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Abstract: The paper deals with a problem of modelling a scan layout by means of a binary 
string. Using the proposed binary encoding, it is possible to identify concrete scan layout 
within a digital circuit. Encoded binary string can be seen as a unique identification of a set 
of registers that will be modified into scan registers and included into scan chains, parallel 
scan chains and (optionally) the order of scan registers within each scan chain. It can be 
also seen as a prescription how to modify digital circuit to include certain scan layout into 
original circuit structure. 
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1    Introduction 
There are several steps that are necessary to be performed when a high-quality digital 

circuit design is expected, i.e., a design fulfilling certain requirements (functionality, pin and 
area overhead, delay constraints etc.) and also, a design fulfilling certain diagnostic 
properties. A digital circuit that is under the design process is denoted as circuit under the 
design (CUD) in this paper.  

Basically, there are two big design areas that can be distinguished in the CUD design 
process. The first one can be seen as an area dealing with a required CUD function design, its 
verification and synthesis. The second one can be seen as an area dealing with CUD 
diagnostic properties.  

There are two basic fields of research in the second area - the first one dealing with a test 
generation and the second one dealing with a design for testability (DFT), i.e., with 
modifying a CUD structure, e.g., by inserting test-structures in order to improve a testability 
[7] of the CUD.  

It can be stated that a testability improvement (e.g., see [8]) of the CUD makes both the 
test generation of the CUD and test application to the CUD more effective. In general, goals 
of these areas are contradictory, so a cost/quality trade-off [6] is needed. In this paper, we do 
not deal with the problem of generating a test nor offer a solution to a problem of selecting 
registers into scan chains (for the second problem, see e.g. [5]). But, we present here a scan 
layout binary representation that is needed when DFT process is to be automated.  

Dealing with a CUD testability improvement means either to design a CUD with a respect 
to testable-design rules (e.g., respecting modeling for testability (MFT)

                                                

 hints) or to use some 
of existing DFT techniques or their combination. Also, combination of DFT techniques and 
MFT rules is feasible. Currently, a big variety of DFT techniques is available. Applying a 
DFT technique (inserting a DFT structure) into a CUD brings about both CUD testability 
improvement that is desired and degradation of CUD parameters (growth of a die-area, pin 
number, delay), which is inconvenient because it makes the final CUD die more expensive. 
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Thus, it is necessary to find an acceptable cost/quality trade-off [5, 6] between CUD 
testability requirements and CUD costs. We will focus only on the scan DFT technique, its 
analysis and encoding by means of a binary string in this paper.  

Before inserting a DFT structure into a CUD, it is necessary to consider, which concrete 
parts of the CUD are to be modified by means of selected DFT techniques. Generally, this is 
related with a location of all hard-to-be-tested CUD nodes [5, 7]. By a node, we can mean a 
concrete port, connection, state or an element within CUD structure. To identify these nodes, 
number of various methods can be used. Usually, so-called testability analysis (TA) [7] 
methods or methods based on feedback-loops (FL) identification [9] are used for these 
purposes. Also, on the basis of TA and FL method results, it is necessary to determine which 
previously identified hard-to-be-tested nodes are those ones which have the biggest (we can 
say critical) impact on the CUD testability. It is important to locate critical nodes within CUD 
structure exactly because improving their testability properties will consequently cause a 
significant CUD testability improvement with minimal costs [5, 6, 7]. In [2], the solution of 
controller testability is presented. It measures the combinational and sequential hardness to 
reach each state in the controller. Based on this result, hard to reach states are detected and 
testability enhancement techniques are developed to improve the state reachability.  

We did our research in two stages. During the first one we analysed the number of all 
possible solutions (state-space size) of scan layout problem [5] and during the second one we 
dealt with a design and implementation of an effective methodology solving this problem in 
an acceptable way, i.e., in the way fulfilling the requirements of a customer or a designer. In 
this paper, we will primarily focus on the state-space analysis and modelling of a scan layout 
by means of a binary string. This binary representation is required, e.g., when automated DFT 
process is being designed. 

