environment
Perception level is the lowest level of SA. At this level, status attributes and dynamics of

relevant attributes of an environment are perceived. [11] Attributes of an environment can be
perceived both directly from the environment (e.g., a pilot sees a mountain, a driver hears a siren
of a firetruck) or indirectly using sensors (e.g., outside temperature, distance from obstacles). In
both cases, the correct perception is crucial for the outcome SA. If the data obtained at this level
are biased, inaccurate, or misleading, operator gains notion of SA that does not comply with
the real world state. Without the correct basic perception of relevant information, the odds of
forming an incorrect picture of the situation increases dramatically [13].

No interpretation of the acquired data is performed at this stage. All interpretation is left
to the next level. This level is intended to represent to initial reception of information in the
raw form. The separation of data capture and data comprehension and interpretation allows
identifying discrepancies that might occur when requiring data from senses and sensors. One
such a problem solved in SA is the data overload. [14] An operator is overwhelmed with sensors
and data, and relevant information is not perceived. Jones et al. [15] found that 76 % of SA errors
in pilots could be caused by problems in the perception of relevant information (either failure
of the sensors or problems with the cognitive process).

Level 2: Comprehension of the current situation
Situation Awareness goes, however, beyond the simple perception of the data. Its goal is not

only to percept the situation but to understand the situation correctly. The comprehension of a
situation is based on a synthesis of disjoint elements perceived at Level 1 [11]. The elements are
combined, interpreted, assigned with significance concerning given goals, and combined with
knowledge of an operator to form a holistic picture of an environment. The difference between
the levels is analogous to having a reading comprehension (Level 2) and reading individual
words (Level 1). For example, an operator of an oil platform needs to put together pieces of
information to derive an actual status of the platform’s systems.

An operator’s expertise is a vital requirement at this level. At the perception level, a novice and
an experienced operator would reach the same results in situation assessment. At the compre-
hension level, a lack of expertise would cause novice’s inability to follow basic lines of search
coherently for further information or to misinterpretation of current situation [3]. An experi-
enced operator is provided with long-term memory knowledge and has developed a repertoire
of pattern-oriented representations of various situations which allow him/she to comprehend
the situation more effectively than a novice operator can.
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Another vital aspect of the comprehension of the situation is that meaning of the information
needs to be considered not only in the sense of element interpretation (awareness) but also in
the sense of objective importance with respect to given goals (situation) [16]. A person with situ-
ation comprehension can derive operationally relevant conclusions from the perceived data [13].
This level is error-prone; 20 % of SA errors were found to involve problems with situation com-
prehension [15].

Level 3: Projection of future status
The projection of future status is the highest level of SA. This level is the basis for "being

ahead of the plane" [3]. In the majority of fields, where SA is of importance, experienced operators
rely heavily on future projection. The future projection based on current events and dynamics
enables them to anticipate future events and their implications which allows them timely deci-
sion making [13]. For example, an experienced driver differs from a common driver. Unlike a
common driver, the experienced driver can detect possible future traffic and so prevent from
collisions more efficiently.

The projection builds upon knowledge gained at previous two levels. The accuracy of the
projection depends on the accuracy of the situation perception and comprehension. An inaccu-
rate perception or comprehension leads to biased or misleading future projection. The accuracy
of the prediction is further influenced by the operator’s experience and knowledge of the situa-
tion dynamics.

Summary

The presented definitions can be linked together as depicted in Figure 7. The elements from
the world are observed and internal representation of the world is created. The mental models
and knowledge are then combined with the perceived data. Finally, reflection and projection
are in place. Endsley’s definition focuses mainly on perception and understanding of the world
with some extend to projection. In contrast, Smith & Hancock present the SA in terms of the
interaction between an individual and outer world and focus on the way, in which these two
elements interact together. Bedny and Meister stress the reflective aspect of SA. They highlight
the relation of mental models with the real world [2].

In general, the Endsley’s definition has outperformed the other definitions in the number of
citations and is generally adopted by the community. Being general enough, the definition has
been without any significant changes extended to many other areas including the cybersecurity
one.

2.1.3 Aspects of Situation Awareness

This subsection presents various aspects of SA that are frequently discussed in the literature.
The aspects mainly refer to the three-level definition of SA. These aspects are mentioned as they
help to clarify the main implications and consequences of the definition. A misunderstanding
of these aspects may lead to the incorrect notion of SA.

Product vs Process

There is a process-product dichotomy which is also reflected in the different approach to SA of
the described definitions. The definitions are either concerned with the process of acquiring the
SA or are mainly concerned with the product of SA [2]. The interactive sub-system definition
and perceptual model definition mainly focus on the process of acquiring the SA whereas three-
level definition addresses the SA as a product.
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There is a benefit from such a differentiation between the process and product approach.
It allows us to define the scope and coverage of the term "situation awareness" clearly and re-
duces the misunderstanding of the term. For example, three-level definition distinguishes the
term situation awareness as a state of knowledge from processes used to achieve this status. These
processes are referred to as situation assessment. The situation assessment may vary across ap-
plication domain and context. This kind of approach enables to discuss different approaches to
situation assessment across various applications leaving the definition of situation awareness
general and universal for all application areas.

Time Aspects

The time plays a vital role in the definition of SA. The time aspect enables us to capture the
dynamics of the environment. The SA definitions that represent the process approach address
the time aspect naturally. The three-level definition covers the time aspect by the "within a volume
of time" statement. This statement contained in the definition pertains to the fact that operators
need to capture the environment not only in terms of volume (where, how much elements is
present) but also in time (i.e., how will the environment evolve and what impact it will have
on the operator’s goal and tasks). Time is a substantial part of the Level 2 and Level 3 of the
three-level definition [13].

The SA is not necessarily a product/process that is acquired/finished instantaneously. It is
built over time. Thus, it is essential to take into account, that some aspects of the SA can be
acquired only over time. Such a piece of knowledge could then be used for better environment
perception or more accurate projection of future status. In this context, Endsley [6] introduced
two following two terms: working memory and long-term memory.

Working memory stores the perceived information from the environment. In case an opera-
tor does not have any previous information on the environment, the majority of information is
stored in working memory. Apart from perceived information, the working memory contains
all necessary information needed for actual SA - mental models recalled from long-term mem-
ory, subsequent decisions, or current goals. All information is processed there and a picture of
the current situation including the prediction of the future environment status. It requires the
maintenance of present conditions, rules used for prediction, and action resulting from the pre-
dictions. All these tasks impose a heavy load on working memory which might be considered
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as a bottleneck for SA. The working memory is heavily overloaded especially in case of novice
operators or an unexpected, novel or extreme situation where long-term memory is of no use.

Long-term memory contains schemata and mental models with aids the working memory
with obtaining SA. Schemata represent coherent frameworks for capturing highly complex sys-
tems including their components, states, and functioning [6]. Several details of the situation
are lost during the capture of a situation to a schema. Still, the schema can serve to capture a
coherent picture of a given situation and may be efficiently recalled to aid working memory.
Mental models represent a generalization mechanism for generation of general descriptions of
the systems (e.g., explanations of functions, goals). An expert operator would have developed
a numerous mental model that shift a situation representation to prototypical abstract codes. A
mental model can then be understood as a schema for a particular situation. A situation schema
can be matched to models in memory, that depict the prototypical situations of the system. These
prototypical classifications may be linked to associated goals that dictate decision making and
action performance [6]. For example, one can have a mental model of a car engine in general,
but the situation schema is the state it is believed to be in now [13].

Elements

It is important to define the elements of SA in a given environment correctly. The process en-
compasses the identification of environment specific items that operator needs to perceive and
understand to reach SA. The items differ across application areas and can not be applied inter-
changeably. Although both air fighter pilot and captain of an oil supertanker rely on SA, they
would require a different set of elements for SA. It is possible to define general elements within
a class of application areas or systems. For example, general elements can be defined for avia-
tion, ship transportation, power plant operation, cyber security of concern management. The
individual categories for elements may also state a set of requirements on elements (e.g., spatial
and geographical awareness required pilots). The identification and definition of such elements
allow a to develop a consist and robust description of SA for a given area.

Decision Making

Situation Awareness should be strictly separated from the process of decision making [6, 13]. SA
provides an operator’s internal model of the situation that serves as input for his/her decision
process. Even with a correct SA of the actual state, an operator may come to a wrong decision.
The decision process can be involved the operator’s personal characteristics, e.g., level of risk
aversion, or by momentary operator’s conditions, e.g., psychological mood, stamina or health.
The distinction of SA from decision process eliminates the aspects of the decision process it-
self. Thus, the focus remains on reaching SA and is not widen by additional assumptions and
conditions.
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Figure 8: Situation Awareness in OODA loop.

17



2. Cyber Situation Awareness

The separation from the decision process also complies with the Observe-Orient-Decide-Act
loop (OODA), a simple model for reaction to events. The model defined by Boyd [17] initially
served as an approach to comprehension, shaping and adaptation to and unfolding evolving
reality that is uncertain, ever-changing, and interchangeable. The model is depicted in Figure 8.
Outside information and unfolding circumstances are obtained in Observe phase. Also, the feed-
back from previous acts and decisions are considered. The Orient phase includes the analysis
and comprehension of the information provided by Observe phase. Boyd states that orienta-
tion is influenced by several aspects, such as cultural traditions, genetic heritage, and previous
experiences. Based on the orientation in the situation, the decision process comes in turn. The
Decision phase comprised the selection of a specific action forms a set of available measures. The
size of the set of available measures and decision maker’s characteristic are the most influenc-
ing artifacts during this phase. The last phase of the OODA loop, the Act phase, represents the
actual locomotion and action according to the decision process. The results of the actions affect
the external environment, and so the results of the action enter the Observe phase, and the loop
is closed. The part of the loop is also the feedback from the Act stage back to the observation
stage.

The SA model fits the first two phases of the OODA loop. Mainly, the three-level model can
be intuitively fit into this approach. Perception level is analogous to the Observe phase. The
Comprehension level naturally addresses the Orient phase of the OODA loop. Although pro-
viding a model of the future state of the environment, the Projection level can still be mapped
to Orient level. The projection of the future enables an operator to orient in the situation, and
the future projection of various situations can be taken into account during selection of appro-
priate action. Some may argue, that SA, understood as a product, cannot be part of the OODA
loop that represents a continuous process. On the contrary, SA as a product of situation assess-
ment represents a knowledge of the system in a given iteration of the OODA loop. In the next
OODA loop, a situation is re-assessed, and a new SA is reached. In this manner, a static product
approach to SA is integrated into dynamic OODA loop.

2.2 Cyber Situation Awareness

We think of cyber situation awareness (CSA) as a subset of the general Situation Awareness,
particularly the subset concerning the cyber environment. Using Endsley’s three-level definition,
cyber situation awareness is defined as ...

... the perception of the elements in the cyber environment within a volume of time and
space, the comprehension of their meaning and the projection of their status in the near
future.

In this subsection, we provide specifics that are associated with the application of the gen-
eral SA concept into the cyber domain. We present viewpoints of renowned researchers of the
CSA research field, discuss the specifics of a cyber environment through comparison with the
original SA application in military, define entities and goals of CSA and provide a formal defini-
tion of the CSA. Next, we provide a literature overview to present the latest trends and identify
relevant issues for application in network security.

2.2.1 Viewpoints to Cyber Situation Awareness

We present viewpoints of the renowned researchers of CSA field to demonstrate different ap-
proaches to CSA and areas of interest of contemporary research. The full summary of view-
points are published by Barford et al. [18] and by Kott, Wang, and Erbacher [14]. We provide a
comprehensive overview of the viewpoints that highlights the area of interest in the CSA.
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Cliff Wang observes that information security is art rather than to be practiced as a science.
Wang suggests that a new CSA technology should move the security to a more scientific ap-
proach. It should allow analysts to obtain a more concrete and complete comprehension of a
situation. The new technology must deal with sophisticated adversaries via multidisciplinary
research incorporating advances in areas such as machine learning or uncertainty management.

Analogically, CSA should provide a capability to "connecting the dots" according to Sushil
Jajodia. He identifies the main issue of current CSA as a lack of the big picture. Current tools
provide only a small picture They give a few clues about how attackers might exploit combina-
tions of vulnerabilities. Even for a skilled analyst, it is difficult to combine such information to
get a big picture. An approach to gain a big picture could be a tool that can process, analyze,
and correlate information from various sources. Machine learning methods that can integrate
and fuse a broad array of contextual information need to be developed to acquire such a tool.
The requirement for inter-contextual, adaptive machine learning techniques for CSA has also
been identified by Thomas G. Diettrich.

Jason Li comments that CSA can be incredibly overwhelming for an analyst due to complex-
ity, scalability and uncertainty issues. CSA should provide a transformation of low-level data to
meaningful higher-level information relevant for the analysts. Li believes that such a transfor-
mation can be achieved via enhanced correlation, machine learning, and vulnerability analysis.
The CSA should also reflect a need of the human operators to a better understanding of the
expert operator mental processes and models. Similarly, Alexaner Kott states that a challenging
task for CSA to identify not only mental models of the operator but also the mental models
of an adversary. The challenge to understand an adversary is multiplied by the problematic
identification of the adversary the confusing and non-standardisable context of regular user’s
activities.

As George Tadda states, there is a lack of trust of operators in an automated decision process,
especially if they do not know, how the decision was reached. The decision process should be
deterministic according to Tadda’s view. Sommesh Jha and Matt Fredrikson suggest to establish
and formalize the entities and principles essential to CSA. They put the stress of provenance of
the conclusions and ability to verify CSA conclusions. The successful solution of the latter issue
would also lead to a solution of the Tadda’s concern.

2.2.2 Specifics of Cyber Situation Awareness

Although a general definition of SA can also be applied to the CSA, there are several specifics
of the cyber environment that need to be considered. These specifics have a significant effect
on SA and, to some extent, shape the approach to SA and the research efforts for CSA. One
of the original application of the SA is in the area of conventional military conflict. Therefore,
we demonstrate the specifics of the CSA with a comparison to the SA for military purposes.
Although we highlight differences between cyber and military SA, these two types are not con-
tradictory. On the contrary, CSA complements SA for a military operation as both virtual and
conventional battlefields are encompassed in the current Information Age conflicts [14]. The
specifics of CSA are presented in the following paragraphs.

Cyber Environment

There are almost limitless possibilities in the cyber environment. The cyber environment has no
borders. This dynamic world is highly malleable and potentially scale-free. The dynamics and
limitless of such an environment is a challenge for situation assessment compared to the phys-
ical world of conventional military conflicts, where the environment is immutable and govern
by the law of physics. The conflicts are potentially scale-free [19], an attack can come out of the
blue with no warning, and the costs of joining a conflict are low. Spatial properties of the cyber
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environment are global [20], which makes the determination of the SA boundaries problematic
if we do not want to use specification "everything/everywhere". Therefore, the location of own
network/system is usually used as a spatial boundary for CSA [21].

Perception

Information for military SA can be captured both via specifics hardware sensors and by direct,
physical observation. The hardware sensors and signal processing techniques play an important
but not an essential role; a direct observation can be used in cases hardware sensors are not
available. In the CSA, the information is gained solely by sensors. It is not possible to observe the
information directly. Each sensor is a complex system that can be misused or deceived to provide
false information. The inability to confirm information from a sensor by direct observation limits
chances to see through the deception. Similarly to information, anniversaries cannot be directly
observed. They can be detected only by an analysis of information captured by sensors, which
allows the anniversaries to stay hidden in a network.

Performance

The required resources for launching an attack in a cyber environment are relatively small. Com-
pared to a state or organization required in a conventional conflict, the resources needed for
starting a cyber conflict may scale down to an individual with a few prerequisites. Another fac-
tor to consider concerning the performance is the speed of the events. The speed of the events
is orders of magnitude quicker than in case of physical conflicts. The resources needed for pro-
cessing of such large volumes of information are significantly higher in the case of CSA.

Attacker Takes the Advantage

According to traditional military doctrine, a defender gains numerous advantages, e.g., defen-
sive fortification, information asymmetry) [14]. A cyber-attacker overtakes all advantages in
the case of cyber conflicts. The advantages of a cyber-attacker include, but are not limited to
anonymity (it can hide across national sovereignty boundaries), global reach to probe weak-
nesses, social engineering to exploit human weaknesses, and a possibility to pick a time, place
and tools for an attack.

2.2.3 Entities

Entities relevant to CSA are part of a cyber environment as stated in CSA definition. Cyber envi-
ronment refers to cyberspace in the context of CSA. The term "cyberspace" became known when
it was used by Gibson in a science-fiction novel Neuromancer [22]. In the novel, cyberspace rep-
resents a "graphic representation of data abstracted from the banks of every computer in the human sys-
tem." A cyberspace was defined from several perspectives as described by Strate in [23]. Relevant
for the scope of this thesis are definitions by Nguyen and Alexander in [24] and Gozzi in [25].
The authors of [24] describe the cyberspace as "the totality of events involving relationships
between humans and computers, between humans though computer and between computer
themselves". The authors of latter definition [25] define physical cyberspace as "material base
of computers (monitors, disk drives, modems, wires, and so forth), and their users". The com-
mon aspect of both definitions is the fact, the cyberspace relates to both machines and humans,
that fits the general notion of SA. Applying these definitions of cyberspace to cybersecurity, it
enables us to identify relevant entities for CSA.

We identify following major types of entities in the context of CSA based on above described
definitions - physical, immaterial, and human entities. For each entity, we identify their properties

20



2. Cyber Situation Awareness

and roles. Individual entities interact with each other and together influence the creation of CSA.
It is important to note, that an element that forms the CSA does not necessarily have access to
all information on entities.

A group of physical entities comprises the physical base of the cyberspace. This group
includes computers and their peripherals, network infrastructure formed by wires, switches,
routers, and other networking devices. Each device can be described by its properties. The prop-
erties of the computers include number and frequency of computer processing units, random
access memory size or volume of the disk space. The network wires and lines can be character-
ized by its type, throughput or packet loss. The properties can also cover a general property, e.g.,
the criticality of computer or line. Beside the characteristics, each element plays a specific role.
A computer can be, e.g., a workstation or server. A router can play a role of either a central, vital
element of infrastructure or be a low-importance device in the last mile of some insignificant
local network.

Next, we introduce a group of immaterial entities to capture the virtual essence of the cy-
berspace. The immaterial entities serve as a "new edge" for communication between humans
and computers or between computer themselves. The immaterial entities cover computer pro-
grams, services provided in a network, and so forth. Each of the entities can be assigned with
a set of properties, e.g., service can be characterized by an availability, set of functionalities
it offers, confidentiality, and so forth. The immaterial entities had originally a strong relation-
ship with a physical entity (a service was hosted on a given physical server). With advances in
cloud computing and virtualization, the relation with a physical entity loosens. The services,
programs, and even various network functions are operated in a virtual environment (or cloud)
and are not linked to a physical machine.

Last group, human entities, represents people interacting with the computers. This group of
entities can be described by various properties. Among the properties relevant for CSA belong
to experience, attention, determination, perceptual skills, short/long term memory capabilities,
and analytic skill [6]. A human entity is also characterized by a role. A role assigned to a human
partially determines the goals of the human and consequently the situation assessment process.
Each role would require slightly different information, comprehension and projection to reach
CSA. Roles that we consider in this thesis relevant for CSA divide into two main group - attacker
and defender role. Attacker role represents an adversary that intends to do deliberate harm to
the object of interest. A defender protects an entrusted asset against the attacker. The defender
roles can be, e.g., security analysts (analyze and assess existing vulnerabilities in IT infrastruc-
ture), security architects and engineers (design and utilize technologies to enhance security), or
administrators (manage organization-wide security systems) [26].

Although all mentioned roles constitute the cyber environment, only human entities usually
reach CSA. All three entities form cyberspace, and therefore they are part of the CSA, i.e., are
part of the knowledge of the situation. They form situation and influence its state. However, the
actual knowledge of a situation (CSA) is associated with human entities only, in the context of
this thesis. The human entities can both be part of a cyber environment and reach CSA of the
environment at the same time.

2.2.4 Literature Review

An overview of relevant literature is provided to present current state-of-the-art in the field of
CSA. First, we demonstrate the increasing importance and demand for CSA. Next, we present
an overview of results of queries for keywords related to cyber situation awareness over relevant
scientific databases2 to capture a full range of literature. Further, we identify and present leading

2. The overview queried following databases: IEEE Explore, Scopus, and Web of Science
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researchers from the surveyed papers and describe their work. Last, but not least, we mention
other works relevant to CSA.

The CSA has been included in the cybersecurity strategies of many nations, which indicates
the need and importance of CSA even at national level. The Australian Cyber Security Op-
erations Centre (CSOC) "provides the Australian Government with all-source cyber situation
awareness and an enhanced ability to facilitate operational responses to cybersecurity events
of national importance" [27]. The United States of America defines their role in cyberspace’s fu-
ture defense as "steady progress towards shared situation awareness of network vulnerabilities
and risks among public and private sector networks" [28]. The German national cybersecurity
strategy [29] establishes National Cyber Response Center to "directly inform the crisis manage-
ment staff headed by the responsible State Secretary at the Federal Ministry of the Interior if the
cybersecurity situation reaches the level of an imminent or already occurred crisis". The United
Kingdom aims to "enhance cyber threat awareness, detection, and reaction functions, through
the development of a Cyber Security Operations Centre (CSOC) that uses state-of-the-art defen-
sive cyber capabilities to protect the cyberspace and deal with threats [30]. The Canadian Cyber
Incident Response Centre serves "to be the focal point for monitoring and providing advice on
mitigating cyber threats, and directing the national response to any cybersecurity incident" as
described in Canada’s Cyber Security Strategy [31]. The analysis and monitoring the treats and
risks on a continuous basis in national critical information infrastructures is one of the leading
goals also in National Cyber Security Strategy of the Czech Republic for the period from 2015 to
2020 [32]. The cybersecurity strategies usually target the critical infrastructure of a nation, gov-
ernment systems in the majority of the cases. The common goal is to provide both financial as
well as jurisdictional support for cyber defense. An important role in the nation’s cyber defense
play cybersecurity teams established at the national level. The teams serve as a central element
of the cyber defense. The research in the area of threat detection or network monitoring is ac-
cented in many strategies [30, 32]. Although mentioned strategies do not use the term Cyber
Situational Awareness explicitly, the goals and actions described in the strategies follow CSA
principles and aim to reach CSA.

The need and relevance of research on CSA are demonstrated by the increasing numbers
of research published on this topic. We surveyed four major scientific databases for keywords
cyber, situation(al), awareness to show the coverage of the topic among research community.
The time range of the search was set from since January 2003 up to July of 2018. The numbers
of publication on CSA published thorough years are presented in Figure 9. There is an identifi-
able hype of interest in the CSA starting in the year 2012 and culminating in 2015. The relevant
papers are mostly indexed by Web of Science core collection followed by IEEE and Scopus col-
lections. The Springer database contains significantly fewer records except the year 2017 when
a collection of papers on CSA was published in the title Theory and Models for Cyber Situation
Awareness [33]. According to survey by Franke and Brynielsson [34] conducted in 2014, the ma-
jority of publications covers the design of CSA and attack detection & analysis while application
area, thread description, and workflows are covered rather sporadically.

Major publications on CSA are these two following collections: Cyber Situational Awareness:
Issues and Research edited by Jajodia et al. (2010) [35] and Cyber Defense and Situational Awareness
by Kott, Wang, and Erbacher (2014) [14]. These collections provide a comprehensive introduc-
tion to the topic, explanation of basic concepts and discuss prevailing open issues of the topic.
A summary of recent research advances in CSA are summarized in collection Theory and Mod-
els for Cyber Situation Awareness by Liu, Jajodia, and Wang (2017) [33]. An exhausting overview
of the literature is provided by Franke and Brynielsson [34]. The authors provide a literature
overview for specifics areas of CSA such as industrial control systems, emergency management,
and military. They also list design papers on tools and visualizations for CSA. We were not able
to find a similar survey covering CSA area published since then. A very brief survey covering
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Figure 9: Number of published papers on cyber situation awareness.

the anomaly detection area of CSA was published in 2015 by Friedberg, Skopik, and Fiedler [36].
The latest review of current CSA models and definitions was published by Cooke et al. in [37].

Apart from fundamental publications, our literature survey also focuses on the leading re-
search groups in the CSA field. A strong research group has been established at Center for Se-
cure Information Systems at George Mason University3. The director of this group, prof. Sushil
Jajodia, Ph.D. gathered a strong team of scientists and started to research the CSA in the project
Computer-aided Human Centric Cyber Situation Awareness. The team’s members worth men-
tioning are Massimiliano Albanese, Ph.D. who is interested in modeling network attack and
network hardening, and Steven Noel, Ph.D. who’s main research area is attack modeling, graph
analytics, and visualizations for information security. The group significantly contributes to the
formation of CSA [18, 26], to models underlying CSA [38–40], and to CSA measurement [41].
Further, the group investigated concept of attack graphs and their application in CSA [42–44],
network hardening [45] along with relevant strategies [46], and cyber deception [47–49]. The
group has also developed a framework for cyber situation awareness that integrate an array
of techniques and automated tools [50, 51]. The framework is able among others to represent
dependencies in a network or model attack scenarios using attack graphs.

Another research group is lead by Alexander Kott at US Army Research Laboratory (ARL) 4.
They also contributed to the fundamentals of CSA by the formalization of cybersecurity prob-
lems [52, 53] and editing a collection that provide an introduction to the basics principles of
CSA [14]. The ARL is interested in industrial control system protection; risk modeling and in-
trusion detection are investigated in [54], metrics of SCADA security in [55], and simulation of
the cyber defense in [56]. Other topics under the research focus of the ARL related to CSA are
resilience of the cyber systems and networks [57, 58], modeling of cyber intrusions [56, 59, 60],
and attack prediction [61].

Next research group investigating CSA has formed in Sweden at Swedish Defense Research
Agency5 and RISE SICS6. The group is represented mainly by ass. Prof. Joel Brynielsson, Ulrik
Franke, Ph.D., and their students. A significant contribution to CSA is a review on CSA litera-
ture [34] that provides a systematic overview of research areas in CSA and number of published
papers on these areas. Further, the group researches CSA testing [21], modeling an attacker via

3. http://csis.gmu.edu/
4. https://www.arl.army.mil/
5. https://www.foi.se/fusion/
6. https://www.sics.se/

23

http://csis.gmu.edu/
https://www.arl.army.mil/
https://www.foi.se/fusion/
https://www.sics.se/


2. Cyber Situation Awareness

attack persona concept [62], and differences in understanding of CSA between normal and IT
skilled employers [63].

Prof. Shanchieh Jay Yang, Ph.D. formed a group interested in some aspects of CSA at De-
partment of Computer Engineering at Rochester Institute of Technology7. The group has con-
tributed to the major publications on CSA with situation assessment research [64–66]. This
group specializes in the area of attack modeling and prediction. They investigate different ap-
proaches to attack prediction [67] including Bayesian networks [68], time series forecasting [69],
and likelihood estimation using rare-event simulation [70]. They are especially interested in
multi-stage cyber attacks. Their research in this area includes characterization of multistage cy-
ber attacks [71] and creation of simulation system for multistage attack emulation that fuses
concepts from computer networks, system vulnerabilities, attack behaviors, and scenarios [72].

Last, but not least research group is formed around dr. Florian Skopik at Center for Digital
Safety and Security of AIT Austrian Institute of Technology8. The researchers at AIT investigates
the decision support models in CSA used in cyber operation/security centers [73, 74], CSA in
smart grids [75], and network anomaly detection [36]. The design of a system for national situ-
ation awareness [76] is also investigated by this group.

2.2.5 Challenges

This section introduces challenges for cyber situation awareness extracted from the surveyed
literature sources mentioned in the previous section. The challenges of CSA were mainly dis-
cussed by Kott, Wang, and Erbacher in [14], further by Holsopple, Sudit, and Yang in [65], and
last, but not least by Dressler et al. in [77]. We cluster the discussed challenges into three sepa-
rate categories according to the target area. The first category represents the challenges resulting
from the specific properties of cyberspace. The second category focuses on the challenges associ-
ated with the data processed to obtain CSA. The last category discusses the practical application
of CSA principles and related challenges to toolset and automation of the CSA. Following para-
graphs present each of the categories in detail.

Cyberspace-related

Adaptation of Situation Awareness to cyber domain is not straightforward due to specifics of
the cyberspace (see Sec. 2.2.2). The challenges for CSA resulting from the specifics of cyberspace
are following: complexity, speed of events, dynamics, and rapid evolution.

• Complexity – The cyberspace, especially the computer networks, are complex, large en-
vironments. Nodes in a computer network are interconnected, depend on each other, are
organized into various structures, and topologies. Systems running in these networks
are complex, nested, and often hard to understand. These facts make the developing and
maintaining a mental model of a complex network with information of all components,
their properties, and inter-connections a challenging task. People’s ability to create a men-
tal model is often rapidly exceeded, which influences the SA comprehension phase and
consequently also projection phase [14].

• Dynamics – The cyberspace is not static; it changes all the time. New nodes are added
or removed, systems are updated, new technologies are introduced, and entities are en-
tering or leaving with mobile technologies. Analogous to complexity challenge, it is hard
for an operator to capture the dynamics and keep track of all changes in the cyberspace.

7. http://www.rit.edu/kgcoe/computerengineering/
8. https://www.ait.ac.at/en/about-the-ait/center/center-for-digital-safety-security/
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• Speed of events – Events can occur at near-light speed in cyberspace. Cyber attacks oc-
cur frequently and happen in a fraction of a second. Since a human is not able to handle
events at such speed, finely tuned automated tools are required to assist the human (e.g.,
network visibility tools, attack detection tools, and so forth). These automated tools must
be able to process and analyze all incoming events swiftly and provide a human with nec-
essary summarized information in time with high precision. Moreover, if an attack is new
or at least unknown to an operator, the operator does not have any tools. He/She needs
to analyze attack manually which further delays process of understanding an attacker’s
intentions needed for network defense.

• Rapid evolution – The cyberspace is characteristic by its rapid technology change. New
hardware and software are introduced almost on daily basis [14]. Each new technology
has its specifics, new properties, and functions. An operator is forced to keep up with
the latest trends to maintain an up-to-date model of the cyberspace, its vulnerabilities,
characteristics, and behavior. However, keeping up with the latest trend in a whole cyber
domain is beyond human abilities. According to Symantec 2017 Internet Security Threat
Report, 375 M of new malware variants was discovered in 2017 [78]. Such a large number
of malware means that understanding the malware and its effects is impossible for a
person. Automated tools and techniques need to be employed.

Some of the cyberspace-related challenges of CSA are being already responded to. Com-
puter security vendors are introducing new tools for network visibility, attack detection, and
cyber defense to ease complex network comprehension and to reduce a workload on a human
operator. Nevertheless, other challenges still prevail. The Speed of events challenge is still topical
as current tools may introduce a delay into the analysis process. The Complexity and Dynam-
ics challenges are not still completely solved too. For example, IP flow based monitoring, used
widely to network monitoring, does not provide a detailed host view straightforward, visual-
ization techniques of network topology in IPv4 and IPv6 address space are still under research.

Data-related

Data processed in CSA has all characteristics of big data. Big data is defined by four key charac-
teristics - volume, velocity, variety and value [79, 80]. To demonstrate the big data characteristics
of data processed in CSA, we highlight selected conclusions of Cisco report on IP traffic fore-
cast [81]. According to the report, the volume of global IP traffic was 96 EB per month in 2016
and is expected to rise to 278 EB per month by 2021. The velocity of the network traffic is forecast
to nearly double by 2021. The variety of the network traffic will increase too as new applications
and protocols are continuously developed (e.g., the number of applications in Apple App Store
increased from 585 thousands in 2012 to 2.2 millions in 2017 [82]). The value of the information
in network traffic can be demonstrated by the market value of the network security segment
that is estimated to reach 11.669 millions of USD at the end of 2018 [83].

However, each of the demonstrated big data characteristics of CSA data opens new challenges
for CSA. We present challenges of CSA linked to big data key characteristics below:

• Volume – The volume of the data captured and produced by sensors in cyberspace pro-
vides an operator with a massive amount of available information. However, information
and data are usually in a raw form that brings a little understanding to an operator. An
operator is overloaded with data with no meaning to him/she. This challenge can be
appropriately summarized as "Data overload - meaning underload" as mentioned in [14].

• Velocity – The velocity of incoming data combined with a demand for real-time analy-
ses and results delivery puts challenging requirements on data processing. Tools for data
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processing and analysis need to provide sufficient throughput to process all data at high-
speeds. Moreover, the real-time data processing accents time ordering of data as events
occur at millisecond rates in cyberspace. Correct time ordering of the events is required
for data analyses where causality is of interest (e.g., root-cause analyses, advanced per-
sistent threat detection).

• Variety – The variety of data opens challenges mainly in the data processing area. The
current trend is to process all data from different sources and of a different type in a cen-
tralized manner - e.g., in a data cloud. With central processing, determining the proper
metrics and alert thresholds is essential [77]. Moreover, data refinement and normaliza-
tion is necessary for data synthesis [77]. Data is collected in different formats based on
source tools. For central processing, data is required to be transformed into a common
format while keeping the information carried in original data. A central data process-
ing introduces further issues, such as data duplication, unreliable data sources, errors in
data.

• Value – The value of the data is determined by the value of information9 carried in data
for an operator of CSA. The information carried in data is, however, devaluated by the
presence of a high noise to signal ratio. Anomalous events are common in a cyber world;
systems might not work properly, users behave unexpectedly, protocols are not used ac-
cording to standard, and so forth. Such disruptions to a "normal" behavior complicate
relevant information retrieval and introduce a noise into data, which reduces its value.

Toolset-related

A toolset used by an operator significantly influences his/her level of CSA. An operator observes
cyberspace using different monitoring tools, comprehends data via tools for data analysis, and
presents results utilizing various visualization tools. The properties, available functions, and
performance of available toolset determines an understanding of the current situation and its
assessment. Available tools are under rapid development [83]. Nevertheless, the toolset is still
facing several challenges, that can be clustered into the following three areas: performance, het-
erogeneity, and visualization. Performance challenge relates to processing big data and discuss
mainly scalability and throughput issues. Heterogeneity challenge addresses the disperse tool
landscape and resulting issues from the tool heterogeneity. Visualization challenge represents
the issues linked to data presentation. Individual challenge areas are discussed in detail below.

• Performance – The performance challenge is closely related to data challenges described
above, namely the big data characteristics of data processed in CSA. The volume and
speed of the processed data impose a demanding requirement for data processing and
computational power of current CSA tools. Namely, scalability and throughput of the
tools are currently trending challenges for CSA toolset. The scalability challenge is be-
ing met by the development of cloud-based distributed solutions. The throughput is
increased by an extensive parallelization of computations and data processing tasks. A
novel approach to scalability and throughput challenges that is gaining attention is dis-
tributed data stream processing. Other challenges of CSA related to performance are the
reduction of analysis time and response time. The operator needs new information as
soon as possible to be able to react in time. The approaches to the analysis of CSA data
are subjects to delay, partially by their design and by the big data processed. The data pro-
cessing workflows and analysis methods need to be improved and optimized to reduce
delays caused by data analysis.

9. Value of information description including economics factors are defined in [84]
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• Heterogeneity – A CSA operator needs various information from different data sources
(network traffic, logs, ADS and IDS systems, antivirus tools, and so forth). A special tool
is used to process data from each different source, and an operator is forced to switch
between the tools and utilize a number of different analysis workflows to retrieve needed
information. These facts create a highly manually intensive process that hampers current
cyber operations. A tool integration and unified approach to CSA data analytics are de-
manded.

• Visualization – A visualization of data plays an important role in situation comprehen-
sion. The visualization approaches for cybersecurity are discussed in literature [85–87].
Nevertheless, several issues are still left open for research, such as big data visualization,
SDN networks, and human-centered evaluation [86]. An open issue related directly to
CSA is a visualization of large-scale complex and dynamically changing networks [14].
The visualization of the networks should be able to scale across levels of detail and across
time so that an operator has an instant approach to both overview and detailed informa-
tion.

2.3 Summary

This chapter introduces background information for cyber situation awareness necessary for
understanding the context of our research. We provide an overview of the cyber situation aware-
ness domain, introduce relevant terminology, survey relevant literature, and present the major
findings in this area.

First, we introduce a reader to a general concept of Situation Awareness and present key
approaches to Situation Awareness. General aspects of Situation Awareness are discussed as
well. Next, we narrow our focus to the cyber situation awareness, one of two central research
area of this thesis10. We demonstrate an adaptation of a general concept of Situation Awareness
into cyber domain including the specifics of the adaptation and entities relevant to cyber situa-
tion awareness. Further, we provide the literature review for cyber situation awareness research
area. We describe significant publications in the area and identify significant research groups.
For each research group, we present their research interests, relevant publications and major
findings on their research topic. Last, we provide a coherent overview of the current challenges
for cyber situation awareness research. The presented challenges relate to the research topic of
this thesis, and we aim to respond to these challenges to some extent.

The main contributions of this chapter are:

• coherent description of main approaches to Situation Awareness,

• overview of cyber situation awareness including its specifics,

• literature review of cyber situation awareness,

• description and categorization of the open issues of cyber situation awareness.

10. The other research area Network traffic monitoring is described in Chapter 3
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A computer network is a center of cyberspace where all communication takes place. Network
visibility is an essential requirement for understanding processes in computer networks. The un-
derstanding of a network enables us to manage the network effectively, defense it from adversaries,
and improve the quality of network service, and so forth. IP flow monitoring and analysis is one
of the major approaches that provide network visibility, even in high-speed, large-scale networks.
This chapter aims to provide a detailed introduction to the concept of IP flow network traffic mon-
itoring and to outline the application of the IP flow network traffic monitoring to cyber situation
awareness domain. We present the origins and evolution of the IP flow concept to show the orig-
inal purpose of the IP flows and to highlight current limitations of the concept resulting from
the original purpose. Since term "flow" is massively overused in the area of network security, we
provide a coherent definition of the IP flow to avoid any misinterpretations. Further, we describe
both IP flow monitoring and analysis workflows. We focus on the explanation of IP flow record
creation, processing, and analysis. The structure of the description is inspired by an excellent sur-
vey by Hofstede et al. [88], which we recommend for further reading. The information from the
survey is updated with current up-to-date findings, especially when describing the current trends
and open issues of IP flow monitoring.
We also study the workflow from the temporal point of view, which is, to the best of our knowledge,
the first attempt that focuses on the time aspects of the IP flows workflows. This chapter concludes
with the application of the described IP flow monitoring and analysis workflows to cyber situation
awareness domain using Endsley’s Three-level model described in the previous chapter. We revise
the specifics and challenges of cyber situation awareness in the light of IP flow network traffic
monitoring and identify prevailing challenges.
This chapter is structured as follows:

• Section 3.1 places the network traffic monitoring in the broader context.
• Section 3.2 presents the history, concept and definitions of IP flows along with contem-

porary trends.
• Section 3.3 describes the IP flow monitoring workflow including prevailing open issues.
• Section 3.4 describes the IP flow analysis workflow including current open issues.
• Section 3.5 presents the IP flow monitoring in the context of cyber situation awareness.
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3.1 Network Traffic Monitoring

Network traffic monitoring has become one of the constituent parts of network security. Net-
work security is a sub-field of information security and applies general approaches of information
security to computer networks. The goal of the network security is to protect confidentiality, in-
tegrity, and availability of a network. The network monitoring process contributes to the network
security and consist of collecting and recording data from the relevant network elements in op-
eration [89]. The research fields related to IP flow network traffic monitoring, as understood
in this thesis, are depicted in Figure 10. IP flow monitoring is one of the methods for network
traffic monitoring. Network traffic monitoring along with monitoring of network infrastructure
represent network monitoring research field. The network monitoring area is part of a network
security research field. As stated before, network security is a sub-field of general information
security. In the next paragraphs, we will present main approaches to network monitoring, de-
scribe methods for traffic access and detail main approaches to traffic network monitoring to
provide a broader context for the other main scope of this thesis - network IP flow monitoring.

Information 
Security Network 

Security Network 
Monitoring

Network 
Traffic 

Monitoring
IP Flow 

Monitoring

Figure 10: Network traffic monitoring research field.

Two main mechanisms apply for network monitoring: active and passive [88, 89]. The active
network monitoring actively injects testing traffic into a network. Based on network response,
it infers network status. Active approaches are used for network topology discovery, quality of
service measurement, availability checking, or determination of connection properties. Active
network monitoring is implemented in tools like Ping, Traceroute, Nmap1 or ZMap2. Passive ap-
proaches to network monitoring observe existing network traffic as it passes via an observation
point in a network. The network traffic is observed using traffic monitoring access methods de-
scribed later in this section. The passive approach to network observation is mainly used for
network traffic monitoring. Nevertheless, the network traffic monitoring is often generally un-
derstood in the broader context than observing packets in a network; it also includes network
traffic collection, storage, and analysis for various purposes (e.g., threat/anomaly detection, out-
age detection, or network accounting).

Traffic monitoring access methods are used to observe network traffic for network traffic
monitoring purposes. The access methods provide a transparent way to observe packets in
a network without any negative effect on network functionality and network traffic delivery.
There are two generally accepted types of traffic monitoring access methods: in-line and mir-
roring methods [88]. We distinguish a third type of access method - the build-in method that
emerges due to improved capabilities of network switching and routing devices. All three types
of access monitoring methods are described below.

1. https://nmap.org/
2. https://zmap.io/
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• In-line traffic access methods observe network traffic using a capture device placed to a
monitored line between two network elements. The capture devices are additional hard-
ware installed to a line, such as bridging hosts or network traffic access points3 (TAP) [90].
Network TAP is a device designed to provide a permanent access port for passive moni-
toring of all traffic without data stream inference [90]. The TAP duplicates network traffic
using splitting or regeneration technology. The duplicated network traffic is sent to the
connected monitoring device for further processing. In a copper network, TAP duplicates
a signal sent over a line, which requires a constant connection to power supply. A TAP
for a fiber line does not necessarily need the power supply as a light signal is split by a
prism installed in the TAP. The split ratio representing the amount of light that is redi-
rected from network to monitor ports is ranging from 30:70 to 50:50 in the majority of
installations.

• Mirroring traffic access methods leverage a feature present in most of the packet forward-
ing devices – packets mirroring from one or more ports to another port. This feature is
referred to as port mirroring or Switched Port ANalyzer (SPAN) session. SPAN port and mir-
rored ports are defined in a packet forwarding device’s configuration. A network traf-
fic monitoring device is then connected to the SPAN port. The port mirroring modifies
monitored traffic, unlike TAPs where monitored traffic remains intact. Port mirroring in-
troduces additional timing difference artifacts, changes traffic stream and reorders pack-
ets [91]. Despite mentioned issues, mirroring traffic access method remains a widely used
and popular method for network traffic monitoring due to its wide availability and low
cost.

• Built-in traffic access methods represent a network monitoring software implemented
directly to network switching devices. With the recent rise of computational resources
in network switching devices and the introduction of new networking concepts such as
software-defined networks (SDN), devices with implemented network monitoring soft-
ware emerges, e.g., Open vSwitch4 supports NetFlow export. It should be noted, that this
traffic access method is not suitable for high-speed networks. The network monitoring
software is usually only a complementary feature to the primary purpose of the devices
- network switching. In the case of high traffic loads, a device allocates resources to ful-
fill its main function and network monitoring resources are reduced. Such behavior is
undesirable in case of distributed denial of service (DDoS) attack, for example.

