
SSH Compromise Detection using NetFlow/IPFIX

Rick Hofstede
r.j.hofstede@utwente.nl

Luuk Hendriks
luuk.hendriks@utwente.nl

Anna Sperotto
a.sperotto@utwente.nl

Aiko Pras
a.pras@utwente.nl

Centre for Telematics and Information Technology (CTIT)
University of Twente, Enschede, The Netherlands

ABSTRACT
Flow-based approaches for SSH intrusion detection have been
developed to overcome the scalability issues of host-based
alternatives. Although the detection of many SSH attacks
in a flow-based fashion is fairly straightforward, no insight
is typically provided in whether an attack was successful.
We address this shortcoming by presenting a detection algo-
rithm for the flow-based detection of compromises, i.e., hosts
that have been compromised during an attack. Our algo-
rithm has been implemented as part of our open-source IDS
SSHCure and validated using almost 100 servers, worksta-
tions and honeypots, featuring an accuracy close to 100%.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management; Net-
work monitoring

General Terms
Management; Measurement

Keywords
Network measurement; Intrusion detection; SSH; NetFlow;
IPFIX

1. INTRODUCTION
Brute-force attacks against SSH daemons are a common

type of attack in which attackers perform authentication
attempts on a remote machine. These attacks are often
performed using dictionaries – lists of frequently used lo-
gin credentials – and are therefore commonly referred to
as dictionary attacks. Once compromised, machines can
cause serious damage by joining botnets, distributing ille-
gal content, participating in DDoS attacks, mining Bitcoins
or other cryptocurrencies, etc. The threat of SSH attacks
was recently stressed again by the Ponemon 2014 SSH Se-
curity Vulnerability Report : 51% of the surveyed companies
has been compromised via SSH in the last 24 months [7].
From our own experience, we know that compromises can
have various causes, among which are dictionary attacks.
For example, in campus networks, such as the network of the
University of Twente (UT) with roughly 25k active hosts, we
observe approximately 115 dictionary attacks per day, while
in a backbone network, such as the Czech National Research
and Education Network CESNET, it is not uncommon to
observe more than 700 per day. Even more attacks should

be expected in the future; several renowned organizations,
such as OpenBL1 and DShield2, report a tripled number of
SSH attacks between August 2013 and April 2014. Research
in the area of compromise detection is therefore crucial to
reduce the potential damage caused by compromises.

The detection of dictionary attacks and potential com-
promises can be performed in several ways. First and least
error prone is a host-based approach, where log files can
be inspected and Intrusion Detection Systems (IDSs) in-
stalled. This approach is however hardly scalable in larger
networks, as access to every machine is a necessity. Second,
a network-based approach can be taken, in which network
traffic is inspected at central observation points. Inspection
of individual packets would be a challenging task, due to the
vast amount of traffic to be inspected. Moreover, the end-
to-end encryption of SSH traffic makes inspection of packet
payloads a futile process. An alternative approach that can
be taken in large and high-speed networks is the analysis
of traffic flows, exported by means of Cisco’s NetFlow or
the recent standardization effort IPFIX [4]. In this context,
flows are defined as “sets of packets or frames passing an
observation point in the network during a certain time inter-
val” [1]. After a flow is considered to have terminated, which
is typically based on timeouts, a flow record is exported to
a central collection device, where it can be analyzed.

Several works have investigated the flow-based detection
of SSH attacks [2, 3, 6, 8]. These works have in common
that they rely on the observation that SSH traffic related to
dictionary attacks is “flat”, meaning that every connection
is similar in terms of packets, bytes and duration. This sig-
nature is used and extended in [8], where the flow-based
detection of dictionary attacks in high-speed networks is
discussed. Similarly, a three-phase attack model for SSH
attacks is proposed in [6], and includes a scan phase, brute-
force phase and compromise phase. The key advantage of
this model is that it allows for the detection of compro-
mises, i.e., whether an authentication attempt in the brute-
force phase has been successful. In a previous work, we
have implemented and validated the model by means of the
open-source IDS SSHCure [3]. Another tool that claims to
detect compromises after dictionary attacks is mentioned
in [9], but neither a reference to the tool, nor reproducible
detection results are provided.

Although our work in [3] was based on a generic model
for SSH dictionary attacks, promising results were achieved.

1http://www.openbl.org
2http://www.dshield.org

ACM SIGCOMM Computer Communication Review 21 Volume 44, Number 5, October 2014



Scan Brute-force Compromise

Start End

Figure 1: SSH attack phase transitions.

