
Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

Syntaktická analýza VHDL

Luboš Lorenc, Rudolf Schönecker, Zbyněk Křivka

WFM ’07, Hradec nad Moravicí

April 23 - 25

1/9



Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

Outline

1 Syntactic analysis of VHDL
VHDL grammar
R/R conflicts in VHDL
Solving of R/R conflicts

2 Conditional building of syntactic tree
Example
How it works . . .
Results

3 Open problems

2/9



Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

VHDL grammar
R/R conflicts in VHDL
Solving of R/R conflicts

VHDL2002

Probably impossible to describe complete VHDL2002
language using context-free grammar.

Standard is defined using an semantically extended EBNF
grammar.

Particular derivations are permitted using semantic
extensions.

Impossible to remove semantic conditions:
Rising of a few hundred of R/R conflicts

3/9



Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

VHDL grammar
R/R conflicts in VHDL
Solving of R/R conflicts

A typical VHDL2002 R/R conflict

start ⇒ · · · ⇒ type_mark ’;’
start ⇒ · · · ⇒ report_statement

type_mark
: type_ name
| subtype_ name
;

report_statement
: REPORT expression ’;’
;

expression ⇒ ... ⇒ primary

primary
: name
;

4/9



Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

VHDL grammar
R/R conflicts in VHDL
Solving of R/R conflicts

Solving of VHDL2002 R/R conflicts

It is impossible to left out the semantic information
There was used two distinct approaches:

Conditional building of syntactic tree
It seems to be a hopefull way
But we are in doubt about realisation

Creation of an unambiguous grammar
Meanwhile not succesfull way
There still remains unsolved R/R conficts

Probably, there are some other approaches:
Use of another type of analyser
Use of huge lookahead
Analysis based on context-sensitive grammmars
. . .

5/9



Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

Example
How it works . . .
Results

The use of auxiliary terminals — example

start ⇒ · · · ⇒ type_mark ’;’
start ⇒ · · · ⇒ report_statement

type_mark
: name _TYPE_
| name _SUBTYPE_
;

report_statement
: REPORT expression ’;’
;

expression ⇒ ... ⇒ primary

primary
: name
;

6/9



Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

Example
How it works . . .
Results

How it works . . .

ParserAuxiliary Terminals
Generator

Lexical
Analyzer

Input File
Semantic
Analyzer

Common Dataflow
Auxiliary Dataflow

Legend:

7/9



Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

Example
How it works . . .
Results

Conditional building of syntactic tree — results

All the R/R conflicts solved

Input file does not contain auxiliary terminals

Semantic actions of conflicting rules are used to insert
auxiliary terminals into input stream

There is not fully solved needed semantic analysis yet

Problems may be arisen by an impact of semantics to the
syntax (context-sensitive dependencies)

8/9



Syntactic analysis of VHDL
Conditional building of syntactic tree

Open problems

Open problems

Using auxiliary terminals, there is removed ambiguity from
the grammar. But there are two ways how the original
VHDL grammar has been created:

Authors of VHDL2002 created the grammar as a true
unambiguous context-sensitive grammar :

Our grammar with auxiliary terminals should be able to
simulate the behavior of such a grammar.
The parser should be able to analyze the whole VHDL2002
language.

Authors of VHDL2002 created the grammar in some
another manner:

???

9/9


	Syntactic analysis of VHDL
	VHDL grammar
	R/R conflicts in VHDL
	Solving of R/R conflicts

	Conditional building of syntactic tree
	Example
	How it works…
	Results

	Open problems