The main approaches to network traffic monitoring can be categorized by level of abstraction
of information collected from network traffic to following three categories: volumetric statistics,
deep packet inspection (DPI), and IP flow monitoring. The level of description is determined by a
volume of information from the packet that is processed during a monitoring process. The level
of abstractions also affects other characteristics of the approaches to network traffic monitor-
ing, mainly their throughput and resource requirements. The comparison of the approaches to
network traffic monitoring is depicted in Figure 11.

• Volumetric statistics approaches do not require to analyze packet at all. Instead, these
statistics are usually collected directly from network devices using simple network man-
agement protocol (SNMP) [92] or remote network monitoring RMON system [93]. The
collected information provides only volumetric information on the network traffic includ-
ing the number of transmitted or received packets, bytes, number of errors. The volumet-
ric statistics provide insufficient information on the nature and content of network traffic
and usually serves mainly for basic network accounting.

3. Also referred to as Test Access Point.
4. http://www.openvswitch.org/
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Figure 11: Comparison of approaches to network traffic monitoring.

• Deep packet inspection analyses the entire packet, i.e., both header and data part of the
packet. The advantage of this approach is that the volume of information extracted from
network traffic is the highest from the mentioned approaches. However, such high visi-
bility is outweighed by a lower throughput of the DPI approach and it’s high resource
requirements. Hence, DPI is suitable rather for analysis of targeted network traffic than
overall monitoring of the whole network. Moreover, the volume of information available
via DPI is, and will continuously be reduced by an increasing portion of encrypted net-
work traffic [94].

• IP flow monitoring is a balanced trade-off between a volume of information available and
scale of analysis. In general, IP flow monitoring analyses only information from packet
headers, which allows for high throughput and relatively low resource requirements on
the one hand. On the other hand, the volume of information is reduced to basic metadata
about a connection in a network. The IP flow monitoring process for large-scale Internet
measurement has originally been described in [95]. The IP flows and associated monitor-
ing process are discussed in detail in the following sections.

3.2 IP Flows

The purpose of this section is to introduce the concept of IP flows. The following paragraphs
briefly outline the history of IP flows that helps to understand the origins of IP flows and asso-
ciated consequences. Next, we present and explain the definition of an IP flow. Since the term
flow is overused in the network monitoring research field, we aim to provide a precise definition
that will be used consistently throughout this thesis.

3.2.1 History and Evolution

There are two main driving forces present throughout IP flow history: the Internet Engineering
Task Force (IETF), an open community of network designers, operators, vendors and researchers
concerned with the evolution of the Internet, and Cisco Systems, Inc. (Cisco), one of the largest
network companies in the world. The origins of flow monitoring concept are linked to IETF.
IETF, however, did not manage to assert a wider industry adoption of the concept. It required a
Cisco’s native implementation and market position to make a flow monitoring a widely accepted
and used concept. The overview of the history of flow export is displayed in Figure 12. In the
following paragraphs, we describe evolution related to IETF and Cisco separately.

The first published mention of a concept resembling IP flow dates back to 1991. In November
1991, Internet Accounting (IA) Working Group (WG) of IETF issued request for comments no. 1272
(RFC 1272) describing background information for the "Internet Accounting Architecture" [96].
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Figure 12: The history of IP flow export.

RFC 1272 purposed a model for internet accounting with a motivation to understand a sub-
scriber’s behavior, to monitor compliance with stated policy, and to allocate costs rationally. The
model for Internet accounting resembles contemporary models for network traffic monitoring.
It comprises of meters used for examining a stream of packets and collectors used for data stor-
age. The model further describes the meter’s types and structure and discusses issues linked
to the collection. A flow description is included in a meter’s definition: "... The meter records ag-
gregate counts of packets belonging to FLOWs between communicating entities... ...The assignment of
packets to flows may be done by executing a series of rules.." [96]. The IA working group has con-
cluded its charter in 1993. The workgroup did not achieve any wider adoption of the proposed
concept, mainly due to lack of vendor’s interest and a common attitude that the Internet should
be free, i.e., no monitoring should take place [88].

IETF reincarnated the flow related efforts in 1996, based on impulse from a published paper
by Claffy, Braun, and Polyzos [97] in 1995. Real-time Traffic Flow Measurement (RTFM) WG was es-
tablished with main objectives to consider security&privacy issues in traffic flow measurement,
to produce an improved traffic flow model with a simpler flow specification and a strong focus
on data reduction, and to develop the RTFM architecture as a standards document for IETF. The
RTFM WG revised the work by IA WG and proposed a Traffic Flow Measurement Architecture
in RFC 2722 [98]. The proposed architecture applied to any protocol or multiple network stacks,
and it enabled user-defined traffic flow measurement requirements. The data reduction effort
was accomplished by placing a flow producer as near as possible to network point. A flow was
defined in the context of RFC 2722 as "... an artificial logical equivalent to a call or connection. A flow
is a portion of traffic, delimited by a start and stop time. Attribute values associated with a flow are aggre-
gate quantities reflecting events which take place between the start and stop times..." [98]. The RTFM
WG concluded its charter in 2000, still without any standard for flow export issued, though.

Next effort of IETF to standardize a flow export protocol took place a year later in 2001. IP
Flow Information Export Work Group (IPFIX WG) was started with a goal to define a standard for
flow information export. After four years of analysis, the IPFIX WG published an informational
RFC 3197 [99] in 2004 where requirements for IP flow information export were stated. The RFC
3197 provides a base of IP flow definition, which is with small modifications used nowadays5.
Besides the definition, RFC 3197 united terminology used in IP flow network traffic monitoring
and identified applications suitable IP flow information export – usage-based accounting, traffic
profiling, traffic engineering, Quality of Service (QoS) monitoring, and attack/intrusion detec-
tion. Next, IPFIX WG evaluated candidate protocols for information export (RFC 3955) stating
that Cisco’s NetFlow v9 is a best starting point for a new protocol specification [100]. The re-
quirements and evaluation were forged into a proposed standard RFC 5101 [101]. The standard
provided the specification of the IP flow information export protocol (IPFIX)6 for the exchange
of IP traffic flow information. The specification defined IPFIX message format including header

5. The definition itself is omitted here, as the IP flow definition will be discussed in detail in the following subsection.
6. Please note that abbreviation IPFIX refers to the protocol for IP flow information export while IPFIX WG refers to
IP Flow Information Export Working Group.
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and record format. It introduced a concept of template record formats, which provided flex-
ibility in records transferred and allowed for a user-specified format. The proposed internet
standard RFC 5101 was turned into internet standard in RFC 7011 [102]. Apart from protocol
specification, the IPFIX WG worked on other aspects of information export such as information
models [103], flow selection techniques [104], flow aggregations [105], or textual representation
of abstract data types [106]. The IPFIX WG concluded in 2015. Since then, the IPFIX is further
developed by the community.

In parallel to IETF, the IP flow information export technology was developed by a world-
leading network company Cisco Systems, Inc. The Cisco’s approach to information export ori-
gins in switching approach implemented in Cisco’s routers and switches. The flow-based switch-
ing maintains all information on connections in a flow cache. Forwarding decisions are made
in a control plane only for the first packet, and all subsequent packets are switched in the data
plane. The discovery of the value of information stored in a flow cache led to the development
of flow export technology. A protocol for flow export, called NetFlow, was patented by Cisco
in 1996 [88]. Since Cisco made the protocol and corresponding data format freely available and
the technology was naturally present in Cisco’s devices, the technology offered a high potential
to be widely used. In 2002, NetFlow v5 met the potential and became the first widely adopted
protocol for network flow export, even though no official documentation on this protocol ver-
sion has ever been published. The NetFlow v5 has a fixed format and therefore can carry only
limited information (e.g., is limited to IPv4). In 2004, NetFlow v5 was replaced by a more flex-
ible format in NetFlow v9. NetFlow v9 introduced support for flexible data formats, IPv6, vir-
tual local area networks (VLANs), and multiprotocol label switching (MPLS) [88]. NetFlow v9
was described in informational RFC 3954 [107] and served as a basis for IPFIX specification as
mentioned before. In 2011, Cisco introduced a NetFlow-lite technology built upon the Flexi-
ble NetFlow. Flexible NetFlow is an evolution of NetFlow based on NetFlow v9 and IPFIX that
introduces a new concept of immediate cache enabling immediate export of network flows. Flex-
ible NetFlow also provides an ability to export additional information from a packet, such as a
packet section. NetFlow-lite leverages the advantages of Flexible NetFlow and, thanks to packet
sampling, provides visibility similar to NetFlow at a lower price point without the use of expen-
sive customer application-specific integrated circuits (ASIC) needed otherwise. The low price
makes and its flexibility makes NetFlow-Lite a technology suitable for providing visibility in
data centers [108].

The benefits and key customer applications are listed by Cisco as follows [109]: network mon-
itoring (on a network-wide basis), application monitoring and profiling, customers monitoring
and profiling, network planning, security analysis, and accounting. A flow for NetFlow v5 is
identified as ... a unidirectional stream of packets between a given source and destination – both defined
by a network-layer IP address and transport-layer source and destination port numbers. The NetFlow-
Lite provides a more general flow definition: ... a unidirectional stream of packets that arrives on a
source interface and has the same values for the keys. A key is an identified value for a field within the
packet. You create a flow using a flow record to define the unique keys for your flow. [110].

Apart from Cisco, other vendors introduce alternative technologies for flow information
export. Juniper Networks 7 provides Jflow [111]. sFlow is an industry standard for export of
truncated packets creating records similar to IP flows described in RFC 3176 [112]. The current
version sFlow v5 is supported by vendors such as Hewlett-Packard, Huawei, IBM, and others.
Another relevant technology linked with the upswing of software-defined network (SDN) is
OpenFlow [113]. In SDN, a control and data plane are separated. OpenFlow serves mainly as a
flow-based configuration technology for the control data plane that enables sophisticated and
remote traffic management. Apart from the configuration, OpenFlow can export flow level infor-

7. https://www.juniper.net
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mation from the control plane (e.g., byte and packets counters). This property has been utilized
for network’s volumetric statistics measurement in [114, 115].

The history review of IP flows has shown, that the original purpose of IP flow was mainly
network accounting and profiling. The accounting function of IP flow has determined the design
of IP flow monitoring infrastructure. IP flows and associated IP flow monitoring infrastructures
are designed to holistic monitoring of network with the focus on regular network reporting.
The original design and purpose of IP flow, however, is being continuously transformed from
the original to a modern one due to technological advances in networking area (faster networks,
SDN), the shift in protocol usage (rise of encrypted traffic), and new possibilities and paradigms
for data processing in general. The IP flow definitions, monitoring infrastructure, and related
toolset, however, remain with the original purpose, which introduces discrepancies in IP flow
applications and other issues in flow processing and analyses.

3.2.2 IP Flow Definition

Throughout time, the definition of IP flow has evolved from a notion resembling a communi-
cation in network traffic to a flow definition specified in an internet standard. The historical
version of IP flow definition is described in the previous subsection. Here, we present the latest
standardized definition of IP flow presented in RFC 70118 [102].

A Flow is defined as a set of packets or frames passing an observation point in the network
during a certain time interval. All packets belonging to a particular Flow have a set of
common properties. Each property is defined as the result of applying a function to the
values of:

1. one or more packet header fields (e.g., destination IP address), transport header fields
(e.g., destination port number), or application header fields (e.g., RTP header fields).

2. one or more characteristics of the packet itself (e.g., number of MPLS labels, etc.).
3. one or more of the fields derived from Packet Treatment (e.g., next-hop IP address, the

output interface, etc.).

A packet is defined as belonging to a Flow if it completely satisfies all the defined properties
of the Flow.

RFC 7011 [102]

An observation point is a location in a network, where packets are observed [102]. The traffic
access methods for packet observation are described in Section 3.1. A location of observation
point determines the information available in monitored data. An observation point located
at connection point to internet service provider provides information on all outgoing/incom-
ing network traffic from/into a network but does not give any information on traffic among
elements within the monitored network itself. To observe network traffic inside a network, an
observation point needs to be located within a network. For the measurement process, obser-
vation points can be aggregated into observation domains, e.g., several interfaces of a router line
card (observation points) are grouped into the observation domain (a router).

All properties common to all packets in an IP flow are called flow keys. RFC 7011 defines flow
keys as follows:

Each of the fields that:

8. We use term IP flow that refers to RFC 7011 flow definition to clearly distinguish from common usage of the term
flow (e.g., traffic flow, information flow).
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• belong to the packet header (e.g., destination IP address), or
• are a property of the packet itself (e.g., packet length), or
• are derived from Packet Treatment (e.g., Autonomous System (AS) number),

and that are used to define a Flow (i.e., are the properties common to all packets in the Flow)
are termed Flow Keys.

RFC 7011 [102]

The most common flow key used to identify an IP flow is the five-tuple of the source and
destination IP address, source and destination transport port, and transport protocol. This five-
tuple represents an abstraction of a unidirectional communication. It is important to note, that
a definition does not explicitly specify, what a packet header is. We believe that packet headers
mainly refer to packet headers of L2 – L4 layer of OSI model9.

Information on IP flow is exported in the form of a IP flow record. The IP flow record is
defined as follows:

A Flow Record contains information about a specific Flow that was observed at an Observa-
tion Point. A Flow Record contains measured properties of the Flow and usually contains
characteristic properties of the Flow.

RFC 7011 [102]

The measured properties are, for example, the total number of bytes and packets in an IP
flow, byte and packet rates per second. The characteristics properties of the IP flows mentioned
in the IP flow record definition refer to IP flow keys, e.g., the above mentioned traditional five-
tuple.

In general, an IP flow is an abstract representation of a set of packets that describes their
common properties. An IP flow record is then an IP flow enriched by its measured properties.
The processes of IP flow and IP flow record creation are described in Section 3.3.

3.2.3 Current Trends

The current trends influencing network IP flow monitoring originate mainly in achieved tech-
nological advances, and in novel approaches to the network usage. We discuss following trends
that affect IP flow monitoring domain - an increased computational power of hardware, increas-
ing volume of network traffic, rise of encrypted traffic, focus on privacy, and shift to the cloud
environment. For each mentioned trend, we present an impact on the IP flow.

• Increased computational power – An advantage of IP flow over DPI network monitor-
ing is the high throughput and the volume of network traffic that can be monitored. Since
DPI analyzes a whole packet, its throughput is considerably lower than the throughput
of IP flows that process only L2 – L4 packet headers. Nevertheless, the improved compu-
tational performance of current hardware and utilization of field programmable gate ar-
rays (FPGA) in network cards enable new possibilities for an IP flow export. The current
IP flow exporting tools can process network traffic at the rate over 100Gbps [116], cur-
rently targeting to break 200Gbps throughput on commodity hardware. Apart from the
increased throughput, the improved computational performance enabled flow exporters
to process more information than L2 – L4 packet headers only. Export of information from

9. The Open Systems Interconnection (OSI) model describes and standardizes the communication functions of
computing system regardless an underlying technology. Communication is partitioned into abstraction layers, starting
with the physical layer (L1), ranging to the application layer (L7).
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application protocol (L7 layer) is gaining attention. Next-generation IP flows includes infor-
mation from most common protocols, e.g., HTTP, DNS, and SNMP. Generally speaking,
a volume of information exported in IP flow is shifting towards a volume of information
exported by DPI.

• Increased volume of data – The volume of network traffic is continuously increasing [81].
Combined with the increased computational power of hardware, the volume of IP flow
exported, and information contained in the IP flows are enormous (a mid-size network
of 15 000 active IP addresses can produce 10 GB of IP flows records a day at an average
observation rate 8 000 IP flows/second). Along with this data boost, a demand for infor-
mation mining from the exported data increases as well. Next generation databases for
large-scale storage of IP flows are under research [117] and novel and optimized meth-
ods for large volume IP flow analysis are developed and improved [118, 119]. The big
data trend might even change the IP flow record definition itself in the future. Novel
flow records are tested as part of a storage optimization efforts. The novel records share
a common part for each connection, i.e., a traditional five-tuple and the common part is
supplemented with an "event part" that represents individual connections on the appli-
cation layer. A flow record size is reduced as a common part of all connections is stored
only once.

• Privacy issues – With an increasing volume of information exported in IP flow, the pri-
vacy issues need to be considered. The efforts for providing a legal framework that would
protect the privacy of monitored network users has emerged. General Data Protection
Regulation (GDPR), EU Regulation 2016/679, intents to unify and improve data protec-
tion for EU citizens via regulation of personal data storage and processing. The Federal
Trade Commission Act (15 U.S.C. §§41-58) (FTC Act) is a federal consumer protection law
in the United States of America that prohibits unfair or deceptive practices and has been
applied to offline and online privacy and data security policies. Another US privacy acts
refer directly to electronic communications – The Electronic Communications Privacy Act
(18 U.S.C. §2510) and the Computer Fraud and Abuse Act (18 U.S.C. §1030) regulate the
interception of electronic communications and computer tampering, respectively [120].
IP flows belongs within personal data affected by these regulations. Security and privacy
of stored IP flows shall be improved significantly. A pseudonymization process shall be
applied to IP flows. There currently exist anonymization techniques for IP flow. Whether
they provide sufficient anonymization level for increased privacy requirements, that is a
question.

• Encrypted traffic – The increased computational power supports a trend to analyze ad-
ditional application headers from packets. However, the encryption of network traffic
hiders the retrieval of additional information form a packet as information form applica-
tion headers become unavailable due to encryption. A continuous increase of encrypted
traffic share [94] might result in the fact, that encrypted traffic will become a majority in
the near future. The IP flows paradigms is expected to return to its origins – only infor-
mation from traditional five-tuples flow keys will be processed.

• Cloud sevices – According to Oracle’s cloud prediction [121], about 60 % of IT organi-
zations will have moved their systems management to the cloud. The development and
testing workloads are predicted to be completely migrated to cloud by 2025. Small busi-
nesses are also expected to move their agenda to a public cloud to reduce their costs and
keep up with the latest technological trends. In general, a cloud will contain a significant
portion of services in the future. The migration to the cloud also affects network monitor-
ing and IP flows. Thanks to the virtual cloud environment, a novel network traffic access
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methods are available, and new information can be harvested (e.g., data from cloud hy-
pervisors, host-based traffic access points). Apart from innovations linked to the cloud
environment, we expect also cost/effective optimizations of IP flow concept. As business
pay for each operation and data stored in the cloud, the demand for cost-effective IP flow
monitoring will increase. Types and volume of collected information will be optimized
(i.e., reduced while keeping original information value as much as possible).

3.3 IP Flow Monitoring

This section aims to explain how IP flow records are created and handled. The understanding of
IP flow record creation process eases understanding of specifics and nuances of IP flow analysis
that are discussed later in this thesis. Organization of this chapter is inspired by a article by
Hofstede et al. [88] and by RFC 7011 [102].

A general IP flow monitoring workflow is proposed in RFC 5470 [122] and consists of pro-
cesses depicted in Figure 13. The packets are observed at one or more observation points. A
device called exporter handles the creation and export of IP flow records. A collector receives
the IP flow records from one or more collectors and stores them for further analysis. Exporters
and collectors are often dedicated devices to achieve high performance. Nevertheless, these two
devices can be combined in a single device to save hardware costs. The provided schema repre-
sents a general workflow for the majority of IP flow monitoring installations. Following subsec-
tions describe each process linked to IP flow creation and storage separately with an accent to
information relevant to this thesis. The data analysis process is inspected in a Section 3.4.
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Figure 13: IP flow monitoring workflow.

3.3.1 Packet Observation

Packets are observed at observation points via traffic access methods described in Section 3.1.
The packet observation process comprises of two main phases – packet capture and timestamp-
ing. These two phases are executed for each observed packet. Optional phases, such as packet
truncation and packet sampling, are included mainly to optimize packet capture performance.

First, a packet is captured from a line by Network Interface Card (NIC). Several checks are
performed (e.g., checksum error) and the packet is passed via driver to a standard TCP/IP stack
in kernel space. From the kernel space, the packet is served to userspace to libraries and applica-
tion programming interfaces (APIs) designated for capturing network traffic. Libpcap or libtrace
are available libraries for Linux operating systems, WinPcap for Windows. These libraries pro-
vide both capture and filtering functionality and serve the packets for a Metering Process to
create IP flow records. The described packet capture process utilizes general-purpose network-
ing. Therefore, it suffers from suboptimal performance unsuitable for high-speed networks [88].
Optimization techniques reduce costs of handling a packet from NIC to the Metering Process by,
e.g., bypassing a kernel space, or leveraging of the hardware-acceleration cards that use FPGAs
to reduce resources consumption during the packet capture. More optimization techniques for
the high-speed packet capture are described in [88].

The second phase is timestamping. During the timestamping, each packet is assigned with
an accurate timestamp of observation. The accurate packet timestamping is essential for all sub-
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sequent packet processing including Metering Process and IP flow analysis. Inaccurate times-
tamping results into a creation of incorrect IP flow records or biased results of IP flow analy-
ses. The timestamping is performed either in hardware or software. The hardware-based times-
tamping is more accurate than the software-based one, as it does not suffer from hardware-to-
software forwarding latency. The hardware solutions massively rely on GPS time synchroniza-
tion and provide timestamps with an accuracy below one micro-second [123]. However, the
hardware solutions are available mostly on specials NICs that are expensive for common us-
age. Due to costs of the hardware, software-based timestamping prevails. The software-based
timestamping solutions implement time format with a microsecond resolution, so the accuracy
of timestamps cannot go beyond this resolution. [123]. Hofstede et al. [88] reports the accuracy
in the order of 100 microseconds when using a Network Time Protocol (NTP) for clock synchro-
nization.

The optional phases that are used to reduce a workload for further workflow processes are
packet truncation, sampling, and filtering. During the packet truncation process, only those
bytes needed for further IP flow processing are kept, and the others are truncated. As IP flows
are created from packet headers, usually the whole data part of a packet is dropped, which
significantly reduces data volume to process and increases the throughput of the workflow.

The packet sampling for network monitoring purposes is described in RFC 5475 [124]. Ac-
cording to the RFC, packet sampling aims to select a representative subset of packets that allow
accurate estimates of properties of the unsampled traffic. As only a representative subset of the
packets is selected, the packet sampling reduces the volume of data and is used whenever it is ex-
pected that the volume of incoming packet will overload the Metering Process. Two main types
of packet sampling are distinguished based on the method of packet selection process [124]:
systematic and random.

Systematic packet sampling selects packets according to a deterministic function. The de-
terministic functions are either time-based or event-based. The time-based selection function
selects packets every t seconds, while the event-based function select ever n− th packet. As the
selection function is deterministic, using the function involves a risk of obtaining a biased sub-
set of network traffic. A subset created by time-based selection function will be likely biased to-
ward regular network traffic. Random packet sampling selects the packets by a random process.
The packets are selected using following two main random functions: n-out-of-N and probabilis-
tic [124]. The n-out-of-N function splits the network traffic into subsets of N packets. From each
subset n packets are randomly chosen. The probabilistic function selects each packet with prob-
ability p based on predefined statistical distribution. The probability p is usually based either
on uniform distribution (each packet is selected with the same probability), non-uniform distri-
bution (packets are selected with different probabilities), or non-uniform flow state dependent
(existing flows are taken into account when selecting packets). The random sampling is pre-
ferred to the systematic sampling as random sampling does introduce less bias to the selected
traffic subset than the latter one.

Packet filtering is used to select network traffic of interest. According to RFC 5475 [124], the
packet filtering separates all the packets having a particular property from those not having it.
The packet can be filtered either by property match filtering (e.g., a defined IP address range,
protocol type, network traffic direction) or by hash-based filtering (packets with a certain hash
are selected). The hash-based filtering is used, e.g., when tracking a packet path across different
observation points.

3.3.2 Metering Process

Metering Process is responsible for aggregation of individual packets into IP flows and for the
creation of IP flow records. A cornerstone of the Metering Process is a flow cache. A flow cache

39



3. IP Flow Network Traffic Monitoring

is a table, where all active IP flows are stored. The flow cache tables contain entries composed
from the key and non-key fields. The key fields represent IP flow keys used for aggregation
of packets into IP flows. Non-key fields represent additional information in an IP flow record,
e.g., the sum of bytes, packets. The key fields are usually the traditional 5-tuple mentioned in IP
flow definition in the previous section. The traditional 5-tuple creates unidirectional IP flows. A
bidirectional IP flows are used in cases, where a direction is not important, and we focus on the
connections (source/destination pairs). As the source and destination flow key are still present
in a flow cache, a special cache is needed for pairing request and response flows to create a
bidirectional IP flow.

The update process of a flow cache process the packets passed from packet observation
phase. With each passed packet, the flow cache is searched for entries with the corresponding
flow keys. If the corresponding entry is found, the non-key values of the entry are updated. In
case, there is no corresponding entry in the flow cache a new entry is created using flow keys
from the passed packet. The cache entry expires when a corresponding IP flow is considered to
have terminated. We distinguish the following reasons for cache entry expiration [122]:

• Inactive timeout – An IP flow is terminated when no packets belonging to the IP flow are
coming for a predefined period. The predefined period of IP flow inactivity is referred
to as inactive timeout. The inactive timeout usually ranges from 15 seconds to 5 minutes
based on default settings [125].

• Active timeout – Active timeout for expiration is triggered when an IP flow reaches the
maximum predefined lifetime. The active timeout serves to split long-lasting connection
into several IP flows to provide up-to-date network visibility. If the active timeout was
not present, the long-term connection would be expired after their termination based on
the inactive timeout or natural expiration. Information on the IP flow would be available
for an operator after an unacceptably long time (some connections may last for several
days or weeks). The values of active timeouts usually range from five minutes to thirty
minutes10. The flow records expired by the active timeout are typically not removed from
the flow cache. The record is kept, and non-key values are reset.

• Natural expiration – Some connections contain markers of their termination in protocol
by default. In a TCP connection, FIN or RST flags are used to signal termination of the
connection. A flow cache can use these flags as an IP flow expiration trigger. This type
of IP flow expiration introduces a risk of a premature expiration of IP flow. Although
FIN and RST flags terminate a connection meaning no more data should be transferred,
it often happens that a delayed data packets are sent/received even after FIN and RST
flags are observed (e.g., due to network latency, incorrect protocol implementation).

• Resource constraints – In the case a flow cache becomes full, selected IP flows are expired
immediately to free space for new IP flows. Alternatively, other parameters for IP flow
expiration are adjusted to free the flow cache (e.g., inactive timeout is reduced to expire
IP flow records earlier).

• Emergency expiration – This category covers the unexpected situations that can occur
during the Metering Process. In case of such situation, all IP flows are considered ex-
pired, and the cache is flushed. These situations are, for example, a significant change
in exporter configuration, change of the system time after a time synchronization, or ex-
porter shutdown.

10. 30 minutes is a default active timeout for Cisco’s NetFLow [125].
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After an IP flow is expired by one of trigger mentioned above, the whole record is removed
from a flow cache and handed over for the Exporting Process. A sample of IP flow record for a
HTTP communication is presented in Figure 14.

Flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Packets Bytes
09:41:21.763 0.101 TCP 72.16.96.48:5094 -> 55.85.135.147:80 .AP.SF 4 715
09:41:21.893 0.031 TCP 55.85.135.147:80 -> 72.16.96.48:5094 .AP.SF 4 1594

Figure 14: IP flow records representing a HTTP communication.

During a hand over to the Exporting Process, an IP flow record sampling and filtering take
place. Analogous to packet sampling and filtering, the goal of the IP flow sampling and filtering
is to reduce processing requirements of subsequent phases of IP flow monitoring workload by
reducing the number of IP flow record to process. The IP flow sampling aims to create a rep-
resentative IP flow record sample, that would maintain all main characteristics of the sampled
IP flow record set. IP flow sampling and filtering are described in RFC 7014 [104]. The RFC dis-
tinguishes two main IP flow sampling techniques (similar to packet sampling): systematic and
random sampling. During the systematic sampling, an IP flow is based on deterministic selec-
tion function that periodically selects n-th IP flow record. The random sampling techniques
select n-out-of-N elements from the N IP flow to be exported. Another method for random IP
flow selection, probabilistic IP flow sampling select each IP flow record based on the predefined
probability. The IP flow record sampling functions (both systematic and random) should be se-
lected and used wisely, as they might introduce bias into a sampled data. The sampling method
proposed by Estan and Varghese in [126] is biased towards large flows [125]. Duffield, Lund,
and Thorup propose smart sampling in [127, 128] that takes in account the heavy-tailed distri-
bution of IP flows and selects IP flow with a probability dependent on IP flow size to create a
usage-sensitive billing IP flow sample.

The IP flow record filtering uses a property match or hash-based filtering function [104]. The
IP flow record filtering based on property match works similar to packet filtering with the differ-
ence that only IP flow keys are used here for matching, instead of packet fields. The hash-based
filtering maps IP flow keys into a predefined hash range. If a hash of IP flow is within a pre-
defined subset (i.e., filtered traffic) of the hash range, the associated IP flow record passed for
further processing.

The Metering Process is a cornerstone phase of the IP flow monitoring workflow. The settings
of the Metering Process substantially influences further next phases of the IP flow monitoring
workflow including subsequent IP flow analysis tasks. The active/inactive timeout settings in-
fluence number IP flow created and their properties regarding size, number of packets, and
distribution. The flow cache size determines a maximum number of stored IP flow records and
consequently, the number of prematurely exited IP flow records. The selection of IP flow keys
defines the aggregation process of packets into IP flows. Hence, knowledge of the Metering
Process settings is essential for all IP flow data analysts, as the settings are the determinant of
observed IP flow data properties.

3.3.3 Exporting Process

Exporting process handles sending IP flow records generated by one or more Metering Pro-
cesses to one or more Collecting Processes [102]. The IP flow records are aggregated into mes-
sages and send via a selected protocol to data collection device. The structure of a message
is usually derived from a protocol used for IP flow export. There have emerged several proto-
cols and their versions for IP flow export since the initial idea of flow information export (see
Subsection 3.2.1). The most common protocols are NetFlow v.5, v.9, and IPFIX. We describe in
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greater detail IPFIX-based IP flow export to demonstrate the basic properties of the Exporting
Process. We select IPFIX-based export for closer description as IPFIX is considered as current
state-of-the-art exporting protocol. Exporting Processes using other protocols mostly share sim-
ilar properties, only the message structure, and available fields for export differs.

An IPFIX message comprises a message header and message data. The message header has
a fixed structure and contains meta information of the message – protocol version number, mes-
sage length, export time, sequence number, and observation domain ID. The message data con-
tains sets of IP flow records. A set contains set ID, length, and one of three following set types:
template set, data set, and options template set. A template set contains information on the structure
of data records carried in the data set. A data set carries the actual IP flow records according
to a template description in the template set. A options template sets are used for additional
information export to collectors, e.g., control plane data or flow keys used in a Metering Pro-
cess. The number of IP flow record in an IPFIX message is usually set to match the Maximum
Transmission Unit (MTU) of a line to a collecting device to avoid message fragmentation. The
IPFIX message is sent over a network to a collecting device when the message is full of IP flow
records. The exporting process aims to send as many IP flow records in a message as possible
without fragmentation to achieve optimal utilization of a link. Optionally, a smaller size of IP-
FIX message can be set to achieve a prompter export of IPFIX messages at the cost of a higher
number of packets sent over the network.

The created IPFIX message is transported over the network to a collecting device using trans-
port protocol. IPFIX messages support transport over multiple protocols. The currently sup-
ported transport protocols are User Datagram Protocol (UDP), Transmission Control Protocol
(TCP), and Stream Control Transmission Protocol (SCTP). Apart from these standard transport
protocols, IPFIX supports export of the messages into files (IPFIX File Format [129]) that can
be sent using application protocols enabling file transport (e.g., Secure Shell (SSH), Hypertext
Transport Protocol (HTTP), or File Transport Protocol (FTP)). The most widely used and imple-
mented protocol is UDP. Since UDP uses a simple connectionless communication, it is easy to
implement and deploy. However, the protocol does not provide any guarantee for packet deliv-
ery. The unreliable delivery means that some IPFIX messages are not delivered, i.e., a template
sets might be lost during the transport or a significant portion of data can be lost during a burst of
exported IPFIX messages (e.g., during a (D)DoS attack). TCP provides the desired reliable mes-
sage transport. The TCP protocol is also relatively easy to implement. It also provides a binding
to Transport Layer Security (TLS) protocol to provide encryption of IPFIX messages and pri-
vacy of their transport. An often mentioned disadvantages of the TCP protocol are a relatively
harder setup compared to UDP protocol and back pressure effect during overload situations.
The SCTP is a preferred transport protocol for IPFIX implementations. It should be used in de-
ployments where Exporters and Collectors are communicating over links that are susceptible
to congestion [102]. The SCTP provides a congestion-aware packet delivery. The packet bound-
aries are preserved so a collector can process individual IPFIX messages instead of a stream of
bytes when messages are sent over TCP. Despite these advantages, SCTP is the least deployed
of the three main protocols mainly due to its difficult implementation [88].

3.3.4 Collection Process

After the export of IPFIX messages, the monitoring workflow enters the collection phase. The
exported IP flow records are received by a Collecting Process that handles their pre-processing
and storage. The Collecting Process should be able to obtain the IP flow information passing
through multiple network elements within the data network. A device hosting one or more
Collecting processes and associated storage is called a collector [102].
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In general, there exist two main types of data storage used for IP flow records - primary (tem-
porary) and secondary (persistent) data storage. Primary storage, usually with a small capacity,
is used for fast data processing or caching. In IP flow monitoring workflow, the primary storage
is often used when data needs to be analyzed on-the-fly, e.g., for generation of time-series used
for visualization purposes [88].

The secondary memory is used for long-term data storage and is significantly slower than
primary storage. It is used for IP flows retention11 and as a data source for further IP flows
analyses. We describe four main types of secondary storage used for IP flow monitoring. Three
of the types are described in [88]; we add the fourth type that is gaining attention lately and
deserves it’s own category, in our opinion. The speed of secondary storage and query flexibility
are the main discriminants among secondary storage types.

• Flat-files are very fast for writing and reading, on the one hand. On the other hand, they
provide limited querying possibilities, and a specialized tool is usually needed for query-
ing different flat-file types. The representative of flat-file storage of IP flow record is nf-
dump toolset12, namely nfcapd, that stores IP flow records into a binary files.

• Row-oriented databases represent the main-stream databases used in Database Man-
agement Systems (DBMS) such as MySQL13, PostgreSQL14. The data are stored in rows
in tables and accessing a data means reading all row. These databases offer full query
flexibility. Their performance is, however, significantly lower both regarding data inser-
tion or query response times compared to other described storage types. Nevertheless,
being the mainstream databases, their performance is being constantly improved. Row-
oriented databases are being used by some of IP flow monitoring vendors as a supporting
database to flat-files, e.g., nProbe15 [130].

• Column-oriented databases store the data into columns. During a query, only required
columns are accessed which decreases the query response time. The column databases
seem suitable for IP flow record storage as individual record’s keys can be naturally stored
in separate columns. During a query, only relevant keys are read instead of the whole IP
flow record. Indexes over each column can be pre-computed, which further increases
the querying speed. FastBit16 is a representative of column-oriented databases used for
storing IP flow records.

• Next-generation databases have emerged recently. Their expansion is associated with the
advances in distributed cloud computing and big data processing. The next-generation
databases abandon the traditional Relational Database Management Schema (RDBMS)
and introduce NoSQL (Not only SQL) approach. The databases are schema-free, non-
relational, distributed, scalable, and support other then SQL-like query languages. These
databases are created for storage of large volume of data. An example of a database that
can be used as IP host relations storage is a neo4j17 graph database. Among databases
aiming at scalability, distribution, and speed, belong Elasticsearch18 or Hadoop19.

11. Data retention, mainly for internet service providers, is recently being required by law in increasing number of
countries.
12. https://github.com/phaag/nfdump
13. https://www.mysql.com/
14. https://www.postgresql.org/
15. https://www.ntop.org/products/netflow/nprobe/
16. https://sdm.lbl.gov/fastbit/
17. https://neo4j.com/
18. https://www.elastic.co/
19. http://hadoop.apache.org/
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The performance of the different storage types and their suitability for IP flow monitoring
have already been discussed in the literature. Hofstede et al. evaluated the performance of nf-
dump tool compared to MySQL management system in [131]. The nfdump tool outperformed
the MySQL in all comparisons covering different database operation’s response times (listing,
filtering, grouping). Velan evaluated available query tools for their suitability for IPFIX flow col-
lector in [132]. Among others, performance of query tools SiLK20, nfdump and fbitdump21 were
compared proving the advantages of column databases used by fbitdump. Experiences with
distributed big data frameworks (Hadoop, Vertica22, and Elasticsearch) are described by Zadnik,
Krobot, and Wrona in [133].

When storing IP flows, a privacy aspect needs to be considered. The requirement for keep-
ing the privacy of end users in a network is already implemented in legal and regulatory ac-
tions in several states. Worth mentioning is the General Data Protection Regulation (GDPR), EU
Regulation 2016/679 that directly affects the IP flow record storage via regulation of personal
data storage and processing. The IP flows do not contain as much privacy-sensitive information
compared to packet traces as only packet headers, not the communication content, are collected.
However, the privacy exposure of end users has increased recently with the introduction of next-
generation IP flows that contain information from application layer headers. Next-generation IP
flows enable to track IP activity in World Wide Web using headers from HTTP of DNS network
traffic23. Technically, it is not always possible to unambiguously link an identity directly to each
IP flow, as only IP addresses are collected. Nevertheless, IP addresses are still considered by the
regulations as an identifier of an individual. Therefore, the privacy protections apply also to IP
flows, mainly to IP addresses anonymization.

Summary of the best practices for network traffic anonymization is provided by the Center
for Applied Internet Data Analysis (CAIDA) in [134]. The summary is accompanied by a bibliog-
raphy on network traffic anonymization that covers years 1992-2013 [135]. The anonymization of
IP addresses is a trade-off between the level of privacy and data utilization. No anonymization
technique would ensure complete privacy and keep the information value of the data intact. In
the wild, Crypto-PAn algorithm [136] is used for IP address anonymization. The Crypto-PAn
algorithm preserves the IP addresses prefix and creates anonymized networks. This approach
allows for IP flow based analyses at the cost of restricting the analysis to an anonymized net-
work [88]. Implications of network traffic anonymization are also investigated. Burkhart et al.
investigated the attacks on traffic anonymization by injecting artificial network traces that help
to retrieve original traces from the anonymized ones [137]. Coull et al. inspects the web browsing
privacy in IP flow traces [138]. They develop new approaches to identify target web pages within
anonymized IP flow traces. The challenges for IP anonymization are summarized in [139].

3.3.5 Timeline

This section investigates delays that emerge in the IP flow monitoring workflow. The delay is a
natural component of the workflow and it is present at different stages of the workflow. However,
the delay limits the performance and applicability of IP flow monitoring in several areas. In the
security area, the delay increases the speed of response to a potential attack. Due to the delay
introduced in IP flow measurement, an attack detection method receives data late and the attack
is detected with a delay of, e.g., several minutes. Given the speed of attacks in orders of several
seconds, the attack may be even over, and it is not possible to capture live attack traffic identified
by detection anymore. The delay is an issue also in a performance monitoring area. For example,

20. https://tools.netsa.cert.org/silk/index.html
21. https://github.com/CESNET/ipfixcol/tree/master/tools/fbitdump
22. https://www.vertica.com/
23. Host identification in network traffic is part of our research and is discussed in detail in Chapters 4 and 5 of this
thesis.
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a late identification of a rapid performance decrease of an e-shop application might result in the
financial loss as customers are not served.

Significant events occurring in the IP flow monitoring workflow are depicted in Figure 15.
Each event is associated with a relevant timestamp to be able to illustrate the delays present
in the monitoring process. We assume that t0 is a timestamp when an event occurs, i.e., when
we can observe an IP flow. We deliberately omit the fact, that the actual event occurs earlier, as
it takes time for a packet to reach an observation point of IP flow measurement. This delay is
out of the scope of IP flow measurement as it cannot be influenced by the IP flow measuring
processes24.

Packet at Observation Point

Assignment of Timestamp 

Expiration of IP Flow Record from Flowcache 

IP Flow Record Export

IP Flow Record Received

IP Flow Record Available for Processing

tfexp

t0 

tats

texp

tcoll

trec

Time

Metering 
Process

Exporting 
Process

Collection 
Process

Figure 15: Timeline of IP flow monitoring workflow.

The timestamp tats = t0 + ∆ats represents a point in time when a timestamp is assigned
with a timestamp in NIC and is sent to a flow cache. The time delay ∆ats introduced in this step
origins in hardware-to-software forwarding latency. The delay ranges from orders of micro to
nanoseconds [123]. This delay is for our work negligible, as it is below the human cognition
abilities.

The timestamp tfexp = tats + ∆fexp represents time when an IP flow record is exited from a
flow cache. At tfexp, the metering process is complete and the exporting process starts. The ∆fexp is
time needed for creating IP flow record and is dependent on a flow duration tFD, active timeout
tAT, and inactive timeout tIT settings as follows:

∆fexp = f (tFD, tAT, tIT) =

{
tAT, if tFD ≥ tAT

tFD + tIT, if tFD < tAT

where tAT ≥ tIT. This equation works for IP flow record expiration triggered by inactive or
active timeouts. When other flow cache expiration types mentioned in Section 3.3 are applied,
we assume tIT = 0. Based on the equation, we can derive theoretical maximum and minimum
values of ∆fexp:

min(∆fexp) = min( f (tFD, tAT, tIT)) = tFD

max(∆fexp) = max( f (tFD, tAT, tIT)) < tAT + tIT

In other words, the minimum delay of metering process is the duration of IP flow. The minimum
delay is achieved when other than active and inactive flow cache expiration types are applied

24. Only way, how to reduce the delay is to move the observation point closer to the event origin location.
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(i.e. tIT = 0) and IP flow duration is close to 0. The maximum possible delay is upper bounded by
tAT + tIT, i.e. the IP flow is over right before active timeout and inactive timeout is then applied.

The timestamp texp = tfexp + ∆exp represents a point in time when a IP flow message of IP
flow records is exported from a flow probe to a collector. The time needed to create an IP flow
message ∆exp is dependent on Maximum Transition Unit (MTU) of a network, rate of expired
IP flow records per second FR, and average IP flow record size SR. The time needed to create
an IP flow message can be then described as

∆exp = f (MTU, SR, FR) =
MTU

SR ∗ FR

We do not difference individual IP flow record sizes for the sake of simplicity and take an
average IP flow record size instead. The higher rate of expired IP flow records leads to lower ∆exp.
Analogous, the higher is the average IP flow record size (e.g., more IP flow keys is exported in
a record), the lower time is needed to export an IP flow message.

The timestamp trec = texp + ∆rec represents a point when an IP flow record in an IP flow
message is received by a collector. At this point, an exporting process is complete and a collection
process of IP flow monitoring workflow begins. The time needed to deliver an IP flow message
from a flow probe to a collector ∆rec is equal to a packet deliver time and is defined as follows:

∆rec =
PS
BR

+
D
S

where PS is a packet size, BR is a bit rate, D is a distance line between a probe and collector,
and S is the propagation speed of the link. The higher is the bit rate and propagation speed of
the link the lower time is required to deliver an IP flow message from a probe to a collector. The
lower packet size and shorter distance speed up the delivery of IP flow message as well.