The goal of this work is to improve the performance of the
compromise detection. We have analyzed SSH attack tools
systematically and derived six scenarios that could be ob-
served upon a compromise. By detecting these scenarios in-
dependently, we are able to analyze more types of dictionary
attacks, and achieve higher accuracies and detection rates.
The contribution of this work is twofold. First, we have
refined the detection algorithm presented in [3] to support
the six identified compromise scenarios, and implemented it
as part of our IDS SSHCure. Validation of the algorithm’s
accuracy is performed based on log files from almost 100
servers, workstations and honeypots. The performance re-
quirement is validated by deploying SSHCure on 11 back-
bone links of CESNET. Second, we provide two publicly
available and labeled datasets3 consisting of anonymized
flow data and host log files, to support reproducible research.

The remainder of this paper is structured as follows. In
Section 2, we summarize the advances made in our previous
works and their shortcomings. Next, in Section 3, we char-
acterize network traffic of various SSH attack tools, daemons
and mitigation systems. Based on these findings, we discuss
our detection algorithm in Section 4, of which the valida-
tion results are presented in Section 5. Finally, we draw our
conclusions and state our future work in Section 6.

2. SSH ATTACK MODEL
The work on our detection algorithm and IDS SSHCure

has started in 2011, when we developed a detection algo-
rithm based on the Hidden Markov Model (HMM) of SSH
attacks presented in [6]. That model assumed SSH attacks
to feature one or more of the following three attack phases:

• Scan – An attacker scans hosts for active daemons.

• Brute-force – An attacker performs many authenti-
cation attempts on target hosts, using a large number
of username/password combinations (dictionary).

• Compromise4 – An attacker has gained access to a
target host by using correct login credentials.

The SSH attack state transitions are shown in Figure 1.
The only difference with the work in [6] is that attacks can
also start in the brute-force phase for the following reasons.
First, the scan phase can have taken place in the past (e.g.,
before traffic observation has started). Second, our investi-
gation of attack tools (Section 3.2) has shown that attacks
can start directly from the brute-force phase, as the scan
can have been performed by another host or the target may
be known in advance by an attacker.

It was also shown in [6] that the attack phases can be
clearly observed in a time-series of the number of packets-
per-flow (PPF). The scan phase is characterized by a low
3The datasets are available in anonymized form at
http://www.simpleweb.org/wiki/SSH_datasets
4Although we use the attack phases presented in [6], we use
the more intuitive compromise to denote the die-off phase.

number of PPF, indicative for TCP connections that do not
complete their handshake. At some point in time, the at-
tacker starts the brute-force phase, trying to authenticate to
remote machines. This phase was shown to consist of flows
with a significantly larger number of PPF, caused by the
authentication procedure of SSH. After a potentially suc-
cessful login, some residual traffic can be observed between
attacker and target as part of the compromise phase, where
traffic is characterized by having a PPF that is outside the
range of what is considered brute-force phase traffic.

A purely PPF-based detection algorithm and a first pro-
totype of SSHCure were presented in [3]. Although this
yielded promising results, a large number of production de-
ployments of SSHCure has proven that the designed de-
tection algorithm has various shortcomings that ultimately
cause compromises to remain undetected or false alarms to
be raised. First, we have discovered characteristic features
of the OpenSSH daemon that significantly impact the traffic
between SSH clients and daemons. Second, the original de-
tection algorithm has proven to be too restrictive in detect-
ing brute-force attacks. Given that the compromise phase
can only be reached via the brute-force phase, as shown in
Figure 1, undetected brute-force attacks yield undetected
compromises. Last, attack mitigation systems on various
network layers often yield traffic patterns that are similar to
the definition of compromise traffic in the original algorithm.
We address the shortcomings presented above in Section 3.

3. SSH TRAFFIC ANALYSIS
Our experience in analyzing SSH traffic has shown that

network traffic between attacker and target can be affected
at multiple stages: SSH daemon settings (Section 3.1), at-
tack tools (Section 3.2) and attack mitigation mechanisms
(Section 3.3). In the analysis presented in this section, we
consider OpenSSH as the daemon running on attack tar-
gets, as it often comes preinstalled on Linux, BSD and Mac
OS X operating systems. To verify whether it is the most
used SSH daemon, we have performed a scan on the UT
network, which has approximately 25k active hosts. Out of
those, more than 700 hosts are running an publicly accessi-
ble daemon with a valid identification string, of which 97%
identified itself as being OpenSSH 5.