The paper is organized as follows. First, a mathematical description of the scan layout 
together with proposed notation is introduced, illustrated and analysed. Second, the binary 
encoding of a scan layout model is described. Finally, the perspectives of future activities in 
this research area are discussed. 
 

2    On Using Scan DFT Technique 
When scan is used to improve CUD testability parameters, it is necessary to state which 

concrete memory elements (flip-flops (FFs) and registers (REGs) respectively) are to be 
modified to their scan-version, i.e., to scan flip-flops (SFFs) and scan registers (SREGs) 
respectively. It is known that using the scan, CUD parameters will change (growth of a die-
area, number of pins, delay etc.), which makes the final CUD die more expensive. An m-bit 
SREG consists of m SFFs, which are connected in such a way that SREG can also operates as 
m-bit shift register in the test mode of operation.  

In practice, this technique can be then applied only to a CUD containing memory 
elements. For the CUDs having no memory elements, it is necessary to consider the 
application of this technique because besides to-scan-version modification costs there is an 
additional need of inserting new FFs or REGs into a CUD which usually causes extra (and 
usually unacceptable) CUD costs. 

Aside from the type of used SFF, common properties of scan memory cells can be 
summarized. Besides the normal (function) mode, SFFs and SREGs can operate in the scan 
(test) mode which is used to load diagnostic data into the scan memory and to read scan 
memory content respectively. The next property is that scan memory cells can be connected 
to a so-called serial scan chain. In the test mode, the scan chain is used to transport diagnostic 
data through the CUD structure. 



Generally speaking, certain number of scan chains each containing at least one scan 
memory element can exist in a CUD structure. The problem is, how big this number is and 
which of the scan layout possibilities is characterized by the best cost/quality trade-off 
between diagnostic properties and acceptable costs.  

With respect to used SFF types and comparing with original CUD parameters, there is a 
certain area overhead, pin overhead and performance degradation, which are the costs of 
using scan in the CUD. The benefits from implementing the scan can be seen in increasing 
diagnostic properties (testability, fault coverage, test application time, etc.) of CUD. Both the 
costs and testability depend highly on the way in which the scan memory elements are formed 
to scan chains, SFF type influences both parameters as well.  

Scan approaches fall into two main groups: full scan (when all memory elements are 
included in the scan layout) and partial scan. In partial scan, flip-flops are selected in such a 
way that the remainder of the circuit has certain desirable testability properties.  

  
 

3    Mathematical Description of a Scan Layout  
For the purposes of the modelling, we denoted the set of all registers in CUD as 

REGSCUD={R1, R2, … Rn}. The basic idea of the first stage of our research is as follows. It is 
true that numerous alternatives how to implement a scan layout in a CUD exist supposing that 
each such layout can consist of several parallel (multiple) scan chains in which the order of 
registers is not important for the result (let this case be marked as A1) or is important for the 
result (let this case be marked as A2). The problem of repositioning (ordering) FFs in a CUD 
to minimize their number is solved in [3]. It is assumed that the goals of the analysis in terms 
of area, pin overhead, testability properties etc. are defined before the analysis starts. In this 
paper, we shall deal primarily with the A2 case, which is more general, but both A1 case and 
A2 case will be described in detail. 

As the first step of our analysis, it is determined how big the partial state space is, i.e., 
how many scan structures can exist within concrete CUD, each of them consisting of k scan 
registers exactly, SCANCUD ⊆ REGSCUD, where 1 ≤ k ≤ n, k = |SCANCUD|. First, the partial 
state-space analysis (for given k), then the complete state-space analysis (for general n) for 
both A1 case and A2 case will be presented. 
 
For the modelling, the notation is introduced:  
� the ordered (A1 case) or non-ordered (A2 case) sequence of scan registers represents scan 

registers belonging to the same scan chain within the scan layout configured in CUD,  
� the dot will separate scan chains that are parallel within the scan layout configured in the 

CUD, 
� every r∈ SCANCUD, will be involved exactly in one scan chain the scan layout configured 

in the CUD.  
 