The timestamp tcoll = trec + ∆coll represents a point in time when an IP flow record is avail-
able for processing and analysis. At this point, the collection process is finished, which also
completes the IP flow monitoring process. The duration of an IP flow collection process ∆coll is
influenced by collector database implementation. Regarding the collector with a row-oriented
database, the IP flow record is available nearly instantly, and the ∆coll represents the only time
needed to insert the IP flow record into the database. The insert time depends on the hardware
configuration of a collector (e.g., type of hard drive) and the rate of IP flow records to insert.
Regarding the collectors using flat files as data storage, the information is available as soon as
the file is complete. For example, nfcapd tool stores the IP flow records into files containing five
minutes of IP flow records. In the worst case, the ∆coll is equal to five minutes given this set-
ting. The column-oriented databases and next generation show similar delay as row-oriented
databases as an IP flow record is available instantly after the insertion into the database.

Combining the above-described timestamps, we obtain the total delay of the IP flow moni-
toring workflow ∆monitoring as follows:

∆monitoring = tcoll − t0

= ∆coll + trec − t0

= ∆coll + ∆rec + texp − t0

...
= ∆coll + ∆rec + ∆exp + ∆fexp + ∆ats + t0 − t0

= ∆coll + ∆rec + ∆exp + ∆fexp + ∆ats
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The total delay of the workflow is the sum of delays of different stages of the workflow. The
differentiation of the workflow to the phases and definition of the delays enable us to focus
on the phases individually and minimize the delays phase by phase. The Table 1 shows the
contributions of individual delays to the total delay. We can observe, that the most significant
contribution makes the time needed to create an IP flow ∆fexp followed by the collection process
duration ∆coll. In a real-world deployment, the maximum possible delays are around 10 minutes,
as active timeouts are usually set to 5 minutes and the frequently used flat-file collectors are set
to collect IP flow records into five-minute files. A combination of these two settings leads to the
mentioned 10 minutes delays.

Delay Duration of a delay (orders)
∆ats < microseconds
∆fexp minutes
∆exp milliseconds
∆rec milliseconds
∆coll from milliseconds to minutes

Table 1: Overview of the delay sizes.

3.3.6 Open Issues

We identify the following open issues of IP flow monitoring workflow: performance, scalability,
response time, and changing IP flow paradigm. The open issues derived from the current trends in
IP flows (see Subsection 3.2.3) or they are mentioned in literature [88, 140]. Some open issues
are everlasting, such as performance issues, other issues are relatively new, driven by the latest
advances, such as changing paradigm of IP flow usage. Next paragraphs discuss the open issues
in more detail.

• Performance – The performance open issues are associated with the increasing volume
of network traffic to monitor and with increasing volume of information analyzed from a
packet. Each phase of the IP flow monitoring workflow needs to be optimized to enable
us to process the large volume of network traffic and data. Enhanced network probes with
high-performance flow caches and sampling techniques are demanded to prevent from
flow exporter overload. Similarly, the efficiency of the IP flow transport protocol can be
improved to prevent transport overload caused by a high volume of exported IP flows.
The collector performance is also the prevailing open issue a large-size IP flow records are
required to be stored and searched efficiently. Current solutions should to adapt to new
advances in IP flow export and should enable us to store new information contained in
next-generation IP flow records. The IP flow monitoring workflow also contains artifacts,
that come at the expense of accuracy of IP flow measurement [88]. The IP flow artifacts
are timing artifacts resulting in incorrect timestamps, data loss (e.g., due to flow cache
overload), or invalid counters [141].

• Scalability – Demand for a scalable solution emerged when network monitoring commu-
nity realized, that the volume of network traffic will continuously increase in the future
(possibly in at exponential rate [81]). Distributed monitoring infrastructures containing
distributed IP flow collectors are currently under research. The distributed collectors are
designed to scale with the increasing performance demands while maintaining the orig-
inal functionality.

• Response times – There are several time delays during the IP flow monitoring workflow
on the one hand. On the other hand, industry and business deployments demands for
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near-real-time accounting and network visibility. The minimization of these delays, e.g.,
immediate IP flow export and continuous updates of the IP flow records, could provide
a near-real-time IP flow monitoring workflow.

• Changing paradigm – The technological advances in networking and the shift from in-
house applications and services to cloud impose demands on IP flow monitoring work-
flow. IP flow monitoring needs to be able to capture information from a network that uses
a variety of networking mechanisms, such as Virtual Private Networks (VPN), generic
routing encapsulation (GRE tunnels), IPv4 encapsulation of IPv6 traffic, and so forth. The
shift to cloud services modifies the monitoring workflow, e.g., a suitable location of ob-
servation point needs to be discussed. The shift to the cloud also opens cost-performance
optimization efforts. A balance between the volume of monitored data, available informa-
tion, and costs of monitoring is searched to reach a suitable solution for different types
of business.

3.4 IP Flow Record Analysis

IP flow record analysis aims to retrieve information from data captured in IP flow records
created during IP flow monitoring. Hofstede et al. [88] identifies three main areas where IP
flow record analysis is employed: analysis and reporting, performance monitoring, thread and
anomaly detection. Li et al. [142] presents different, yet analogous, perspectives on network
flow applications: network measurement and analysis, network application classification, user
identity inferring, security awareness and intrusion detection, and issues of data error. In this
section, we first focus on the analysis process itself. We describe main approaches to IP flow
record analysis and their specifics. Next, we provide a brief overview of each of the area of IP
flow record application based on Hofstede et al. [88] categorization.

3.4.1 Workflow

The IP record analysis workflow is rather specific for each analysis use-case. Nevertheless, it is
possible to derive the main types of analysis workflow general enough to be applied to all men-
tioned analysis use-cases. The general workflows can be divided into categories by regularity
of querying and by approach to data processing. The regularity-derived workflow categories
are regular and on-demand. The workflow categories related to data processing approaches are
batch-based and stream-based workflows.

Regular analysis workflow serves for regular, repeating analyses. Such analyses are usually
automated and are used for reporting, anomaly detection, or statistics pre-computation, for ex-
ample. The queries to data store are known in advance. Data to analyze are predefined as well.
Given these facts, the stored data can be pre-processed to lower query response time. Moreover,
the queries can be scheduled to spread the workload in time. The analysis is usually initiated by
a time job scheduler, e.g., cron in Unix-like systems. The analysis is executed on relevant data
and results are stored or handled over for visualization to an operator.

On-demand analysis workflow differs from the regular one by the initiation of the analysis.
The analysis is initiated by a user and it can happen at any time. Analysis query is not predefined.
Data used for analysis can cover an arbitrary time span. The on-demand analysis serves mainly
for additional exploration of captured data. This analysis is usually used in particular cases
when regular analyses do not offer sufficient information. The on-demand analyses are usually
more computationally demanding than the regular ones, as raw data need to accessed to find
an answer to a query.

Batch-based and stream-based workflows differ substantially in the way how data is pro-
cessed. The batch-based workflow processes data in batches. The size of a batch is defined by
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the way, how data is stored in a collector. Collectors usually store data in time-based batches.
For example, collectors with flat-file storage, such as nfcapd, stores data in five minutes batches25.
Once a batch is complete, it enters an analysis. The results of the queries are not available con-
tinuously. Instead, they are available at a certain intervals given by batch size.

In the stream-based workflow, the data is analyzed in so-called data streams. An IP flow record
is processed immediately after their creation. Such an approach reduces the time of analysis as
we do not need to wait for a data batch completion. The stream-based workflow is one of our
contribution to IP flow monitoring, and it is discussed in detail in Chapter 6.

3.4.2 Reporting and Analysis

Reporting and analysis belong to the original purpose of IP flow monitoring. Possibility to col-
lect information about network centrally are highly valued advantages of IP flow monitoring.
Reports created from IP flow records can provide information on the network as a whole. For
example, common report type is bandwidth reporting. Such a report can contain a sum of flows
and data volume transferred by/to a customer, number of connected devices. A list of sample
statistics and metrics to derive from IP flow records is provided in [143]. Reports and analyses
use following query types and their combinations to search through the IP flow records:

• Filter is used to select traffic of interest. A commonly applied filter is a time filter that
selects relevant time interval of a data26. Other, frequently employed filters are IP address
or range filters that enable us to focus on a specific network subnet, L3 protocol filters that
turn attention to, e.g., only TCP traffic, or port filters that address an application using
a specific port. The filters can be combined using standard logical operators AND, NOT,
and OR.

• Aggregation serves to get information grouped by a given key. The IP flow records are
usually grouped by IP address or network range to obtain all data about a host, network
range, or communicating pair. IP flow records can be, in general, aggregated by any flow
key. The measured IP flow properties are either summarized (numbers of flows, packets,
bytes) or averaged (rates flows/s, packet/s, bytes/s) in the grouping.

• Sort operation is usually applied to the measured IP flow properties. For example, a de-
scending sort is applied to the number of packet values to obtain an IP flow with the
highest number of packets transferred. Besides the measured properties, the sorting al-
gorithm is used for time sorting of the IP flows. The IP flows are stored in a collector
depending on the export time. They are not ordered by the start time which is a natural
sorting used for traditional IP flow record analyses.

• Top N statistics represents a combination of above three query types. "Find 3 IP addresses
that transferred the most bytes during last 5 minutes" is a typical query for this statistics.
The statistics first filters the given period of data (e.g., last five minutes), then aggregates
the filtered IP flow to get summary statistics (e.g., by source IP address), and sorts them
according to a given metric and statistics (sort descending by the number of bytes). First,
N records of the sorted lists are returned as the Top N query result. This type of query is
frequently used for identification of top-talkers27.

These queries are used for browsing and filtering data, providing statistic overview, and cre-
ating content for reports. Besides the reporting and statistics computation, these queries are also

25. The size of a batch is usually aligned with the value of the active timeout.
26. This fact does apply in batch-based processing. Stream processing notion of time filter is slightly different. See
Chapter 6.
27. Top-talkers are hosts that create the majority network traffic transferred via the source observation points.
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used for alerting. Alerting can be used for identification of user exceeding his/her allowed band-
width, an outage of network link detection, malfunction of an application alerting, or miscon-
figuration of a service identification, for example. Li et al. discriminates following categories of
network monitoring and analysis [142]: network monitoring, application monitoring, host mon-
itoring. Network monitoring covers analysis information about routers, application monitoring
covers analysis of application usage and is used for planning, and host monitoring provides
knowledge about a hosts utilization and behavior that can be used for, e.g., detection of security
policy violation.

3.4.3 Performance Monitoring

The goal of performance monitoring is to watch the status of the services in a network. The
IP flow records contain information that can be used to assess performance of the services. Fre-
quently used information for performance assessment are, for example, Round-Trip-Time (RTT),
delay, response time, or packet loss. The performance of services can be measured by a client-
based service monitoring. The client-based measurement offers more possibilities than IP flow-
based performance monitoring in terms of available metrics and precision on the one hand. On
the other hand, the client-based monitoring requires an installation of agents in the monitored
devices, which requires direct access to all monitored devices, impedes the setup of the measure-
ment infrastructure, and results in a need for sophisticated management of agents infrastructure.
The IP flow-based performance monitoring enables central, one point, performance monitoring
without the necessity to access the devices directly. The cost for the remoteness is the reduced
number of information available for performance assessment.

Commonly available IP flow records enable us to monitor primary performance metrics such
as service availability and RTT. The availability of the service can be determined based on the
TCP flags. The RTT can be derived from the bidirectional IP flows by computing a difference
between the starting times of request and response IP flows. The performance metrics computed
directly from common IP flows are instantly available and easy to deploy. However, the reported
metrics can suffer from flaws resulting from IP flow implementation. For example, measured
RTT does not represent the performance of service solely. The measured performance includes
the performance of a hosting device and network links from a host to an observation point.
An increased RTT then can represent flaws in network links or swapping host instead of the
decreased performance of service itself.

The common IP flow using traditional flow keys provides a limited view into monitored
service only. For example, we can monitor only the web server as a whole, but we have no infor-
mation about the performance of individual web pages on the web server. Next-generation IP
flows can provide enhanced visibility to application performance. IP flows containing informa-
tion from HTTP headers provide statistics also for individual web pages. There emerge IP flow
probes optimized for performance monitoring, e.g., nProbe28, or Flowmon probe29. These probes
leverage DPI techniques to retrieve additional information from network traffic to determine a
service’s performance.

3.4.4 Attack and Anomaly Detection

IP flow records can be naturally used for network forensics, i.e., for investigating with which
host is a target host communicating. The observation of communication pairs in combination
with IP reputation lists or blacklists brings a possibility to detect infected devices in a network. IP
reputation lists and blacklists contain a list of sources of malicious activities, e.g., command and
control servers of botnets, machines with malware, spam machines, or servers hosting phishing

28. https://www.ntop.org/products/netflow/nprobe/
29. https://www.flowmon.com/en/products/flowmon/probe
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websites. A communication with an IP address that is listed in a blacklist means that the commu-
nicating host is likely to be infected. There exist approaches that enhance the blacklists quality.
For example, Moura, Sadre, and Pras provide a proof of existing internet bad neighborhoods
in [144], which can be used to widen the blacklist coverage. Similarly to communication with
blacklisted IP addresses, communication with honeypots can be monitored to detect adversaries
sweeping protected network.

The difference between anomaly and attack detection lies in the information that is available
at the beginning of an analysis. Among IP flow community, an attack detection is understood
as a search for a known attack pattern in a data, i.e., an analyst knows what to look for precisely.
The anomaly is "something" that deviates from what is standard, normal, or expected. In the
case of anomaly detection, it is not precisely defined, what to search for in data. Moreover, an
anomaly is not necessarily an attack. An anomaly can be caused by, for example, an unexpected,
benign behavior of a user. In general, flow-based attack detection can be exact and can provide a
high detection rate. The anomaly detection methods serve mainly for identification of suspicious
events.

Information carried in IP flows records can be used to detect specific network attacks. Since
IP flow record contains reduced information from network traffic (only information form packet
headers are present), IP flow-based detection can detect only a subset of attacks. Sperotto et al.
provided an analysis of attacks which can be detected using IP flow records in [125]. The attack
classes, that can be detected using IP flows, are (Distributed) Denial of Service ((D)DoS), scans,
worms, and botnets. Vykopal, Drasar, and Winter have investigated the possibilities of flow-based
detection of brute-force attacks in [145]. The techniques and challenges for flow-based intrusion
detection are surveyed in [140].

A fundamental, comprehensive and detailed overview of network anomaly detection meth-
ods is provided by Bhuyan, Bhattacharyya, and Kalita in [146]. Figure 16 depicts main categories
of anomaly detection methods. Statistical methods are suitable for alert generation and can be
used without previous knowledge of the normal behavior of a network. However, they can be
poisoned by an attacker, i.e., an attacker can slowly train the statistical method to mark the at-
tacker’s traffic as normal. Classification methods serve for classifying unknown network traffic
into given classes. The classified classes can be binary (normal vs. anomalous traffic), or the
classes can represent different types of traffic (e.g., Voice over IP (VOIP), machine to machine,
gaming, video, tunneled traffic). Clustering techniques aim to divide analyzed traffic into clus-
ters that contain as much similar traffic as possible. Clustering techniques are used, when no
categories are known, or for categories identification. Soft computing methods use techniques
such as neural networks, genetic algorithms, and fuzzy sets to identify an anomaly in network
traffic. The disadvantages of soft computing methods are a need for annotated traffic sample
and black-box-like algorithms. Knowledge-based methods use expert knowledge and rule de-
scription to define and detect anomalies. The survey also includes a list of available datasets for
network anomaly detection including the dataset evaluation.

Further, Patcha and Park provide an overview of anomaly detection methods in [147]. The
overview includes a description of different types of intrusion detection systems, anomaly de-
tection techniques classification, and open challenges. Another survey on anomaly detection
is provided by Chandola, Banerjee, and Kumar [148]. The authors focus primarily on the un-
derlying approaches and assumptions of each of the described anomaly detection techniques.
Machine learning approaches for network traffic classification are surveyed by Nguyen and Ar-
mitage in [149]. The survey contains a table of reviewed literature including the description of
machine learning algorithms, its features, data traces used, and classification level. Data min-
ing and machine learning methods used for cyber intrusion detection are listed in a survey
by Buczak and Guven [150]. Apart from the explanation of machine learning and data mining

51



3. IP Flow Network Traffic Monitoring

Network Anomaly Detection Methods

Parametric

Non-
parametric

GA based

Fuzzy set

Rough set

Rule and
 expert system

Ontology and
 logic based

Ensemble
 based

Fusion based

Statistical Classification 
Based

Clustering and
Outlier Based

Soft
 Computing

Knowledge 
Based

Combination
 Learners

Figure 16: Anomaly detection methods classification (adapted from [146]).

methods, this survey also discusses the major steps of the data analysis process. Issues and
challenges of network traffic classification are summarized in [151].

3.4.5 Timeline

Analogous to Section 3.3.5, we describe the timeline of IP flow analysis and aim to investigate
the delays introduced into analysis workflow by its design. We define significant points of the IP
flow record analysis process, which enables us to define delays between these points. We want
to keep the description of the timeline as general as possible, so we do not take into account
nor the type nor the purpose of the analysis. In general, the IP flow analysis comprises steps
depicted in Figure 17.

Query Submission

Query Result

Results Utilized

IP Flow Record Accessible  for Processing

tresult

tcoll 

tquery

tutil

Time

Figure 17: Timeline of IP flow analysis.

The analysis workflow begins when IP flow records are available for processing at a collector.
Next step in the IP flow record analysis workflow is the formulation of a query and its submis-
sion to the collector. The collector then processes the data and returns the query results. The
result is received, analyzed and utilized by a query submitter, either a human operator or an
automated process. The result can raise additional questions, new queries are formulated, and
the analysis process starts from beginning again.

As mentioned above, the timestamp tquery = tcoll + ∆query represents a point in time, when
a query is submitted to a collector. We differentiate two types of queries in this context. The
first type of query is a new query. This type is a previously unknown query, and it needs to be
formulated and submitted by a human operator. The operator needs to define IP flow records
of interest, describe the analysis tasks and format of the result. These facts need to be then trans-
lated into the query language of the collector and submitted for processing. The time needed for
these tasks, denoted as ∆query, is in orders of tens of seconds at the minimum as it is physically
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impossible for a human operator to submit a query faster. The other type of query is an already
known query. This type represents a query that has already been defined and now is only resub-
mitted. The submission of this query can be raised by a human operator or, more frequently, by
an automated process. In this case, the time needed to submit the query ∆query is in orders of
milliseconds as no query formulation is needed.

The timestamp tresult = tquery +∆result represents a point in time, when a collector delivers a re-
sult of a submitted query. The time needed a query execution, denoted as ∆result mainly depends
on following parameters: volume of processed data, the complexity of the query (including the
complexity of the analysis algorithm), the hardware configuration of the collector, and type of
the database used in a collector. The larger volume of data to process, higher query complex-
ity (e.g., data mining algorithms) increases the query execution time. Regarding the mentioned
query types for IP flow reporting and analysis, the most complex query having the highest ∆result
is the Top N statistics. The evaluation of different query types and their response times are de-
scribed by Hofstede et al. [131] and Velan [132]. According to the author’s evaluation, a query
over a one day network traffic ranges from twelve to twenty minutes.

The timestamp tutil = tresult + ∆util represents a point in time, when a results from a query
is utilized for further usage. This step is not usually mentioned in the context of IP flow record
analysis. We mention this point specifically as it fits the context of the cyber situation awareness,
where the purpose of an analysis is to be used for forming a decision. There emerges a delay,
denoted ∆util, between the point a query result is available and the point a result is utilized
for further action. In case the whole analysis and decision process is automated, the delay is
negligible. However, when the results of the analyses are processed by a human operator, the
delay increases. Results of automated queries that need to be processed manually may wait for
their utilization in orders of minutes, hours or even days. For example, results of queries being
part of a monthly reports generation can wait for their utilization even one month.

3.4.6 Open Issues

The open issues of IP flow record analysis are linked to current trends in IP flow approaches
(see Section 3.2.3). We identify following groups of open issues from literature. Issues related to
analysis evaluation, complexity issues, and privacy issues. Besides the open issues mentioned
in literature, we identify issues related to a host-based view of IP flow records.

• Analysis Evaluation – Evaluation of analysis results is a major and prevailing issue of IP
flow record analysis [140, 146, 152–155]. There is a lack of updated public IP flow-based
dataset that could serve for rigorous analysis evaluation. The currently popular dataset
are outdated, such as KDD from 1999, or DARPA from 2000, or does not contain IP flow
records, such as Caida datasets30. Several works are discussing the issues related to the
evaluation methodology. Gharib et al. [153] present a formula to estimate the quality of
datasets for evaluation purposes. Tavallaee et al. [155] survey the evaluation of anomaly
detection systems performed by researchers. In their survey, most of the recent works are
found lacking reliability and validity of results. Further, researchers use different IP flow
records, select various IP flow keys, and usually do not provide an exact specification of
the IP flow monitoring process due to page limit for papers. These facts further hinder
re-evaluation of the presented analyses.

• Complexity – The design of an IP flow record analysis method needs to take into an ac-
count a large volume of data to be processed and associated computational complexity.
Modern approaches to data analysis, such as machine learning and data mining, are not
usually designed for large-scale online analysis of IP flow records. In default settings, the

30. https://www.caida.org/data/
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algorithms are computationally complex and require extensive resources. According to
Buczak and Guven [150], algorithms for online analysis should be of complexity O(n)
and O(n log n). O(n2) are acceptable for most of the practices, and O(n3) and higher
should be used mainly for offline analyses. Moreover, the mechanism of the analysis it-
self should not be too complex. An operator should be able to understand the analysis
mechanism to be able to interpret the analysis result correctly. The black-box analyses,
such as neural networks, does not enable the operator to interpret the results of the anal-
ysis properly. The reduction of both analysis and computational complexity and related
increase of analysis system performance are research problems of current interest.

• Privacy – User privacy should be preserved even during an analysis. There exists a trade-
off between a degree of anonymization and available information in a data for analysis.
Various anonymization techniques that would keep information in data and enable for
advanced IP flow analysis are explored. The challenges of network data anonymization
are summarized in [139]. Impact of anonymization on network security analysis is as-
sessed in a master thesis by Bose [156].

• Host-based view – An IP flow record represents a connection. It is stored in a collector
in such a manner. A transformation of data from a connection-based paradigm to a host-
based paradigm is time-consuming. The transformation includes finding all relevant IP
flow records for a host in time, aggregate them for each time frame, and compute wanted
characteristics. Such operations need to be done for all hosts in a monitored network. This
approach is computationally demanding, and an operator does not have instant access to
a hosts information at hand. A possible solution, pre-computation of characteristics for
all hosts in advance, is a computationally demanding task, though.

3.5 IP Flow Monitoring and Cyber Situation Awareness

Having described the cyber situation awareness and IP flow monitoring, we show an application
of IP flow monitoring in cyber situation awareness context. In this section, we use Ensley’s three-
level model of SA and apply it to IP flow monitoring workflow. Further, we discuss the specifics
of CSA described in Section 2.2.2 in the light of IP flow monitoring. We also revise the challenges
of CSA with respect to IP flow monitoring. This section aims to demonstrate a role of IP flow
monitoring in CSA and possibilities and limitations of the usage of IP flow monitoring for CSA.

To recall, Endsley’s Three-level model describes the SA as "the perception of the elements in the
environment within a volume of time and space, the comprehension of their meaning and the projection
of their status in the near future". Since IP flow monitoring is part of network traffic monitoring
research field (see Figure 10), the term environment in Endsley’s definition does not apply to
the whole cyberspace, as in the general CSA, but is limited to a computer network instead. The
limitation to the computer network is not strict, in any case. The computer network is used for
communication between computers. Information from observed IP flow records can be used
to derive partial information about a communicating computer (e.g., application performance
monitoring). Still, the derived information is limited and incomparable with information pro-
vided by an agent deployed directly on the computer. For example, exact information on run-
ning processes, CPU utilization, used drive space are not directly observable from a computer
network. Hence, IP flow monitoring can provide a CSA over a computer network, but not over
the whole cyberspace.

Further, it is essential to understand, that IP flows are not designed for providing information
about network itself. The primary purpose of IP flows is to represent information from network,
i.e., network traffic. IP flow records can be used for network topology discovery, but the topol-
ogy is usually not complete as only network traffic passing observation points is collected and
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some computers do not communicate over the observation points (or does not communicate
at all). The information from a network is the primary information perceived during IP flow
monitoring.
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Figure 18: IP flow monitoring in the context of cyber situation awareness.

The three levels mentioned in Endsley’s model are the Perception level, the Comprehension
level, and the Projection level. The Perception level covers data observation and collection, the
Comprehension level aims at understanding the collected data, and the Projection level serves
for prediction of a future state of the environment based on collected data and their comprehen-
sion (see Figure 6). We show, how an IP flow monitoring workflow fits the three levels of the
CSA model in Figure 18.

The Perception level covers Metering, Exporting and Collection processes. Assigning these
processes into a Perception level is straightforward: during these processes, information from
a network in the form of IP flows records are observed, created and stored, which represents
a perception of information from a network. The Comprehension level comprises of collecting
process and data analysis phase of the IP flow monitoring workflow. The data analysis phase
serves for gaining Comprehension of the data. Various analyses, visualizations, and dashboards
are used to ease an understanding of network traffic. The collecting process also overlaps into
the Comprehension level, as during collection process basic statistics might be computed. More-
over, the collection process coalesces with the analysis in stream-based architectures for IP flow
processing as we will show later in this thesis. An alternative approach to CSA can include
the whole IP flow monitoring workflow into the Comprehension level as an operator should
be aware of settings of the IP flow monitoring process to be able to comprehend the data car-
ried in IP flow correctly. Nevertheless, we stand for Comprehension level that comprises from
collecting and analysis processes as we believe that during the Comprehension level we aim to
comprehend information from data collected during the Perception level, and that the under-
standing of Perception level should not be part of Comprehension level. The Projection level is
represented solely by data analysis phase. As mentioned before, the main purpose of IP flows
is to provide visibility into a network. The prediction of future network state is not the primary
goal of IP flow monitoring. Nevertheless, the information obtained via IP flow monitoring can
be used to predict future network state. The prediction quality depends on the algorithms IP
flow records analysis and prediction.

3.5.1 Specifics of IP Flow Cyber Situation Awareness

There are specifics of application of CSA to IP flow monitoring domain that need to be discussed.
We similarly divide the specifics as in Section 2.2.2 into the cyber environment, perception, and
performance specifics. The attacker-related specifics are not discussed here as these specifics ap-
plies fully to IP flow monitoring domain. As discussed before, the cyber environment related to
IP flow monitoring is a computer network. The computer network is a highly dynamic and com-
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plex environment. The computer networks are usually hierarchical structures with autonomous
layers, so it is hard to keep information on the network centrally. The lack of information on a
network often hinders the achievement of CSA for an operator. The boundaries of CSA can be
stated more precisely in the IP flow CSA than in general CSA. The boundaries are usually set
to the network range of the monitored network. The current trends in IP flow, mainly the shift
to cloud services, change the boundaries of the IP flow CSA, though. Regarding the cloud ser-
vice, the boundaries of IP flow CSA vanish. An operator needs to take into account, that there
is no control and no access to underlying physical infrastructure, and actions linked to CSA are
limited. The information considered for IP flow CSA are reduced to information that can be
obtained from IP flow records.

The perception specifics of CSA resulting from application to IP flow monitoring domain
are visibility limited to observation points and probe-based network perception. Similarly to a
general CSA, information from a network can be observed only via sensors. The traffic access
methods are described in Section 3.1. The information that can be used for IP flow CSA is only
that observed at observation points. The location of observation points then plays an essential
role in achieving CSA. For example, observation points located only on network perimeter does
not provide any information on intranet traffic. We can observe only ingress and egress net-
work traffic. To achieve a complex CSA, the observation points should be able to cover all, or at
least the majority of network traffic. In an ideal case, observation points should be located at all
routing devices in a network. This state is achievable as many of these devices support the IP
flow export by default. Besides the location of the observation points, the parameters of the IP
flow capture plays a vital role in CSA. An operator should be aware of the optional settings of
the IP flow monitoring process as these options influence a perceived data (e.g., packet/IP flow
sampling, active and inactive timeout, the transport protocol for IP flow records).

The performance specifics of CSA related to IP flow monitoring domain are the reduction of
event speed and the large volume of data in computer networks. An IP flow record represents
an abstraction of network connection. The number of events to process is reduced from a packet
rate to a connection rate. Therefore, the speed of events that need to be processed by an operator
is reduced compared to packet observation techniques. Further, the boundaries of IP flow CSA
are limited to a chosen network range, which further reduces information to process in IP flow
CSA compared to a general CSA. Nevertheless, the number of observed events (IP flow records)
is still too high to be processed by a human. Hence, automated analyses are employed, and
an operator receives only predefined alerts and statistics. The resources needed to launch an
attack remains relatively low in IP flow CSA. The resources for defending a network decreases
when considering IP flow CSA. The IP flow metering can be run using commodity hardware.
However, IP flow record analysis methods require significantly higher computation resources
to process the large volume of IP flow records. Nevertheless, the resources needed for obtaining
IP flow CSA are lower compared to a general CSA.

The set of entities relevant to IP flow CSA is naturally smaller than a set for a general CSA.
Since the IP flow monitoring focuses on observing information from a network and not on the
information about a network, the physical entities are covered by IP flow CSA only partially. As
mentioned before, some information about physical infrastructure can be derived from the IP
flow records. However, the volume of available information is significantly lower than in other
approaches. The immaterial entities can be observed from IP flow records as well. It is possible to
determine services running in a network to some extent and even determine their performance
via application performance monitoring approaches. The human entities considered in IP flow
CSA are twofold: operators administrating and defending a network, and humans interacting
with computers in a network. The operators use information from IP flow record to achieve
the CSA to administrate the network and protect it from adversaries. The human’s interactions
with computers create the network traffic. The interactions are captured in the IP flow records.
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It is important to note, that it is a challenging task to identify and follow a human identity in
an IP flow records as only IP addresses are captured. In majority cases, it is not possible to
link a human to individual events in a network. Nevertheless, there are indirect ways to link a
person to computer even using IP flows (e.g., behavior profile, frequently visited pages, time of
communication).

3.5.2 Challenges

This section discusses the challenges of CSA presented in Section 2.2.5 with respect to IP flow
monitoring. For the identified CSA challenges, we present a contribution of IP flow monitoring
to these challenges. We identify challenges that are still open and highlight challenges that are
addressed in this thesis.

Cyberspace-related

The CSA cyberspace in the context of IP flow monitoring is limited to a computer network, data
transferred via the network, and human entities interacting with the network. We present the
contribution of IP flow monitoring to the cyber-space related challenges below.

• Complexity – The understanding and creating a mental model of a cyber environment
is a challenging task for a human. IP flow monitoring enables a central collection of IP
flow records, which can be used for a comprehension both of processes in a network and
even network topology to some extent. Using IP flow records, it is possible to identify
main network traffic flows and traffic distribution among individual hosts in a coherent
manner. This information can be passed to an operator and assist him/she in creating
a mental model of a computer network. In this thesis, we investigate the possibilities of
identification of a network host in network traffic since the host identification is one of
the main requirements for understanding the complexity of a computer network.

• Dynamics – The dynamics of a network is hard to track. The passive approach of the
IP flow monitoring enables an operator to continuously monitor and keep track of the
changes in the network (both topology and content of network traffic) straightforward.
The passive measurement observes events in a network and changes are projected di-
rectly to observed network traffic. No scheduled updates for a collection of up-to-date
information is needed as in the case of active monitoring. Nevertheless, the payoff for the
continuous observation of the passive approach is less detailed information that is pos-
sible to derive from the data compared to active approaches. Optimization or reduction
of the trade-off between the volume of the information available and the possibility of
continuous observation remains the challenge, though.

• Speed of events – The speed of events in cyberspace is a challenge for a cyber opera-
tor. The IP flow monitoring enables to process information from a computer network at
high speeds. However, the IP flow monitoring introduces several delays during the me-
tering and analysis processes as shown in the previous sections. Due to these delays, a
cybersecurity operator does not operate with up-to-date data, which may lead to incor-
rect decisions. In this thesis, we investigate a possibility to reduce the delays in IP flow
monitoring workflow by introducing stream-based IP flow monitoring (see Chapter 6).

• Rapid evolution – The IP flow monitoring does not influence an operator’s ability to keep
up with new trends directly. IP flow traffic does not provide any report on new trends,
properties, and functions. However, as soon as these new technological advances are im-
plemented and deployed, they can be observed in network traffic. So that, an operator can
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indirectly learn the latest trends and their real-world demonstrations from network traffic
observation. New trends that are possible to observe in network traffic are, for example,
deployment of a new application, behavior habits of the computer users, new services
and protocols present in a network.

Data-related

The IP flow monitoring is limited only to observation of network traffic; no host-originating in-
formation, such as logs, CPU usage, disk usage, power consumption, are available. Even though
the data used in IP flow CSA are reduced only to network traffic, it still shows all characteristics
of big data. For example, in a medium-sized network of 24,000 active IP addresses, it is possible
to observe 12 000 flows/s. An education network produces flows at a rate 110 000 flows/s [A3].
These values are expected to grow in the future [81].

• Volume – The "data overload, meaning underload" holds in case of IP flows, as well. The
volume of raw IP flow records generated from network traffic is too big to be processed
by a human operator. Although an IP flow record contains an aggregated information
from a set of packets, it still contains relatively low-level information. An operator needs
higher level information from IP flows to be able to use the IP flow records efficiently.
There exist approaches to provide an aggregated information from IP flow records (see
description in Section 3.4). Nevertheless, the selection of relevant aggregation approaches,
appropriate scope, and suitable information presentation (e.g., lack of host-based view
in IP flow monitoring) are still open challenges for IP flow CSA. In this thesis, we focus
on usability IP flow aggregations and creation of the aggregated host-based view.

• Velocity – The velocity of the IP flows in network traffic is high; the rates of IP flows
reach over 110 000 flows/s. The vendors of the IP flow monitoring hardware can keep up
with the rising speed of network traffic. They deliver solutions even for backbone lines.
Currently, FPGA network cards capable of monitoring and creating IP flow from lines
with rates 100 Gbps are available [116], and the 200 Gbps rate is expected to break in a
near future. While we can create IP flows from high-speed traffic, the velocity remains a
challenge in the area of IP flow record analysis. The current tools do not provide sufficient
throughput for IP flow analysis, especially when advanced analytic methods, such as
Neural Networks, are employed. This thesis focuses on the throughput evaluation of IP
flow monitoring workflow when next-generation IP flows are monitored. Further, we
describe a design of scalable, high-throughput IP flow monitoring workflow that can
serve for IP flow CSA.

• Variety – Considering the IP flow monitoring for CSA solely, the variety of data is re-
duced to IP flows and IP flow records. The structure of IP flow records is given by the IP
flow exporter and by the protocol used for IP flow record transport. Nevertheless, even IP
flow records can contain a variety of information. The IP flow keys can be chosen at will,
and additional private information elements can be added to IPFIX protocol to be able to
transport a custom data of interest. Standardized IPFIX information elements and their
numbers are maintained by Internet Assigned Numbers Authority (IANA). The informa-
tion elements in the list are the basic elements, and other private elements are frequently
added by various vendors, which increases the variety of information transferred in IP
flow records. Nevertheless, the variety of data in IP flow records is negligible compared
to the variety of data in the general CSA.

• Value – The value of information carried in the IP flow can be determined by a value of
that information to an operator. The exact determination of the value remains a challenge
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also in the IP flow CSA. The noise to signal ratio is lower compared to packet monitor-
ing due to aggregation introduced. Nevertheless, it remains high, and several techniques
for anomaly detection and "normal traffic" identification are under research [146]. In this
thesis, we show information available from a general Top N statistics, and we investigate
possible applications of this characteristic that might an operator benefit from (Chap-
ter 5).

Toolset-related

The toolset for IP flow monitoring can be divided into two main categories - IP flow metering
tools and tools for IP flow records analysis. The IP flow metering tools range from IP flow export
software integrated in network routing and switching devices (e.g., Cisco Catalyst 3750X-12S-E
Switch31) to a dedicated hardware for IP flow metering (e.g. Flowmon probe32). The landscape of
tools for IP flow record analysis is also diverse. IP flow record analysis is part of various systems
and tools: Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), or Anomaly
Detection Systems (ADS), network monitoring tools, and so forth. Individual CSA challenges
concerning IP flow monitoring toolset are presented below.

• Performance – The performance of the tools for IP flow CSA is an issue mainly for IP
flow analysis tools, as discussed above. The data-related challenges imply the high re-
quirements on the performance of the tools for IP flow record processing in terms of pro-
cessing power, throughput, and so forth. Besides the performance issues of the IP flow
analysis tools, the reduction of the time delay introduced in the IP flow monitoring work-
flow is a frequently mentioned challenge related to IP flow monitoring. In this thesis, we
discuss the possibilities of the reduction of the time delay and study the performance of
IP flow metering tools concerning the volume of information collected (Chapter 4 and 6).

• Heterogeneity – The heterogeneity challenges remains in the context of IP flow monitor-
ing. There exist various types of IP flow probes, collectors, and analysis tools. The collec-
tors differ in the query languages based on the storage approach; for example, nfdump
query language differs from structured query languages (SQL) in relational databases.
The IP flow probes are represented by different switching and routing devices from dif-
ferent vendors exporting IP flows in various formats. The workflow of an IP flow analysis
is also vendor specific. An operator is usually forced to use different tools and approaches
to gain a CSA. To achieve homogeneity in approaches, we present a general workflow for
next-generation IP flow monitoring in Chapter 6.

• Visualization – Visualization challenges of CSA are linked to issues of big data visual-
ization. Open issues for IP flow CSA are the visualization of a large network, relations
between hosts in a network derived from IP flow records at a different timescale and
level of details.

The overlap of the open issues of cyber situation awareness and IP flow monitoring is dis-
played in Table 2. The performance issue of the IP flow monitoring naturally implies the perfor-
mance issue of CSA toolset as IP flow monitoring is used to achieve CSA. The complexity issue
of CSA relates to the new trends in IP flow monitoring, namely encrypted traffic, and cloud
services, as these trends add new layers to the network and reduce information available for
analysis. The complexity of the IP flow analysis and efforts for its reduction also decrease the
complexity of the CSA as the easier understanding of the IP flow analysis results in better un-
derstanding of the cyber space. The problems related to the speed of events and dynamic of

31. https://www.cisco.com/c/en/us/support/switches/catalyst-3750x-12s-e-switch/model.html
32. https://www.flowmon.com/en/products/flowmon/probe

59

https://www.cisco.com/c/en/us/support/switches/catalyst-3750x-12s-e-switch/model.html
https://www.flowmon.com/en/products/flowmon/probe


3. IP Flow Network Traffic Monitoring

the cyberspace can be partially addressed by the solving problems related to the response time
reduction in the IP flow monitoring.
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Complexity 3 3 3 3

Dynamics 3

Speed of Events 3

Rapid Evolution 3

Data

Volume 3 3 3

Velocity 3 3 3

Variety 3 3

Value 3 3

Toolset
Performance 3 3 3 3

Heterogeneity 3

Visualization 3 3 3

Table 2: Overlap of IP flow and CSA challenges.

3.6 Summary

This chapter provides an introduction to the field of network traffic monitoring. The goal of
this chapter is to present to a reader the basic concepts of IP flow monitoring, put the IP flow
network monitoring into a context of cyber situation awareness, and discuss current open issues
and challenges, that are addressed in this thesis.

First, we explain the position of IP flow monitoring in the broader research fields, compare
it briefly with other approaches to network traffic monitoring, and discuss the traffic access
methods used for IP flow measurements. In the next section, we describe the concept of IP
flows. We focus on the history and evolution of the IP flow concept as knowledge of the origins
of IP flows enables to understand the purpose and design of IP flow monitoring workflow. We
provide the IP flow definitions, and we present current trends that influence the IP flows and
need to be taken into account. The trends worth mention are concerns regarding privacy issues,
transformation to a cloud environment, and the increasing volume of network traffic.

The third section explains the IP flow monitoring workflow. We discuss each phase of the
monitoring workflow including relevant literature. The timeline of the workflow is defined to
show a delay introduced during the monitoring workflow. We discuss the timeline later in this
thesis and present a way how to reduce the described delays. Open issues of the IP flow moni-
toring, such as scalability, response times, and performance, concludes this section.
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The next section describes the IP flow record analysis. We mention the general workflow of
the analysis and describe the main use-cases of the analyses - reporting and analysis, perfor-
mance monitoring, and attack and anomaly detection. For each use-case, we mention relevant
literature sources. Similarly to the previous section, the timeline of the analysis workflow is
described.

The fifth section puts the IP flow monitoring into the context of cyber situation awareness.
We utilize Endsley’s Three-level model to describe the IP flow workflow, discuss the specifics of
IP flow CSA resulting from IP flow monitoring and analysis workflows and revise the challenges
of CSA from Section 2.2.5 to reflect IP flow approach.

The main contributions of this chapter are:

• description of IP flow concept and its history,

• overview of the IP flow monitoring and analysis workflow,

• list of open issues in the IP flow monitoring and analysis domain,

• analysis of timeline of the IP flow monitoring and analysis workflow,

• description of IP flow monitoring in the context of CSA.
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Data Perception

Data perception level links to IP flow monitoring processes in the context of Endsley’s Three-level
model applied to IP flow monitoring domain. In this chapter, we present our contributions to
the data perception level. We contribute to the analysis of next-generation IP flows export and
to improvement of data collection for client identification in encrypted network traffic. Our con-
tributions address the performance open issue of the IP flow monitoring process. Specifically, we
focus on the performance of IP flow probes capable of next-generation IP flow export. Addressing
performance open issue, we directly respond to the toolset-related performance challenge of CSA
and indirectly respond to the volume challenge of data-related CSA challenge category. Apart
from the performance of the IP flow probes, we investigate a novel approach to the collection of IP
flows that can serve for a client identification even in encrypted network traffic. This research ef-
fort responds to the current trend of increasing volume of encrypted network traffic and changing
paradigm trend in IP flow network monitoring. We believe that the presented results contribute
to the solution of complexity and dynamic challenges of CSA.

The first section investigates how the addition of application-level information into IP flow influ-
ences the performance of IP flow probes. We focus on HTTP protocol being the widely used pro-
tocol by a variety of applications. We investigate the parsing mechanisms of the state-of-the-art
IP flow probes and propose an improved version of HTTP protocol parser. We provide a perfor-
mance comparison of the other approaches with our approach and with application-less IP flow
probes to demonstrate twofold results: over 50 % decreased performance when application-level
information is parsed, and the 300 % better throughput of the optimized strcmp parsing algorithm
compared to the others. Further, we show that the addition of an extra HTTP header information
for parsing, once we are already parsing the HTTP protocol, does not significantly decrease the
performance of the IP flow probe.