3.1 OpenSSH daemon
The OpenSSH daemon features several configuration op-

tions that should be taken into account for the detection of
SSH compromises:

• LoginGraceTime defines the time after which the SSH
daemon disconnects in case the client does not perform
any more authentication attempts. This is done by
sending a TCP FIN packet to the client. The default
value is 2 minutes.

• MaxAuthTries defines the maximum number of au-
thentication attempts per connection. The default value
is 6. Note that many client tools, such as the OpenSSH
client, close the connection already after 3 failed au-
thentication attempts. The allowed number of authen-
tications can be changed by the client as long as the
value does not exceed MaxAuthTries.

5Other discovered SSH daemons were SunSSH, Dropbear,
Cisco SSH, Gene6, DesktopAuthority, SCS and WeOnlyDo.

ACM SIGCOMM Computer Communication Review 22 Volume 44, Number 5, October 2014



Client Daemon
TCP connection establishment

Authentication attempt

Authentication failure

TCP FIN

TCP ACK

TCP FIN

TCP RST / FIN + ACK

LoginGraceTime

TCP FIN-
timeout?

(idle)

Figure 2: SSH client behavior after LoginGraceTime.

• MaxStartups defines the maximum number of concur-
rent, unauthenticated connections. It is defined as
the three-tuple start:rate:full, with default value
10:30:60. Rate-limiting in the form of dropping con-
nections is then applied with a probability of rate/100
when more than start connections are unauthenti-
cated. This probability increases linearly up to the mo-
ment in which full connections are unauthenticated.

Next to these settings, there are TCP settings that af-
fect the network traffic between client and daemon. First,
the value of the TCP FIN-timeout determines the maxi-
mum amount of time a TCP connection remains in the
FIN-WAIT-2 state. In this state, the daemon has initiated
a connection termination and received a subsequent TCP
ACK from the client. As soon as the client also closes the
connection by sending a TCP FIN packet, the time between
this packet and the previous TCP ACK packet determines the
response of the server; if the TCP FIN packet is received be-
fore the TCP FIN-timeout has taken place, the server replies
with a FIN+ACK packet, while a TCP RST packet is sent oth-
erwise. This is shown in Figure 2. Second, the TCP keep-
alive interval determines the maximum idle time of a TCP
connection. In case of an idle connection, a TCP ACK packet
is sent without payload. The OpenSSH daemon also has
its own keep-alive mechanism, but since the TCP keep-alive
mechanism is enabled by default, it is typically disabled.

Existence of users on the target system (i.e., the system
where the OpenSSH daemon is running) does not affect the
network traffic. From the attacker (client) side, no difference
can be observed between an attempt using a valid username
and an invalid password, and an attempt with an invalid
username. Naturally, this is favorable in terms of security, as
an attacker cannot determine whether a guessed username
exists on the target host and thereby increase the probability
of a successful authentication.

3.2 Attack Tools
We have analyzed ten uniquely identifiable tools for per-

forming brute-force attacks, ranging from expect6 scripts,
to sophisticated applications that try to be invisible for de-
tection algorithms. These tools have been downloaded to
our honeypots over several years, complemented by tools
that we have found by searching the Web systematically; five
tools can be retrieved from their own Web page or Google
Code, and four tools can be found on forums and other on-
line communities.

6http://linuxcommand.org/man_pages/expect1.html

Client Daemon
TCP connection establishment

Failed authentication attempt(s)

Attack mitigated

Authentication attempt
TCP retransmission(s)

TCP connection establishment

7
7
7

Flow n

Flow n + 1

Figure 3: Attacker behavior after mitigation.

Several observations have been made regarding the ana-
lyzed tools. First, the number of authentication attempts
per connection varies between 1 and MaxAuthTries. Tools
that perform a single attempt per connection are typically
faster; establishing one connection per attempt avoids wait-
ing for the SSH daemon to report the authentication failure
and the client to show a new prompt. Second, the number
of PPF per login attempt very much depends on the config-
uration of the daemon, rather than the attack tool. Third,
the attack tools’ action upon compromise, i.e., the behavior
of the attack tool with respect to the connection on which
a successful authentication has taken place, was found to
be the clearest indicator of a compromise, and is therefore
key to our detection algorithm. This finding is crucial, as it
makes the detection of compromises independent of the ab-
solute number of PPF, which varies per attack tool and SSH
daemon. We have identified four actions upon compromise:

• Maintain connection, continue dictionary – The con-
nection with successful authentication is maintained,
until the end of the attack. The attacker continues
with the attack, also towards the compromised host.