It is seen that by means of the above described notation, any realizable scan layout 
(containing any realizable combination of multiple scan chains and containing any realizable 
combination of scan registers within each scan chain (including their order in A2 case)) can 
be identified uniquely and if the order of registers is not taken into account (in A1 case), then 
some (e.g., R1R2.R3 and R2R1.R3 – see Fig. 1 solutions are identical, i.e., they represent 
identical scan layouts. 
 



           R1R2.R3                              R2R1.R3                                                R1.R2R3R4.R5.R6 
                   (k=3, n=6)                           (k=3, n=6)                                   (k=6, n=6) 

Fig. 1 – Example related to the proposed notation 
 

From the mathematical point of view, each notation statement represents SCANCUD = {r1, 
r2, . . . , rk} set partition into j partition classes (called also blocks), where 1 ≤ j ≤ k (j is the 
„number of dots in the notation statement increased by 1“ (i.e., the number of parallel scan 
chains within the scan layout configured in the CUD), and (in A2 case only) the ordering of 
elements in each block (such an ordered set is called a list) is required, rather than the 
ordering of blocks. As an example, {{r1}, {r2}} and {{r1, r2}} are all {r1, r2} set partitions for 
A1 case and {{r1}, {r2}}, {{r1, r2}} and {{r2, r1}} are all {r1, r2} set partitions for A2 case. 

Then, our partial task is defined as ”how many different solutions of scan layouts based 
on including just k scan registers into the scan layout exist?”. It means that we must determine 
the number of partitions of the k-element SCANCUD set when the order of the elements in the 
blocks is not taken into account (A1 case) or is taken into account (A2 case). Let the number 
of partitions for given k be denoted as npartsk, which represents the partial state-space size. 

If the order of registers in the scan chain is not taken into account (A1 case) then the 
sequence of registers according to the notation introduced will not be seen as ordered and then 
npartsk = bk, where recurrent relation 
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with the initial value b0 = 0 is a BELL number determining the number of partitions of a                
k-element set. BELL number can be also evaluated by means of 
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where S2(k, i) is a STIRLING number of the second kind representing the number of set 
partitions of a k-element set into i blocks. 

If it is possible to determine the value of npartsk for given k, i.e., if it is possible to 
determine how many unique scan layouts (each containing exactly k scan registers from 
concrete SCANCUD, 1 ≤ k = |SCANCUD| < n) can exist within certain CUD, then it is also 
possible to determine the complete state-space size, i.e., how many different scan layouts can 



be configured within a CUD for general n if we systematically analyse the total number of all 
unique scan layouts each containing just 1, 2,… up to exactly n registers from REGSCUD set 
(all possible 1, 2,… , n-element subsets of REGSCUD set are created and all possible scan 
layouts are formed from each such subset). We have derived that the number of scan layouts 
is 
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where the value of  represents the product of two values: the number of all 

possible k-element subsets (here, SCAN
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CUD sets) of an n element set (here, REGSCUD set) and 
the number of various layouts, each containing exactly all of k scan registers from a given 
SCANCUD set. 

Now, the problem of nstructsn evaluation for A1 case is solved. The problem of nstructsn 
evaluation for A2 case is more complicated because the order of the elements in each block 
(the order of scan registers within each scan chain) must be taken into account, which means 
that the formula for npartsk evaluation will be more complicated for the A2 case than for the 
A1 case. For each block, all possible permutations must be taken into account, which was not 
required in A1 case. For this purpose it is necessary to determine a formula evaluating npartsk 
in A2 case as well. The procedure of deriving the formula is quite complicated, therefore just 
the resulting formula is given here as 
 

k

k

1i
k a

1i
1k

i!
k!nparts =
















−
−

×= ∑
=

,           (4) 

 
where ak represents the number of partitions of a k-element set, where each block is a list. Let 
it be noted that the value 
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represents the number of ways in which a k-element set can be partitioned exactly into i 
blocks (lists), where the order of elements in each block is taken into account. This value is 
being denoted as an unsigned LAH number (for more detail information see, e.g.,  [1, 4]). 
 