Next, we focus on the improvement of data collection for client identification from encrypted
network traffic. We investigate the characteristics of SSL/TLS traffic to identify information that
can be used for client identification. Based on the analysis, we propose a dictionary that serves
for identification of client’s browser or operating system even from encrypted network traffic. The
dictionary is created by combining information from HTTP (User-Agent values) and HTTPS
(Cipher Suites) IP flows. We execute series of experiments to examine the share and properties
of SSL/TLS network traffic, create the dictionary from real-world traffic, evaluate the coverage
of the dictionary, and compare IP flow- and host-based approaches. Based on the experiments,
we highlight the dictionary’s properties and propose several improvements that would lead to
increased accuracy and quality of the dictionary.

This chapter is organized as a collection of following revised peer-reviewed publications that sum-
marize our research efforts in the area of data perception: [A4–A6].
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This chapter is structured as follows:

• Section 4.1 investigates a performance of HTTP protocol parsers and demonstrate the
trade-off between a volume of perceived information and performance of the IP flow
probes.

• Section 4.2 proposes a novel approach to client identification in encrypted traffic by cre-
ation a dictionary that links information from HTTP and HTTPS IP flows.

64



4. Data Perception

4.1 HTTP Protocol Parsers for IP Flow Information Export

As explained in previous chapters, IP flow records are based on IP headers (network and trans-
port layer), and it did not originally include any payload information. On the other hand, we
observe that HTTP protocol [157] became a “new Transmission Control Protocol” (TCP). More and
more applications rely on HTTP protocol, e.g. Web 2.0 content, audio and video streaming, in-
stant messaging etc. HTTP traffic (TCP port 80) can usually pass through most firewalls and
therefore presents a standard way of transporting/tunneling data. The versatility, ubiquity and
amount of HTTP traffic makes it easy for an attacker to hide malicious activities. Missing appli-
cation layer visibility renders standard NetFlow and IPFIX to be ineffective for HTTP monitoring
and limits its utilization for cyber situation awareness.

Network and security devices use application layer analysis to provide application visibility,
monitoring and traffic control. For example, Cisco Application Visibility and Control (AVC) [158]
solution uses next-generation deep packet inspection (NBAR2) and flexible NetFlow to identify,
classify and report on over 1,000 applications. HTTP information elements are supported by
YAF [159] and nProbe [130] IP flow meters and are exported in IPFIX format. Most intrusion
detection systems extract application layer data for in-depth analysis.

We aim to research the impacts of application layer analysis of HTTP protocol on IP flow
monitoring workflow. The contribution of our work is threefold: (i) We design and evaluate
several HTTP protocol parsers representing current state-of-the-art approaches used in today’s
IP flow meters. (ii) We introduce a new flex-based HTTP parser. (iii) We report on the throughput
decrease (performance implications of application parser), which is of the utmost importance
for high-speed deployments.

This research addresses the following challenges of IP flow CSA. We address the data value
challenge as we intend to enrich IP flow records with information from the HTTP protocol.
The introduction of flex-based HTTP parser for high-speed network addresses the data velocity
challenge. The performance challenge is investigated by evaluation of throughput performance
of the tools when adding HTTP application parser into an IP flow probe.

4.1.1 State-of-the-art

Application layer protocol parsers are an integral part of many network monitoring tools. We
explored the source code of the following frameworks to see how the HTTP parsing is imple-
mented. nProbe [130] uses standard glibc [160] functions like strncmp (compare two strings) and
strstr (locate a substring). YAF [159] uses Perl Compatible Regular Expressions (PCRE) [161]
to examine HTTP traffic. Suricata [162] and Snort [163] are both written in C. Suricata uses Lib-
HTP [164] library which does HTTP parsing using custom string functions while Snort does its
parsing using glibc functions. httpry [165] is another HTTP logging and information retrieval
tool which is also written in C and uses its own built-in string functions. These HTTP parsers
are hand-written.

Another approach is taken by Bro [166] authors. They use binpac [167], a declarative language
and compiler designed to simplify the task of constructing robust and efficient semantic analyz-
ers for complex network protocols. They replaced some of Bro existing analyzers (handcrafted
in C++) and demonstrated that the generated parsers are as efficient as carefully hand-written
ones.

We try to determine whether these approaches to HTTP parsing can handle large traffic vol-
umes common in CSA. Besides the above approaches, we propose to use the Fast Lexical Analyzer
(flex) [168] to design a new HTTP parser. Flex converts expressions into a lexical analyzer that is
essentially a deterministic finite automaton that recognizes any of the patterns. The algorithm
that converts a regular expression directly to deterministic finite automaton is described in [169]
and [170].
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There are other works that inspect the HTTP protocol headers. Authors of [171] use statistical
IP flow analysis to differentiate traditional HTTP traffic and Web 2.0 applications. In [172] the
authors identify HTTP sessions based on IP flow information. In both cases, a ground truth
sample is needed, which is a topic addressed by [173]. In [174] and [175] the authors use DPI to
obtain information from the HTTP headers. Our approach is orthogonal to these works since
we are interested in extending IP flow records with HTTP data.

4.1.2 Parser Design

HTTP protocol [157] has a number of properties that can be monitored and exported together
with IP flow data. The most commonly monitored ones are present in almost every HTTP re-
quest or response header. Based on the properties monitored by the state-of-the-art DPI tools
we selected the following ones for our parsers: HTTP method, status code, host, request URI, content
type, user agent and referer. Keeping track of every bidirectional HTTP connection is too resource
consuming on high-speed networks. Thus we focus on the evaluation of each packet. This ap-
proach is more common for IP flow meters since it is more resistant to resource depletion attacks.
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Figure 19: flex algorithm schema.

We implemented and evaluated three different types of parsing algorithms. The first algo-
rithm (strcmp approach) loops the HTTP header line by line and searches each line for given
fields. It uses standard glibc string functions like memchr, memmem and strncmp. The simplified
pseudocode is shown in Algorithm 1. The second algorithm (pcre approach) uses several regular
expressions taken from YAF to search the packet for specific patterns indicating HTTP header
fields. The pseudocode for the pcre algorithm is shown in Algorithm 2. We designed the third
algorithm (flex approach) to handle each packet as a long string. It uses finite automaton to find
required HTTP fields, and the Flex lexer is used to process the packets. The automaton design
is shown in Figure 19.
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Algorithm 1 strcmp
1: if first line contains “HTTP” then
2: while not end of HTTP header do
3: for every parsed HTTP field do
4: if field matches the line then
5: store the value of the line
6: end if
7: end for
8: move to the next line
9: end while

10: return HTTP packet
11: else
12: return not HTTP packet
13: end if

Algorithm 2 pcre
1: if first line contains “HTTP/x.y” then
2: for all PCRE rules do
3: if rule matches then
4: store the matched value
5: end if
6: end for
7: return HTTP packet
8: else
9: return not HTTP packet

10: end if

Since the Flex is a generic tool, its initialization before scanning each packet is quite an expen-
sive operation. Therefore we decided to remove all unnecessary dynamic memory allocations
and costly initializations to see whether the performance can be increased. We named the new
version optimized flex. The disadvantage of flex is that it has to keep the data in its own writable
buffer. Therefore the received data must be copied to such a buffer, which adds to the process-
ing costs significantly. The advantage of the flex parser is its simple maintenance and extension
possibilities. The framework can be modified to parse any other application layer protocol just
by changing the set of regular expression rules. The strcmp parser would have to be rewritten
from scratch.

The strcmp implementation also offers a space for further improvement. Algorithm 3 shows
an optimized strcmp version of the code that features a better processing logic. The optimized
version searches for specific strings by comparing several bytes at once, which is done by casting
the character pointer to integer pointer. The number that is compared to the string is computed
from ASCII codes of the characters and converted to network byte order. The size of the used
integer depends on the length of the string; longer integers offer better performance.

To focus only on the HTTP parsing algorithms, we decided to let the FlowMon exporter [176]
handle the packet preprocessing. We used a benchmarking (input) plugin that reads packets
from PCAP file to memory at start-up. Then it supplies the same data continuously for further
processing. This approach allows us to focus on benchmarking the algorithms without the ne-
cessity of considering the disk I/O operations. We provide the source code of implemented
algorithms and used packet traces at the paper homepage [177].

4.1.3 Evaluation Methodology

We define a methodology for HTTP protocol parsers evaluation in this subsection. We focus on
parsing performance (number of processed packets per second) of the algorithms described in
Section 4.1.2 from several different perspectives.

The first perspective focuses on the performance comparison with respect to analyzed traffic
structure. The second perspective covers the impact of the number of HTTP fields supported
by a parser. The third perspective describes the effect of a Carriage Return (CR or ’\r’) and a
Line Feed (LF or ’\n’) control characters distribution in the packet payload.

A common technique for increasing of network data processing performance is processing
only the relevant part of each packet. Therefore, we perform each of the tests in two configu-
rations. In the first configuration, the parsers are given the whole packets. We set the limit of
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Algorithm 3 optimized strcmp
1: if payload begins with “HTTP” then
2: store status code
3: while not end of HTTP header do
4: for every parsed response HTTP field do
5: if line starts with field name then
6: store the value of the line
7: end if
8: end for
9: move to the next line

10: end while
11: return HTTP response packet
12: end if
13: if payload begins with one of GET, HEAD, POST, PUT,

DELETE, TRACE, CONNECT then
14: store request URI
15: while not end of HTTP header do
16: for every parsed request HTTP field do
17: if line starts with field name then
18: store the value of the line
19: end if
20: end for
21: move to the next line
22: end while
23: return HTTP request packet
24: end if
25: return not HTTP packet

packet size to 1500 bytes, which is the most common maximum transmission unit value on most
Ethernet networks. In the second configuration, the parsers are provided with truncated pack-
ets of length 384 bytes, which is the minimum packet length recommended for DPI by authors
of the YAF exporter [159].

To test the performance of the parsers, we created an HTTP traffic trace (testing dataset).
Our requirements on the dataset were as follows: preserve the characteristics of HTTP protocol,
reflect various HTTP traffic structures, and have no side effects on the IP flow meter. In order to
meet these requirements, we decided to create a synthetic trace.

The HTTP protocol is a request/response protocol. To preserve the characteristics of HTTP
protocol during the testing, random request, response, and binary payload packets were cap-
tured from the network. To omit the undesirable bias of the measurement only these three pack-
ets were used to synthesize test trace. The final test trace consists of 200 packets. In order to
reflect various traffic structures, we suggested the following ratio:

r =
#request packets + #response packets

#all packets ∗ 100 (4.1)

where r ∈ [ 0, 100 ] and created a test set for each integer ratio from the interval. Further,
we created two packets with modified payload. One packet contained the CR and LF control
characters only at the very beginning of the packet payload, the other one only at the end. For
both of the modified packets and for the unchanged packet the test trace for each integer ratio
was created.
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Having defined the test trace, we propose the following case studies to cover all evaluation
perspectives. The case studies are carried out for both full and truncated packets. Moreover, we
measure the performance of the flow meter without an HTTP parser (no HTTP parser). This
way we can estimate the performance decline caused by increased application layer visibility.

• Performance Comparison: This case study compares the parsing performance of imple-
mented parsers. Moreover, we report on the IP flow meter performance without an HTTP
parser (no HTTP parser).

• Parsed HTTP Fields Impact: This case study shows a parser performance with respect
to the number of supported HTTP fields. We incrementally add support for new HTTP
fields and observe the impact on the parser performance.

• Packet Content Effect: The result of this study presents the influence of the CR and LF
control characters position in a packet payload on the parser performance. The test traces
containing modified payload packets are used to perform the measurement.

The performance evaluation process employs the benchmarking input plugin (see plugin
description in Section 4.1.2) to obtain the number of processed packets per second. In order to
avoid influencing the results, the plugin uses a separate thread and CPU core for the accounting.
The plugin counts the number of the processed packets in a ten-second interval and then com-
putes the packets per second rate. We have operated the benchmark plugin for fifty seconds
for each test trace and computed a number of packets processed and a standard error of the
measurement. The parsed HTTP header fields impact and packet content effect were assessed
similarly. All measurements were conducted on a server with the following configuration: Intel
Xeon E5410 CPU at 2.33 GHz, 12 GB 667 MHz DDR2 RAM and Linux kernel 2.6.32 (64 bit).

4.1.4 Parser Evaluation

This subsection presents the results of the HTTP parser evaluation. First, we describe the parser
performance comparison, then we investigate the impact of supported HTTP header fields. Fi-
nally, the effect of the packet content on HTTP parsing performance is shown.

Performance Comparison

This case study uses the standard version of each parser that supports seven HTTP fields. The
dataset containing the unmodified payload packets is used, and the parsers are tested both on
full and truncated packets. Figure 20 shows the result for full packets case study and Figure 21
shows performance evaluation for truncated packets.

First we discuss the Figure 20. The no HTTP meter is capable of parsing more than 11 million
packets per second. This result is not influenced by the application data carried in the packet
since the data is not accessed by the no HTTP parser. Employing event the fastest of the HTTP
parsing algorithms the performance drops to the nearly one half of parsed packets per second.
All of the HTTP parsers show the decrease in the performance as the ratio r increases since the
amount of request and response packets, which are more time demanding to parse, grows.

The best performance is achieved by optimized strcmp parser, which uses application protocol
and code level optimizations. The parser takes into account the HTTP header structure, the
difference between HTTP request and response headers and looks only for header fields that
can be found in the specific header type. The code level optimizations include converting static
strings into integers and matching them against several characters at once, which can be done
in one processor instruction. The strcmp parser performance is the second best, although the
throughput is less than half of the optimized strcmp parser.
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Figure 20: Parser performance comparison with respect to HTTP proportion (0 % - no HTTP,
100 % - only HTTP headers) in the traffic - full packets 1500 B.

The main difference between flex and optimized flex parsers is in the automaton initialization
process. By rewriting the initialization process, we achieved slight performance improvement,
which is noticeable mainly in the 〈 0 %, 20 % 〉 interval, where the actual HTTP parsing time is
short. There is one other important factor affecting the flex parser performance. The flex automa-
ton is designed to work with its own writable buffer since it marks the end of individual parsed
tokens directly into the buffer. For this reason, a copy of the packet payload must be created
before the actual parsing can start. To measure the impact of the copying, we created another
two parser plugins called empty and copy. First, we measured the IP flow meter throughput with
empty plugin which performs no data parsing, then with copy plugin which only copies packet
payload to a static buffer. From the results, we estimate the throughput the optimized flex parser
would have without the memory copying. The performance of the optimized flex parser would
be about 2.4 million packets per second for 0 % and 0.33 million packets per second for 100 %
HTTP packets. This shows that the actual HTTP parsing when compared to strcmp parser, is
slightly faster for binary payload packets and slower for HTTP header packets.

The performance of the pcre parser is the lowest. The PCRE algorithm converts the regular
expression to a tree structure and then performs a depth-first search while reading the input
string. In case there is no match in the current tree branch, the algorithm backs up and tries
another one. Therefore, for a complex regular expression, the pattern matching is not that fast
as simple string search using functions like strcmp. Another reason why the pcre parser is not fast
is that it performs all searches on whole packet payload. The other algorithms are processing
the data sequentially.

Figure 21 shows the results for truncated packets. The optimized strcmp and no HTTP are
only slightly faster since the truncating of the packets has a positive impact on CPU data cache
utilization. The strcmp algorithm is flawed since its throughput on HTTP packets deteriorates
rapidly. This shows the disadvantage of hand-written parsers, as they are more error-prone than
the generated ones. The pcre parser performance is almost doubled, as the repeatedly processed
data are truncated. The flex-based parser also achieve performance increase, since the memory
copying costs are reduced for smaller data.
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Figure 21: Parser performance comparison with respect to HTTP proportion (0 % - no HTTP,
100 % - only HTTP headers) in the traffic - truncated packets 384 B.

Parsed HTTP Header Fields Impact

This case study was designed to show the impact of a number of parsed HTTP header fields on
the parser performance.

When payload packets are detected, they do not have their content parsed for additional
HTTP header fields. Therefore, a test set containing only HTTP request and response packets
was used. The case study starts with an empty plugin, that does not parse HTTP header fields
and just labels the HTTP packets. In the next steps, we cumulatively add header field to parse
until we parse all of the seven supported fields. We run the tests for both full and truncated
packets. The average performance of the parsers for each of the added field is shown in Figure 22.
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Figure 22: An HTTP parser throughput for 1500 B packets; supported fields - (0) none - HTTP
protocol labeling, (1) +host, (2) +method, (3) +status code, (4) +request URI, (5) +content type, (6)
+referer, (7) +user agent.
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Only the request and response packets are parsed, thus the values for the seven fields parsed
in the Figure 22 correspond to the 100 % packet/s values in the Figure 20 and Figure 21. For the
same reason the parsed packets per second numbers are lower in comparison with the Figure 20
and Figure 21. The performance of strcmp and pcre parsers drops with each additional parsed
HTTP header field. The optimized strcmp parser implementation details attentional fluctuation
effect on performance shown in Figure 22. An example is the performance increase when adding
a (4) request URI or a (3) status code. It is caused by extra code snippet that extracts the URI so that
this line is not processed by the more generic code designed for parsing other header fields. Due
to the usage of the finite automaton, the data is always processed in one pass by the flex-based
algorithms. Therefore, they retain the same level of performance for all additional fields. This
feature could be used to automatically build powerful parsers when a large number of parsed
application fields would make it ineffective to create hand-written parsers.

Same as in the previous case study, the parsers processing truncated packets show better
performance than the parsers working on full packets.

Packet Content Effect

This case study investigates the possible effects of the position of the CR and LF control charac-
ters in the packet payload on the parser performance. The mentioned ASCII characters represent
the end of a line in the HTTP header. Some of the proposed algorithms use these characters as
the trigger to stop parsing. Therefore the position of these characters affects the performance of
the parser. The packets with the CRLF characters at the very beginning should be parsed faster
than the packets having the CRLF at the end since the algorithm terminates as soon as it identi-
fies the CRLF characters. The test sets with modified binary payload packets (see Section 4.1.3)
enables us to compare the algorithms taking into account this perspective.
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Figure 23: Packet content effect - packet length 1500 B.

We used the modified binary payload packets to test the parsers. The parsing algorithms,
except the strcmp algorithm, show an insignificant difference in their performance for all variants
of the modified packets. The pcre and optimized strcmp parsers do not search for the end of line
characters in order to label the packet, therefore this test does not affect them. The flex-based
algorithms are not significantly affected since they stop parsing on the first character that is
not expected in HTTP header and therefore stop at the first character in any case. The strcmp
parser depends on the search for the end of line characters, which is confirmed by Figure 23. The
sooner the characters are found, the faster the algorithm terminates. The scenario with truncated
packets is different, since the performance on end dataset is greater than on unchanged data. This
is caused by removing the end of packet payload together with the end of line character. When
the strcmp algorithm cannot find the character, it terminates immediately without trying to
search the data. Therefore it terminates sooner than on unchanged dataset, where the end of line
character is found, and the search continues.
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4.1.5 Summary

In this section, we have assessed the impacts of HTTP protocol analysis on IP flow monitoring
performance. We implemented the state-of-the-art approaches to HTTP protocol parsing. More-
over, the new flex-based HTTP parser was designed, and its performance was compared to the
other approaches.

The evaluation shows that in our case the hand-written and carefully optimized parser per-
forms significantly better than implementations with automated parsing. It also shows that the
new flex-based implementations handle the increasing number of parsed HTTP fields without
significant performance loss. Truncating the packets before HTTP protocol parsing can increase
the parser throughput. The performance comparison of no HTTP parser with HTTP parsers
shows that providing application visibility is a demanding task. Current approaches to the ap-
plication protocol parsing may not be effective enough to process high-speed network traffic.

Our flex-based parser and evaluation experiments affect the CSA in the following ways. We
can provide an operator with additional valuable information without a significant decrease in
the application parser’s performance. Nevertheless, we have shown that application visibility
to network flow is a demanding task. The throughput of the IP flow monitoring tool decreases
below 50 % when we turn HTTP parsing on. The trade-off between performance and available
information is demonstrated by our performance comparison experiment. Last, but not least,
the comparison of the parsers can be used for selection of the optimal HTTP parser for an IP
flow CSA framework.

4.2 HTTPS Traffic Analysis for Client Identification

The rising popularity of encrypted network traffic is a double-edged sword. On the one hand, it
provides secure data transmission, protects against eavesdropping, and improves the trustwor-
thiness of communicating hosts. On the other hand, it complicates the legitimate monitoring of
network traffic, including traffic classification and host identification. Nowadays, we are able to
monitor, identify, and classify plain-text network traffic, such as HTTP, but it is hard to analyze
encrypted communication. The more secure the connection is, from the point of view of com-
municating partners, the harder it is to understand the network traffic, identify anomalous and
malicious activity, and reach cyber situation awareness.

In this section, we discuss HTTPS - HTTP over SSL/TLS, the most common encrypted net-
work traffic protocols. In a communication encrypted by SSL/TLS, the hosts have to first agree
on encryption methods and their parameters. Therefore, the initial packets contain unencrypted
messages with information about the client and the server. This information varies among differ-
ent clients and their versions. Similar client identifier is a User-Agent value in a HTTP header,
which is commonly used for identifying the client and classifying traffic. However, only the
SSL/TLS handshake can be observed in a HTTPS connection without decrypting the payload.
Therefore, we approach the problem of identifying the SSL/TLS client and classifying HTTPS
traffic by building up a dictionary of SSL/TLS handshake fingerprints and their corresponding
User-Agents.

We set up an experiment, which aims to investigate following three research areas: (i) Pa-
rameters of a SSL/TLS handshake usable for client identification, (ii) pairing selected SSL/TLS
handshake parameters and HTTP header fields, and (iii) volume of information, i. e., number
of known SSL/TLS parameters and pairings to HTTP headers, needed for the analysis of a sig-
nificant portion of network traffic.

First, we aim to observe real network traffic to gain insight into contemporary SSL/TLS hand-
shakes. We deploy network traffic monitoring, filter HTTPS connections, and create a list of the
SSL/TLS handshakes and their fingerprints. We focus on analyzing information provided dur-
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ing the handshake by the client, i.e., the ClientHello message containing the protocol version, the
list of supported cipher suites, and other data. Apart from the useful information for identifying
the client, we are particularly interested in the share of old and vulnerable protocol versions.
Recent discoveries of severe vulnerabilities, such as POODLE [178], might have significantly
changed the proportion of protocol versions in use.

Second, we correlate selected parts of SSL/TLS handshakes and HTTP headers. We suppose
that the list of supported cipher suites (declared by the client in the ClientHello message) can be
used as an identifier similarly to a User-Agent in a HTTP header. However, it is not possible
to get the User-Agent from the HTTPS request without decryption. We use two approaches
to obtain pairs of cipher suite lists and corresponding User-Agents. The host-based approach
is based on advanced logging on the server side. The novel network-based method is based
on simultaneous monitoring of HTTP and HTTPS connections. The information from HTTP
headers is obtained using HTTP IP flow probe described in the previous section. We assume
that clients mostly communicate on both protocols. Therefore, we look for HTTP and HTTPS
connections from the same client over a short time period and pair cipher suites and User-Agents
from such connections.

Third, we use the pairs of SSL/TLS fingerprints and User-Agents as a dictionary to assign
User-Agents to the HTTPS connections observed during the measurement. We discuss the qual-
ity of the obtained pairs with respect to the dictionary size and accuracy of the User-Agent
estimation. The goal of this part is to estimate the size and accuracy of a dictionary which could
be used for identifying clients on a large-scale and classifying network traffic.

The motivation for our work came from three main areas of applications. Firstly, it is the anal-
ysis of encrypted network traffic, including the identification and characterization of encrypted
network traffic and classification of communicating clients. From this point of view, we are not
interested in individual clients, but rather overall characteristics of network traffic. The second
area of interest is the host identification, which aims to obtain information on an individual
host. This applies mostly on a web browser fingerprinting. The third area is network security
and forensics, where we typically want to detect the activity of a specific network host, detect
malicious clients, and evaluate the activity of unknown or unusual clients. Our research address
the cyber-space related challenges of CSA, namely the complexity and dynamics challenges. We
contribute to the area of a host identification in network traffic, which improves to possibilities
of operator’s orientation in a network even when only IP flow data are available.

Analysis of Encrypted Network Traffic

We have to understand the network traffic before we can proceed to client identification and
detection of suspicious or even malicious activity. Therefore, we have to observe network traffic
to get insight into typical patterns. Specifically, we have to retrieve a record of encrypted network
traffic containing as many different patterns as possible. To motivate our work, we decided to
analyze real network traffic in a campus network instead of generating the traffic patterns in a
laboratory environment. Therefore, we can get more interesting results which are not necessarily
related to the proposed experiment. These results can later be useful for network administrators,
security practitioners, and the scientific community.

We have to identify what are the options of establishing the SSL/TLS communication and
which options are used in real traffic. We have to use methods from a survey by Velan et al. [179]
as the basis and a real network data to identify these options. Then, we have to find which of
the options are varying the most and if the variability of these options indicates different traffic
patterns, e. g., different communicating partners or type of traffic.
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Client Identification and Browser Fingerprinting

Having insight into the network traffic, we can proceed to the client identification and browser
fingerprinting. The client identification and browser fingerprinting contribute significantly to
network security and detection of malicious activities, e. g., by outdated systems identification
or unusual behavior detection. Identification and fingerprinting are moreover useful for com-
mercial purposes (targeting ads, price discrimination, assessing financial credibility), network
accounting and client behavior monitoring [180].

Assuming the clients have unique fingerprints, the fingerprinting can be used for advanced
traffic analysis. For example, we can enumerate unique client fingerprints that share the same
IP address as depicted in Figure 24. This approach can help in enumerating the number of users
of a specific machine, the presence of a NAT mechanism and number of clients behind a NAT,
and so forth.

Figure 24: Identification and enumeration of HTTPS clients behind NAT.

A problem of client identification based on HTTP User-Agent is that the User-Agent string
can be easily manipulated. For example, illegitimate web crawlers and bots typically spoof the
User-Agent string as to be mistaken for legitimate ones such as Googlebot [181]. Manipulation
with User-Agent string does not apply only to malicious clients, but also to legitimate clients.
Historically, the web browsers were adding identifiers of each other to their User-Agent to re-
solve compatibility issues with certain web pages. Therefore, the Internet Explorer includes
“Mozilla” in its User-Agent string and Android browsers claim themselves to be Safari web
browser. Many browsers also offer user-friendly option to completely replace a User-Agent with
arbitrary string or identifier of a different browser. To sum it up, there is a constant risk that the
User-Agent string is forged and the results of any work based on User-Agent string analysis
cannot be trusted.

Network Security and Forensics

Network security and forensics have their unique preferences and points of view in comparison
to network traffic analysis and client fingerprinting. Ordinary network traffic is not a primary
interest of network security monitoring. Instead, the abnormal and previously unknown traffic
patterns are in question. Of course, we have to understand the network traffic first to recognize
common traffic patterns. Then it is possible to focus on unusual events and, in our case, finger-
prints to detect suspicious or straightly malicious clients and their activity.

The case studies in network security and forensics are dealing with malware and vulnera-
bility exploitation. For example, Win32/Hotbar is a malware, whose activity can be detected
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by searching for HTTP requests with a specific User-Agent [182]. Another example is related to
Shellshock, Bash vulnerability disclosed in 2014. Shellshock can be exploited via HTTP requests
containing strings starting with “() { ;; };” in values of various headers, which could be pro-
cessed by some script at a server side. The attack can be detected by checking the characteristic
sequence in HTTP request headers. In both cases, we face the problem of malware detection
method that is easily performed over HTTP but is hard to accomplish over HTTPS traffic.

The overall trends in network communication affect almost all the communicating hosts,
including the malicious ones. The prime examples are botnets which use HTTP(S) for commu-
nication between bots and command and control centers (C&C). Modern botnets are switching
to HTTPS for similar reasons as legitimate clients. For example, the bots are likely to accept
commands only from trusted C&C centers. HTTPS provides a certain level of trust and, also,
prevents eavesdropping of the communication, on which the detection mechanisms typically
rely [183].

Keeping in mind that almost everything is switching to encrypted communication protocols,
we may expect a demand for methods of encrypted traffic analysis for security purposes. Clients
fingerprinting seems to be a suitable option as it does not interfere with the encrypted content of
a communication and thus cannot be considered as a violation of privacy. The question, however,
is if the fingerprinting can distinguish legitimate and suspicious clients. For example, malicious
actions executed using common web browser are not any different from legitimate traffic from
the fingerprinting perspective. However, the malicious clients are often created for a specific
purpose, and their implementation complies to this. Therefore, we may assume that certain
malicious clients have unique fingerprints. This applies namely to self-propagating malware
and bots communicating within a botnet.

This section is divided into four subsections. Subsection 4.2.1 presents a brief introduction
into SSL/TLS protocols and relevant state-of-the-art. The design of the experiment, measure-
ment tools, and measurement environment are described in Subsection 4.2.2. The results are
presented in Subsection 4.2.3 and evaluated in Subsection 4.2.4.

4.2.1 State-of-the-art

We describe a brief introduction to SSL/TLS protocols and a survey of network-based SSL/TLS
analysis in this subsection. Further, we present a short survey of case studies in network foren-
sics and related fields.

Transport Layer Security (TLS) [184] is a new version of the Secure Sockets Layer version
3 (SSLv3) protocol [185], which is no longer recommended for use due to its security vulner-
abilities. It provides confidentiality, data integrity, non-repudiation, replay protection, and au-
thentication through digital certificates directly on top of the TCP protocol. The TLS protocol is
currently used for securing the most common network protocols, such as HTTP, FTP, and SMTP,
and is part of Voice over Internet Protocol (VoIP) and Virtual Private Network (VPN) protocols.
In this paper, we focus on SSL/TLS’s use within the HTTP protocol, known as HTTPS [186],
which is the most common use of the TLS.

The TLS connection can be divided into two phases: an initial handshake and application
data transfer, both depicted in detail in Figure 25. The initial handshake begins with a Clien-
tHello message identifying which protocol version is used, the cipher suite list, and extensions.
The full list of these identifiers is available on the IANA web page [187]. The following mes-
sages of the initial handshake are used for peer authentication using X.509 certificates [188] and
shared secret establishment based on agreed parameters. All TLS messages exchanged during
the initial handshake are not encrypted until shared keys are established and confirmed by Fin-
ished messages. The TLS protocol consists of configurable cryptographic algorithms and differ-
ent sub-protocols which form a layered design [189]. The main part of this design is the Record
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Protocol [184], which is used as an envelope for all TLS messages and encrypted application
data.

Encrypted

Plaintext

...

Client Server
ClientHello

ClientKeyExchange + ChangeCipherSpec
Finished

Application data

Application data

Finished
ChangeCipherSpec

ServerHello + Certificate + Done

Figure 25: A SSL/TLS handshake.

The long-term SSL/TLS traffic monitoring and measurement on the Internet were presented
by Levillain et al. [190] for the period 2010–2011. They observed a lot of servers which were in-
tolerant to some cipher suite lists and detected certificate chains, which did not comply with
the standard. Another study of SSL traffic was conducted by Holz et al. [191], who focused on
SSL/TLS certificate properties. They revealed a great number of invalid certificates and certifi-
cates shared among a large number of hosts. The work of Holz et al. was followed by the work
of Durumeric et al. [192] which focused on an assessment of certification authorities.

The SSL/TLS protocol and its applications are analyzed by Qualys SSL Lab [193]. Apart
from SSL/TLS applications testing, they presented the idea of HTTP client fingerprinting using
an analysis of the SSL/TLS handshake. The idea was implemented in the SSLhaf [194] proof-of-
concept tool for a simultaneous host-based analysis of HTTP and SSL/TLS connections. A brief
analysis of fingerprints of common web browsers based on the tool was published at Internet
Storm Center [195]. The idea was also implemented by Majkovski [196] as the p0f tool module
used for fingerprinting operating systems. Another idea was presented by Bernaille and Teix-
eira [197], who identified underlying applications in a SSL encrypted connection by the first
SSL/TLS packet size.

A survey of web tracking and its mechanisms was proposed by Bujlow et al. [180]. The
authors placed a special focus on fingerprinting as it is rich in various methods. The survey
proposed a taxonomy of tracking mechanisms including a category of fingerprinting. The ap-
proaches relevant to our work are Device fingerprinting, Operating System instance fingerprinting,
and Browser instance fingerprinting. The methods are mostly focused on the analysis of HTTP
headers. However, TCP/IP headers can also be used, e. g., for OS fingerprinting. OS can be
detected using information from network flows (TTL, SYN packet size, TCP window size, User-
Agent) [A7], DNS traffic analysis [198] or using a combination of the previous and prebuilt
dictionary such as in p0f tool [199]. Regarding the client identification, remote psychical client
fingerprinting using clock skews was described by Kohno et al. [200]. Graph-based structures
for client profiling were introduced by Karagiannis et al. [201]. Manual labeling of fingerprints,
a drawback of fingerprint-based methods, was tackled by Abdelnur et al. [202]. The authors
intended to solve the problem by automation of fingerprint signature creation.
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Regarding the browser fingerprinting, detection using User-Agent field is considered not
to be reliable, since the field is set by a browser and can be easily forged. Instead, fingerprint-
ing methods based on CSS and HTML5 fingerprinting were introduced by Unger et al. [203].
The JavaScript engine was used for browser identification by Mulazzani et al. [204]. Panopticlick
project [205] uses an active approach in collecting fingerprints of a browser. Collected features
are browser plugin details, system fonts, cookie settings, screen size, and others. Nevertheless,
all of these techniques can be overcome by using a web proxy [206] or TOR [207]. In these cases,
detectable fingerprints are removed or replaced by custom ones.

The case studies of network forensic analysis, including analysis based on User-Agent iden-
tification, were presented by Raftopoulos and Dimitropoulos [182]. They cited Win32/Hotbar
as an example of malware, whose activity can be detected by searching for HTTP requests with
a specific User-Agent. One related problem is the identification of network address translation
(NAT) in the network. Traffic flow-based methods were proposed by Gokcen et al. [208] and
Krmíček et al. [209].

4.2.2 Experiment Design

We designed a three-phase experiment to answer our research questions and verify the idea of
using HTTPS client identification with SSL/TLS fingerprinting. In the first phase, we set up a
measurement of live network traffic in the campus network of Masaryk University. The monitor-
ing was primarily focused on SSL/TLS connections. In the second phase, we created a dictionary
of SSL/TLS fingerprints and HTTP User-Agents, based on an analysis of the captured network
traffic. In the third phase, we applied this dictionary to assign User-Agents to the measured
traffic and verified the capabilities of HTTPS client identification.

SSL/TLS Traffic Measurement

We measured live network traffic in the campus network of Masaryk University. The network
has more than 40,000 users and 15,000 active IP addresses on average per day. We deployed an
IP flow probe in a 10 Gbps link that connects the university and the network of CESNET, Czech
National Research and Education Network (NREN).Each measured standard IP flow record
contained following flow keys:

f = (proto, srcIP, dstIP, srcPort, dstPort, tSt),

where proto, srcIP, dstIP, srcPort and dstPort are the shared values of IP flow keys and tSt is
the timestamp of the IP flow.

Since the standard IP flow record does not contain detailed information about HTTP and
HTTPS traffic, we used two extensions for IP flow measurement, which add new elements to
the IP flow record. The first extension adds a User-Agent (ua) element to a HTTP IP flow based
on work in [A4]. Only HTTP IP flows with destination port 80 were considered. The set of all
extended IP flows with assigned User-Agent will be denoted FHTTP.

FHTTP = { ( f , ua ) | f .dstPort = 80

∧ ua 6= null }

The second IP flow measurement extension adds elements from the ClientHello message ex-
changed during the initial SSL/TLS handshake of the HTTPS connection. We measured only
those elements which do not change with each client connection, namely the SSL/TLS proto-
col version (vr), cipher suite list (cs), compression (cm), and TLS extensions (ex). The set of all
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extended HTTPS flows will be denoted FHTTPS.

Hello = ( vr, cs, cm, ex )

FHTTPS = { ( f , Hello) | f .dstPort = 443

∧ Hello 6= null }

The aim of the measurement was to get the base data for the subsequent phases of the ex-
periment. In the next phase, we created a dictionary which allowed us to transform elements
of the SSL/TLS fingerprint into HTTP User-Agents. This dictionary was then applied to all the
measured data to verify its usability and gain more information about HTTPS clients. The sec-
ondary aim of the measurement was to get a closer look at SSL/TLS connections and to obtain
basic statistics about the network traffic, primarily focusing on SSL/TLS traffic.

Pairing Cipher Suite Lists and User-Agents

To identify HTTPS clients, it is necessary to create a dictionary containing pairs of SSL/TLS
handshake elements and User-Agents. This represents the second phase of our experiment. We
decided to use only a cipher suite list from the ClientHello message to build up a dictionary.
Cipher suite lists are the most varied elements of the SSL/TLS handshake, and we supposed
that they are sufficient for identifying clients. Other elements of the handshake only have a few
different values. Therefore, we did not plan to include them in the dictionary. However, we
assumed they could clarify ambiguous results.

We took two approaches, host-based and IP flow-based, to pair a cipher suite list to a User-
Agent. The host-based method uses the information from a single HTTPS connection on the
server side, where the unencrypted data including the HTTP header, are available. This method
is very accurate, but it requires clients to visit the server where the monitoring is deployed. We
set up a HTTPS server running Apache web server and SSLhaf plugin [194]. SSLhaf enabled us
to log the SSL/TLS parameters of a HTTPS connection. We logged SSL/TLS connection param-
eters, including the cipher suite list in a ClientHello message, and the User-Agent from the HTTP
header for each incoming connection. The dictionary was created by a simple combination of
the cipher suite list and the User-Agent from a single connection.

Figure 26: A flow-based cipher suite list and User-Agent pairing.

The IP flow-based method is based on network monitoring, the extraction of cipher suite
lists and User-Agents, and the correlation of HTTP and HTTPS connections from a single client,
see Figure 26. We assumed that web clients commonly communicate via both HTTP and HTTPS
protocols. SSL/TLS connections monitoring, as well as HTTP monitoring, was utilized in this
phase of the experiment. The method of pairing cipher suite lists and User-Agents can be de-
scribed as follows. Let CS denote the set of all possible cipher suite lists and UA the set of all
user-agents, then:
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Dict = { (cs, ua) ∈ CS×UA |
∃ fS ∈ FHTTPS, ∃ f ∈ FHTTP :

fS.cs = cs ∧ f .ua = ua
∧ fS.srcIP = f .srcIP
∧ ∀ f ′ ∈ FHTTP, ∀ f ′S ∈ FHTTPS :

| f ′.tSt− fS.tSt| ≥ | f .tSt− fS.tSt|
∧ | f .tSt− f ′S.tSt| ≥ | f .tSt− fS.tSt| }

We searched for HTTP and HTTPS connections with the same source IP address. We selected
a cipher suite list from the HTTPS connections and paired it to the User-Agent from the HTTP
connection which was the closest in time. We assumed that the flow-based approach would
better reflect the structure of live network traffic and allow us to cover more cipher suite lists
observed in the network.

We did not expect that the dictionary would provide an unambiguous translation of one
cipher suite list to one User-Agent, but there would be one cipher suite list with more corre-
sponding User-Agents and vice versa. However, we assumed that User-Agents assigned to one
cipher suite list have only slight differences, such as the software version. Therefore, it does not
affect the identification of general properties, e. g., the operating system or web browser. We
also expected there to be some significant deviations caused by ambiguity in the flow-based
approach or, for example, by forged connections by a malicious crawler pretending to be a legit-
imate search engine. In this case, we took only the most similar User-Agents substrings.

Assigning User-Agents to Measured HTTPS IP Flows

The third phase of our experiment was a conjunction of the results from the previous phases
as depicted in Figure 27. We combined both types of pairs of cipher suite lists and User-Agents
which were generated in the second phase. Then we applied them to the measured data from
the first phase. The results contained HTTPS flows extended by information about the corre-
sponding User-Agent or list of User-Agents:

F′HTTPS = { ( f , ua) ∈ FHTTPS ×UA |
( f .cs, ua) ∈ Dict }

We planned to validate the results of the assignment and verify our idea of HTTPS client
identification using SSL/TLS fingerprinting. We were interested in the share of SSL/TLS traffic
for which we were able to assign a correlating User-Agent. The connections containing cipher
suite lists for which we failed to assign a User-Agent are potentially relevant from a security
perspective. We expected most of the traffic to be initiated by common web browsers, for which
we were able to easily get the pair of a cipher suite list and User-Agent using the host-based
method. However, we expected that a combination of host-based and flow-based dictionaries
was needed to cover the majority of the traffic.

If multiple User-Agents corresponding to a single cipher suite list were found, we planned
to evaluate what is the minimal set of information provided by the set of User-Agents. For ex-
ample, when multiple User-Agents corresponding to the same cipher suite list point to different
versions of a client application. Similarities in grouped User-Agents can indicate at least if the
client is a web browser, what is its operating system, or if it is a mobile device. Major differences
would otherwise indicate an error in the pairing method.
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Figure 27: Assigning User-Agents to cipher suite lists.

4.2.3 Experiment Results

In this subsection, we present the results of the experiment. First, we sum up the results of
measuring SSL/TLS connections in the campus network. Second, we describe the set of User-
Agents and cipher suite list pairs obtained via the host-based and flow-based methods. The
section closes with the results of assigning User-Agents to the SSL/TLS connection obtained in
the first phase of the experiment.

Measurement

We conducted measurements over a 7 day period in January 2015. The network bandwidth
utilization on the monitored network link ranged from 3 to 5 Gbps. We filtered the HTTPS
connections, processed the SSL/TLS handshakes, and saved the content of ClientHello messages.
The SSL/TLS version, cipher suite list, compression, and extensions were recorded for each
connection. In total, we processed 85,250,090 HTTPS connections.

Version Number of Connections
TLS 1.2 49,140,929
TLS 1.0 33,827,182
SSL 3.0 1,365,409
TLS 1.1 913,014
other 3,556

Table 3: Distribution of SSL/TLS versions.

The observed versions are listed in Table 3. Over 57 % of connections used the TLS 1.2 pro-
tocol followed by almost 40 % for TLS 1.0. Only 1.6 % of connections used the older and more
vulnerable SSL 3.0 protocol. TLS 1.1 represented around 1 % of connections. The remaining con-
nections were unrecognized. However, the number of such connections is insignificant.

We can confirm that only a small number of cipher suites and cipher suite lists cover the ma-
jority of live network traffic. As we can see in Figure 28, the top 10 cipher suite lists represented
68.5 % of live network traffic and top 31 (out of 1598) cipher suite lists were enough to cover 90 %
of the traffic, and 121 cipher suite lists cover 99 % of the traffic.

Pairing Cipher Suite Lists and User-Agents

First, we created a base set of pairs using the host-based method. We manually contacted the
monitoring server with available clients, such as web browsers and tools such as curl [210], to
create an initial dataset. Therefore, most of the traffic incoming to the monitoring server was
artificial. We then made the server publicly accessible and spread the links to lure more clients,
such as web crawlers. In total, we obtained 72 unique cipher suite lists and 293 unique User-
Agents, forming 307 pairs. Multiple User-Agents, with the same cipher suite list, were similar
in most cases. The differences were usually in the version of the client in the User-Agent.
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Figure 28: Network traffic represented by Top X cipher suite lists.