• Maintain connection, abort dictionary – The connec-
tion with successful authentication is maintained, until
the end of the attack. Other attack traffic towards the
compromised host is stopped.

• Instant logout, continue dictionary – The connection
with successful authentication is closed right after the
compromise, while the attacker continues to attack
both the compromised host and others.

• Instant logout, abort dictionary – The connection with
successful authentication is closed right after the com-
promise. Other attack traffic towards the compro-
mised host is stopped.

These actions form an integral part of the detection algo-
rithm presented in Section 4. Actions featuring an instant
logout are most prevalent in the considered tools.

3.3 Attack Mitigation Mechanisms
Several SSH attack mitigation mechanisms have been de-

veloped over the years, to reduce the risk of compromises
during a brute-force attack. These mechanisms exist for
both the host-level and the network-level. Host-level mech-
anisms, usually software-based, scan authentication log files
and as soon as the number of failed authentication attempts
exceeds a threshold, traffic from the attacker is blocked.
Blocking can be performed on several layers. First, on L5,
tools like denyhosts still allow TCP connections to be estab-
lished to the target machine, while setting up SSH connec-
tions from the attacking host is prohibited. Since no packets

ACM SIGCOMM Computer Communication Review 23 Volume 44, Number 5, October 2014



Time

Flow data chunk

Target 1

Target n

(a) Maintain connection, continue
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(b) Maintain connection, continue
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(c) Instant logout, continue dictionary

Time

Flow data chunk

Target 1

Target n

(d) Maintain connection, abort
dictionary (1)

Time

Flow data chunk

Target 1

Target n

(e) Maintain connection, abort
dictionary (2)

Time

Flow data chunk

Target 1

Target n

(f) Instant logout, abort dictionary

Figure 4: Various types of compromise flows in a chunk of flow data.

are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block traffic from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n + 1). Third and last,
tools like SSHGuard drop any traffic from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
traffic perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of traffic blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network traffic after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase traffic is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase traffic (see Section 3.2). From all selected

7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

traffic, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
traffic from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
traffic from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.

ACM SIGCOMM Computer Communication Review 24 Volume 44, Number 5, October 2014



Table 1: Dataset composition
Honeypots Servers Workstations Attacks

D1 13 0 0 632
D2 0 76 4 10716

The compromise detection can be summarized in two steps:
Step 1 – Matching traffic against scenarios. As soon

as a brute-force phase has been detected between attacker
and target, this phase aims at detecting one of the scenar-
ios shown in Figure 4. In case of a match, a compromise
is detected. Special care must be taken with unterminated
connections, as shown in Figure 4(b) and 4(e), as they may
be the result of an attacker stopping its attack without prop-
erly closing all connections, instead of a compromise. If this
is the case, the SSH daemon will timeout and close the con-
nection after LoginGraceTime, as discussed in Section 3.1.
At the flow-level, this can be verified by checking the dura-
tion of the return flow, i.e. the flow from target to attacker.
In case its duration matches the configured LoginGraceTime,
the attack was stopped without a compromise. Otherwise,
we consider the target host to be compromised.

Step 2 – Identification of mitigation mechanisms.
After identification of a matching scenario, the traffic is
checked for signs of activated mitigation mechanisms. As
soon as these mechanisms are activated, at least one of the
following situations may apply: 1) Mid-connection mitiga-
tion can result in a number of PPF that is higher than the
identified baseline, due to retransmissions between attacker
and target, or 2) new connections have merely a TCP SYN

flag set and typically consist of three packets, which is a
frequently used retry count for establishing TCP connec-
tions. Identification of mitigation mechanisms is crucial, as
they would trigger false positive compromise detections (i.e.,
those that feature an instant logout) otherwise.

5. VALIDATION
In this section, we present the validation of our detec-

tion algorithm. We start by describing our two datasets in
Section 5.1. To be able to evaluate the algorithm, we have
implemented it as part of SSHCure v2.4.8 The validation
results are discussed in Section 5.2. After that, we evaluate
the performance of SSHCure as a system in Section 5.3.

5.1 Datasets
We collected two datasets on the campus network of the

UT. The network features a publicly routable /16 IPv4 ad-
dress block, of which typically 25k addresses are actively
being used. Both datasets comprise a period of one month,
collected in November and December 2013, and January and
February 2014, respectively, consisting of the following data:

• Honeypot log files – These have been collected from
various low-, medium- and high-interaction honeypots.