Then, we moved on to the flow-based method, i. e., combined monitoring of cipher suite lists
from SSL/TLS handshakes in HTTPS connections and the User-Agents from HTTP connections.
We analyzed a 1-hour sample of peak network traffic from our campus network and selected the
hosts which initiated both HTTP and HTTPS connections. User-Agents from HTTP connections
and cipher suite lists (from HTTPS connections) from the same client created a new pair. We
observed 10,890 clients communicating on both protocols in a short period of time, 305 unique
cipher suite lists, and 5,043 unique User-Agents. In total, we derived 12,832 unique pairs during
the measurement.

Following this, we investigated the relationship between cipher suite lists and User-Agents
by determining the cardinality of the relationship. Both methods provided more User-Agents
which correspond to one cipher suite list, i. e., a 1:n relation. After a manual inspection, we
discovered, that these User-Agents differ mostly in the system versions while the information
about the client, e. g. browser type, stays more or less constant. Therefore, it is possible to identify
a client with high accuracy. The flow-based method also generated a single User-Agent which
corresponds to more cipher suite lists. However, this is most likely caused by inaccuracy in the
method which cannot distinguish more clients communicating at the same time.

Assigning User-Agents to Measured HTTPS Flows

We used the dictionary provided by the host-based method and then filled in the supplemented
results with a dictionary provided by the flow-based method. The host-based dictionary con-
tained only 72 unique cipher suite lists, which represented 4.5 % of all cipher suite lists measured
during the first phase. However, we observed that those unique cipher suite lists covered 78.0 %
of all the measured HTTPS flows. When we combined the host-based and flow-based dictio-
naries, we obtained 316 unique cipher suite lists (19.8 % of all) covering 99.6 % of the measured
HTTPS connections. Therefore, we assigned a User-Agent to almost all observed HTTPS con-
nections using a combined dictionary based on data from a single server, and the correlations
from a 1-hour sample of network traffic.

As we already mentioned, multiple User-Agents were assigned to one cipher suite list, which
caused ambiguity in the translation. Even hundreds of different User-Agents were found to cor-
respond to a single cipher suite list. However, we discovered that multiple User-Agents assigned
to a single cipher suite list differed in details, such as the version of the used software. Figure 29
shows the results of the User-Agent assignment to the measured HTTPS connections according
to the level of certainty. Certainty represents the number of User-Agents per one cipher suite
list.
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Figure 29: Relation of dictionary size and covered portion of network traffic.

The results show that in the event of unambiguous pairing, i. e., one User-Agent per one
cipher suite list, the dictionary contained 104 unique pairs and covered only 6.3 % of all the
measured HTTPS flows. If we gradually decreased the level of certainty, we were able to cover
more cipher suite lists and a greater proportion of HTTPS flows. If we used up to 10 User-Agents
per one cipher suite list, we were able to cover 66.0 % of all HTTP flows using 704 unique pairs
with 253 unique cipher suite lists. In this case, User-Agents were relatively different, neverthe-
less, we were able to derive a general identification from the client, e. g., if it was a web browser,
mobile device, or a web crawler.

4.2.4 Experiment Evaluation

In this subsection, we discuss the experiment’s circumstances and results. First, we evaluate
the measurement phase and shares of protocol versions and cipher suite lists in the observed
network traffic. Second, the quality of dictionaries used for client identification is discussed.
Methods are proposed which can be used to increase the accuracy of the dictionary. Finally,
we evaluate the structure of the network traffic according to the estimated User-Agents and
compare our results to the related work to estimate the credibility of our results.

Measurement

The plain measurement results were similar to our expectations. We analyzed the shares of
SSL/TLS versions and cipher suite lists in the monitored connections. It is not surprising that
the majority of the HTTPS connections used the latest TLS 1.2 protocol. However, high share
of TLS 1.0 should not remain unnoticed. We further confirmed that the majority of SSL/TLS
connections was represented only by a small number of cipher suites and cipher suite lists.

The interesting discovered fact was the 1.6 % share of SSL 3.0 in the observed HTTPS connec-
tions. The SSL 3.0 protocol is no longer considered safe due to serious vulnerabilities discovered
in 2014, such as the POODLE attack [178]. We naturally wondered if the discovery of serious
vulnerability in a protocol leads to a decrease in its usage. In comparison to earlier results, the
share of connections initiated over SSL is decreasing. For example, Levillain et al. [190] reported
5 % share of SSL 3.0 in 2011.
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Pairing Cipher Suite Lists and User-Agents

The host-based and IP flow-based method of pairing cipher suite lists and User-Agents pro-
vided diverse, but complementary, results. The host-based method was more precise and feasi-
ble in a controlled environment. However, the quantity of data depends on the popularity of the
server where the monitoring is deployed. It could be interesting to perform host-based monitor-
ing on a popular web server with a variety of clients. However, even the high attractiveness of
a server does not guarantee capturing traffic from all the common clients in the network. Client
applications like Spotify and Instagram, which communicate only to specific servers, are typical
examples.

The IP flow-based method, focusing directly on clients, provided more pairs than the host-
based method but at the cost of uncertainty. However, clients like web crawlers, uncommon
clients, and even suspicious ones are hard to capture without access to a live network. The 1-
hour sample of network traffic was sufficient to capture connections from almost all the different
clients observed over a longer period of time.

The combination of both methods provided a usable dictionary which was sufficient for the
needs of our experiment. The pairs obtained via the host-based method were also obtained via
the IP flow-based method, which suggests that the IP flow-based method can provide acceptable
results.

Assigning User-Agents to the Measurement Results

The assignment of User-Agents to the observed HTTPS connections was successful. The size
of the dictionary was sufficient to describe almost every cipher suite list observed during the
measurement. The number of connections with an unknown cipher suite list was negligible.
The accuracy of the assignment can be disputed because more User-Agents corresponded to
a single cipher suite list. However, multiple User-Agents with the same cipher suite list were
typically similar. For example, similar User-Agents corresponding to a single cipher suite list
are presented in Table 4.

To improve the quality and accuracy of the assignment, we have to improve the dictionary.
We do not expect to gain more results from the host-based method without distributing the
measurement among more attractive HTTPS servers. However, we can improve the quality of
results in the IP flow-based method. We identified three approaches to enrich the dictionary and
give precision to the data. The options are selecting the most suitable pair to put in the dictionary
by manually inspecting the User-Agents or selecting statistically most significant values from
repeated measurements and correlation of results to data from other sources.

First, we can manually check the results to find the most suitable pairs to put in the dictionary.
This approach can significantly reduce the number of User-Agents assigned to a single cipher
suite list which differ only in software version or other detail. It can also improve the quality
of client type grouping. For example, User-Agents of mobile devices often include the type of
hardware. However, this is laborious and error-prone.

A more convenient way to improve the quality of the results is to repeat the experiment
to get statistically significant data. We assumed that the clients communicate on both HTTP
and HTTPS protocols in near time. However, the two connections from the same client may be
initiated by a different software client. Repeating the experiment in different time windows or
even different network settings would provide slightly different results due to random errors
and inconsistencies. The resulting dictionary would not be based on a single measurement nor
union of all of them. Instead, only the pairs which appear in the results of multiple experiments
would be added to the resulting dictionary.

Another approach to improving the results is a correlation to additional data. Considering
only the network-based method, we can extend the fingerprinting to TCP/IP. The operating sys-
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Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/36.0.1985.125 Safari/537.36
Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/34.0.1847.132 Safari/537.36 OPR/21.0.1432.67
Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/35.0.1916.153 Safari/537.36 OPR/22.0.1471.70
Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/36.0.1985.125 Safari/537.36
Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/36.0.1985.143 Safari/537.36 OPR/23.0.1522.77
Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/37.0.2062.94 Safari/537.36 OPR/24.0.1558.53
Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/38.0.2050.0 Iron/38.0.2150.0 Safari/537.36
Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/38.0.2125.111 Safari/537.36 Sleipnir/6.1.2
Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/38.0.2125.111 Safari/537.36
Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/39.0.2171.65 Safari/537.36

Table 4: User-Agents corresponding to a single cipher suite list.

tem of a client can be estimated by TTL value, TCP SYN packet size, and TCP Window Size [A7].
The User-Agent strings often include identifiers of operating systems, which may be correlated
to the operating systems estimated by the TCP/IP fingerprinting. In addition, web crawlers can
be identified by their hostname or WHOIS record. For example, reverse DNS query may validate
User-Agent of clients such as Googlebot.

4.2.5 Summary

In this section, we have shown that it is possible to estimate the User-Agent of a client in HTTPS
communication. This was done for further identifying the client using network monitoring and
fingerprinting the SSL/TLS handshake. We designed an experiment in which we measured
HTTPS traffic in a campus network. We processed only the initial SSL/TLS handshake in which
the client and server negotiate the parameters of the encryption. Therefore, our approach was
lightweight and avoided decrypting traffic. The created dictionary allows for the enhanced per-
ception of encrypted network traffic for cyber situation awareness.

First, we investigated the parameters of the SSL/TLS handshake, which could be used to
identify the client. The client identifies itself in a ClientHello message during the handshake.
The most various part of the ClientHello was the list of cipher suites supported by the client.
The cipher suite list differed among various client applications and their versions, which made
it suitable for further identification. In total, we observed 305 unique cipher suite lists during
our measurement. The other parts of the ClientHello message, such as the SSL/TLS version,
compression, and supported extensions, were interesting for analysis but unusable for client
identification due to the limited number of distinct values.

Second, we studied the relationship between cipher suite lists and HTTP User-Agents. The
User-Agent is a common client identifier in HTTP. However, in HTTPS, it is not directly acces-
sible without decrypting the transferred data. We deployed two methods for monitoring SS-
L/TLS handshakes and HTTP headers simultaneously in order to pair cipher suite lists and
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User-Agents. The host-based method, i. e., measurement on the server side, provided accurate
results. However, this method was limited by the set of clients accessing the monitoring server,
and we obtained a smaller number of pairs. The flow-based method used network monitoring
and was not limited to a single server. We were looking for clients communicating on HTTP
and HTTPS protocols over a short period of time and paired the observed cipher suite lists and
User-Agents from both connections. We gained a large dictionary of more than 12,000 pairs.
However, this method was less accurate compared to the host-based method.

Third, we assigned the corresponding User-Agents from the dictionary to the results from
monitoring the SSL/TLS connections and discussed the required size and accuracy of the dic-
tionary. We found that we need a dictionary of about 300 cipher suite lists with assigned User-
Agents. Therefore, the dictionary which was created using the host-based method was not suf-
ficient to cover all the distinct cipher suite lists which appeared in network traffic. On the other
hand, only a 1-hour sample of the HTTPS traffic contained almost all the cipher suite lists which
were observed over the week-long measurement. Therefore, we used the dictionary obtained us-
ing the flow-based method. However, many cipher suite lists were paired with more than one
User-Agent. We were able to assign a User-Agent to almost every observed cipher suite list with
a certain level of probability. Fortunately, a lot of User-Agents which corresponded to a single
cipher suite list shared the same client identifier and differed only in their version or a similarly
attainable value.

In summary, our work enhanced the capabilities of network forensics by introducing the
network-based identification of HTTPS clients. Our IP flow-based approach is lightweight, not
limited to a single server, and does not approach the encrypted data. Therefore, we can identify
clients while preserving the communication’s privacy. Our results are applicable for identifying
clients in the network and serve for enhancing methods of network perception.

4.3 Summary

This chapter presents our research efforts in the area of CSA perception. Namely, we investi-
gated the performance of IP flow monitoring probes with respect to the volume of collected
information and possibilities of retrieving information from encrypted network traffic.

First, we demonstrated how the collection of additional information from HTTP protocol
decreases the performance of IP flow monitoring probes. The throughput of the IP flow moni-
toring probes decreases by 80 % , when HTTP information is retrieved using the available HTTP
protocol parsers. We introduced optimized versions of HTTP protocol parsers that show only
50 % performance decrease compared probes that parse no application information. The sec-
ond major finding was that the throughput of a probe does not decrease with additional HTTP
information parsed once some HTTP information is already parsed. This research extends our
knowledge of the impact of the volume of information collected on the performance of the IP
flow monitoring workflow.

Second, we investigated the possibilities of identification of a client in encrypted network
traffic. We focused on HTTPS traffic and identified a data collection approach that enables to
identify a client in HTTPS network traffic to some extent. We propose to create a dictionary that
links Cipher Suites obtained from HTTPS network traffic with User-Agent obtained from unen-
crypted HTTP traffic. Both information can be collected using IP flow monitoring. We evaluate
the dictionary and present its coverage of the traffic and the uniqueness of the client identifica-
tion. The dictionary enables to identify a client unambiguously in 6.3 % of encrypted network
traffic. The general client identification, i.e., type of device - browser, mobile device, web crawler,
is available for all encrypted HTTPS traffic.
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The main contribution of this chapter is the joint contribution of the author’s peer-reviewed
publications [A4–A6], among others

• creation of optimized HTTP parser,

• evaluation of the performance of IP flow probes capable of exporting information from
HTTP protocol,

• identification of SSL/TLS protocol headers suitable for client identification,

• proposal of methodology for client identification in encrypted traffic using a dictionary,

• creation and evaluation of the dictionary for client identification.
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5
Data Comprehension

Data comprehension enables us to interpret information contained in the monitored data correctly.
The data comprehension in the context of Ensley’s CSA model is represented by IP flow record
collection and analysis. In this section, we present our research contributions to IP flow record
analysis that advance the understanding of the nature of network traffic and consequently improve
an operator’s CSA. We present results from several experiments that investigate the nature and
complexion of different subsets of network traffic. We believe that our measurements and their
evaluation bring light into previously not easily visible and comprehensible behavior of network
traffic.
We choose to focus our research efforts on the following three areas: evaluation of properties of Top
N statistics, analysis of tunneled network traffic, and retrieval of host-related information. The
Top N statistics is frequently used in IP flow record analysis. We investigate the nature of this
statistics and discuss its properties. Further, we research the statistics information value for host
identification in network traffic. The statistics is evaluated concerning its availability, uniqueness
and time stability. Our work on the analysis of tunneled traffic aims attention at the transition
mechanisms used for tunneling IPv6 network traffic over IPv4 networks. The analysis reacts to the
increasing adoption of IPv6. Nevertheless, the majority of networks is still IPv4-based. Therefore,
the portion of tunneled IPv6 traffic increases as well. Our monitoring experiment investigates
the nature of the tunneled and tunneling network traffic, namely the distribution of TTL and
HOP values, country distribution, packet size distribution, IP flow duration distribution, and
location of servers performing the transition. Our research on host-related information focuses on
the development of approaches to host identification both in a static and dynamic network. We
also extend the results of our previously described research on client identification in encrypted
network traffic. We conduct several experiments to demonstrate, which information is possible to
mine from encrypted network traffic.
The research areas mentioned above were chosen based on the challenges of CSA and IP flow
monitoring presented in previous sections. We respond to cyber-related complexity (see pp. 24)
and data-related value challenges (see pp. 26) by addressing the problem of host identification in
network traffic. The IP flow open issues that we address in this chapter include, but are not limited
to, analysis of encrypted network traffic (see pp. 37), changing paradigm (see pp. 48), and host-
based view (see pp. 54). The changing paradigm open issue is addressed by research on network
tunneling and IPv6, the lack of host-based view open issue is tackled by providing a possibility
to identify a host in network traffic and inspecting a statistics commonly used for host behavior
description.

This chapter is based on a collection of results published in following author’s peer-reviewed pub-
lications: [A5–A10].

89



5. Data Comprehension

This chapter is structured as follows:

• Section 5.1 presents our research on Top N statistics. The properties of the statistics are
evaluated and the suitability for host identification is assessed.

• Section 5.2 investigates the IPv6 transition mechanisms. We perform several experi-
ments to describe properties of tunneled and tunneling network traffic.

• Section 5.3 examines the capabilities of IP flow analysis to derive a host-related informa-
tion. We focus on operating system detection and extend research on host identification
in encrypted network traffic presented in the previous chapter.
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5.1 Top N Statistics

In this section, we research comprehension of information about individual hosts in a network.
The information of a host in the network is widely used in many areas related to cyber situation
awareness, such as network security, network accounting, and so forth. There exists a variety
of both raw and derived statistics that can be gathered about individual hosts. However, the
research lacks focus on the characteristics of the information provided by statistics and their
properties. Therefore, we focus on the Top N statistics and try to describe the properties of infor-
mation that can be obtained by Top N statistics.

Our research can be summarized into the following areas; (i) research of the characteristic of
information provided by Top N statistics, and (ii) suitability of Top N statistics for identification
of a host in network traffic. We provide a deep insight into the Top N statistics and present the
available information that can be retrieved using this statistics on the real-world example. As a
result, the information in this section should ease the decision whether Top N statistics is suitable
for a proposed task which enables an operator to choose and focus on relevant data.

We describe in detail the Top N statistics itself and identify statistic’s parameters and their
influence on the statistics’ outcome. We choose to evaluate the Top N statistics with regard to
following perspectives: availability, uniqueness of the information, and time stability. These perspec-
tives provide an insight into the characteristics of information provided by Top N characteristics.
The availability is necessary to be able to obtain the results. The time stability represents the vari-
ability of provided information in time. The uniqueness represents the similarity between the
Top N statistics of different hosts. After the detailed analysis of the statistics, Top N ’s suitability
for host identification is scrutinized. We discuss Top N each property and describe the impli-
cations of the host identification. The theoretical discussion is then validated on experiments
based on the real world data from university campus network.

5.1.1 Statistics Description

"Find 3 IP addresses that transferred the most bytes during last 5 minutes" is a typical query for
Top N statistics. The statistics is an internal part of tools for analyzing network data, such as
already mentioned nfdump, fbitdump or ntop. Therefore, it is widely used for various applica-
tions in network traffic monitoring, such as identifying top talkers, providing an overview of
the most important events in network traffic, port utilization statistics, or discovering popular
network applications. Its results are used for optimizing network performance, identifying ab-
normal events [211], security monitoring, or for management reports [212]. In the following
paragraphs, we will specify Top N statistics, scrutinize its parameters, and examine its compu-
tational requirements.

A full specification of a Top N query is the following:

Top N of X sorted by Y, over period of time P, (5.1)

where N is the number of output records of return characteristic X. The records of X are
sorted descending by the variable Y and counted over a time period P. From the sorted list,
the first N records are returned. A Top N query processing consists of four basic operations.
First, data from a defined period P is selected. Second, the selected data is aggregated by the
characteristic X, and aggregated values of characteristic Y are computed. Third, the aggregated
records are sorted descending by variable Y. Lastly, the first N records from the sorted list are
returned. All parameters have a significant effect on the results of the Top N statistic. We discuss
each of them further in the paper.

The first parameters to determine are the return characteristic X, and sorting variable Y. The
choice of both X and Y depends on the purpose for which the Top N statistic is used. The char-
acteristic X defines the return of the statistics (e.g., an IP address is used as X for top talkers
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identification). Sorting of variable Y needs to be defined on a totally ordered set. A totally or-
dered set ensures that records of X can be sorted by Y. For example, the sorting variable Y can
represent the number of transferred bytes, packets or flows, duration, and the number of oc-
currences. Derived characteristics can also be used, such as the average number of connections,
maximum packet size or the number of distinct web pages visited.

The next parameter to set is the period P for Top N statistic computation. The period influ-
ences the amount of information which is processed and consequently determines the aggrega-
tion level of the Top N statistic. Short periods are chosen when detailed data is needed, whereas
long periods are used for getting an overview. Since the period affects the amount of informa-
tion processed and aggregated, it also affects the computational resources needed to compute
the statistic. The longer the period is, the more information is processed, and the more compu-
tational resources are needed.

The last parameter to set is the number of returned records, N. This parameter plays the
role of a cut-off. Only information which passes the cut-off, is presented. Therefore, the proper
setting of this parameter is crucial. N depends on purpose Top N statistics are used for. When
we want to identify the most active host in a network, N equal to one is sufficient. This is not
the case when we want to create a report on port usage in a network. When N is set to low, only
limited information is returned.

Let’s consider the computational requirements of the Top N statistic. The statistic computa-
tion includes aggregation and sorting operations, which are computationally demanding. The
aggregation process aggregates variable Y by return characteristic X. The aggregation process
that covers a longer period or large scale network may result in the need to keep billions of
records in memory. There are approaches to decrease the amount of memory needed. One
approach leverages map and reduce technique [213], where partial Top N are computed in the
map phase, and only results which pass a predefined threshold are passed to the reduce phase.
Another approach leveraging the statistical properties of network traffic is presented in [211].
The aggregation process is succeeded by a sorting operation. The sorting operation adds signifi-
cantly to the time complexity of Top N statistic computation. Depending on the choice of sorting
algorithm, the comparison-based sorting algorithms cannot perform better than O(n log n).

5.1.2 Host Identification using Top N Statistics

A host can be identified in the network via its MAC/IP address. This identifiers are not how-
ever always available (MAC address) or reliable (IP addresses in dynamic addressed networks,
NATs). Therefore, other approaches to host identification are developed. In general, these ap-
proaches are looking for a unique key, based on which a host could be identified. A key could
be imprints of a host in observed data or can leverage a host’s characteristics, e.g., ciphersuites,
as shown in our work before [A6]. We will discuss the suitability of Top N statistics to generate
such an identification key.

The parameters of Top N statistic are affected by the available data, which we use to compute
the statistics. Given our data source, network traffic, we can use any information included in IP
flow records. An overview of basic information that can be retrieved from network flows is
provided in [214]. Next, we need to identify the return characteristic X and the sorting variable
Y such that the computed Top N statistic can identify a host. We believe that a trace, that a host
leaves in network traffic identifies the host in a network. Top N statistics based on X and Y need to
be chosen such that it transforms the trace into as much of a unique statistics results as possible.
Information from the link layer (L2) can be used only for LAN monitoring. Hence, we focused
on L3 - L7 layer information. L3/4 layers of the OSI/ISO model provide information about
communication partners, ports, and the protocol used. Since the number of distinct protocols
that can be observed in network traffic is low compared to the number of entities, it is impossible
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to create enough variations of Top N statistic achieve uniqueness. This leaves us with information
about communication partners and ports used. There are 65536 distinct ports in total, which
allow us to create 65536!

(65536−N)! different variations of the Top N statistic. Assuming N = 10, this
results in 1.46× 1048 unique variations. However, the distribution of port utilization in a network
is not uniform. A group of ports exists which are used more often than others (e.g., ports up to
1000). The amount of unique variations of actually used ports is then much lower. Nevertheless,
a port seems to be a suitable return characteristic.

The destination IP address represents the communication partner. The number of distinct
IP addresses is 232 for IPv4 and 2128 for the IPv6 protocol, which ensures a high number of dif-
ferent Top N statistics. The set of a host’s communication partners to identify is, however, much
smaller than the theoretical maximum, therefore less distinct statistics exist. Still, the number of
communication partners is much higher than the number of entities. Hence, we consider com-
munication partner as a suitable return variable. The L7 layer is much more information-rich
than the previously discussed layers. We can retrieve information from HTTP, DNS, SMTP, FTP
protocols and many others. The information from the layers usually provides enough variabil-
ity and a deep insight into the host’s behavior. Therefore, the results of Top N are likely to be
unique. Considering L7 layer as an information source is, however, limited by the increasing
portion of encrypted network traffic. When network traffic is encrypted, only information from
L3 and L4 can be used. Lastly, we need to investigate Top N’s period P. The period affects the
computational complexity of Top N statistic, and therefore also affect suitability for host identi-
fication. To be able to use the key for identification, the period needs to be reasonably short to
be able to compute the Top N statistic. However, a short period P results in greater variability in
Top N results, as the aggregation level of the statistic is fairly low.

5.1.3 Experimental Evaluation of Top N Statistics

In this section, we provide an experimental evaluation of Top N information value. We describe
the dataset used for evaluation, evaluate the statistics with respect to availability, uniqueness and
time stability and provide results of a host identification suitability experiment.

Dataset

The dataset contains network traffic captured from a university campus network. The dataset is
divided into two subsets: training and testing. The training dataset is used for Top N character-
istics evaluation and creating host’s signatures. The signatures sets are then used on data from
the testing dataset to assess the suitability for host identification. Table 5 provides a general
description of the datasets. We choose to capture information about communication partners
(destination IP), destination ports and the HTTP host information field. A host to detect is repre-
sented by the source IP address. To overcome the problems of IP address assignment, we chose
only such networks where only static addressing is permitted and no proxies or NAT devices
are present. The granularity of captured information is 5 minutes. Every 5 minutes, for each
source IP address, we retrieve a set of communication partners with a given IP address (DstIP),
a set of destination ports (DstPort) the address communicated to, and a set of web pages the
address visited in the interval (HTTP_host).

Top N Properties Evaluation

We evaluate the Top N statistics properties using the following methodology. Firstly, we research
a variability in data. Secondly, we inspect a choice of data used for computing the statistic and
examine the information availability in the data. Thirdly, we compute Top N statistics and ob-
serve their behavior during the time to check the time stability requirement. Next, we compare
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the Top N statistic of each distinct IP addresses with each other to assess the uniqueness require-
ment. Lastly, we compute Top N statistics and evaluate their characteristics on the real-world
dataset.

The variability of the information can be measured by the number of distinct values for each
observed variable. There are 126 596 distinct communication partners, 47 516 distinct destina-
tion ports and 36 865 distinct HTTP_hosts visited in our training data sample. In the worst case
scenario, we can still compute 39865!

(39865−10)! = 1.01× 1046 different keys (given N = 10). We counted
the number of distinct values for each variable for every IP address to inspect the variability per
IP address. The results are shown in Figure 30. The variability for a DstIP and HTTP_host is
sufficient as more than 500 distinct values were observed at the majority of IP addresses. In the
case of the DstPort variable, the majority of IP addresses are represented by less than 100 dis-
tinct ports. After further analysis, we discovered that 28.34 % of IP addresses used only 10 or
less distinct destination ports. In conclusion, the variables DstIP and HTTP_host vary enough to
provide sufficient information for generating a key. The variable DstPort provides only limited
variability in the data. Therefore the generated key does not need to be unique.
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Figure 30: Distribution of variability per IP address.

Next, we investigated the availability of the statistics in time. For each source IP address, we
computed Top N statistics with a different setting of period P and counted the non-empty results.
Values of P were set to 5 minutes (the minimum value), one hour and one day. The results of
the analysis are presented in Table 6. The table shows that a 5 minute period is not suitable for
retrieving host information as there are only a few observations at the majority of IP addresses
(25% of addresses are present in less than 288 observations from 2016 in total). The longer a

Training DS Testing DS
Observation Period 05 - 11/10/2015 19 - 25/10/2015
Unique IP Address 497 507
Total Flows 3 711 378 3 357 389
Total Bytes 36.6 GB 29.4 GB
Total Packets 236.4 M 228.6 M

Table 5: Datasets description.
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period P for Top N computation is, the more IP addresses are observed in a higher portion of
observations.

P = 5 minutes P = 1 hour P = 1 day
# of

observations
% of IP

addresses
# of

observations
% of IP

addresses
# of

observations
% of IP

addresses
0-288 25.506 0-24 14.575 1 1.417

288-576 36.235 24-48 34.413 2 1.417
576-864 21.053 48-72 19.838 3 7.085
864-1152 11.741 72-96 20.648 4 15.992
1152-1440 2.429 96-120 6.478 5 19.231
1440-1728 1.417 120-144 1.417 6 15.789
1728-2016 1.417 144-168 2.632 7 36.032

Table 6: Statistics availability in time.

Thirdly, we investigated the stability of information provided by Top N statistic over time. For
P equals one hour and one day, we computed a relevant number of Top 10 statistics on the whole
dataset (e.g., for P = 1 hour we computed 7 ∗ 24 Top N statistics). Next, we counted a number
of Top N statistics per IP address, in which the ten most frequent results of the Top N statistic
were presented. Regarding the hour period, all of the ten most frequent results were observed
in less than 42% of observations in 69% of IP addresses, which covers less than 15% of total
observations. This indicates a higher variability in the data. The day period setting provides
better results as the ten most frequent results of Top N statistics are observed more than in 57%
of observations in 57.8% of IP addresses.

P = 1 hour P = 1 day
% of IP addresses

Equal
records DstIP DstPort

HTTP
_host

DstIP DstPort
HTTP
_host

0 - 2 11.0 11.7 4.6 7.1 13.1 2.3
3 - 4 66.1 51.7 62.4 38.5 30.2 18.6
5 - 6 21.3 31.9 31.3 44.8 38.5 56.8
7 - 8 1.6 4.3 1.5 9.4 15.8 21.8
9 - 10 0.0 0.4 0.2 0.2 2.3 0.4

Jaccard % of IP addresses
0 - 0.2 45.2 2.0 28.4 22.3 4.0 6.6

0.2 - 0.4 51.3 5.5 66.4 61.3 25.8 56.8
0.4 - 0.6 3.3 27.0 5.0 15.6 36.7 33.9
0.6 - 0.8 0.2 33.7 0.2 0.8 23.5 2.8
0.8 - 1 0.0 31.7 0.0 0.0 10.0 0.0

Table 7: Top N time stability.

To capture the variability of Top N statistics for a particular host over time, we compared
consecutive Top N statistics for each source IP address and counted the similarity of these Top N
statistics. The higher the similarity is, the more stable the statistics are over time. We chose
N = 10 for the comparison. We measured the similarity of Top 10 statistics by the number of
identical records and by their Jaccard index [215]. To provide an overview of the whole dataset,
we computed the average values for each similarity measure per IP and showed a frequency
histogram of the averages. The results are shown in Table 7.
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P = 1 hour P = 1 day
% of statistics

U(s) DstIP DstPort
HTTP
_host

DstIP DstPort
HTTP
_host

0 34.5 2.6 16.3 51.9 0.6 28.9
1 - 9 31.3 3.4 25.3 33.9 2.8 44.2

10 - 99 34.0 21.4 51.0 14.2 15.0 26.4
>= 100 0.2 72.6 5.4 0.0 81.7 0.0

Table 8: Top N uniqueness.

We observed that the majority of IP addresses had 3-6 identical records in two consecutive
Top N statistics. Regarding Jaccard similarity measure, DstPort characteristics showed more sim-
ilarity than other characteristics for the one-hour interval. However, the similarity of the DstPort
was low when an equal record count similarity was used. The divergence in the similarity mea-
sures is explained by the high number of IP addresses which use less than ten ports to com-
municate. The low number of ports decreases the similarity when using count of equal record
similarity measure. However, the Jaccard similarity can handle this situation and provides un-
biased results. HTTP_host performed well in both measures which prove the stability in users
behavior. Generally, the similarity is higher in one day period than in one hour period.

The test for uniqueness requirement was also based on similarity. We used Top 10 statistics
to generate statistics for all IP addresses. The statistics results were then compared with each
other. For comparison, we used the Jaccard similarity measure. We set a threshold to 0.25 and
mark two results similar when the Jaccard was greater than or equal 0.25 (i.e., approx. 4 iden-
tical records in two Top 10 statistics). The results of the experiment are presented in Table 8.
DstPort characteristic did not meet uniqueness requirement as Top N statistics of the majority of
the statistics were similar to more than 100 other ones for both periods. In general, period P =
1 day performed better as there were more unique statistics. The greater aggregation implies
that more information is captured in the statistics than in the case the aggregation is low. There-
fore the more aggregated the statistics is, the more likely it is unique. The DstIP provided most
unique Top N statistics (51.9 % of statistics are unique). Hence, it should be the most suitable for
host identification.

Top N Suitability for Host Identification

We computed Top N statistics for each host in the training dataset. The statistics were then
applied to the testing dataset. The testing dataset consists of the same entities as the train-
ing dataset, which enables us to evaluate the results of the host identification process. Since
a statistics consists of a number of records, a host was identified by a given statistics based
on Jaccard similarity of Top N statistics. We set N = 30, period T = 7 days and period P ∈
{one hour, one day} and Jaccard to 0.2 (approx. 10 equal records out of 30). The results are shown
in Table 9.

True positive rate (TP) shows, how many of the hosts are correctly identified, i.e., the searched
host is within the set of hosts identified by the statistics. False positive rate (FP) says how many
hosts have been misclassified, i.e., the searched host is not within the set of identified hosts. We
observed that the day period had a higher TP rate than the hour period. The highest TP rate was
achieved by HTTP_host characteristic. In total, 59.5 % of the hosts from the testing dataset were
successfully identified by the statistics based on this variable. The DstIP characteristic should
be used when we prefer the precision of identification to identification rate as it had the low-
est FP rate for both P. We also inspected different values for Jaccard for statistics’ match. We
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P Variable TP (%) FP (%) Not Found (%)

one hour

DstIP 3.04 0.61 96.36

DstPort 34.01 21.86 44.13

HTTP_host 8.35 2.09 89.56

one day

DstIP 20.45 7.89 71.66

DstPort 44.13 25.91 29.96

HTTP_host 59.50 15.66 24.84

Table 9: Experimental evaluation of Top N statistics. (N = 30, Jaccard = 0.2).

observed that with decreasing Jaccard, the TP rate increased and more hosts were identified as
the similarity needed for the match was lower and more hosts were matched. The decrease of
Jaccard also leads to higher FP rate as more hosts were mismatched due to the decreased level
similarity of statistics.

We further evaluated cardinality of a set of identified hosts to determine the uniqueness of a
statistics U(s). For each key that correctly identified a host, we measured cardinality of the set of
identified hosts. Table 10 shows the distribution of statistics with regard to statistics’ uniqueness
U(s)1.

% of hosts

P Variable U(s) = 1 U(s) ≤ 5 U(s) ≤ 10 U(s) ≤ 50

one hour

DstIP 86.67 100.00 - -

DstPort 1.19 9.52 13.69 24.40

HTTP_host 85.00 100.00 - -

one day

DstIP 77.23 93.07 96.04 100.00

DstPort 4.59 10.55 18.35 39.91

HTTP_host 36.49 72.98 85.61 100.00

Table 10: Experimetal Evaluation of Top N statistics uniqueness.

We observed, that in the one hour period, the uniqueness of the statistics was more signifi-
cant, as the majority of the statistics was unique (U(s) = 1). The maximum cardinality of the set
of identified hosts based on the DstIP and HTTP_host characteristics was 5. The statistics based
on DstPort characteristic did not prove to be unique as the majority of the statistics identified
more than 50 of hosts.

5.1.4 Summary

This section describes the information value of Top N statistics. We investigated the availability
and time stability of the statistics, and evaluated uniqueness of its outcomes. The Top N statistics
was then applied to the testing data, and the suitability for host identification was evaluated.
We identified parameters of the Top N statistics and described their impact statistics outcome.

1. U(s) = 1 reads as statistics is similar to only one other statistics.
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The experimental evaluation on real-world data showed that a period P correlates with avail-
ability and time stability of the statistics. The longer the period is, the more available and stable
the statistics. The uniqueness has been highest for Top N of DstIP statistics and increased in longer
periods. Moreover, we discovered that a single Top N statistic has a limited application on host
identification problem. We were able to identify at maximum 60 % of hosts in the network traffic.
However, the setting of Jaccard index threshold, which determined the equality of the statistics,
was rather strict (two keys belonged to the same host when at least ten records out of 30 were
equal). If we relaxed the setting, we would identify a higher portion of hosts (but it would also
increase the FP rate). Nevertheless, once we were able to identify a host, the host was identified
with high precision when we used the DstIP or HTTP_host characteristics (77.23% and 36.49%
of the hosts were identified unambiguously).

The statistics identification capabilities could be enhanced by combining more types of Top N
statistics. The host could be represented by both DstIP and HTTP_host statistics. This would in-
crease the uniqueness of the compound statistics while preserving the time stability of the statis-
tics. Moreover, we could use information from other L7 protocols for statistics (e.g., DNS proto-
col). Both improvements are left for future work. The host identification based on Top N statistic
can be used for identifying a set of hosts which are similar to the searched host. Such identifi-
cation can be used for law enforcement to identify a set of suspects for further investigation or
in network security monitoring for identification of IoT devices in a network that need detailed
surveillance.

5.2 Network Traffic Tunneling

Network traffic tunneling is a mean how to send a private communication over a public network
using a tunneling protocol. The network traffic tunneling is used, for example, for connecting
virtual networks in public clouds (Virtual Extensible Local Area Networks (VXLAN)), for se-
cured remote access to a private network (OpenVPN), for creation of virtual point-to-point links
(Generic Routing Encapsulation (GRE)) or for transferring the IPv6 network traffic over IPv4 net-
work. We investigate the latter use-case in this section.

The understanding of the content of encapsulated network traffic enables better comprehen-
sion of the processes in a network, especially in complex cloud environments where encapsu-
lation is widely used. This research reduces the complexity of the network (we provide insight
into the encapsulated layer) and so responds to the complexity cyber-related challenge in CSA
(see pp. 24). The analysis process also enables to cope IP flow monitoring issues related to the
emerging trend of cloud services (see pps. 37, 48).

Despite IPv6 being the standard for several years, its adoption is still in process [216]. There
are several ways of getting IPv6 connectivity, the dual-stack being the preferred one. Most IPv6
studies deal with native IPv6. However, there are other globally used options known as transi-
tion mechanisms. They can provide IPv6 connectivity on networks without native IPv6 connec-
tivity enabled or without an IPv6 ready infrastructure.

The transition mechanisms tunnel IPv6 traffic through an IPv4 network. Despite being sup-
ported by major operating systems, there is a lack of studies investigating the characteristics of
the tunneled IPv6 traffic. In this context, we investigate border traffic of the Czech national re-
search and education network operator (CESNET) and attempt to reveal characteristics of IPv6
transition mechanisms, in terms of their usage, popularity, and impact on native IPv4 and IPv6.
Apart from the challenges of CSA and IP flow monitoring, our research is mainly motivated by
an exhaustion of the IPv4 address space and exerting pressure on network operators and con-
tent providers to deploy IPv6. The transition mechanisms are used to facilitate the IPv6 adop-
tion. Unfortunately, they introduce extra elements in the network which add to the complexity
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and decrease performance and security. As a result, many existing methods for measuring and
monitoring large-scale networks become ineffective.

The contribution of this section is threefold: (i) we provide an enhanced version of our
flow-based IPv6 measurement system prototype, which enables IPv6 visibility in large-scale
networks, (ii) we analyze and show IPv6 transition mechanisms traffic characteristics including
a tunneled one and (iii) we show how the traffic of IPv6 transition mechanisms has evolved since
2010.

5.2.1 State-of-the-art

The most widely used and discussed tunneling transition mechanisms are Teredo and 6to4.
Although several studies are focusing on performance evaluation of transition mechanisms,
the characteristics of the traffic generated by the tunneling transition mechanisms are not well
known.

A study by Aazam et al. [217] provides performance evaluation and comparison of Teredo
and Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) mechanisms with a focus on
specific parameters like throughput, the end to end delay, round trip time and jitter. A study by
Zander et al. [218] compares Teredo tunneling capability and performance with native IPv6 and
6to4 using measurements related to web services. Teredo increases the time needed to fetch web
objects compared to IPv4 or native IPv6. The conclusion is that Teredo seems to be limited by a
lack of Teredo infrastructure forcing encapsulated packets to travel long distances. Moreover, the
throughput is partially limited by the performance of Teredo relay servers. A study by Bahaman
et al. [219] discusses the performance of 6to4 with focus on communication over TCP. It states
that the TCP transmission ability is reduced by the use of 6to4. However, it is still suitable for
the early stages of the transition period.

Other related papers discuss the impact of transition tunnels on network security. Krishnan
et al. [220] present security concerns with recommendations on how to minimize security ex-
posure due to tunnels. It is pointed out that tunnels can have a negative impact on deep packet
inspection and that transition mechanisms such as Teredo allow inbound access from the public
Internet to a device through an opening created in a network address translation (NAT) device.
This increased exposure can be used by attackers to attack a device hidden behind a NAT de-
vice effectively. A generally proposed security practice is to avoid the usage of tunnels at all and
deploy other transition schemes like dual-stack.

Finally, Sarrar et al. [221] provide a brief insight into tunneled traffic in a study of the world
IPv6 day impact on IPv6 traffic. The authors monitored Teredo and 6to4 transition mechanisms.
The Teredo was discovered to carry mainly control traffic. The study also showed that IPv6 frag-
ments were responsible for a significant portion of 6to4 traffic. The authors suspect that these
fragments were caused by broken software which most likely forgot to take the IPv6 header size
into account.

Investigated IPv6 Transition Mechanisms

The IPv6 traffic is usually divided between native traffic and tunneled traffic. The tunneled traf-
fic is considered the one encapsulated using other protocols, e.g., UDP or IP protocol 41. This
division is not necessarily accurate since the traffic that seems to be native IPv6 can, in fact, origi-
nate from a client using some transition mechanism like Teredo or 6to4. To clarify this point, we
will differentiate between native IPv6 traffic, encapsulated tunnel traffic (IPv4 traffic containing
IPv6 payload) and decapsulated tunnel traffic. The word tunnel might be omitted for the sake
of brevity.

Teredo and 6to4 are the two most frequently used transition mechanisms in the CESNET
network. Mechanisms like ISATAP, Anything in Anything (AYIYA) and others based on IP pro-
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Figure 31: Teredo and 6to4 principles: ¬ Teredo start setup, ­ Teredo traffic transiting over IPv4
network, ® 6to4 traffic transiting over IPv4 network, ¯ communication between Teredo and 6to4
endpoint.

tocol 41 (6in4, 6over4) do not contribute to the tunneled traffic significantly and do not appear
in our analysis. Therefore, we will not describe them in detail. We did not analyze NAT64 and
DNS64 mechanisms since they should appear as native IPv6 traffic on the outside.

Teredo [222] is designed to provide IPv6 connectivity to an endpoint behind a NAT device.
It requires two network components for operation: relays and servers. Teredo servers are used
for initialization of Teredo (Figure 31, communication ¬), and after that for opening a port on
the user’s NAT device in case of a communication which is not initialized by the user. Relays
are used for routing and bridging the IPv4 and IPv6 networks. Each Teredo endpoint uses a
statically configured server and a relay, which can cause increased latency and low throughput
in case of a distant server or relay. Teredo uses UDP for packet encapsulation making the traffic
harder to identify.

6to4 [223] is only suitable for hosts with a public IPv4 address. It uses encapsulation in IP pro-
tocol 41 packets hence it is relatively easy to detect and monitor. The 6to4 relay servers are acting
as a bridge between the IPv4 and IPv6 networks. These relays use any-cast prefix 192.88.99.0/24,
therefore, the optimal (nearest) relay server should automatically be used for communication.

Figure 31 shows traffic between two endpoints (communication ¯), one of which uses Teredo
and the other one 6to4. The IPv6 traffic from Teredo client travels part of its path in Teredo tunnel
to be later decapsulated on the edge of IPv6 Internet and shortly after that to be encapsulated
again, this time by 6to4 to travel the rest of its path over the IPv4 Internet to the network of its
destination. Depending on where the observation point is located, the tunnel (either Teredo or
6to4) or native IPv6 traffic can be observed.

5.2.2 Methodology and Measurement Setup

To perform a thorough inspection of tunneled traffic, we need to decapsulate packet headers
of inner packets. We use the same IP flow-based framework as in [224] which we further modi-
fied [225] to extract more detailed information from tunneled data. The central part of the frame-
work is a plug-in which replaces input and processing parts of current flow generator INVEA
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FlowMon Exporter [176]. Every packet is being processed to extract basic flow statistics, and the
processing of inner headers continues to the point when previously extracted fields indicate the
absence of observed encapsulation types.

Teredo protocol is detected when IPv6 header is found encapsulated in UDP packet, AYIYA
is searched for in packets on TCP or UDP port 5072. Other protocols are recognized by IPv6
address format, which is protocol specific and the 6to4 protocol can be additionally identified
by usage of IPv4 anycast address belonging to 6to4 relay. If encapsulation is present, its type
and encapsulated IPv6 header fields are used to extend the set of extracted fields and to identify
individual IP flows taking place inside the tunnel.

Since we need to define new elements for IP flow records, Internet Protocol Flow Informa-
tion Export (IPFIX) protocol is used. It allows using Enterprise Elements which can extend IP flow
records with additional tunnel information. The framework can recognize and extract informa-
tion from Teredo, AYIYA and other protocols that are based on IP protocol 41 such as ISATAP,
6to4 and 6over4. We provide the source code of the measuring tool under BSD license at the
project web page [225].

Resulting IP flow records provide us with information about the encapsulated source and
destination addresses, ports and transport protocol, which is a common five-tuple used to dis-
tinguish individual flows. We respect this principle and thus have separated the flows encapsu-
lated in the same tunnel based on the value of these elements. Apart from these key elements
the framework gives information about Time to Live (TTL), encapsulated HOP limit, TCP flags and
ICMPv6 type and code, when present. Moreover, additional information about tunnel type is
provided, including Teredo header and trailer types when present. The framework also newly
supports geolocation using MaxMind [226] GeoIP database for both outer and encapsulated
addresses.

The data are collected from several observation points located at the borders of CESNET
network by passive probes; see Figure 32. All measured lines are at least 10 Gbit/s and together
transport about 80,000 flows/s during work hours, which results in total traffic of 15.4 Gbit/s.
We use IPFIXcol [227] framework to collect the extended IP flow records over TCP and to store
them. New elements can, therefore, be defined and used without any further difficulties or lim-
itations.

Prague

Brno

Ostrava

Telia

NIX (CZ)

SANET (SK)

(USA)
PIONIER (PL)

Figure 32: CESNET monitored links.

Flexible IPFIX collector is needed to handle the IP flow records containing information about
IPv6 tunnels. We use IPFIXcol [227] framework to receive and store the extended IP flow records
since new elements can be defined in configuration XML and used without any further difficul-
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ties. FastBit database was chosen as an IP flow record storage. The data from observation points
are sent to the collector over TCP protocol, to ensure that no IP flow records are lost during
transport.

The IPFIX data was collected over one week in January 2013 without the use of any sampling.
Table 11 shows the average amount of traffic for all observation points. The total amount of
stored data took approximately 2,485 GB of disk space. All statistics presented below are based
on flow count.

Observation Point Bits/s Packets/s Flows/s
Telia 1.65 G 274.9 k 22.1 k
NIX 7.17 G 1072.4 k 26.7 k
PIONIER 0.51 G 75.6 k 2.8 k
SANET 1.87 G 242.3 k 5.3 k

Table 11: Observation points IPFIX statistics.

5.2.3 Characteristics of IPv4 Tunnel Traffic

In this section, we describe characteristics of IPv4 traffic containing IPv6 payload. The analysis
is based purely on information from IPv4 headers, and extended IP flow records are only used
to identify relevant flows accurately. Three characteristics that can give us insight into tunneled
traffic are addressed. Firstly, we describe the TTL values of the various traffic sets, and then we
look into a geolocation aspect. Lastly, the basic flow statistics are presented.

Frequency of TTL and HOP Values

We study the distribution of TTL values of the observed IP flows. It is known that some operating
systems use specific values, as shown in [228]. Microsoft Windows has the default TTL set to
128. The value of 64 is mostly used by Mac OS X and Linux devices, including devices running
Android. We expect that these operating systems form a majority and are therefore the most
significant. Figure 33 shows the most frequently used TTL values for IPv4 flows carrying an IPv6
payload. The TTL values are most frequent near the values set by OS vendors and the frequency
is decreasing rapidly in less than ten hops. Therefore, we assume that most of the packets reach
their destination in less than 32 hops. Thus we classify the flows according to their TTL numbers
into four significant groups. The Windows traffic seems to be the most frequent one taking
60.3 % of the total, while Linux machines are not present so often with only 23.8 %. Apart from
the Windows and Linux ranges, there are devices that set TTL to 255 and 32. Although the
255 are usually Cisco routers, in case of tunneled traffic we observed that the 6to4 traffic from
anycast addresses have TTL set to 255 as well. The portion of the 255 range is 3.8 % and most of
it originates from 6to4 relays. TTL numbers 24 and 26 are dominant in the group of values from
1 to 32, which makes 12.2 % of the total number of flows. We discovered that this is caused by
a 6to4 tunnel that passes two observation points. The tunnel is heavily used and causes a large
portion of tunneled traffic, which also affects other 6to4 measurements.

Overall, the TTL distribution of IPv4 traffic is different as shown in Figure 34. The Linux
portion of the traffic is higher, and the TTL values of 32 and 255 are not as significant. A more
detailed examination of the flow records shows that this is caused mainly by a high ratio of
HTTP traffic. Even though more clients are using Windows operating system, most of the web
servers are based on Linux, and therefore the responses have TTL less than 64. The DNS protocol
shows similar characteristics except that the DNS traffic that we observe at our metering points
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Figure 33: TTL value distribution of IPv4 traffic containing IPv6 payload.
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Figure 34: TTL value distribution of total observed IPv4 traffic.

is mostly generated by recursive domain name servers. Since the Linux DNS servers are the
most widely used, they significantly contribute to the traffic generated by Linux machines.

IPv6 uses HOP limit instead of TTL. Figure 35 shows HOP limit distribution of native and
decapsulated IPv6 traffic. Unlike IPv4, the HOP limit of 64 is the most frequent. We assume
that Linux based machines use default HOP limit 64 and Windows machines use default HOP
limit 128. This setting can be overridden by Stateless Address Autoconfiguration. Therefore,
clients in managed networks (e.g., universities) might have the HOP limit set to a different value,
regardless of their operating system. We verified this fact on several Linux- and Windows-based
machines. Due to the significant share of HTTP(S) in IPv6 traffic, a large portion of Windows
traffic is expected. Since the share of HOP limit 128 is negligible, we expect that common HOP
limit in observed IPv6 networks is set to 64.
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Figure 35: HOP value distribution of IPv6 traffic.
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Location of IPv4 and IPv6 Endpoints

The second characteristic that we evaluate is geolocation aspect of the IPv4 and IPv6 traffic. We fo-
cus on data from Telia link only, which connects the CESNET network to the United States. This
observation point highlights the differences in geolocation characteristics better. The statistics
are computed separately for the incoming and outgoing lines and are shown in Figure 36. The
IPv4 is more symmetric since the country statistics for both directions are similar. This behavior
is reasonable since most of the requests initiate a response and the routes are also symmetric.
The IPv6 have different properties. We discovered that the addresses that cannot be geolocated
are mostly link-local addresses (fe80::/10) or local-link multicast addresses (ff02::/16). Such ad-
dresses should not be routed at all, which indicates that there are routers with erroneous IPv6
configuration. This misconfiguration also causes the asymmetry of the traffic, as such requests
cannot be answered.
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Figure 36: Top 10 country distribution for native IPv4, IPv6 and decapsulated IPv6 addresses.

Duration and Size of Flows

The third group of characteristics is represented by flow duration, a number of packets per flow
and packet size (bytes per packet) statistics. For evaluation we employ empirical complementary
distribution function (CCDF). We use the following formula to compute CCDF values:

F̄(x) = P(X > x) = 1− 1
n

n

∑
i=1

1{xi ≤ x} (5.2)

where 1{xi ≤ x} is the indicator whether the event {xi ≤ x} has occurred or not. The
CCDF function describes how often the selected variable is above a particular level. From all
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Figure 37: CCDF functions.

traces we filtered out four subsets of traffic: TCP or UDP encapsulated traffic (TCP/UDP), all
encapsulated traffic (ALL), IPv6 native or decapsulated traffic (IPv6) and IPv4 traffic (IPv4). The
subsets were chosen to compare the tunneled traffic with other common traffic types. Further,
for each of the subsets and each of the characteristics, CCDF has been computed. Figures 37c,
37a, and 37b show the calculated CCDFs.

The majority of the IP flow duration of all subsets (Figure 37c) accounts for durations shorter
than 10 seconds. The IP flow durations longer than 10 seconds represent only 11 % or less. The
TCP/UDP contains much fewer short duration IP flows (TCP/UDP: 32.16 % ≤ 0.01 sec.; ALL:
54.66 %; IPv4: 59.84 %) which is explained by the absence of connection-maintaining IP flows
necessary for other subsets. We can observe slightly increased frequencies of the IP flow dura-
tion between 7 and 11 seconds especially at TCP/UDP and ALL subsets. Hence, the tunneled
traffic generally contains fewer short duration IP flows than IPv4 or IPv6 traffic.

The packets per flow distribution (Figure 37a) suggests that single packet IP flows form only
31.6 % in the case of TCP/UDP, 51.42 % in the case of ALL, 57.99 % and 55.82 % in other cases.
We expected tunneled traffic to behave similarly as IPv6 traffic. Nevertheless, we can observe a
vertical shift between ALL and IPv6 CCDF. This shift is caused by single packet IP flows, and it
is caused by DNS traffic to root DNS servers, which uses IPv6 protocol. The slope of CCDF for
TCP/UDP and ALL is higher than the slope for other subsets, which states higher frequencies
of specific packet counts. In conclusion, the distribution of the packet counts of the tunneled
traffic is slightly different from the distribution of the IPv4 and IPv6 traffic.

The last characteristic described by CCDF is packet size (Figure 37b). In the case of encapsu-
lated traffic, we consider the outer packet size including the encapsulation header. The earlier
study of the packet size distribution mentions a significant difference between the CCDFs of
packet sizes. The authors of [229] state that the distribution of IPv4 traffic fits a heavy-tailed
distribution, whereas IPv6 traffic does not. We expect the tunneled traffic to have similar charac-
teristics as IPv6 traffic, and thus the CCDFs are expected to be similar, too. The Figure 37b shows
some discrepancies in this hypothesis. The packets larger than 400 bytes in the tunneled traffic
represent only 5 %, while in the IPv6 the portion is still 15 %. Furthermore, packets smaller than
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Figure 38: HOP value distribution of encapsulated IPv6 traffic.

70 bytes are not present in the tunneled traffic, although they account for 26 % of IPv6. This
distribution is caused by a shift of graph to a higher packet size given by the encapsulation. The
IPv4 header is usually 20 bytes long, and in case of Teredo, there are another 8 bytes for the UDP
header. Even taking this shift into account there is still a noticeable drop at the size of 200 bytes
which is caused by a high share of ICMPv6 and BitTorrent control traffic.

5.2.4 Characteristics of IPv6 Tunneled Traffic

In this section, we focus on characteristics of encapsulated IPv6 traffic for which we use the
same data set as in Section 5.2.3. We show HOP limit statistics, detected Teredo servers and
geolocation characteristics. We discuss the most used TCP and UDP ports inside the tunnels.

Distribution of HOP Limits

Figure 38 shows HOP limit distribution for the encapsulated IPv6 traffic. The main difference
from the TTL (Figure 33) and HOP limit (Figure 35) statistics is that the values here are dis-
tributed with much less entropy. The limits 21, 64, 128 and 255 are achieved and also the most
frequent ones. This difference is caused by the fact that most of the traffic never traversed the
IPv6 network and the HOP limit was therefore never decreased. In fact, when the values are
lower, we can be reasonably certain that the packets already traversed the IPv6 network and are
heading towards the IPv4 destination. The value 21 is used for Teredo bubbles by Windows 7
with Service Pack 1 and earlier.

The Teredo bubbles are used as a special mechanism for NAT traversal, which is consistent
with the fact that most of the clients are behind a NAT. We can see that some packets reach the
value of the zero HOP limit, which is a known problem when the HOP limit is set as low as to
21. The value of 255 is used for IPv6 neighbor discovery messages so that when a host receives
such packet with HOP limit lower than 255, the packet is considered invalid [230].

Teredo Servers

There are two ways of detecting Teredo servers. Firstly, we can look at the traffic using UDP
protocol on port 3544, which is a well-known Teredo port, and select the addresses that commu-
nicate most often. The shortcoming of this approach is that some other services might be using
the Teredo port and therefore the results might not be accurate. Since we can decapsulate Teredo
traffic, we can derive IPv4 addresses of Teredo servers directly from Teredo IPv6 addresses. This
way we can even detect Teredo servers that are not communicating directly through our obser-
vation points. Table 12a shows Top 10 servers that were discovered in the encapsulated IPv6
addresses.
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Server IP Ratio Owner Ctry
65.55.158.118 28.33 % Microsoft US

94.245.121.253 27.98 % Microsoft GB
157.56.149.60 26.49 % Microsoft US

157.56.106.184 10.18 % Microsoft US
94.245.115.184 6.41 % Microsoft GB

83.170.6.76 0.04 % B. Schmidt DE
170.252.100.131 0.01 % Accenture US

94.245.127.72 0.01 % Microsoft GB
94.245.121.251 0.01 % Microsoft GB
217.31.202.10 0.01 % CZ.NIC CZ

(a) Based on Teredo IPv6 addresses.

Server IP Ratio Owner Ctry
94.245.121.253 43.24 % Microsoft GB
65.55.158.118 18.91 % Microsoft US
157.56.149.60 17.86 % Microsoft US

94.245.115.184 10.00 % Microsoft GB
157.56.106.184 6.50 % Microsoft US
94.245.121.254 0.72 % Microsoft GB
94.245.115.185 0.22 % Microsoft GB
65.55.158.119 0.18 % Microsoft US

83.170.6.76 0.18 % B. Schmidt DE
157.56.149.61 0.17 % Microsoft US

(b) Based on UDP port 3544.

Table 12: Top 10 discovered Teredo servers.

Using the WHOIS database, we confirmed that a majority of servers is operated by Microsoft,
which is only to be expected since Teredo is a Microsoft technology. The most of Microsoft
Teredo servers we identified are IP addresses of "teredo.ipv6.microsoft.com", which is the de-
fault Teredo server name configured under Windows. The address 83.170.6.76 has a hostname
indicating that it serves as a Miredo server (Teredo implementation for Linux and BSD). The
last address belongs to CZ.NIC (Czech top-level domain operator), which is known to promote
IPv6 deployment in the Czech Republic and operates local Teredo and 6to4 servers.

Table 12b shows Teredo servers discovered at the most active on Teredo port 3544. This way
we detect only Teredo servers that are establishing connections through our observation points.
We can see that most users use Teredo servers in the United States or Great Britain to get IPv6
connectivity. Such a considerable distance of Teredo servers is known to increase the latency of
such connections, and therefore we would recommend using local servers to Czech users, such
as the CZ.NIC servers.

Location of Tunnel Endpoints

The geolocation statistics of tunneled traffic are computed for Teredo and 6to4. We use encap-
sulated IPv6 addresses to determine the countries for each flow. Incoming and outgoing traffic
is taken separately just as in Figure 36. The statistics are shown in Figure 39. The tunneled traf-
fic shows very different geolocation characteristics compared to native and decapsulated IPv6
traffic even though both are from the same link. Most of the native and decapsulated IPv6 com-
munication takes place inside the EU, while large portion of tunneled traffic communication is
performed with the USA and Russia.

To identify applications that are using IPv6 connection provided by transition mechanisms,
we created a list of the most used encapsulated TCP and UDP ports. We observed several
ports that can be found both in the source and destination port Top 10. The source and des-
tination ports Top 10 represent 32.0 % and 40.5 % of the traffic respectively. The well-known
ports are - HTTP - 80 (0.85 % of traffic as source port, 5.61 % as destination port), HTTPS - 443
(0.58 % and 1.48 %) and DNS - 53 (1.49 % and 1.48 %). Among the most frequent ports are ports
49001 (15.96 % and 9.91 %) and 51413 (10.12 % and 16.07 %) which are used by BitTorrent clients
(namely Vuze and Transmission). We discovered that these ports are heavily used within the
6to4 tunnel as mentioned in Section 5.2.3.
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Figure 39: Top 10 country distribution for encapsulated IPv6 addresses.

5.2.5 Evaluation of IPv6 Adoption

In this section, we describe the deployment of the IPv6 protocol with respect to tunneled traf-
fic. The overall statistics of IPv6 and tunneled traffic are mentioned. We provide a historical
comparison to our previous measurement [224].

The network activity shows the correlation with human activity. Both IPv6 and tunneled
traffic are considerably smaller during the weekend than during weekdays. As for the IPv6
traffic, the increase in traffic volume starts at 6 AM, reaches the peak around 11 AM and holds
the high level till 4 PM. Then the traffic steadily decreases and reaches the minimum at 3 AM
the next day. The tunneled traffic shows a slow increase that starts at 6 AM and peaks around 6
PM. The decrease begins at 10 PM and reaches the minimum at 5 AM the next day. The possible
cause of this shift from the IPv6 diurnal pattern is the fact that the tunneled traffic is widely
made by BitTorrent clients.

We measured the tunneled traffic back in 2010 on three CESNET border links to SANET, PIO-
NIER, and NIX. We found that the tunneled IPv6 was responsible for 1.5 % of total flows, which
is the same share as we measured today. However, the relative amount of bytes transferred has
almost doubled from 0.66 % to 1.28 % of total bytes today. The share of the native and decap-
sulated IPv6 was only 0.10 % (0.21 % of bytes) compared to 3.39 % (4.42 % of bytes) today. The
known services by port (HTTP, HTTPS, and DNS) had a share of less than 1 % of total flows. To-
day’s share of these services is significantly higher (see Section 5.2.4). The measurements show
that the overall usage of both tunneling IPv6 transition mechanisms and native IPv6 has been
raising.

We distinguish between the encapsulated and decapsulated tunneled traffic, as mentioned
in Subsection 5.2.1. The decapsulated tunneled traffic is included in the measured IPv6 traffic.
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When we filter out the decapsulated Teredo and 6to4 traffic, they account together for 5.91 %
of the measured IPv6 traffic. Teredo traffic takes part of 83.13 % of the decapsulated tunneled
traffic and 6to4 16.87 %. Hence we should not consider all measured IPv6 traffic as native IPv6
traffic. The main contributor to tunneled traffic was Teredo with an occurrence of nearly 89 %
followed by 6to4 with over 11 %. Therefore the relative amount of 6to4 traffic has increased. We
then detected the use of 13 Teredo servers compared to 53 today.

5.2.6 Summary

In this section, we have taken a detailed look at the IPv6 transition mechanisms. We have pro-
vided an improved version of our tool for investigating IPv6 tunneled traffic. Considerable
progress has been made concerning understanding tunneled traffic behavior, especially concern-
ing Teredo and 6to4 traffic. The results of this section suggest that encapsulated traffic differs
from IPv4 and IPv6 in several characteristics including TTL values, geolocation aspect, and flow
duration. Moreover, we have provided the list of Teredo servers and described the evolution of
IPv6 adoption.

This section is the first step towards enhancing our understanding of encapsulated IPv6
traffic. We hope that our findings will be beneficial as a background for additional research into
IPv6 transition mechanisms. To further our research we are planning to carry out an in-depth
analysis of tunneled IPv6 traffic concerning the security matter. To be able to handle security
incidents, the security threats will be identified, and detection methods will be developed. Since
our results are encouraging, they should be validated on other large-scale networks. In a broader
level, research is also needed to evaluate the contribution of the IPv6 transition mechanisms to
the IPv6 adoption.

5.3 Host-related Information

In this section, we perform several experiments that demonstrate the capabilities of IP flow
analysis to derive host-related information from network traffic. The host-based information
discussed in this section is mainly used for a host identification in a network. The host identifi-
cation is a necessary prerequisite for understanding the complex network (see CSA complexity
challenge pp. 24) and creation of host-based view (see open issues of IP flow analysis pp. 54).

Firstly, we focus on the identification of a host operating system (OS) both in static and wire-
less networks. Being aware of all OS of hosts present in a network brings an advantage for op-
erators protecting network security. We provide following use-cases where security managers
can leverage OS fingerprinting to demonstrate its benefits:

• Unsupported OS – rapid development of OS versions lead to many users still using an
outdated version without security updates. This problem is obvious especially in mobile
OS where nine % of Android users have a version older than 4.4 [231].

• Decision making – knowledge of what devices are connected helps security administrators
to take the right decision and react to incidents more precisely to security incidents [232].

• BYOD security policy – Bring Your Own Device is the principle of dynamic networks, but
some networks have policy restrictions on which devices can users bring or on using only
specific systems.

• Static networks – any change of device behind IP address or disallowed OS in the segment
can indicate a rogue device and should be investigated. Methods designed for dynamic
networks are implicitly capable of such detection.
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Secondly, we focus on host-related information, that can be derived for encrypted network
traffic. This research responds to the current uprising trend of network traffic encryption (see
pp. 37). We extend our research on identification of client in HTTPS traffic described in Sec-
tion 4.2 by the description of the information available from a dictionary and demonstration
of its applications in the classification of network traffic, network security and forensics, and
browser fingerprinting.

5.3.1 State-of-the-art

Passive OS fingerprinting is a transparent method for OS identification. Each OS has specific
settings which leave a fingerprint in packets sent by the system. The passive OS identification
analyses packets originating from a system. Based on the fingerprint found in a packet, a partic-
ular OS is identified. The majority of information for an OS fingerprint is collected from TCP/IP
packet headers and application protocols. An approach using TCP/IP packet header is well in-
vestigated. Lipmann et al. [233] present classifiers capable of identifying nine classes of OS from
packet headers. The classifiers leverage machine learning techniques including cross-validation
testing. Tyagi et al. [234] employ SYN packet properties such as TTL, packet length, TCP win-
dow size setting, and TCP options. Their classifier based on Euclidian distance can correctly
identify 95.5 % of operating systems from nearly 2000 SYN packets. From application protocols,
information such as HTTP User-agent, HTTP domain, or DNS queries can be used. Authors
of [198] utilize characteristics of DNS queries specific to individual OS, e.g., unique domain
names, query patterns, and time intervals. Machine learning (ML) techniques are used to gener-
ate new OS features and signatures. Aksoy et al. [235] employ machine learning algorithms to
identify packet features suitable for OS detection. They use genetic algorithms for feature subset
selection in three ML algorithms. The combination of automatic feature selection and ML algo-
rithms enables the adaptive OS detection and reduces the number of packet features needed
for OS classification. The limitations of automatic OS fingerprint are discussed by Richardson
in [236] and they identify four major challenges for automatic OS detection. The first challenge
lies the inability of current tools to find a generalizable and sufficiently discriminative classifi-
cation rules for different OS versions. Secondly, fully automatic tools cannot easily exploit se-
mantic knowledge of protocols or generate multi-packet probes and attributes. The remaining
challenges are the ineffectiveness of the tools in real networks and overfitting of the detection
techniques.

synSize winSize TTL OS
52 8192 128 Windows 10.0
52 8192 128 Windows 6.1
52 65535 128 Windows 10.0
60 65535 64 Android 6.0
60 14600 64 Android 4.4
60 29200 64 Ubuntu
64 65535 64 Mac OS X 10.12
64 65535 64 iOS 10.3

Table 13: OS specific TCP/IP header values.

We differentiate four main approaches to IP flow OS detection:

• TCP/IP Parameters – Each OS uses different settings for certain fields in TCP/IP headers.
The OS specifics fields are initial SYN packet size (synSize), TCP window size (winSize),
and Time to Live (TTL). The example of TCP/IP fingerprints with associated OS are pre-
sented in Table 13. The identification using TCP/IP parameters is not unambiguous as
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more OSs, typically belonging to one OS family, share the same field values, as can be
observed in the table.

• HTTP User-Agent – HTTP User-agent is defined in [237] as a string from user originat-
ing the HTTP request to provide information about operating system and browser to
the server. The purpose of such identification is that a web server can serve content cus-
tomized for a specific device or software and increase the user experience while brows-
ing web pages. The User-agent string construction is fully under control of application
software independent of the underlying operating system, as User-agent belongs to the
application layer of network communication. However, in practice, it is common that ap-
plications fill in the operating system name with its major and minor version and often
even with the specific build of that version.

• Specific Domains – Modern operating systems are configured to do many specific actions
upon connecting to a network. These actions include connectivity testing (e.g., connectiv-
itycheck.android.com) and checking for system updates (e.g., update.microsoft.com). This ac-
tivity can be monitored on the level of DNS communication during name resolving, or as
the communication to external servers. Observing connections to these specifics domains
in IP flow records enables us to identify a host’s OS system.

• Hybrid Approach – The methods mentioned above can be combined to achieve improved
accuracy of OS detection. We implemented a combination method that benefits from the
advantages of the individual methods and is not limited to any specific network layer. We
treat the methods equally, and the final decision is based on the majority voting principle.
In the case when each method has different results or only two methods can identify
OS, and they disagree, the results are taken in the order of User-agent, Specific domains,
and TCP/IP parameters. We have decided for this order because TCP/IP parameters are
often the same for multiple operating systems and the decision is based on the highest
probability to be correct. User-agents are then preferred over specific domains as it is a
long-established method.

Each method has a different level of details that it could provide about the OS. For their
comparison later in this work, we need to set a common level based on the OS hierarchy. The
level of detail each method can provide is summarized in Table 14. TCP/IP method can provide
major and minor version information, but parameters are often the same for multiple versions
and can lead to overfitting of identification. Hence, the levels could be omitted and are marked
in brackets.

Method Vendor OS name Major version Minor version

User-agent X X X X

TCP/IP parameters X X (X) (X)

Specific domains X X × ×

Combination X X X X

Table 14: OS identification methods level of detail.

5.3.2 OS Fingerprint in Static Networks

To demonstrate the detection capabilities of the IP flow records, we deployed a commercial
detection tool Flowmon [238] in a university campus network. We use commercial Flowmon
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probes to create IP flow records since these probes have built-in capabilities for User-agent pars-
ing. When a packet with User-agent is captured, it is compared to probe’s User-agent database
and OS name, major and minor version, and build values are assigned to the whole flow. When
an unknown pattern of User-agent is encountered, the flow is treated as no User-agent was
present at all. The TCP/IP stack information is collected by the probe by default.

First, we prepare a database which maps specific parameter values to the operating system.
Our approach to creating such a fingerprint database is similar to the one suggested by Ma-
tousek et al. [239] which maps information gained from HTTP User-agents to TCP/IP param-
eters. We have processed IP flow records captured from the whole university network during
two months in 2017 to cover as many different devices as possible. We aggregated the IP flow
records into groups with the same triple (synSize, winSize, TTL), and finally assigned the corre-
sponding OS to each triple. Following this process, we have created a database of 2078 unique
mappings from TCP/IP parameters to 51 unique operating systems and their major and minor
versions (when available) weighted by their appearance (i.e., number of flows with the same
triple) in our network. This weighting called confidence is necessary to deal with different oper-
ating systems or their versions that send packets with the same triple of TCP parameters. We
compute confidence as the fraction of the number of flows of a specific OS version compared to
the total number of flows with the same triple. Example of our fingerprint database based on
TCP/IP parameters including confidence listed in Table 15.

synSize winSize TTL OS Confidence
52 8192 128 Windows 10.0 55.2 %
52 8192 128 Windows 6.1 31.9 %
52 65535 128 Windows 10.0 74.9 %
60 65535 64 Android 6.0 48.2 %
60 14600 64 Android 4.4 28.4 %
60 29200 64 Ubuntu 20.4 %
64 65535 64 Mac OS X 10.12 26.5 %
64 65535 64 iOS 10.3 10.3 %

Table 15: Example fingerprint database.

To validate our measurement, we compare our fingerprint database to databases of p0f and
Ettercap. Surprisingly, neither of them uses the size of the initial SYN packet, and the comparison
is limited to only two parameters. The characteristics of the main operating systems (Windows,
Mac OS X) are the same. However, the p0f and Ettercap DBs generally lack updates (the last
update of fingerprints on GitHub was 21 May 2014 for p0f and respectively 26 Oct 2011 for Et-
tercap). Because of this outdated fingerprint DBs, new systems like Windows 10 or Android 4.4
and higher, which currently dominate the network traffic, are not included and hence not recog-
nized by the tools. Creating a complete, up-to-date database of fingerprints is a challenging task.
Our goal is to create a database containing fingerprints of as many different systems as possible.
We decided not to use any strictly managed environment as there would be a lack of desired
diversity. Instead, we focused on processing data from User-agents which can be done in large
scale and covers most currently used systems. Our fingerprint database contains confidence rat-
ing calculated from the large volume of network traffic. The computed confidence rating allows
us to deterministically identify OS of an IP flow even if the DB contains more records for the
same triple. However, this approach results in identification biased by current market share of
each OS within our university population where an uncommon OS can be overshadowed by a
popular one. We identify this fact as a general limit of TCP/IP parameters identification method
because every fingerprint database must deal with parameter collisions.

112



5. Data Comprehension

Next, we evaluated the uniqueness of the OS identification from IP flow record, i.e., how
many different OSs is assigned to one host. During the two hours measurement period assigned
for this experiment, we observed 10.221M flows from 12 897 hosts in the campus network. 33.5 %
(3.425M) of all monitored flows contained all the information needed for OS detection which
represented 70.33 % (9 072) of all hosts. We observed that in some cases more than one OS was
detected for one IP address. The cause of this behavior could be dynamic addressing in net-
works. Therefore we removed all dynamically addressed subnets from evaluation.

The results (see Table 16) show that the portion of the IP addresses with more than one de-
tected OS has decreased after the removal of dynamically addressed networks. However, still
4 % of IP shows characteristics of two or more OS. This fact can be explained by the presence of
more devices with different OS using the same IP address. The presence of more OS with the
same IP address implies the presence of Network Address Translation (NAT) devices. There-
fore, the OS detection can also be used as NAT detection assuming that only a static addressed
network is monitored.

# of unique OS # of IP in A % of all A # of IP in B % of all B
1 7898 87.059 3996 95.989
2 1071 11.806 159 3.819
3 80 0.882 7 0.168

> 3 23 0.253 1 0.024
Total 9072 100 4163 100

A - whole network, B - dynamically addressed subnets removed

Table 16: Number of unique OS detected at one IP.

5.3.3 OS Fingerprint in Dynamic Networks

The previous experiment showed the negative impact of dynamic address allocation on the
uniqueness of OS. Therefore, we further investigate the possibilities of OS identification from
IP flow records in a dynamically addressed network in this section. We conduct an experiment to
demonstrate the coverage of IP flow based OS detection methods, and evaluate them concerning
accuracy, precision, and recall measures. The dataset used in this experiment covers data from
all subnets of the wireless network (Eduroam) of our university, including buildings of multiple
faculties and dormitories. It contains data from the first week in May 2017 and is a combination
of three data sources – IP flow records, Radius logs, and DHCP logs.

In total, our dataset covers

• 79 087 345 flows in IPFIX format,

• activity of 21 746 unique users,

• 253 374 Wi-Fi sessions,

• 25 642 unique MAC addresses (1692 vendor prefixes),

• 6 104 unique IP addresses assigned.

IP flow records represent our primary source of information and contain extension fields
used for OS identification described above (i.e., HTTP User-Agent field, TCP/IP stack infor-
mation). Our IP flow observation points are located at the backbone network connecting the
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university to the Internet. Hence, our visibility covers the communication from and to univer-
sity. As we are interested in dynamic networks, we have filtered the traffic so that it contains
only traffic originating from (i.e., source IP address is from) our wireless subnets. The opposite
direction IP flows (target IP in our subnet) are not relevant for OS identification of a host in the
monitored network and were omitted.

Logs from DHCP servers then enrich the sessions by device MAC address and device name.
As the network is dynamic and we have no control over connected devices, we have to derive
the ground truth for OS identification from these logs. A large portion of devices comes with
a pre-installed operating system with default device name. In many cases, it is hard or impos-
sible for a common user to change the device name. For example, Android devices use string
“android-<android_id>”, Apple products use “<user>-iPhone”, “<user>-iPad”, and Microsoft
uses default name “Windows-Phone” for its mobile products.

All connections to our wireless network must be authenticated with username and password.
We have collected logs from Radius servers, which provide the authentication service. From
these logs, sessions are created as 4-tuple (id, assignedIP, startTime, endTime), where id is a simple
auto-incrementing counter. Sessions then serve as ground truth to measure methods coverage.
We have removed the user identity from dataset due to privacy reasons.

We implemented the OS detection methods described before and used them to identify OS
of each Wi-Fi session from our dataset. The identification does not work on a single flow but
takes every flow from the session with OS identified into account. For a session containing more
flows, OS is assigned to each flow, and the final result for the session is decided based on majority
voting principle. This principle is used because some devices exhibit fingerprints of multiple OS
during one session.
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Figure 40: Coverage of OS identification methods.

Our first experiment regarding OS identification is to measure how many sessions can the
methods evaluate. To evaluate a session, at least one flow in the session needs to carry the re-
quired information for a method to work. The User-agent method needs an HTTP request with
a UA containing OS information. This requirement is fulfilled by 64.3 % of the sessions from the
dataset. Specific domain method requires an HTTP(S) request on a domain from its dictionary.
The HTTP(S) request on a domain from its dictionary is present in 78.1 % sessions. TCP stack
method is the most generic and requires just a TCP connection, from which the parameters can
be measured which is covered in 88.4 % of sessions. Our combination method needs at least one
of the previous methods to have results and can identify OS in 93.4 % of the sessions. Summary
of the coverage of OS identification methods in the dataset is depicted in Figure 40.
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Combination method was able to identify OS in more sessions than other methods, which
was caused by the presence of HTTP flows without TCP/IP parameters in our dataset. We have
identified the cause of this problem in the flow export of initial SYN packets with flags CE
(Congestion Window Reduced, ECN-Echo) set, which caused the exported to think it is not an
initial SYN packet and to skip filling the extended fields. We have reported this issue to the flow
exporter vendor who confirmed our findings and implemented the fix in the next version of the
exporter.

The second experiment explores the performance of the methods for in OS identification.
In terms of statistical analysis, our methods represent the multi-class classifiers with l non-
overlapping classes. We have computed performance measures of accuracy, precision, recall,
and f-score for each method according to [240]. As the distribution of operating systems is not
uniform and there are significant differences in their appearances in the dataset, we have de-
cided to use the micro-averaging technique to favor the bigger classes.

Our dataset contains ground truth for OS identification extracted from DHCP logs on the
level of details of OS name from the OS hierarchy. It is also the highest level of detail the specific
domains method could achieve and hence all methods performance is measured on this level
of detail to ensure a fair comparison.

We have calculated confusion matrix with true positive (TP), false positive (FP), true neg-
ative (TN), and false negative (FN) values for each of the l classes (OS names) by comparing
classification result to the ground truth. Then we computed the performance measures from
the following equations:

AverageAccuracy =
1
l
·

l

∑
i=1

TPi + TNi

TPi + TNi + FPi + FNi

Precisionµ =
∑l

i=1 TPi

∑l
i=1 (TPi + FPi)

Recallµ =
∑l

i=1 TPi

∑l
i=1 (TPi + FNi)

F− scoreµ =
2 · Precisionµ · Recallµ

Precisionµ + Recallµ

Exact performance measures for individual methods are listed in Table 17, their comparison
is then depicted on Figure 41.

Method Accuracy Precision Recall F-score
User-agent 0.9189 0.9812 0.6063 0.7495
TCP/IP parameters 0.8088 0.5249 0.4643 0.4927
Specific domains 0.8402 0.6286 0.4907 0.5512
Combination 0.8582 0.6587 0.6041 0.6302

Table 17: Micro averaging for multi-class classifier performance measures.

The user-agent method generally shows best results as applications generating HTTP re-
quests are usually honest about its operating system. The significant drop in recall compared
to other measures is caused by the high number of sessions without usable User-agent (i.e., no
or encrypted User-agent sent, or it contains information only about the application and not OS)
which causes many false negatives.
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TCP/IP parameters method exhibits the worst performance from tested methods. We iden-
tify the primary cause in two areas – Apple products sharing the same parameters, and Win-
dows and Android devices using many different parameters. The first issue causes that most
sessions with OS from Apple family (MAC OS X, iOS, Darwin) are identified as MAC OS X
since this method alone has no way to distinguish between them. On the other hand, Windows
and Android devices communicate with many parameters configurations, and their traffic dom-
inance hides other operating systems in classification.

The new method using detection of specific domains proves to be capable of OS identifica-
tion at large scale and even surpass the established TCP method. It can distinguish OS with
small market share but suffers from the Apple issues discussed above. All Apple products com-
municate with a similar set of domains and even their applications installed on different OS
(e.g., iTunes) download updates from the same domains. We can generalize this statement to
all vendors as it is not economical to maintain a distinct update server for every product they
develop.
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Figure 41: Micro averaging for multi-class classifier performance measures.

Our combination method embraces all positives and negatives from previous methods. It
can identify OS in the highest portion of sessions and performance measures are better than
TCP and specific domain methods. However, it is not as precise as the User-agent method which
is the result of each method having the same weight during identification and flows without
UA pushing the decision towards a wrong one.

Besides the performance of the methods, we can look at the situation in our Wi-Fi network
according to the identified operating system. Figure 42 shows the market share of vendors based
on results from the combination method. Mobile devices such as phones and tablets dominate
the dynamic network (Android 56.18 %, MAC OS X 30.07 %) and traditional operating systems
currently have decreasing popularity (Windows 4.48 %). Unknown means that the method could
not evaluate the session and Other category is the rest of operating systems with a low market
share (e.g., BlackBerry).

During our experiments, we had to tackle several challenges. Finding the method for estab-
lishing ground truth poses the first challenge. Our method of using DHCP log parameters of
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Figure 42: Operating system usage share of our network grouped by vendor.

device name works well for Apple and Google operating systems that use easily identifiable de-
vice name by default and its change by a user is discouraged or impossible. On the other hand,
Microsoft and Linux operating systems allow simple device name change, and thus these de-
vices could not be identified as easily. The second parameter we tried to use was MAC address,
but it proved not to be helpful for ground truth establishment. Unfortunately, we were unable
to find any meaningful mapping of Network Interface Controller vendors to operating systems
of the devices due to the usage of same hardware family by multiple products with different
operating systems. Ground truth establishment in large scale thus remains an open research
problem for now.

Next challenge relates to the tested methods for passive OS fingerprinting. These methods
will have to adapt to emerging new standards of network communication. We identify the fol-
lowing trends and protocols, that will have to be supported: IPv6, encrypted communication
through TLS and HTTP/2.0 or QUIC [241] by Google. All of them will affect each of the meth-
ods in some way, although not necessarily to the same extent. The user-agent fingerprinting
method will be the most affected when the protocols mentioned above are commonly used. Be-
cause the current trend in network communication is to encrypt all data transfers with TLS by
default, the User-agent field will not be readable during data transfer. In HTTP/2.0 [242], the
encryption was not made mandatory, but browser developers have explicitly stated that it will
be supported only in encrypted format [243]. The QUIC protocol explicitly requires encryption
of content, and only a few implementations send UAID (User Agent equivalent) in the first un-
encrypted client hello message. This indicates that the User-agent method’s usability will be
declining soon. TCP/IP parameters method will not be affected by encryption, but it will have
to be adapted for concurrent use of IPv4 and IPv6. The diminishing address pool and the ever-
growing number of IoT devices that need public IP addresses will require extended usage of
IPv6 protocol. In IPv6, the TTL parameter equivalent, Hop Limit, is suggested by Router Adver-
tisement messages for all connected devices and the IPv4 header field Total Length was changed
to Payload Length with slightly different semantics. Specific domains method will remain func-
tional with encrypted traffic and unaffected by underlying network protocols as the SNI field
remains in all new protocols. It will even be able to identify new operating system versions from
already known vendors if the domain remains unchanged. However, to keep its database up to
date, it is necessary to monitor any changes in specific domains done by the vendor. If such a
process is in place, we believe that this method will be the most reliable and accurate in the near
future.
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All these challenges push OS fingerprinting method toward decreasing level of details about
the OS. It can be expected that only OS name (or even only vendor) will be distinguishable by
the methods. While this situation helps protect user privacy, it conflicts with the use-case of
unsupported OS version detection.

5.3.4 Host Identification in Encrypted Traffic

This section extends our approach to identification of a client in encrypted traffic described in
Section 4.2. We discuss the information which can be derived from a cipher suite list (and its
corresponding User-Agent) and their application. First, we present a breakdown of the dictio-
nary for client identification according to identifiers found in User-Agents, e. g., types of a client
application or a device. Second, we focus on the most interesting type of clients, web browsers
and operating systems, which can be analyzed in more details. Applicability of our results is
discussed in the context of browser fingerprinting, network security, and network forensics. We
also discuss possible defenses against SSL/TLS fingerprinting. In following experiments, we
use a dictionary created from dataset used in Section 4.2.

Classification of Network Traffic

As previously shown, we can assign a User-Agent to a known cipher suite list. However, the as-
signment is not exact as there are typically multiple User-Agents which correspond to a single
cipher suite list (see Figure 29). The multiple User-Agents are typically similar per one cipher
suite list. Thus, we can extract common information, e. g., a type of application, from them. We
used HTTP::BrowserDetect tool [244] to mark and classify the User-Agent strings. The tool ex-
tracts general information on a given client, e. g., browser name, version, vendor, and operating
system. Although the tool was designed to analyze User-Agents of web browsers, it can recog-
nize web crawlers as well. The interesting option is the detection of a mobile device, its type,
and vendor.

We extracted four pieces of information from the User-Agents: device type, operating sys-
tem, application type and type of a web browser. If the cipher suite list corresponded to more
than one User-Agent, we selected the most frequent values. For example, if the cipher suite list
corresponded to Chrome four times and to Firefox one time, we assigned the Chrome browser.
This method is not the most accurate but provides the most probable value. In case of the wide
variability of values or inability to parse User-Agent, the unknown value is used. The result is
a dictionary with concatenated values corresponding to the client fingerprint for every cipher
suite list.

The share of client types in the dictionary is presented in Figure 43. This figure represents
only the structure of a dictionary, not the relevance of particular client types. However, we can
see significant shares of client types which are hard to detect using a host-based pairing method.
Nevertheless, we were at least able to detect the application types using unknown device type
records from the dictionary. Over one fifth of the client types remained unknown both for device
and application type, though. Desktop and mobile applications typically communicate only to
specific servers with a specific service. These findings demonstrate the contribution of the flow-
based pairing method.

Client Identification and Browser Fingerprinting

The grouping presented in the previous paragraphs reflects the structure of clients in the dic-
tionary. To discover the structure of clients in the HTTPS traffic, we assigned dictionary records
to the real traffic. Moreover, we performed further analysis on the shares of operating systems
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Figure 43: Shares of HTTPS client types in the dictionary.

in HTTPS traffic and on shares of web browsers in HTTPS traffic to gain deeper insight into the
encrypted traffic.
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Figure 44: Shares of HTTPS client types in live network traffic.

The shares of client types in the live network HTTPS traffic are presented in Figure 44. We
observed that a majority of connections were initiated by browsers. This approves the fact that
we analyzed HTTPS connections primarily designed for web communication. About a third of
the connection was initiated by desktop browsers. One interesting figure is the relatively high
amount of traffic initiated by mobile devices. We were also able to capture machine-generated
HTTPS connections by identification of traffic belonging to crawlers and updates. Only 4.6 % of
the HTTPS traffic remained completely unknown.