• Workstation & server log files – These have been col-
lected from workstations and servers, which all have a
publicly accessible SSH daemon.

• Flow data – Flow data with a sampling rate of 1:1 has
been collected at edge routers and, as such, contains all
SSH traffic entering and leaving our campus network.

8SSHCure is available at http://sshcure.sf.net

Table 2: Validation results per dataset
TPR TNR FPR FNR Acc

D1 0.692 0.921 0.079 0.308 0.839
D2 – 0.997 0.003 – 0.997

The exact composition of the datasets is shown in Table 1,
which shows the number of honeypots, servers and worksta-
tions of which the log files comprise the dataset, and the
number of attacks identified.

The datasets have been chosen carefully to reflect two
completely different types of systems. On the one hand,
Dataset D1 solely consists of data from honeypots, i.e., sys-
tems set up for being compromised (very easily). On the
other hand, Dataset D2 is made up of data from mostly
servers, which are likely configured with very strong pass-
words and attack mitigation mechanisms. In addition, we
deliberately selected workstations, servers and honeypots
that are operated by different persons, to ensure that our
results are not biased by similar configurations.

Since the collected log files are the one and only proof
of whether login attempts have succeeded or not, we con-
sider this data the ground-truth for the validation of this
work. More precisely, we consider all successful authentica-
tions after more than six login attempts and have no idle
period of more than one hour to be compromises, and ex-
clude all logins from hosts in the IP address range of the UT.
Note that in a benign situation, six attempts will typically
be carried by two flows (due to NumberOfPasswordPrompts

being set to 3 in the configuration of the OpenSSH SSH
client), while up to six flows may be observed during an at-
tack, in case an attacker performs only one authentication
attempt per connection. Since our goal is to validate the de-
tection of compromises, we consider only those attacks that
show brute-force phase behavior.

5.2 Detection Accuracy
We have compared the log files to SSHCure’s detection

results based on the following metrics:

• True Positives (TP), False Positives (FP): Attacks
correctly and incorrectly identified to feature a com-
promise, respectively.

• True Negatives (TN), False Negatives (FN): Attacks
correctly and incorrectly identified to not feature a
compromise, respectively.

We evaluate our detection algorithm by means of its ac-
curacy (Acc), which is a measure for the number of attacks
that has been classified correctly and is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

The results of our evaluation are listed in Table 2, where
the percentages of the evaluation metrics are used. For ex-
ample, the True Positive Rate (TPR) is the percentage of
attacks correctly identified to feature a compromise.

Although the number of correctly classified attacks in D1
is very high, yielding an accuracy of 84%, we have to face
incorrect classifications as well. On the one hand, FPs are
mainly a result of the sensitivity of the instant logout, con-
tinue attack scenario (Figure 4(c)). In this scenario, we ob-
serve deviations in the number of PPF from the identified

ACM SIGCOMM Computer Communication Review 25 Volume 44, Number 5, October 2014



baseline. We have found to need a slightly higher sensitivity
to obtain the results in Table 2, than for servers, for exam-
ple. The sensitivity may be reduced for honeypots, which
will reduce the FPs, while the number of FNs increases. On
the other hand, the FNs are caused by the result of the na-
ture of honeypots, and show how the characteristics of the
dataset limit our approach; the easy-to-guess credentials of
honeypots can result in compromises from the first authenti-
cation attempt or even compromises after every attempt. As
such, the baseline for identifying deviations in the number
of PPF, i.e., compromises, cannot be established reliably.

The explanation for incorrectly classified attacks in D1 is
confirmed by the evaluation results of D2, where no com-
promises are captured. We assume that this is due to the
low number of workstations compared to servers considered,
as server administrators typically have more system admin-
istration skills than the average workstation user, typically
resulting in stronger login credentials. However, a much
higher accuracy (close to 100%) is achieved for D2, due to
the fact that only 0.3% of the attacks is incorrectly classified.

5.3 SSHCure Performance
We are aware of many successful deployments of SSHCure,

in networks at different scales: campus networks, hosting
companies, ISPs, and Computer Security Incident Response
Teams (CSIRTs) up to government-level. We also closely
collaborate with CESNET, which uses SSHCure on a cen-
tral flow collector where flow data from all peering links
is collected. Given that we aim at deploying SSHCure in
high-speed networks, we have evaluated whether SSHCure
is able to analyze CESNET’s SSH traffic in real-time, i.e.,
every data chunk should be processed before the next data
chunk arrives. In January 2014, where up to 29.9 GB of
SSH traffic per five minute data chunk has been transferred,
SSHCure was able to do so for the vast majority of data
chunks. Only in situations with many large and concurrent
attacks, SSHCure was not able to finish in time on our mea-
surement system, after which it automatically skipped the
next data chunk to not overload the collection system.