The group of browsers, desktop, and mobile still dominated in both categories. Therefore, we
picked the browser’s part of analyzed HTTPS traffic to perform further analysis in more detail.
The results of the analysis are presented in Figure 45. Nearly one-half of the total connections
were represented by Chrome web browser, followed by Firefox with one fourth and Internet
Explorer with 14.6 % of browser’s encrypted traffic.

Described distribution of browsers in HTTPS traffic strongly correlates with the distribution
of browsers in national browser usage statistics showed in Table 18. Even though the dictionary

119



5. Data Comprehension

Blackberry

Firefox

Chrome

Internet Explorer

Opera

Safari
unknown

25.3%

11.3%

14.6%

46.3%

Figure 45: Shares of web browsers.

did not provide exact translation, the table shows that our browser fingerprinting method gave
accurate results. We have noticed, that the distribution of browsers in unencrypted traffic varies
among different regions. Therefore, the distribution of browsers can be used as lightweight ge-
olocation of a data observation point. Using the discovered correlation of browser distribution,
we can apply the browser-based geolocation in the case of encrypted traffic, too.

Browser Traffic share [%]
Chrome 41.94
Firefox 26.39

Internet Explorer 17.27
Safari 5.52
Opera 4.59
Other 4.29

Table 18: Shares of used web browsers for Czech Republic. [245]

In the last analysis of HTTPS traffic we were not interested in client’s application type, but
rather in its implementation, i. e., operating system. The results of the analysis are presented in
Figure 46. We used our dictionary to assign an User-Agent to the cipher suite list of encrypted
connection. The User-Agent was then further analyzed to retrieve operating system information.
The majority of the operating system represents the Windows platform. Unfortunately, there
was a high share of the traffic for which we were not able to determine client’s operating system
due to missing or contradictory information in the User-Agent string. The shares of other oper-
ating systems were evenly distributed. To obtain a more precise operating system identification,
we could use additional information, such as TCP window size or SYN packet size.

Network Security and Forensics

The next step following the classification of the network traffic and identification of the clients
was the detection of specific or unusual clients in the network traffic. The problem arises in the
fields of network security and forensics. Network forensics use cases typically focus on tracing
the activity of a specific host in the network. If a client is known to be malicious, e. g., it is
a malware, then it is also relevant for network security. Monitoring the activity of clients, which
are known or suspected of being malicious, helps in the detection and prevention of attacks or
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malware spreading. However, recognizing malicious activity and marking a client as malicious
is a hard problem.

One of the most interesting pairs, from the network security perspective, included a specific
sequence of a Bash vulnerability Shellshock in the User-Agent string. The malicious sequence
“() { ;; };” appeared in other HTTP headers as well in this case. The string is not a User-
Agent, which also implies that we have no other identifier of the client. The fingerprint was
obtained via a host-based method and is trustworthy. We searched for the corresponding cipher
suite list in the network monitoring data but did not find any other match. Therefore, we may
assume there is a unique fingerprint of a malicious client. Although we do not know more about
the client, we can use the knowledge to detect suspicious cipher suite lists in the network traffic.
Detection of malicious clients, which are known to exploit a vulnerability, is another use case of
fingerprinting in network security.

Defense against Fingerprinting

Bujlow et al. [180] surveyed defense strategies against currently known tracking mechanisms,
e. g., browser fingerprinting. We are not aware of any method which would prevent SSL/TLS fin-
gerprinting apart from using a proxy or manually changing the cipher suite list. Using a proxy,
for example, mitmproxy [246], causes the fingerprinting method to detect cipher suite list of the
proxy instead of cipher suite list of a client. On the other hand, the cipher suite list of a proxy
can be recognized, and the corresponding network traffic can be marked accordingly.

The second option of defense is manually changing the cipher suite list of a client. The change
of the cipher suite list can be done by forced forbidding of specific cipher suites. Then, a client
is communicating with reduced cipher suite list. The fingerprinting method cannot recognize
the reduced cipher suite list and thus fails at finding a corresponding User-Agent. On the other
hand, it is not easy to reduce a cipher suite list to forge cipher suite list of a different client.

5.4 Summary

This chapter presents several experiments that improve comprehension of a computer network.
First, we investigate the properties of Top N statistics, a frequently used query aggregation used
in the IP flow analyses. We focused on the availability, uniqueness and time stability aspects of
the statistics. Our time stability experiment shows that the ten most frequent results of Top N
statistics are observed more than in 57 % of observations in 57.8,% of IP addresses. The highest
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uniqueness of the Top N statistics is achieved when the HTTP host key is used as the aggre-
gation variable. Moreover, we discovered that a single Top N statistic has a limited application
on host identification problem. Nevertheless, once we were able to identify a host, the host was
identified with high precision when we used the destination IP or HTTP host characteristics –
77.23 % and 36.49 % of the hosts were identified unambiguously.

Next, we researched the IPv6 transition mechanisms to enhance our understanding of the
encapsulated IPv6 traffic. We describe characteristics both of the IPv4 tunnel traffic and the
IPv6 tunneled traffic. We analyze the TTL and HOP distributions, geolocation of IPv4 and IPv6
endpoints, and evaluate IPv6 adoption. Our results show the increased relative amount of 6to4
traffic compared to Teredo traffic.

Last, we analyze the host-related information to demonstrate the capabilities of IP flow anal-
ysis to derive host-related information from network traffic. We investigate the identification of
the operating system from IP flow records captured both in static and dynamic networks. Fur-
ther, we extend our research on host identification in encrypted traffic presented in the previous
chapter and discuss the information which can be derived from a cipher suite list and their appli-
cation. We display feasibility for network traffic classification, client identification, and browser
fingerprinting.

The main contributions of this chapter are:

• evaluation of the availability, uniqueness and time stability aspects of Top N statistics,

• evaluation of the feasibility of Top N statistics for host identification,

• analysis of the IPv6 encapsulate traffic,

• assessment of OS fingerprinting methods both in static and dynamic networks,

• research of identification of client and browser in encrypted traffic.
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6
Towards Real-time Cyber Situation Awareness

Cyberspace is a highly dynamic environment that changes every second. The dynamics of the
cyberspace imposes demanding requirements on the cyber situation awareness. To achieve the
primary purpose of the cyber situation awareness, i.e., to provide relevant and up-to-date support
for a decision process, a large volume of data needs to be processed at high speeds to support an
operator with an instant analysis results. The IP flow network monitoring workflow is designed to
handle high volumes of data at high speeds. However, the IP flow network monitoring introduces
several delays, as shown in Chapter 3. These delays slow down the analysis process and the results
provided to an operator might be outdated at the time they are computed and delivered due to the
high dynamics of the network.

This chapter describes our contribution to the improvement of the speed of the analysis process
in the cyber situation awareness. We reduce the time needed for IP flow analysis by introduc-
ing a stream-based IP flow network monitoring. The shift from the traditional batch-based to
the stream-based analysis approach increases the analysis speed as IP flow records are analyzed
instantly. Moreover, the stream-based workflow is naturally distributable and scalable, which in-
creases performance and further reduces analysis time. A shift from bath-based to stream-based
approach, however, implies also a shift in the analysis approach. We discuss the implications of
the shift and describe the pitfalls and advantages of the stream-based analysis.

The stream-based approach is not meant to substitute for the batch-based IP flow network mon-
itoring. On the contrary, the stream-based approach is a natural complement of the traditional
batch-based IP flow network monitoring. We propose a next-generation IP flow monitoring in-
frastructure that merges the batch- and stream-based approaches into a single approach that keeps
the advantages of both approaches. We describe individual parts of the infrastructure and suggest
suitable software for these parts.

This chapter concludes with a proposal of an approach to real-time cyber situation awareness, that
builds upon the described next-generation IP flow monitoring infrastructure. The next-generation
IP flow monitoring infrastructure is generalized to process any cybersecurity-related data in a
unified manner allowing for the enhanced analyses in real-time.

This chapter responds to the performance-related open issues of the cyber situation awareness (see
pp. 25,26). Further, we address the data challenges of the cyber situation awareness (see p. 25).
From the IP flow monitoring challenges, we address the performance, scalability, and response
time open issues of IP flow monitoring (see p. 47) and the complexity open issue of the IP flow
analysis (see p. 53).

This chapter is based upon the research results published in the following author’s peer-reviewed
publications: [A1–A3, A11].
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This chapter is structured as follows:

• Section 6.1 describes the application of the data stream processing techniques to the IP
flow record analysis to achieve real-time analysis results.

• Section 6.2 presents a next-generation IP flow network monitoring created by the com-
bination of the batch- and stream-based approaches to the IP flow analysis.

• Section 6.3 proposes a framework for real-time cyber situation awareness derived from
the generalization of the next-generation IP flow network monitoring infrastructure.
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6.1 Real-time IP Flow Analysis

IP flow monitoring and their analysis play a vital role in network traffic measurements for cyber-
security. Currently, IP flows are widely used for traffic measurement in large-scale, high-speed
networks, cloud environments, and various enterprise networks. IP flow analysis is used for
detecting the majority of severe contemporary cyber threats, such as Denial-of-Service (DoS),
botnets, and Advanced Persistent Threats (APT) [125]. Moreover, the analysis can be done both
on unencrypted and encrypted traffic, as IP flows gather information only from packet headers.
Such advantages have made IP flow network monitoring a fundamental part of traffic measure-
ment for cybersecurity.

Nevertheless, IP flow analysis still faces several challenges raised by the rapid evolution of
the threat landscape as demonstrated in Chapter 3. In this section, we focus our attention on the
following ones. First, network traffic measurement has become a Big Data problem. Due to the
increasing volume of network traffic, it has become expensive and impractical to store first and
then read again all IP flows from large networks for analysis. Second, it has become impossible to
analyze the large volume of IP flows from networks in real-time. Current approaches try to face
this challenge by increasing the hardware performance of analytical machines or simple master-
slave architectures. Still, the IP analysis itself stays centralized, scalability of these solutions is
limited, and analysis time remains relatively long. We demonstrated this fact in the description
of IP flow monitoring workflow timeline in Section 3.3.5. Third, the time needed to detect a cyber
attack remains a challenge for IP flow analysis. Current IP flow-based cybersecurity solutions
exhibit a detection delay in the order of minutes. Such a delay may be fatal when we try to reduce
the harm caused by an attack. Therefore, demands for near real-time attack detection have risen
recently. Current IP flow traffic measurement tools fail to satisfy this demand, though.

To address the challenges mentioned above, we present a transformation of the current IP
flow monitoring and analysis into the stream-based paradigm. In this approach, the IP flows are
processed and analyzed in data streams immediately after an IP flow is observed. The analysis
of IP flows in data streams reduces the volume of data that needs to be stored because data is
kept in primary memory for the time necessary for processing and only results are stored in the
secondary memory. This feature represents the greatest advantage of the stream-based concept.
It allows us to perform the immediate data analysis, which makes the real-time attack detection
possible.

6.1.1 Basic Concepts

To cover the basic concepts used in our approach, we recall relevant information on IP flow-
based network monitoring from Chapter 3 and discuss the basics of data stream processing.
This overview can be considered as a high-level abstraction of the main ideas of both areas, for
a detailed description consult [88, 125, 247].

IP Flow Network Monitoring

IP flow monitoring was principally designed to monitor high-speed network traffic in large-
scale networks. Since the performance limitations do not allow us to process, store and analyze
all information from each packet in such networks (Deep Packet Inspection), an abstraction
of single direction communication, called an IP flow, was introduced. An IP flow is defined
as a set of packets passing through a point in the network during a certain time interval. All
packets belonging to a particular IP flow have a set of common properties called IP flow keys.
The traditional 5-tuple of IP flow keys is comprised of source and destination IP address, source
and destination port, and transport protocol. Apart from the traditional 5-tuple, the IP flow
contains statistics about the connection (such as the number of packets in an IP flow) and may
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be enriched by information from the application layer of network traffic. IP flow information is
stored in IP flow records.
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Figure 47: IP flow monitoring workflow.

The IP flow network monitoring process is a complex system, as depicted in Figure 47. An
IP flow record is generated at an observation point in a network by an exporter. The exporter
captures information from packet headers and creates flow records during the metering process.
The created flow records are submitted to the exporting process to be sent to a flow collector via
export protocols, such as NetFlow or IPFIX. The collector receives flow records from one or more
exporters, processes them, and stores them for further analysis. The collecting process manages
flow records and stores them, usually in one- to five-minutes batches into binary flat files (nf-
dump, SiLK, and so on) or column-oriented databases (FastBit, Vertica, and so on). Row-oriented
databases (MySQL, PostgreSQL, and so on) are not suitable for flow storage and querying due
to their insufficient performance. Individual batches are then available for further data analysis.

There are three main application areas of IP flow analysis: Flow Analysis and Reporting,
Threat Detection, and Performance Monitoring. Flow Analysis and Reporting covers querying
and filtering flow data for relevant information (network visibility), statistics overview of the
data (Top N statistics and so on), traffic accounting, reporting, and alerting (such as exceeding
transfer data quota). The Threat Detection area focuses on the analysis of specific traffic events,
most often scans, DoS, worms, and botnets [2]. Performance Monitoring reports the status of
running services on the network by observing application metrics, such as delay, jitter, and
round-trip-time.

All three application areas for IP flow analysis have one thing in common – a time aspect (see
pps. 44, 52). As the network is monitored in time, the majority of statistics, detection methods,
and performance characteristics are aggregated over a given time window (such as top talkers in
the last hour, the number of transferred bytes in the last minute). The time window is strongly
influenced by the settings of the network monitoring process, namely the size of the batches
in the collecting process. Data analysis can be performed only when a new batch occurs. The
batch is set to five minutes in the majority of IP flow analysis tools. The analysis is then run every
five minutes. This means that, for example, an attack or service outage may be detected with
a five-minute delay. However, the demand for real-time analysis has risen recently to achieve
shorter detection and reaction times. The analysis delay can be shortened by replacing the batch-
based analysis with stream-based analysis, where each flow record is analyzed immediately as
it arrives.

Data Stream Processing

Stream processing systems (historically referred to as Active Database Systems [248], or later,
as Data Stream Management Systems [247]) emerged in response to the poor performance of
traditional persistent databases, which were not designed for the rapid and continuous updates
of individual data items continuously arriving at high velocities. Use-cases, where it is suitable
to employ the stream processing approach, are applications where data is modeled best not
as a persistent relation but as a transient data streams [247]. These application are collectively
referred to as information flow processing (IFP) domain applications [249]. Examples of the IFP
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application range over disparate fields; from environmental monitoring that process incoming
streams of data from sensors deployed in a field, e.g., in a rivers, and aims to understand the
observed world, predict anomalies, e.g., floods, over financial application that can process tick
prices at an exchange to identify trends or detect a fraud or market manipulations, to security
monitoring of a computer network, where observed network traces are continuously analyzed
to detect attacks.

The data streams differ from the traditional relational model in the following ways [247]:

• The data transferred in a stream arrives online, instantly.

• The system for data stream processing does not have any control over the order in which
data arrive in the system. Moreover, the data can be processed either within data stream
or across different data streams.

• The data streams are possibly infinite sequences.

• Once a data in a data stream is processed, it is discarded or archived.

A data stream is a possibly infinite sequence of data elements with a given schema and as-
signed timestamp of its occurrence, which is discrete and ordered. The data stream can be con-
tinuously transformed by an operators [250]. The most common operators are split and merge.
The split operators divide a single input data stream into multiple output data streams, while
the merge operators combine multiple input streams into a single output stream. The split and
merge operators may forward data in data streams either unmodified, or transformed; a rela-
tional join operator that includes a nontrivial data transformation,for example.

The queries over data streams are in many ways similar to the queries addressed to tradi-
tional databases. Nevertheless, there are two important distinctions intrinsic for data streams.
The first distinction is the suitability of query types. While traditional Data Management Sys-
tems (DMS) are suited for one-time queries, i.e., queries that are evaluated only once, the data
stream model is suited for execution of continuous queries, i.e., the queries that are reevaluated
in time and reflect data seen so far. Naturally, both query types are available in both (tradi-
tional and stream) models. Nevertheless, the continuous queries in data streams outperform
these queries in conventional DMS. The other distinction is between an approach to predefined
and ad-hoc queries. The predefined queries are known in advance, i.e., before a data stream is
processed. The ad-hoc queries are known after a data is processed. The ad-hoc queries are a chal-
lenge for a data stream processing systems as it is not known, which data is required to resolve
the query (the data may already be discarded), the data streams cannot be optimized for query
resolution, and so forth.

The data streams are ordered mostly by an assigned timestamp. We differentiate between
two main timestamps: implicit and explicit [247]. The implicit timestamps are attached to each ar-
riving data in a data stream by a data stream processing system. In many cases, this timestamp
assignment (and data ordering) is sufficient. It is often used, when data itself does not contain
any timestamp, or when the exact moment the situation occurred is not important, and general-
izations such as a "recent event" are acceptable. In other cases, explicit timestamps are used. The
explicit timestamps are timestamps that are provided in a data stream. These timestamps are
assigned to a data usually by the data producer itself, for example by a metering sensor. The ex-
plicit timestamp represents an exact time of event occurrence. These timestamps are used when
the exact ordering of the data stream is essential, for example, in sequence based algorithms.
When explicit timestamps are used, we need to keep in mind, that the data can arrive in a data
stream processing system unordered, i.e., unordered by the explicit timestamps, due to data
transmission latency, for example. The correct ordering of the data can be achieved by adding
an input buffer for incoming data and order the incoming data in this buffer.
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Queries over data streams are usually evaluated over a time windows. According to Gama
and Rodrigues [251], following window models are most relevant to data stream processing:

• Landmark Windows – the landmark window is initiated by an event (landmark) in the
data stream, and all data succeeding the landmark belong to the window. The landmark
can be, e.g., a start of a day, or a start of production.

• Sliding Windows – given the size of the sliding window l and slide of the sliding window
s, the sliding window that represents data in interval 〈t0, tl〉, 〈t0+s, tl+s〉, respectively. The
window slide is usually triggered by timeout. Nevertheless, it can be triggered by the
arrival of new data as well. Based on the slide size, we differentiate between overlapping
windows, i.e., there is an intersection of the windows, or disjoint window, where there is
no intersection of two consecutive windows.

• Titled Windows – the titled windows compress the time scale so it can be used for long-
term analyses. The compression is usually one of the following: natural, or logarithmic.
The natural compression stores the latest data with the highest granularity and as the data
gets older, the granularity of the stored data decreases, i.e., data are aggregated. The typ-
ical model of natural compression is to store last hour in minutes (60 observations), last
day in hours (24 observations), last month in days (31 observations), last year in months
(12 observations). The logarithmic compression the granularity decreases logarithmically
as data gets older.

Stream processing systems are designed to evaluate continuous queries over many data
streams in real-time, while predominantly using only primary memory for storage. The existing
implementations of stream processing systems differ in several aspects including, but not lim-
ited to, query language capabilities, the nature of processed data, time model, and so on. For
example, Esper1 is a full-fledged stream processing engine focused on evaluating continuous
SQL-like queries over streams of events. For an extensive survey of stream processing systems
see [249].

Nowadays, a new generation of stream processing systems is emerging that is generally
referred to as distributed stream processing frameworks. These systems are used to process
generic data streams and provide capabilities for distributed processing. In many cases, users
must implement their own processing logic, yet they are provided with powerful abstractions
that allow them to transparently execute the implemented logic in a parallel-distributed way.
The most notable examples of distributed stream processing frameworks include Samza, Spark,
Storm, and Flink (all maintained by Apache Software Foundation)2. The benchmarks of the sys-
tems are available in [252, 253].

The key differences between traditional data processing and stream processing are summa-
rized in Table 19.

6.1.2 Stream-based IP Flow Analysis Framework

The interconnection of the stream processing framework and IP flow-based network monitor-
ing raises new challenges and requirements that must be addressed. We summarize the func-
tional and non-functional requirements for these systems and describe the logical architecture of
such systems. To demonstrate the possibilities of real-time analysis, we present the Stream4Flow
framework that is based on modern systems for large data processing.

1. http://www.espertech.com/
2. http://{samza|spark|storm|flink}.apache.org/
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Traditional processing vs. Stream processing

Data stored as persistent sets Data Infinite streams of individual data
tuples

Large secondary memory Storage Small primary memory
Ad-hoc Queries Continuous
No real-time capabilities Real-time Real-time processing
Single-query Optimization Multi-query
Mature tools and technologies Maturity New tools and technologies

Table 19: Differences between traditional and stream data processing.

Design Considerations

To successfully transform the batch-based IP flow processing into stream-based, it is necessary
to meet the same requirements as the original approach and in real-time. The data processing
speed plays an especially important role, but so do other requirements must be met, such as a
set of available data processing operations, fault tolerance, and system durability. As regards to
the minimal data processing speed of the approach, it must at least correspond to the average
number of flows generated by observation points inside the monitored network. For example,
in a medium sized network of 24,000 active IP addresses, we observed an average of 12,000
flows/second and 110,000 flows/second in the national-wide research and education network.
It can be expected that these numbers will grow in the future and, for that reason, the scalability
possibilities of the stream-based processing should also be considered so that it will not be
necessary to significantly change the data processing algorithms.

The stream-based approach of data processing must enable the analysis of the IP flow data
in a similar way as traditional batch-based approaches. This means that it should provide at
least the same basic set of data processing operations. Based on the common IP flow analysis
algorithms, we identified the following minimal set of operations that should be provided: fil-
ter, count, aggregation, combination, sort, and Top N. The stream-based approach should also
enable us to apply these operations to larger units of data and, thus, the window function is
necessary to supply traditional batch-based approaches. In addition to the available operations,
stream-based data processing must also ensure that each flow was processed just once to avoid
skewed results. Thus, the recoverability and durability options of data processing system should
be considered too.

Architecture Design

Analyzing IP flows in real-time was almost impossible in previously due to the poor perfor-
mance of data processing systems. In recent years, however, a change has occurred. Tools for
fast batch-based and stream-based processing of large volumes of data were progressively intro-
duced. In the paper by Cermak et al. [253], the authors demonstrated that distributed stream pro-
cessing frameworks, such as Spark, Samza, and Storm, are able to process at least 500,000 flows/s
using 16 or 32 processor cores, which significantly exceeds the minimum demand. Thanks to
this, it is possible to utilize these frameworks and extend current IP flow monitoring and anal-
ysis architecture. This enables to analyze IP flows in real-time and provides other analytical
methods that are not possible, or difficult to achieve, in common batch-based systems.

A generic interconnection of modern distributed stream processing frameworks into the
common IP flow monitoring architecture is shown in the Figure 48. We can see that the first
part of the monitoring architecture is the same as in traditional IP flow network monitoring.
The difference is in the second part, focused on the analysis of monitored data. To allow such
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interconnection, it is necessary to enable the collector to transform IP flow records into a suit-
able Data Serialization Format (DSF). Alternatively, the collector can be omitted from the archi-
tecture if the IP flow exporter can provide flow records in such a format. The typical format
for distributed stream processing frameworks is the JavaScript Object Notation (JSON) format,
which enables it to suitably represent any data records. However, the JSON format is not space
efficient and can cause overloading of the network if a lot of IP flows are processed. In the case of
a large amount of transmitted data, it is better to utilize a more space efficient data serialization
format, such as binary JSON (BSON) or MessagePack.

01
0110 
1010

01
0110 
101001

0110 
1010

01
0110 
1010

01
0110 
1010

01
0110 
1010

01
0110 
1010

01
0110 
1010

01
0110 
1010

01
0110 
1010

01
0110 
1010

 
 

 

11
1111 
1111

11
0000 
1111

01
0110 
1010

 
11
0000 
1111

11
0000 
111111

0000 
1111

 

Traditional Workflow 
of IP Flow Monitoring

Stream-based IP Flow 
Data Analysis

Collector

IP Flow 
Records

Collecting 
Process

Data 
Transform

DSF DSF

DSF

DSF

DSF

Messaging 
System

Stream Processing Framework

Analysed Data StorageWeb Interface

Figure 48: The architecture of a stream-based IP flow analysis framework.

The collector’s ability to transform IP flow records into a suitable data serialization format
is currently not widespread for common IP flow collectors, but several solutions, such as IPFIX-
col or Logstash (part of Elastic Stack software family3), exist, and it can be assumed that new
solutions will emerge in the near future. To effectively distribute the transformed IP flows, it is
advisable to utilize a messaging system that serves as an input interface for the stream process-
ing framework. There are many such systems, such as ActiveMQ, RabbitMQ, or Apache Kafka4

(for the full list see [254]), however, to process IP flows it is necessary to select one providing suf-
ficient throughput. Currently, the most suitable system is Apache Kafka, which offers sufficient
message throughput and is compatible with most data stream processing frameworks.

As mentioned earlier, modern distributed stream processing frameworks, such as Samza,
Storm, Spark, and Flink, provide sufficient data processing throughput. Thus, in the case of se-
lecting an appropriate system, the decision needs to consider the deployment environment
and functional requirements, such as data reliability, scalability, that suit to the considered use
well [253]. The intended use must also be considered during the selection of an appropriate data
storage for analysis results that can be stored in a common relational database, as well as in a
next-generation database. The storage should support advanced queries over stored data and
provide an optimal interface for a web interface so that IP flow analysis results can be visualized
to a user.

As discussed above, the stream-based IP flow analysis framework combines several inter-
connected components. The choice of systems for each of the components should reflect the
proposed use of the framework, deployment environment, and other mentioned requirements.
A list of the most suitable systems for a stream-based IP flow analysis is listed in the Table 20.

3. https://www.elastic.co/
4. https://kafka.apache.org/
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Architecture component Suggested systems

Collector IPFIXcol, Logstash
Messaging system Apache Kafka, NATS, RabbitMQ

(The full list available at [254])
Stream processing framework Spark Streaming, Flink, Samza, Storm, Trident

(All maintained by Apache Software Foundation)
Data storage Elasticsearch, Druid, OrientDB

(Next Generation Databases)
User interface Kibana, Grafana, Tableau

Table 20: Suggested systems for the stream-based IP flow analysis architecture.

6.1.3 Stream4Flow

To demonstrate possibilities of the architecture for real-time analysis of IP flows, we introduce
the Stream4Flow framework5. The Stream4Flow serves as an automated framework for rapid pro-
totyping of real-time IP flow analysis. The architecture of the framework is based on the design
described in the previous section. Besides the real-time analytics, the framework provides the
following features:

• Full stack solution – we integrate all tools necessary for IP flow analysis. The framework
enables a user to collect data from various network probes via IPFIX, NetFlow v5/v9
protocols, process IP flow records, and store and present the analysis results.

• High performance – the framework leverages the distributed nature of its components,
which provides scalability in terms of memory, number of CPU, and disk space available
for computation. Moreover, included tools for data analysis allow for parallel computing,
which ensures high throughput capabilities.

• Easy deployment – we are aware, that deployment of a monitoring infrastructure is not
a trivial task. Therefore, we automated the deployment of the framework using Vagrant6

and Ansible7, tools for software orchestration. The deployment is available either for
cloud environment or in a standalone mode. Initial tests and an application template
are included to ease the familiarization with the framework.

The architecture of Stream4Flow is depicted in Figure 49. We slightly modify the general
stream-based architecture presented in Figure 48. The results from a stream processing frame-
work are not sent directly to analyzed data storage. Instead, they are sent back to the messag-
ing system, so the messaging system serves as a central data hub. This optimization provides
us with a coherent interface for stream processing applications and allows for the creation of
chains of application used for advanced analyses.

Collection of the data from network probes is handled by IPFIXcol8 collector. The IPFIX-
col is an advanced substitution for nfdump that enables online transformation of the incom-
ing IP flow records into JSON format, contains advanced tools for IP flow record filtering and
anonymization, and provides methods for IP flow record forwarding, for example over a net-
work (TCP/UDP), or to other tools (Apache Kafka connector). The collector can also serve as
long-term storage of the IP flow records. The captured IP flow records are transformed into

5. https://stream4flow.ics.muni.cz/
6. https://www.vagrantup.com/
7. https://www.ansible.com/
8. https://github.com/CESNET/ipfixcol
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Figure 49: Stream4Flow architecture.

JSON format, anonymized if required, and sent to a messaging system. The JSON format was
chosen for its readability and easy processing. We are aware that JSON format is not optimized
for transmitting data over a network. To save network bandwidth, we recommend using BSON
or MessagePack data serialization formats as proposed earlier in the description of general ar-
chitecture.

The Messaging system is represented by Apache Kafka. Kafka is a distributed streaming plat-
form that enables you to publish and subscribe to streams of records. Further, it allows you
to store streams of records in a fault-tolerant way and to process data streams as they occur.
Apache Kafka is suited for building real-time streaming data pipelines that reliably get data
between systems or applications. The selection of Kafka was based on its scalability and parti-
tioning possibilities, which provide sufficient data throughput [255].

The data processing core of the framework is Apache Spark9. Apache Spark is a fast and
general-purpose cluster computing system. We employ an extension of the core Spark API
Apache Spark Streaming10 that enables scalable, high-throughput, fault-tolerant stream process-
ing of live data streams. Data can be ingested from many sources like Kafka, Flume, Kinesis, or
TCP sockets, and can be processed using complex algorithms expressed with high-level func-
tions like map, reduce, join, and window. Moreover, it is possible to apply Spark’s machine learn-
ing and graph processing algorithms on data streams. Apache Spark Streaming was selected as
the data stream processing framework for its quick IP flow data throughput [253], available
programming languages (Scala, Java, or Python) and MapReduce programming model.

Elastic Stack11, namely Logstash, Elasticsearch, and Kibana, are used as a storage for analyzed
data. Results are sent from Kafka to Logstash that serves as connector to the next-generation
database Elasticsearch. Kibana is a user interface for Elasticsearch that enables a quick and effort-
less first visualization of the analysis results. The whole stack is distributed and designed for
horizontal scalability and reliability. Although Kibana can provide initial visualization of the
analysis result, we still included a customized web interface for result presentation. The web
interface presents a highly customized and domain-specific visualization analyzes, that have
proven worthy. The web interface, shown in Figure 50, is built upon Web2py12, an open source
full-stack model-view-control web framework.

9. https://spark.apache.org/
10. https://spark.apache.org/streaming/
11. https://www.elastic.co/
12. http://www.web2py.com/
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Figure 50: Stream4Flow web interface of application for SSH attack detection.

We provide following applications for IP flow record analysis. The applications implement
analyses common for in traditional batch-based approaches. The analyses are transformed into
stream-based paradigm using time windows set to the batch size.

• Protocol Statistics – computes utilization of basic IP protocols (TCP/ UDP/ Other).

• DNS Statistics – computes basic Top N statistics of observed DNS servers, DNS record
types, and queried domains.

• Host Statistics – creates a basic profile of a host in a network.

• TCP Port Scan – detects horizontal and vertical port scans.

• SSh Auth Simple – is a basic detection for SSH brute-force attacks.

• DNS Open Resolvers – detects open resolvers in a specified network.

• DNS External Resolvers – detects external resolvers in a specified networks.

To demonstrate the performance of the Stream4Flow framework, we display data from our
production deployment of the framework. The framework is used for monitoring of campus
backbone network. The framework is deployed in VMware resource pool of total 35 GHz CPU
and 97.66 GB memory. The resource allocation of individual machines is presented in Table 21.
Producer machine includes IPFIXcol collector and messaging system Apache Kafka. Consumer ma-
chine provides Elastic Stack and web interface of Stream4Flow. Spark Master hosts the master ma-
chine of the Spark Streaming cluster and Spark Workers host the workers of the distributed Spark
Streaming cluster. We assigned the largest amount of resources to the Spark Master machine as
the master node of the Spark cluster performs both computation distribution to the workers and
the collection and reduction of the partial results computed by the workers.

Protocol Statistics application represents a basic example of the stream based analysis of
IP flow records. The primary purpose of the application is to compute the shares of different

133



6. Towards Real-time Cyber Situation Awareness

Machine CPU Allocation Memory Allocation
(MHZ) (MB)

Producer 2500 4096
Consumer 2500 8192
Spark Master 4000 16384
Spark Workers 1-4 3000 16384

Table 21: Resource allocation of Stream4Flow machines.

transport protocols in the network traffic. The schema of operation over input data stream is
depicted in Figure 51.

Filter Map 
(by protocol) Reduce Create 

window
Reduce

(in window)

Figure 51: Schema of data processing in Protocol Statistics application.

By default, the application is set to use five-second micro batches, and the statistics of the
protocols are computed over ten-second observation windows. The input data stream contains
all IP flow records observed at an observation point. First, we reduce the amount of data pro-
cessed in the data stream. For computation of the protocol statistics, we require only protocol
number from the whole IP flow record. Hence, we filter out IP flow record with the filled-in
protocol number key field, and we remove all other IP flow record keys. Second, we initialize
Map function to distribute the computation of the protocol statistics to workers. The protocol
number field serves as the mapping key. Third, the overall number of flows, packets, and bytes
statistics for all protocols are computed using the Reduce function. The Reduce function creates
a stream of the statistics calculated for each resilient distributed datasets13 and each protocol.
Fourth, we group the stream of the protocol statistics into a sliding window. Size of the sliding
window is set to ten seconds, and the slide is set to the same value which results in disjoint
sliding windows. Last, we compute statistics for each protocol over the given window using
Reduce function once again.
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Figure 52: IP flow input rates.

We deployed the application in the Stream4Flow framework and allocated 3 CPUs out of
32 CPUs total and 2 GB per worker (i.e., 8 GB in total) out of 64GB total memory for it. The
application processed all monitored IP flows observed at the backbone line. The input rate of

13. Resilient Distributed Dataset (RDD) is the basic abstraction in Spark. RDD represents an immutable, partitioned
collection of data that can be operated on in parallel.
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the IP flows that entered the application is depicted in Figure 52. On average, the measured
input rate was 9 101.44 IP flow records per second which reflects the distribution of input rates
in individual batches presented in the histogram.
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Figure 53: Batch processing time.

We measured the time needed for processing a batch of RDDs. The results of the measure-
ment are presented in Figure 53. The batch size was set to ten seconds. The processing time of
a data contained in a batch (i.e., on average 91 014.4 IP flow records) was 1.836 seconds. Hence,
one IP flow record was processed in 20.1726 µs. Since the batch size is set to ten seconds, i.e.,
every ten seconds a new batch ready for processing, the time needed for batch processing is
required to be lower than 10 seconds. Otherwise, the scheduling and total delays increases, the
data are not processed on time, the back pressure increases and the application is not stable
in the long term. Our measurement showed that the average time needed to process a batch
is 1.836 seconds with maximum values lower than 4 seconds, which is lower than ten seconds
making our application stable.

Host Statistics application is designed to compute selected statistics for all hosts in a mon-
itored network from IP flow record. As explained earlier, IP flow records resemble a connection
in network traffic and need to be transformed at high computation costs to provide a host-based
view. The host statistics application demonstrates the advantages of the distributed data stream
processing that allows us to compute the host statistics for connection-oriented IP flow records
even in real time. The implemented application computes following statistics for each host in
the monitored network for each observation window14:

• Basic statistics – sum of flows, packets, and bytes

• Port statistics – number of distinct destination ports

• Communication peers – number of distinct communication peers

• Average flow duration – an average of duration of all flows in a given observation window

• TCP flags – count of each individual TCP flags in all connections

The pseudocode below provides an example of distributed data stream processing to com-
puted basic statistics and port statistics.

1 # F i l t e r out only re l evan t IP flows tha t conta in required IP flow keys
2 flow_with_keys = input_stream . f i l t e r ( " Keys necessary fo r s t a t i s t i c s computation " )
3

4 # Compute bas i c hosts s t a t i s t i c s − a number of flows , packets , bytes sent by a host
5 ## Create a map
6 f l o w _ i p _ t o t a l _ s t a t s = flow_with_keys .map( key : " s r c IPv4 address " , values : ( " flows " ,

" packet count " , " bytes count " ) )

14. Minimal observation window is a one-second window.
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7

8 ## Reduce a map and compute r e s u l t s
9 f l o w _ i p _ t o t a l _ s t a t s . reduceByKey ( lambda actual , update : (

10 ac tua l ( " flows " ) + update ( " flows " ) ,
11 ac tua l ( " packet count " ) + update ( " packet count " ) ,
12 ac tua l ( " bytes count " ) + update ( " bytes count " ) ) )
13

14 ## Create s l i d i n g windows for aggregat ion
15 f l o w _ i p _ t o t a l _ s t a t s . window( "window duration " , "window s l i d e " )
16

17 # Aggregate information in windows
18 f l o w _ i p _ t o t a l _ s t a t s . reduceByKey ( lambda actual , update : (
19 ac tua l ( " flows " ) + update ( " flows " ) ,
20 ac tua l ( " packet count " ) + update ( " packet count " ) ,
21 ac tua l ( " bytes count " ) + update ( " bytes count " ) ) )
22

23 # Compute a number of d i s t i n c t communication peers of a host
24 ## Create communication pa i r s fo r each host
25 communication_peers = flow_with_keys .map(
26 key : " s r c IPv4 address " , values : ( " s r c and dst IPv4 address pa i r " , 1 ) )
27

28 ## Co l l e c t information to master
29 communication_peers . reduceByKey ( lambda actual , update : a c tua l )
30

31 ## Create s l i d i n g windows for aggregat ion
32 communication_peers . window( "window duration " , "window s l i d e " )
33

34 ## Aggregate information for host in a window ( remove dup l i c i t y in communication
pa i r s ) .

35 communication_peers . reduceByKey ( lambda actual , update : a c tua l + update )
36

37 ## Transform stream to conta in only s r c IPv4 address
38 communication_peers .map( key : " s r c IPv4 address " , values ( 1 ) )
39

40 ## Compute the number of communication peers fo r the key s r c IPv4 address
41 communication_peers . reduceByKey ( lambda actual , update : (
42 ac tua l ( values ) + update ( values ) ) )
43

44 # Jo in s t a t i s t i c s in to one stream
45 jo ined_streams = f l o w _ i p _ t o t a l _ s t a t s . fu l lOu te r Jo in ( communication_peers )

The input stream of IP flow record is reduced by filtering to only those IP flow records with
keys that are required for the computation of the statistics. The stream with keys is used for
parallel calculation of the defined statistics, the basic statistics and port statistics, given our sam-
ple listing. To compute basic statistics, we first create a map with map key set as a source IP
address to distribute the computation on the workers in Stream4Flow cluster. The statistics for
each RDD are computed using the function reduceByKey. Next, the data stream is split into
aggregation windows and the host’s statistics over a window is computed. The computation of
distinct communication peers of a host requires a different approach. First, we create a map that
contains a communication pair mapped by the source IP address. Next, we remove duplicity in
communication pairs by applying reduceByKey function and obtain a stream of unique commu-
nication pairs. The stream is divided into observation windows and the duplicity of communi-
cation pairs is reduced again. Last, the number of distinct communication pair is computed
by computing number of records (communication pairs) for a given source IP address using
a combination of map and reduceByKey functions. The data streams containing the computed
characteristics are joined into one stream to aggregate different host statistics in one stream for
further processing. Another implemented statistics are computed in parallel data streams anal-
ogous to our example.

136



6. Towards Real-time Cyber Situation Awareness

09:02:10 14:35:30

IP
 fl

ow
s/

se
c

0
5 000

10 000
15 000
20 000

5 000
10 000
15 000
20 000

0

(a) Time series

#batches
0 200 400 600

(b) Histogram

IP
 fl

ow
s/

se
c

Figure 54: IP flow input rates.

We deployed the Host Statistics application in the Stream4Flow cluster and assigned it with
8 CPU cores total and 4 GB memory per node (16 GB in total). The application measured all
IP flow record observed at the backbone network. The input rate of the IP flow record in an
approx. 5 hour long observation sample is depicted in Figure 54. The average input rate in the
measured sample was 10 679.51 IP flow records per second with maximum rates over 20 000 IP
flow records per second as displayed in the histogram.
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Figure 55: Batch processing time.

Analogous to Protocol Statistics application, we measured the time needed for processing a
batch of RDDs by Host Statistics. The batch size was set to ten seconds, and the sliding window
was set to twenty seconds with a twenty-second slide. The processing time of data contained in
a batch is depicted in Figure 55. The average processing time for all batches was 13.960 seconds
which is shorter than the size of the sliding window which ensures the long-term stability of the
application. We observed the processing times over twenty seconds during our experiment. The
increase of the processing time values correlates with the increased IP flow record input rate.
When the computation time of a batch was longer than the length of the observation window,
a scheduling delay occurs. The scheduling delay means that a batch is not processed immedi-
ately as it needs to wait before the processing the proceeding batch is finished. The scheduling
delays are depicted in Figure 56. Since the average processing time is shorter than the size of
the observation window, the observed scheduling delay vanished in time.
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Figure 56: Scheduling delays.
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6.1.4 Practical Implications of IP Flow Analysis in Data Streams

Having described stream-based IP flow monitoring architecture, we would like to emphasize
the possible benefits and pitfalls in the stream-based processing of IP flows, both in general and
those specific to stream processing frameworks. We, moreover, present a recommendation for
real-world use-cases of stream-based IP flow processing in cybersecurity. The following infor-
mation does not serve only for network security administrators, but it can assist anybody who
intends to process IP flows or other data in the data stream.

Benefits

A key advantage of stream processing IP flows is the real-time insight into network traffic. Anal-
ysis of IP flows can be done over particularly short time windows, which can reveal information,
such as bursts of network traffic, that would be lost in aggregation when using the usual five-
minute batches. A difference of IP flows statistics computed over short and long time windows
is shown in Figure 57. Furthermore, it is also natural to implement sliding windows with slides
smaller than the window size in stream processing. This approach allows us to analyze the data
and detect network attacks which would be split into two batches in non-stream approaches.
Analysis done over a short time window consequently lowers the detection and reaction time
to an attack. A detection method reports an attack immediately as it receives the IP flow, which
triggers an alert. Therefore, there is no analysis delay as in batch processing. Immediate de-
tection is essential for, among others, DoS attacks or intrusion detection, so that measures to
minimize the potential damage by an attacker can be taken instantly.
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Figure 57: Effects of different time windows used for IP flow aggregation.

Compared to batch-based IP flow processing, stream processing also has an advantage in
processing queries. In traditional batch-based approaches, data are first stored on a hard drive
and then read from the drive for querying. In stream processing, the data are analyzed in the
primary memory (RAM) and are not stored on the hard drive. Stream processing is, then, faster
in query processing as no disk I/O operations are needed.

Besides the abovementioned advantages, stream processing frameworks provide two key
advantages over contemporary frameworks for IP flow analysis; scalability and a MapReduce
programming model. Scalability is ensured by choice of a distributed framework, both for data
reception and data processing. If higher performance is needed, a node can be easily added to
the framework to boost performance. The distributed character of the systems makes the use of
the MapReduce programming model possible. The MapReduce model splits the analysis into
parts, and the parts are mapped and distributed to computational nodes. The nodes provide
partial results of the analysis, and the results are then reduced to get the final overall result. The
distribution of partial computation tasks enables to parallelize and speed up the computation.
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Our experience shows that this approach is suitable for computing host statistics as a host’s IP
address is suitable as a map key. Whereas batch based network monitoring usually analyses
a network as a whole, the MapReduce programming model enables us to gather information
about all hosts in the network efficiently.

Pitfalls

The time aspect plays an important role in stream processing of IP flows. A timestamp assigned
to an IP flow determines its position in the data stream and the order of processing. It also places
the IP flow into context. Assigning the timestamp incorrectly may bias flow analysis. However,
which timestamp should be assigned to an IP flow may be unclear. An IP flow lasts a portion
of time, so there are start and end timestamps for the IP flow. Using either of these timestamps
has several pitfalls. First, we need to ensure precise time synchronization (in milliseconds) of all
probes in a network to get a properly ordered stream of IP flows. Second, data stream processing
frameworks must support external timestamps which is not always true. Last, IP flows from
probes may arrive at the stream processing framework unordered due to link latencies, or may
be lost during transmission over the network. A suitable substitution to the latter timestamps
is to use implicit timestamps (see pp. 127) representing the time when an IP flow is received by
the stream processing framework. This timestamp does not require probe time synchronization
and external timestamp support, as the timestamp is assigned to an IP flow by the framework. It
also ensures the correct order of IP flows as the observation is done in the framework. In all the
above cases, we generally need to ensure that timestamps are assigned to IP flows consistently
through the whole monitoring infrastructure and that IP flows are properly ordered in a data
stream.

Stream processing also changes the nature of the analysis itself. In batch-based IP flow data
processing, we were able to perform a query over historical data or search back through raw
data for additional information after detecting a successful attack. In the stream-based IP flow
analysis, we are not able to analyze data back in time. We can only analyze the data from the
time a query arises and after. Moreover, the raw data are not usually stored, only the results
of the analysis. This means that the analysis cannot be done ex-post and it must be predefined
before the data is analyzed. In other words, we need to know queries over data before we begin
to analyze the data in the stream. This fact makes stream processing of IP flows unsuitable for ex-
post data analysis. On the other hand, it seems suitable for continual queries, regular reporting,
computing statistics, and detection methods. This disadvantage can be solved by using lambda
data processing architecture, which combines batch and stream based analysis [256].

As mentioned earlier, IP flows are analyzed over a time window. The effect of processing
IP flows in the data stream is a reduction of the time window for IP flow analysis from min-
utes to seconds. The reduction of the window may influence the results of the analysis, and it
is necessary to adapt current data analysis techniques to it. Due to the window reduction, com-
puted statistics may become more volatile, as shown in Figure 57, and prediction techniques
may report higher prediction errors. Also, existing reporting and detection thresholds need to
be adapted (usually lowered) to the new windows.

Recommendations

We have discussed the possible benefits and pitfalls of stream-based IP flow analysis above.
Now, we provide a recommendation for its efficient application in industry. We disclose sugges-
tions for designing stream processing applications and provide suitable practical applications
of stream-based IP flow analysis in traffic monitoring for cybersecurity.

The efficient design of applications for stream-based IP flow analysis should properly or-
der the operators over a stream of IP flows. The proper optimization of operators increases the
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application’s performance significantly. High-level techniques for operator optimization are de-
scribed in [250]. We further recommend embracing the MapReduce programming model [257],
which allows the computation tasks to be distributed among more computational nodes. For
example, source or destination IP addresses are eligible map keys for computing host statistics.
Source or destination ports may also serve for computing network services statistics.

To ease the adoption of stream-based IP flow analysis in cybersecurity, we have provided a
list of example suitable stream analysis applications:

• Real-time attack detection – the vast majority of batch-based detection methods can be
transformed into stream based detection methods. By shortening the time window for
analysis and the adapting parameters for detection methods, we can achieve real-time
detection, which is desirable in DoS or intrusion detection, among others.

• Adding context to cybersecurity – stream-based IP flow processing is suitable for prede-
fined, continuous data analysis. It can be used to supplement traditional network mon-
itoring for pre-processing of additional information needed for network security. The
additional information may add context to detection methods, such as the number of
total IP flows for a given IP, a list of the top talkers in the network, all counted over sev-
eral different time periods. The information is immediately accessible on demand, and
no demanding queries over historical data are needed.

• Host IP profiling and trending – whereas traditional network monitoring analyses the
network as a whole and provides network summary statistics, the stream approach is
also convenient for efficiently monitoring individual hosts in the network. MapReduce
enables to compute characteristics that may represent a host’s activity on the network
(the number of transferred packets, bytes, communication partners, and so on), and a
host’s communication profile (such as frequently visited IP addresses, web pages, or ac-
tive hours in a network). This approach can also be used for creating long-term profiles
for all host or services in the network with trend estimation and behavior stability moni-
toring.

6.1.5 Summary and Outlook

Stream-based IP flow analysis represents a natural complement to currently mainstream batch-
based approaches to cybersecurity. It allows security analysts to perform real-time analyses on
network data. The stream-based framework benefits from compatibility with current monitor-
ing systems and excels in real-time attack detection, monitoring both network and individual
hosts, and providing a context to network security. The presented distributed stream-based
framework for IP flow analysis can handle streams of a large volume of data at high speeds
and keeps up with the latest network monitoring trends.

Since the volume, speed, and diversity of network traffic will continue to increase in the fol-
lowing years, network monitoring tools should follow this trend. The tools of the future should
be able to process traffic at speeds of over 100 Gb/s, gather more information from network
traffic (such as service-specific or IoT information), and should natively support a wider variety
of formats for exporting IP flow records. In a similar manner to the probes, stream processing
systems will have to process more data at higher speeds. This challenge is partially solved by
the above-described scalability of the current systems. Nevertheless, we expect optimizations
for managing resources more efficiently in memory allocation, or query response time via the
use of sketches, for example, or approximative data structures which are supposed to emerge.
Moreover, advanced data mining and machine learning methods for intrusion detection are
expected to be adapted and natively supported by future data stream systems.
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We anticipate the increasing utilization of IP flow network monitoring for both network and
host security. With the emergence of new visionary paradigms, such as the Internet of Things,
host-based security will become obsolete as it will be impossible to guarantee the proper setting
of host security systems for all connected devices. Network traffic measurement, namely IP flow
analysis, will become essential for network defense. We believe that the stream-based IP flow
analysis is a suitable approach to achieve the next-generation network security.

6.2 Next-generation IP Flow Monitoring

An IP flow network monitoring infrastructure of the future should adapt to emerging trends in
IP flow monitoring (see pp. 36), and face the current challenges both of IP flow monitoring (see
pp. 47) and IP flow analysis (see pp. 53). The infrastructure of the future should scale easily to
store and should be able to process large volume of network traffic, provide sufficient through-
put to monitor high-speed networks, should have enough memory and computational power
at disposal for advanced analyses, be capable to analyze data in real time, and should respond
instantly to operator’s queries.

In Chapter 3, we presented a traditional batch-based IP flow monitoring infrastructure. As
we showed, the batch-based type of infrastructures suffers from, among other, performance,
scalability, and high response time issues. To address these issues, we introduced the real-time
IP flow monitoring infrastructure in this chapter. However, our real-time approach also suffers
from shortcomings, such as an inability to raise ad-hoc queries, that are present in batch-based
infrastructure. We believe that a convenient merge of approaches mentioned above might result
in an infrastructure capable of facing a majority of the presented challenges of IP flow monitor-
ing.

In this section, we combine the advantages of batch-based and stream-based approaches
and present a network IP flow monitoring infrastructure build upon lambda architecture concept.
First, we explain the basic principles of the lambda architecture. Next, we map these concepts
to the domain of IP flow network monitoring and outline a next-generation IP flow monitoring
infrastructure. Then, we discuss the advantages and disadvantages of the proposed architecture.

6.2.1 Basic Principles of Lambda Architecture

The lambda architecture is a generally acknowledged approach for building big data systems
proposed by Marz and Warren [256]. The lambda architecture represents a solution with higher
performance while it avoids the complexity of fully incremental architectures [256]. The premise
behind this architecture is that it is possible to run a query over the whole data. However, it is
very demanding regarding computational resources. The main idea is to pre-process the data
and provide a set of views, and then query the views [258]. The lambda architecture has al-
ready been used in several areas, such as in monitoring the World Wide LHC Computing Grid
network traffic [259], Internet of Things and smart city monitoring [260], or in energy consump-
tion monitoring [261].

The high-level schema of the lambda architecture is depicted in Figure 58. The lambda ar-
chitecture is built as a series of three layers: batch layer, speed layer, and serving layer. The batch
layer utilizes advantages of traditional batch-based data management systems, the speed layer
takes advantage of stream-based approaches, and the serving layer serves for unified access to
previous two layers. We discuss the layers in detail below.

Batch Layer

The primary goal of the batch layer is to produce precomputed views for the queries called batch
views continuously. The precomputation of the queries reduces the response time of the queries
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Figure 58: Lambda Architecture Schema (inspired by [256, 258]).

as it is not necessary to compute a query on the fly. The precomputed view is indexed and
accessible with random reads. A batch view is computed continuously by running a function
over the master dataset. However, the computation of a batch view is a high latency operation
as all data from master dataset needs to be processed. By the time a function is finished, plenty
of new records is already inserted into a master dataset, so a query using the function returns an
outdated result. The out-of-the-date result issue is solved by the speed layer, as we show later.

The key performance indicator of the batch layer is how long it takes to update the batch
views [256]. Since the speed layer compensates for the latency of batch layer, we need to balance
carefully size of the batch view and the time needed to batch creation. The greater a view, the
longer time needed for its computation and the larger volume of data is processed in the speed
layer. There exist approaches to decrease the latency of batch view creation. An incremental
batch processing, where a view is computed based on incremental changes of the master dataset,
is worth mentioning.

To fulfill its function, the batch layer needs to be able to store an immutable, constantly grow-
ing dataset, and to precompute the views. The layer requires to scale to capture large amounts
of data, be distributed to allow big data processing, and fault tolerant on the one hand. On the
other hand, the batch layer is forgiving and can recover from errors [258]. Since all data are
stored in the master dataset, the views can be recomputed in case of an error. A batch layer is
best implemented by using a batch-based distributed data processing systems, such as Hadoop,
Apache Spark, or Presto15.

Speed Layer

Speed layer serves to provide a real-time view on the most recent data, that are unavailable in the
batch layer. This layer overcomes the out-of-the-date results issue presented in the batch layer.
The speed layer aims to achieve the smallest latency possible, to provide the most recent data
views. The low-latency and near real-time data processing is possible, as the volume of data
processed is small.

The new data are served into a speed layer in the form of continuous data streams. A new
incoming data in a data stream is instantly processed, and the real-time view is updated to pro-

15. https://prestodb.io/
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vide the most recent results. However, the stream-based data processing is much more complex
compared to batch-based data processing. As shown in the previous section, several pitfalls
need to be overcome, e.g., correct data ordering. Once the batch layer computes a batch view
corresponding to a real-time view, the real-time view can be discarded. This property of the
Lambda Architecture is called complexity isolation, meaning that complexity is pushed into a
layer whose results are only temporary [256]. If anything ever goes wrong, you can discard the
state for the entire speed layer, and everything will be back to normal within a few hours.

Examples of technologies that are used in the serving layer are frameworks for distributed
data stream processing, such as Apache Spark Streaming, Storm, Samza, or Flink. The real-time
views are typically stored into NoSQL databases [262].

Serving Layer

The serving layer merges the real-time and batch views so that they can be queried in a consis-
tent manner. The serving layer is a specialized distributed database that enables random reads
on the views. The serving layer ensures that most up to date results are available. As soon as a
new view is available, the serving layer automatically swaps those in and uses the new view to
answer a query.

Examples of technologies, that are used in serving layer are Apache Cassandra16, MongoDB17,
Apache Impala18 or ElephantDB19.

The above-described layers and their integration naturally results into the following properties
of Lambda Architecture [256, 262]:

• Robustness and fault tolerance – The system is tolerant to both human and machine
failures, as all views can be recomputed from the master dataset in case of failure. The
master dataset is stored in a distributed data storage. The distributed data storage uses
data replication and partitioning techniques to be able to recover data in case of failure.

• Scalability – Tools used in lambda architecture layers are distributed systems that are
scalable and can be scaled independently by simply adding a new machine to a cluster.

• Generalization – The concept of the architecture is general and can be applied in different
areas. We later present its application to IP flow monitoring domain, and cyber situation
awareness Domain.

• Low latency update – The architecture allows for low latency read while keeping the
database robustness.

• Ad-hoc and continuous queries – Ad-hoc queries are supported naturally by the batch
layer, while the continuous queries are optimal for the speed layer.

6.2.2 Next-generation IP Flow Monitoring Infrastructure

Since the lambda architecture is a general design, it can also be applied to IP flow network
monitoring domain. We show, how can be all layers of the lambda architecture adapted to the
IP flow monitoring workflow. The IP flow monitoring workflow described in Chapter 3 fits into
the description of the batch layer with some extend to serving layer20. The real-time IP flow

16. https://cassandra.apache.org/
17. https://www.mongodb.com/
18. http://impala.apache.org/
19. https://github.com/nathanmarz/elephantdb
20. For the sake of clarity, we shall use term batch-based IP flow monitoring for IP flow monitoring workflow described
Chapter 3 through this section.
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monitoring that we proposed in Section 6.1 matches the properties of speed layer with some
extend to serving layer as well21. In the following paragraphs, we discuss the design of the IP
flow monitoring infrastructure based on lambda architecture approach in detail.

The IP flow monitoring infrastructure based on the lambda architecture is displayed in Fig-
ure 59. Modifications of the IP flow monitoring workflow related to its application to the lambda
architecture paradigm applies mainly to the Collection Process of the IP flow monitoring work-
flow (see pp. 42), and affects the IP flow record analysis. The packet observation, Metering Pro-
cess, and Exported process remain intact as they are described in Section 3.3. In the batch-based
IP flow monitoring workflow, the IP flow record reception and collection are usually closely
linked and handled by the same machine - the collector. In the lambda architecture, the IP flow
records are served both for immediate storage to a master database located in the batch layer
and for the on-the-fly processing performed in the speed layer. Hence, the IP flow reception is
detached from the collection and placed into a dedicated device - the messaging system.

The messaging system carries out two main functions: IP flow reception and their distribu-
tion for the batch and speed layers. To provide its primary functions, a messaging system is
expected to meet the following requirements. The system should be able to receive the majority
of current IP flow transport protocols (NetFlow v5,9, IPFIX, sFlow, and so forth) from multiple
devices simultaneously. Further, the system should provide sufficient throughput to be able to
process IP flow records even from high-speed, large-scale networks. Hence, a distributed archi-
tecture that provides multiple input and output points and scalability is a suitable choice. Next,
the system should be able to connect to and provide data for multiple consumers from speed
and batch layers. Besides these main function several optional, but practical, functions of the
messaging systems are appreciated: partitioning, and IP flow record preprocessing. The parti-
tioning of the incoming IP flow record into a logic partitions enables to provide a different subset
of IP flow records (i.e., partitions) to different data consumers. For example, only IP flows, that
originates in the monitored network can be sent to speed layer to provide a real-view for a secu-
rity operator, while all monitored flows are sent to master storage for data retention. Using data
partitions, the data flow can be optimized, and computational costs can be reduced. The other
optional function, IP flow record preprocessing, includes, but is not limited to, IP flow record
anonymization, and transformation for data serialization format. To the best of our knowledge,
we are not aware of any distributed messaging system designed and optimized solely for IP
flow record processing. There exist distributed messaging systems designed for distribution of
general data, such as Apache Kafka, RabbitMQ [254], but these messaging systems are not opti-
mized for IP flow record processing and cannot receive the IP flow record transport protocols.
Instead, IP flow records need to be transformed to a common data serialization format before
they are provided to the messaging system. Moreover, these messaging systems do not pro-
vide the additional functions such as IP flow record anonymization or transformation to JSON
format. IPFIXcol [227] is a non-distributed collector that can serve as an optimized messaging
system for IP flow record distribution. It supports the majority of IP flow transport protocols, has
intermediate plugins for IP flow record anonymization, and can distribute the IP flow records to
the batch and speed layer over a network. It provides a native connector to FastBit database that
is used for IP flow record storage. Our deployment experience shows that IPFIXcol provide suf-
ficient throughput to monitor even high-speed networks of national ISP. IPFIXcol also supports
a naive partitioning using round-robin distribution of IP flow records among multiple data con-
sumers. The disadvantages of IPFIXcol are that it is not distributed and does not provide native
connectors to frameworks for distributed data stream processing.

The data handling in the batch layer of the IP flow lambda architecture corresponds to data
handling in the batch-based IP flow monitoring workflow. The IP flow record storage used in

21. For the sake of clarity, the term real-time IP flow monitoring will be used for IP flow monitoring workflow described
in Section 6.1 through this section.
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the batch-based workflow fulfills the role of the master storage straightforward. Zadnik, Krobot,
and Wrona [133] describe the native Hadoop, Hive22 and Pig23 as obsolete technologies from the
perspective of IP flow record collector. The authors recognize Impala as well as Vertica as a fea-
sible solution to store and query flow records as these systems outperform the previous ones
if we consider the same hardware setup. The precomputation of the batch-based view is also
already present in some of the current tools. For example, Nfdump tools allows to create a profile
for which all basic characteristics, such as a number of IP flows, packets and bytes are precom-
puted. A profile can represent a single IP address, network range, network protocol, and so
forth. Views for a profile are count, usually every five minutes, and they are stored in a Round
Robin Database. The views are mainly used for visualizations of the main profile’s characteris-
tics. The distributed data storage mentioned above does not provide the precomputation of IP
flow batch views. Nevertheless, the precomputation of a batch view can be implemented as an
application. The size of the precomputed batch views can remain the same as the traditional
analysis window in the batch-based IP flow monitoring – five minutes. Besides this basic view,
the batch layer can compute additional views, e.g., views based on titled windows on a day,
week, quarter, or year bases.

The speed layer is based on a distributed system for stream-based data processing as de-
scribed in Section 6.1. The distributed stream-processing system is connected to the messaging
system by one or more connection points. The possibility to connect to a messaging system by
more connection points allows for higher throughput. In the IP flow monitoring field, the speed
layer serves to fill the five-minute gap introduces in the batch layer. Therefore, the update inter-
val of the real-time views produced by speed layer is required to be shorter than the five-minute
update interval of the batch layer. Recently, we observe an efforts to merge include the function-
ality of the speed layer directly to the messaging systems, e.g., Kafka Streams 24. Kafka Streams
implements microservices that process the data in the messaging system in real time and allows
for the enrichment of the original data directly in the messaging system. The presented advan-
tage of this approach is that it allows running a basic data preprocessing tasks without the need
of any additional computational cluster.

The serving layer serves to make the batch and real-time views accessible for a query in-
terface. In the lambda architecture described in the previous section, the real-time view is dis-
carded as soon as a relevant batch view is computed, which means that data representing one
information is processed twice – first in a speed view to create a real-time view, and second
in the batch layer when a batch view is computed. In our approach, the serving layer keeps
the real-time views for specific queries instead of discarding them. These specific queries can
be answered from the real-time view and do not have to be recomputed by in the batch layer.
On the one hand, this approach puts higher computational demands on the serving layer, as
the real-time views often need to be further processed to answer a query. On the other hand,
computational power is spared at the batch layer, as batch views do not have to be computed
for those specific queries that are processed exclusively by the speed layer. The queries that are
suitable for processing solely in the speed layer have the following properties:

• reasonable size of observation window – the size of the observation window needs to be
suitable for processing in data streams. The size of the observation window along with
the volume of network traffic determine the volume of data, that needs to be stored in
the primary memory for computation. For example, if we assume an average size of IP
flow 150 B, IP flow rate 50 00 flows per second, a one-minute observation window would
require to keep 45 MB of data in memory. In the case of one-hour observation window
the volume of memory would be in 2.7 GB, and for one day the volume would rise to

22. https://hive.apache.org/
23. https://pig.apache.org/
24. https://kafka.apache.org/documentation/streams/

146

https://hive.apache.org/
https://pig.apache.org/
https://kafka.apache.org/documentation/streams/


6. Towards Real-time Cyber Situation Awareness

64.8 GB needed for creating one real-time view. There exist techniques that can reduce the
volume of data needed to keep in memory, such as filtering of unnecessary information
at the beginning of the analysis process, or computation of the long-term window from
partial short-term results.

• aggregable – the views that are computed exclusively in speed layer should be suitable for
aggregation to allow for creating queries over different time windows. The minimal size
of the time window is limited by the frequency of the real-time views. Example of a query
that allows for aggregation is a query for a total number of observations. A total number
of observations in one hour can be computed as a sum of one-minute real-time views.
Top N statistics represents an example of a query, that is not suitable for aggregation,
as Top N observations over one day do not correspond to Top N of twenty-four Top N
observations over one hour.

In general, we recommend submitting continuous queries that are known in advance and that
show the properties described above for exclusive processing in the speed layer and answer
these queries using real-time views. Irregular queries or ad-hoc manual analyses should be
processed in the batch layer and answered using batch views. A database systems suitable for
serving layer are Elasticsearch or Neo4j.

The main advantage of IP flow monitoring based on the lambda architecture is the reduc-
tion of delays introduced by a collection process and a query execution time. The lambda archi-
tecture, namely the speed layer enables to obtain query results in near real time reducing the
delays to the minimum. It is important to mention that the delays introduced during the export-
ing and metering processes of IP flows prevail. The term "real-time" refers to the IP flow export
time and not to the observation of a packet at the observation point. A further discussion and
elaboration on the notion of the term "real-time" in the context of the whole IP flow monitor-
ing workflow is still needed and is left for further research. Another open research opportunity
is an assessment of the impact real-time data processing on the information carried in a data.
We already identified the increased volatility of a time series measured with the real-time mon-
itoring (see pp. 6.1.4). Other effects of the high granular data on the current IP flow analysis
techniques remain unexplored. Last, but not least, the optimization efforts are at place as well,
as no lambda-based architecture optimized directly for IP flow measurement is available.

6.3 Toward Real-time Network-wide Cyber Situation Awareness

The application of the cyber situation awareness concept in the network security domain is not
straightforward. The efficient application of cyber situation awareness faces several major chal-
lenges due to high dynamics of the network environment, speed and volume of network traf-
fic, and complexity of the computer networks. An analyst is overloaded with the raw network
data [14]. Volume, velocity, and variability of the raw data prevent him/she them from com-
prehending a network and taking proper decisions. The speed at which cyber events occur is
another challenge. The reaction speed of defenders is much smaller in comparison to the speed
of the intruder’s actions due to the automation of the attacks. Last, but not least, a challenge is
to provide a homogeneous toolset with a unified view both on whole network and individual
elements in a network.

CSA systems are multilevel. A CSA system relies on information from intrusion detection
systems (IDS), antiviruses, malware detectors, logs, flows and other information sources. This
raw information is transformed into events that are further processed [263, A12]. The number
of events is however still too high, and their processing is too labor-intensive to be processed
manually. The systems for automatic creation of even higher abstractions are needed [14]. The
higher abstractions are, for example, graphs of networks with vulnerability dependencies, or
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decision trees serving as cyber defense support. Prototype systems that are capable of provid-
ing the higher abstractions are emerging in literature, e.g., CAULDRON [263], AHEAD [264].
Further, the distillation of valuable information for CSA from network data is a big data prob-
lem as the volume of network traffic is increasing on a compound annual growth rate of 21 %
every five years [81].

For a full comprehension of a computer network, we need both a big picture of the network
(macro view) and atomic information about network elements (micro view). A macro view pro-
vides us with a holistic view of the network, allow us to capture the broader context of events,
and see far-reaching consequences of individual actions. The micro view, on the other hand,
offers detailed information about an element in a network. Micro view is a cornerstone data for
analysis. However, without the macro view, the micro view provides only detailed, context-less
information. Distributed denial of service (DDoS), and advanced persistent threat (APT) repre-
sent examples that demonstrate a need for both macro and micro views. Individual monitoring
of a given server, i.e., micro view, can detect a DDoS on a hosted service. A macro view is ap-
plicable when we mitigate the DDoS, e.g., by blocking the traffic on a firewall. The macro view
provides information, what is the relevant firewall to drop traffic at and what other services in
the network are affected by this precaution. In the APT use-case, a compromise can be detected
using a micro view. The trace of the attacker across machines in a network or the point of initial
compromise can be detected using the macro view.

This section provides a proposal of the extension of the next-generation IP flow monitoring
infrastructure to the cyber situation awareness domain. We identify requirements for an efficient
application of cyber situation awareness that respond to challenges mentioned above. Next, we
outline a novel framework that meets the identified requirements. The framework reduces data
overload through distributed data computing suitable for processing of a large volume data.
The speed of the reaction is improved by a merge of a traditional batch-based data analysis and
the stream-based approach.

6.3.1 Requirements

A great variety of information is needed to achieve an efficient CSA. Figure 60 summarizes the
current state of network perception and comprehension and highlights issues of contemporary
CSA.

First, there exist many tools that retrieve data of various types from a network. Each tool
usually uses own storage and leverages a tool-specific analysis language and approaches. The
tools have different settings of data collection process and storage which influences analysis
workflow and data comprehension. Second, raw data is collected at high speeds and volumes.
As the tools for data collections differ, the data type, format, frequency, and information they
carry differ as well. Moreover, information carried in raw data can overlap, duplicate, or even
contradict, which further impedes the analysis. Third, a network administrator has to under-
stand many network monitoring methods and approaches, switch between them for specific
information, run different types of analyses, and use various levels of details in an analysis. The
diversity of data sources and the complexity of the analysis also hinders the decision process as
it takes to an administrator a longer time to collect all data necessary for an informed decision.
The result is then a low reaction speed in NwCSA.

To face above mentioned disadvantages and challenges in the perception and comprehen-
sion of a network, we impose the following requirements for an effective network-wide CSA:

• Performance - the framework should be able to process and analyze large volumes of the
data at high speeds.

• Universality - the framework should be able to gather and process several data from
various data sources.
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Figure 60: Current state of perception and comprehension of a network.

• Context - the framework should be able to offer complete information including context
relevant to the information instead overwhelming a user with a flood of raw data.

• Dynamic level of detail - the framework should be able to provide a dynamic level of
detail both in time and information domain.

• Reaction time - the framework should minimize the time needed for analysis to increase
the speed of reaction.

In the following section, we apply all requirements and describe a novel framework for a
network perception and comprehension in network-wide CSA along with its prototype imple-
mentation.

6.3.2 Real-Time Cyber Situation Awareness Framework

The proposed framework for network perception and comprehension leverages new advances
achieved in distributed data stream computing and apply their concepts to the network-wide
CSA domain. Such an approach results in several improvements in performance, universality,
and data analysis.

The proposed framework is depicted in Figure 61. The framework is built upon the lambda
architecture for IP flow monitoring described in the previous section. Since the lambda architec-
ture is a general concept, we can abstract from processing only IP flow records and generalize
its purpose to processing cybersecurity data related to network-wide CSA. However, the frame-
work, as it is described in the previous section, is not designed to effectively process different
types of data from various sources, as it is stated in the universality requirement. Once we gen-
eralize its application to any cybersecurity-related data, the framework does not provide means
to represent different data in the common format, so the analysis and querying of the different
data in the same query are not straightforward possible.

To be able to process data from various probes in one system, the data needs to be normalized
into a general data format. Hence, we include a normalization system into the architecture. The
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Figure 61: Framework for perception and comprehension of a network.

normalization of the data is a challenging task. Log data, for example, are repeatedly reported
to be unstructured and of poor quality. This fact hinders their transformation and unification
of the carried information to common data types and formats, that are accessible in common
ways. The log normalization is researched by Tovarnak in [265] where the author proposes a
log data normalization approach based on prototype-based programming. The approach con-
sists of domain-specific language that can describe log data normalization in an object-oriented
manner and of a normalization engine that executes the described normalization. The IP flow
records can be normalized using IPFIX templates associated with the given IP flow record. In
general, each data source requires a specific codec, i.e., mapping for the carried information, to
be able to normalize the information into a common format. Once input data is normalized into
a common format, e.g., Data Serialization Format, it is handed over to the messaging system.
The messaging system is an entry part of the lambda architecture contained in the framework.
The data are processed and queried in the same manner as described above.

Besides the data processing and querying, a layer for the presentation of the analysis results
to an operator plays a significant role in the framework. The book collection by Kott, Wang, and
Erbacher [14] includes a chapter on visualizations and analysis by Healey et al., where visualiza-
tions for cyber situation awareness are discussed in detail. The visualizations supporting CSA
are various charts and maps, node-link graphs, timelines that highlight temporal patterns and
relationships, treemaps, or hierarchical visualization techniques. Moreover, the authors iden-
tify a set of properties that should be reflected by a visualization layer. The layer should fit the
analyst’s mental model and integrate into the current working environment. The used visualiza-
tion should be familiar to an analyst and have a gradual learning curve. Last, but not least, the
visualization should be scalable in terms of the volume of data to visualize and data retrieval
from various sources.

Let’s now review each of the stated requirements for a network-wide cyber situation aware-
ness framework. We examine the framework from performance, universality, dynamic level of
detail, context, and reaction time point of view. Conclusions of the discussion are based both
state-of-the-art findings and own experiences from prototype deployment.

Performance

An efficient framework should be able to process data from variable data sources at high speeds
and volumes. Distributed stream processing, distributed master data storage, and system of
precomputed views used in framework allow for data processing even in volumes and veloc-
ity described above. In the case of need for higher performance, an additional computational
node can be added to increase throughput. Moreover, there is no single point of data input that
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might become a potential bottleneck as messaging systems and normalization systems can be
distributed as well. The data are received through multiple input points, which further increases
the throughput. It has been shown in [253] that tools for distributed stream data processing are
capable of processing data in volumes and speed over 1M records/second in a small cluster of
four commodity servers.

The proposed framework also brings performance advantages regarding data analysis. Some
advanced analyses, such as data clustering, computation of long-term characteristics, or top N
characteristics, are computationally intensive and demand large volumes of memory and com-
putational power. The distributed nature of the stream processing systems allows task paral-
lelization using MapReduce programming principle [257], which makes the computation of
such tasks possible. Processing data in data streams also brings a performance advantage. The
operations over data streams, such as duplication, split, union, enables us to parallelize the data
streams and their analysis. The parallelization further increases the speed and possibilities of
the analyses.

Universality

Universality requirement guarantees that a framework based system can receive and analyze
data from various types of data sources. The universality is achieved in two steps. The first step
is the ability to receive from different data sources. The second step is the ability to analyze
various data within one system.

Data sources provide data with different structure and information. A normalization system
used in framework maintains universality by using so-called codecs. A codec is a description of
a data structure sent by a data source. It specifies the position and meaning of given information
in sent data. Normalization tools, such as Logstash, support input codecs for a variety of data
sources including a Netflow v5/9 codec for data from IP flow monitoring, Nmap codecs for
results active network scanning, or syslog codecs for machine logs.

Various types of data can are analyzed in the proposed framework due to the unified in-
ternal representation of the data. An implemented normalization process transforms the data
into readable, comprehensible format. Due to the dynamic and structure of the received data,
a general data serialization format (DSF) can be used. Widely popular DSF is Javascript Object
Notation (JSON) format. JSON is an open-standard file format that transforms objects into key-
value pairs of human-readable text. The DSFs enable to share the data efficiently among the
individual components of the framework no matter of the input data format.

Dynamic Level of Detail

Comprehension of a network requires two kinds of dynamic details - a dynamic level of time
granularity and dynamic level of view perspective. The proposed framework implements both
of the dynamic levels of details.

A challenge of dynamic level of time granularity is to provide short-term results. The long-
term statistics can be derived from short-term statistics by aggregation. The short-term results re-
quire a data collection and analysis in small time intervals (so-called micro batches). The stream
processing approach used in the framework is designed to process and analyze data in micro
batches. The micro batches enable us to achieve a required level of minimal time granularity.
The stream processing frameworks also implement a concept of sliding windows suitable for
long-term analysis. An illustrative example of the advantages of a stream processing frame-
work is an analysis of IP flows. A probe exports IP flows for analysis in a continuous stream.
Current tools for IP flow analysis, however, aggregates this continuous stream into batches of
five-minute data. The analysis is then done per batch. Using the stream processing frameworks,
we can analyze the data per IP flow.
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Dynamic level of view represents the possibility to see a network both from overview and
in detail. In current network-wide CSA, both views were obtained by a different set of tools
specialized for a given view. Providing both views from raw data in a unified tool was too com-
putationally demanding as raw data for both views needed to be processed. Distributed systems
and MapReduce programming principle enable such computations, which makes a macro and
micro view in a single tool possible. We can assign an entity identifier (e.g., IP address, MAC
address) as a mapping key. Computations of required characteristics, statistics and analyses are
then distributed among the machines according to the key. Using this approach, we can monitor
in detail all entities in a network and, at the same time, monitor the overall network state.

Context

Thanks to the successful implementation of performance and universality requirement, the
framework also meets the context requirement. The universal nature of the framework enables
us to process data from various sources. Scalability and distributed nature of the framework
guarantees a sufficient computational power to process and analyze the data. Thus, all neces-
sary raw data needed for CSA can be managed in one system.

The possibility of processing all types of data in one framework enables us to combine pieces
of information from different data sources effectively. Information about a host network behav-
ior gained from IP flow analysis can be supported by relevant log records from the host. The
results of analyses of different data sources can be correlated which each other to increase the
precision and robustness of the analyses.

Data stream processing systems are suitable for data preprocessing as they implement con-
tinuous queries. Using continuous queries, we can precompute several predefined character-
istics and statistics. The administrator does not need to run analyses over collected raw data.
Instead, the analyses are run on preprocessed characteristics. This approach reduces the data
overload in CSA as an administrator handles preprocessed data instead of raw data.

Reaction time

Proposed framework improves the reaction time in two ways: it reduces analysis response time,
and it enables a real-time data processing. Both enhancements shorten a time needed for deliv-
ery of information necessary for a decision to an administrator, which decreases the reaction
time.

The analysis response time is reduced due to the use of distributed systems for data pro-
cessing. As described earlier, distributed systems enable parallelization of analysis computation,
e.g., by using the MapReduce programming model. An analysis can then finish in a shorter time
and results of the analysis are available earlier. The analysis response time is also improved by
a data preprocessing done by the stream processing system. The analysis process does not need
to process a large volume of raw data. Instead, some partial results are precomputed, and only
a reduced volume of data is analyzed.

Data stream processing systems included in the framework can process data in real time. A
piece of raw information is processed immediately when a stream processing system receives it.
Real-time data processing is a significant advantage over current tools for network perception.
As described earlier, there are delays caused by the analysis of the data in batches. In the case
of IP flows, the delay can reach up to 10 minutes. Including systems capable of real-time data
processing into the CSA framework eliminates such delays and improves the reaction time.
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Further Remarks

Support of various data sources and processing different data in one system opens a new is-
sue regarding information duplication. In a real-world deployment, the data collection area of
the probes can overlap. Two separate probes can then observe the same information. A suitable
example is an IP flow that is routed via two probes or the log records from two different ma-
chines that represent the same network scan. Duplication of collected information needs to be
kept in mind during data analysis and comprehension. In case information is not deduplicated,
biased or incorrect findings may occur. The bias is then carried further in CSA framework, and
misleading decisions are taken.

6.4 Summary

This chapter presents our effort to achieve real-time cyber situation awareness. We present a
stream-based approach to the IP flow analysis that increases the speed of analysis and allows
for high-frequency data analysis. Our approach leverages the advantages in the area of dis-
tributed data stream computing. We apply the distributed data stream processing concept to
the IP flow network monitoring domain and discuss the implication of the shift from traditional
batch-based IP flow record processing paradigm to the distributed data stream paradigm. To
demonstrate the advantages of the stream-based IP flow record processing, we develop a frame-
work for rapid prototyping of the stream-based IP flow analyses Stream4Flow.

Based on our previous research, we propose a next-generation IP flow monitoring workflow,
that merges the traditional batch-based IP flow record analysis with the stream-based approach.
The merge is based on the lambda architecture, a general architecture for big data processing. We
present the basics of the lambda architecture and apply the described concepts to the IP flow
network monitoring domain. The next-generation IP flow monitoring infrastructure is expected
to be able to process big data at high speeds and to provide a near real-time analysis results to
an operator.

The next-generation IP flow monitoring infrastructure is generalized, and we outline a frame-
work for real-time cyber situation awareness. We describe a normalization component, that is a
necessary prerequisite for the unified cybersecurity data processing. The cyber situation aware-
ness framework is discussed with respect to the predefined requirements imposed on the effec-
tive cyber situation awareness framework.

The main contributions of this chapter are:

• design and evaluation of the stream-based IP flow monitoring workflow,

• identification of the pitfalls of the stream-based approach to IP flow record analysis,

• design of the next-generation IP flow network monitoring,

• design and discussion on the real-time cyber situation awareness framework.
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Computer networks are continuously evolving in time. The volume of data transferred over a
network increases, the speed of the data transfer rises as well. They increase in sophistication
and complexity and paradigms of network usage change as demonstrated by the transition to
IPv6 addressing or by the rising share of encrypted traffic, for example. Methods for obtaining
cyber situation awareness need to keep up with these changes to be able to deliver relevant
information for cybersecurity operators. In this thesis, we improve the cyber situation awareness
by the research focused on the improvement of network IP flow monitoring. We define the
main objective to investigate, how IP flow monitoring can be improved to enhance the cyber situation
awareness. The paragraphs below summarize our contributions to the IP flow monitoring and
the cyber situation awareness achieved in the course of our research.

7.1 Research Goals

We have defined research goals to be able to systematically address the identified joint open
issues of the IP flow monitoring and the cyber situation awareness – the lack of visibility and
comprehension of a network, host identification in network traffic and delays presented in the
IP flow monitoring workflow. We describe our contributions to each of the research goals below.

RG1: Propose and evaluate IP flow monitoring methods that enhance network perception
and comprehension and respond to the emerging trends in the cyber situation aware-
ness and the IP flow monitoring.

We have addressed this research goal for network perception and network comprehension sep-
arately. As for the network perception, we analyzed how we can enhance the information value
of IP flow records by adding information from the application layer of network traffic, and what
impact on the IP flow monitoring the addition of application information makes. We proposed
parser for monitoring of HTTP network traffic that enables to obtain information for HTTP pro-
tocol header fields, such as domain name, User-Agent, or referer. We evaluated the after-effects
of the application information retrieval. We conducted experiments that showed the trade-off
between the volume of exported information and the parser’s performance.

Our contribution to network comprehension has been represented by investigation of tunnel-
ing of IPv6 network traffic over IPv4 networks using transition mechanisms as 6to4 and Teredo
and by a description of Top N statistics. We performed measurements that revealed characteris-
tics of both tunneling and tunneled traffic. We described the distributions of Time to Live and
HOP values, IP flow characteristics, and locations of Teredo endpoint servers. We briefly dis-
cussed the rate of IPv6 adoption. As for the Top N statistics research, we provided a detailed
definition of the statistics including the effects of settings of its optional parameters. Among
others, we investigated the availability and the stability of the statistics in time.
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RG2: Develop methods for host identification in both unencrypted and encrypted network
traffic.

The identification of a host from the IP flow records is a challenging task since a host is rep-
resented by an IP address. Such an identification is not unambiguous due to dynamic network-
ing, or network address translation, for example. Therefore, supporting mechanisms for host
identification are required. First, we investigated the possibility of host information retrieval
from encrypted network traffic. We described an approach to SSL/TLS traffic measurement and
showed, how to build a dictionary of cipher suite lists – User-Agent pairs. The dictionary allows
for gaining additional host-related information even from encrypted network traffic. Next, we
researched, whether Top N statistics is a suitable candidate to be the supporting mechanism
for the host identification. We discussed the suitability of Top N communication peers, ports,
and HTTP domains from both theoretical and experimental point of view. We showed that Top
N statistics has a limited application for host identification problem as only 60 % of hosts in
network traffic could be identified.

Third, we examined the retrieval of the information about the operating system of a host.
We developed enhanced methods for OS identification both in static and dynamic networks.
For the static networks, we introduced a novel method based on OS-specific domains and we
compared our approach with other two state-of-the-art approaches to OS fingerprinting. We
also described the current open challenges for OS identification. Last, we focused on host-based
information retrieval from encrypted traffic. On real-world measurements, we demonstrated
the possibilities of client identification, browser fingerprinting, and network traffic classification
using the developed dictionary of cipher suite lists – User-Agent pairs.

RG3: Provide an option for reducing the delays in the network IP flow monitoring workflow
leading to the real-time cyber situation awareness.

We started with identification and description of delays present in the IP flow monitoring
workflow. To increase the speed of IP flow monitoring workflow, we chose to focus on the de-
lays that occur during the collection and analysis processes. We proposed a stream-based IP flow
monitoring workflow that builds upon the latest advances in distributed data stream processing
and enables IP flow record analysis in real time. We implemented a prototype for stream-based
IP flow monitoring Stream4Flow, demonstrated its performance characteristics, and described
advantages and pitfalls of the stream-based approach. Further, we proposed a next-generation
IP flow monitoring infrastructure that combines the benefits of the stream-based and the tra-
ditional batch-based approaches. We show that the next-generation infrastructure can be used,
with only minor modifications, as a tool for obtaining a real-time cyber situation awareness.

7.2 Further Research

Although we significantly contributed to several open issues of cyber situation awareness, there
are still opportunities for challenging and interesting future research. The evolution of computer
networks is a never-ending process, and the methods for obtaining cyber situation awareness
needs to keep up with this evolution. We present directions of possible future research of IP
flow monitoring and cyber situation awareness relevant to our research:

• Attack Prediction – The prediction level of the cyber situation awareness is out of the
scope of this thesis. Nevertheless, it still represents a challenging open issue that is left
to be addressed. One of the main goals of the prediction level is to gain an ability to pre-
dict the next step of an attacker based on its past actions. There already exist methods
for attack prediction. However, human experts still play a vital role in this process. The
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automation of the prediction process, its adaptation to new paradigms such as the Inter-
net of Things or software-defined networking, and improved accuracy of the prediction
remain a challenge.

• Stream-based data mining – Data mining algorithms for batch-based or static analyses
are well established. These algorithms cannot, however, be used for data stream analysis
straightforward. The algorithms need to be modified to enable continuous data process-
ing and update of the analysis results and models. Further, the data mining methods
need to be optimized to reduce analysis time and provide results and updates instantly,
since the stream-based approach is used mainly for real-time analyses.

• Correlation of data sources – As described in Section 6.2, it is possible to combine infor-
mation from different data sources, e.g. computer logs and IP flows. The research of the
possibilities for information correlation from these sources can discover new, more accu-
rate and robust methods for attack and anomaly detection. Moreover, the correlation of
the computer logs with IP flow could be used to provide the ground truth for IP flows
that is still missing in the research of IP flow based detection methods. The knowledge of
the ground truth opens possibilities for rigorous and reasonable utilization of machine
learning and artificial intelligence methods in IP flow monitoring domain.

• Host trustworthiness – Once we obtain a host-based view on a network, we can extend
our research by providing a cybersecurity operator with a simple measure of the security
risk related to a host – host trustworthiness. The trustworthiness represents an individ-
ual’s view of an entity’s character or standing. One challenge is to define the concept of
trustworthiness based on information from IP flows. Another challenge is to determine
host features, which are relevant for estimating trustworthiness. We need to determine
the class of a feature (e.g., continuous, static, sequences), type (e.g., number of commu-
nicating pairs, operation systems, used ports), granularity (e.g., average per day, median
per hour). Last, but not least, it is necessary to find a suitable model for estimating host
trustworthiness and define a methodology for its evaluation. The host trustworthiness
would provide a simplified, initial view for a cyber operator, that would allow identifica-
tion of hosts worth close attention.
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