In addition to evaluating SSHCure’s processing perfor-
mance, we have compared its detection results to the OpenBL
SSH blacklist. OpenBL deploys more than 40 sensors that
report which host has performed brute-force login attempts
on port 22. With only a single instance of SSHCure deployed
at the UT, we already achieve a coverage of OpenBL of up
to 3% per day over January 2014, defined as the share of IP
addresses blacklisted by OpenBL that was also reported by
SSHCure. By deploying SSHCure in the CESNET network,
we even achieve a coverage of up to 7% per day with a sin-
gle sensor. In addition, 14–37% of the attacker IP addresses
reported by SSHCure at UT was not (yet) blacklisted by
OpenBL, while in the CESNET network, this percentage
was 47–95%. We therefore envision SSHCure to be used as
a complementary sensor for SSH blacklisting.

6. CONCLUSIONS
This paper has presented a detection algorithm for the

flow-based detection of hosts compromised during SSH dic-
tionary attacks. We show that accuracies close to 100%
can be achieved, while deployment in backbone networks is
still feasible. Given the potential damage caused by com-
promised hosts, we believe that a flow-based compromise
detection is a must-have for any larger-scale network.

In spite of the achieved detection results, we are aware
of at least two situations that impair the detection of com-
promises. First, we are aware of attack tools that perform
flow stretching, a technique that inserts random data in SSH
packets such that hardly two flows in an attack appear sim-
ilar. The consequence is that attacks are rarely detected
– neither by our algorithm, nor by related works. Second,
we have observed that retransmissions can cause false posi-
tive detections, especially from locations far-away from the
observation point. This is because retransmissions are not
exported in flow data, except for increased packet and byte
counters. To overcome this, we plan to define and implement
new IPFIX Information Elements for the explicit export of
TCP control information. In addition, we plan to investi-
gate how to detect stealthy, distributed SSH attacks based
on flow data only; works that have described these attacks
yet, such as [5], still rely on other data sources, such as sys-
log. Although we can already detect distributed attacks,
they still need to hit certain thresholds to be reported – an
assumption that does not always hold for stealthy attacks.

7. ACKNOWLEDGMENTS
This work is partly funded by FLAMINGO, a Network

of Excellence project (ICT-318488) supported by the Euro-
pean Commission under its Seventh Framework Programme.
Special thanks go to Václav Bartoš (CESNET), CERT-UT,
ICTS-UT, and the OpenBL project, for their valuable con-
tributions to the research process.

8. REFERENCES
[1] B. Claise, B. Trammell, and P. Aitken. Specification of

the IP Flow Information Export (IPFIX) Protocol for
the Exchange of Flow Information. RFC 7011 (Internet
Standard), September 2013.

[2] M. Drašar. Protocol-Independent Detection of
Dictionary Attacks. In Proceedings of EUNICE’13,
2013.

[3] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto,
R. Sadre, and A. Pras. SSHCure: A Flow-Based SSH
Intrusion Detection System. In Proceedings of
AIMS’12, 2012.

[4] R. Hofstede, P. Čeleda, B. Trammell, I. Drago,
R. Sadre, A. Sperotto, and A. Pras. Flow Monitoring
Explained: From Packet Capture to Data Analysis with
NetFlow and IPFIX. IEEE Communications Surveys &
Tutorials, 2014.

[5] M. Javed and V. Paxson. Detecting Stealthy,
Distributed SSH Brute-Forcing. In Proceedings of the
2013 ACM SIGSAC conference on Computer &
Communications Security, 2013.

[6] A. Sperotto, R. Sadre, P.-T. de Boer, and A. Pras.
Hidden Markov Model modeling of SSH brute-force
attacks. In Proceedings of DSOM’09, 2009.

[7] Venafi, Inc. Ponemon 2014 SSH Security Vulnerability
Report. Technical report, Venafi, 2014.

[8] J. Vykopal. Flow-based Brute-force Attack Detection in
Large and High-speed Networks. PhD thesis, Masaryk
University, Brno, Czech Republic, 2013.

[9] J. Vykopal, T. Plesnik, and P. Minarik. Network-based
Dictionary Attack Detection. In Proceedings of
ICFN’09, 2009.

ACM SIGCOMM Computer Communication Review 26 Volume 44, Number 5, October 2014