4    Binary Encoding of a Scan Layout 
To be able to utilize a GA for our purpose, it was necessary to model the problem by 

means of a bit string, denoted as a chromosome. In the previous section, it was shown that for 
CUD containing n registers, nstructsn scan layouts can exist within the CUD. Also, the 
notation and analysis of scan layout state-space for both A1 case and A2 case were presented. 
Besides this theoretical background, it is required (for scan layout state-space exploration) 
any scan layout to be addressable in a certain way. In this section, encoding of a scan layout 
by means of a binary string will be presented. The proposed encoding can represent any set 
partition of a REGCUD set, i.e., also any scan layout that can be represented by our notation.  



Let the chromosome ∈ {0, 1}w (i.e., scan layout model) be defined as a bit string of the 
length w, where 
 

w = n × ( 1 + log2n )       (6) 
 
for A1 case and 
 

w = n × ( 1 + 2×log2n )       (7) 
 
for A2 case. 
 

 
Fig. 2 – Example of a chromosome to scan layout mapping 

 
The meaning of chromosome bits for both A1 case and A2 case will be explained in the 

next text. Suppose that chromosome bits are indexed in such a way that the highest (the most 
left) bit has index equal to (w-1) and the lowest (i.e., the most right) bit has index equal to 0. 
The chromosome bits are organized into three parts, each describing a special group of 
chromosome bits: 
 
� The highest n bits of a chromosome: for both cases, bits with indexes (w-1), . . . , (w-n) 

represent information about registers (REGCUD elements) that are selected to be also 
SCANCUD set elements, i.e., information whether Ri ∈ REGCUD belongs (then (w-i)th bit is 
set to 1) or does not belong (then (w-i)th bit is set to 0) also to the SCANCUD set. 

 



� The following n × ( 1 + log2n ) bits of a chromosome: for both cases, each group of        
1 + log2n  bits (i.e., chromosome bits with indexes (w – n – 1 –  (i – 1) × log2n),… ,  
(w – n – i × log2n)) belongs to a concrete Ri ∈ REGSCUD, the most left group belongs to 
the R1, . . ., the most right group belongs to the Rn. Each group of such bits identifies the 
number of the scan chain Ri belongs to. Let us note that a scan chain is identified by a 
unique number from {0,… , (n-1)} set and that the group of bits belonging to Ri is                
valid iff (w-i)th chromosome bit is set to 1. These are also the last n × ( 1 + log2n ) bits of          
A1-chromosome. 

� The following n × ( 1 + log2n ) bits of a chromosome: each group of 1 + log2n bits 
(i.e., chromosome bits with indexes (w – n – 1 –  (n + i – 1) × log2n),… , (w – n – (n + i) 
× log2n)) belongs to a concrete Ri ∈ REGSCUD, the most left group belongs to the R1,… , 
the most right group belongs to the Rn. Each group of bits represents a scan register 
sequence-number within the scan chain. In the scan chain, a scan register with a lower 
sequence-number is included prior to a scan register with a higher sequence-number. This 
information is valid only for A2-chromosomes. 

 
An example of a mapping from chromosome set to scan layout set for A2 case is 

presented in Fig. 2. 
Let it be summarized what is the meaning of a chromosome in our case. First, the 

chromosome can be seen as a scan layout address. There are 2w possible addresses, i.e., binary 
strings, each having a value from <0; 2w-1> interval. Concrete chromosome models concrete 
scan layout within CUD. Second, the chromosome can be seen as a unique identification of 1) 
a set of CUD registers that will be modified into scan registers and included into scan chains, 
2) parallel scan chains that will be inserted into a CUD and 3) the order of scan registers 
within each scan chain in the A2 case). Third, the chromosome can be also seen as a 
prescription how to modify CUD to include certain scan layout into original CUD structure. 

 

5    Conclusions and Future Research Perspectives 
In the paper, a problem of modelling a scan layout by means of a binary string was dealt. 

It was shown that using the proposed binary encoding, it is possible to model any concrete 
realizable scan layout within a digital circuit.  

To be able to design and implement automated DFT process (as the logical consequent in 
our research line), it is necessary to define the way in which the quality (reflecting constraints 
posed on a final CUD) of a chromosome will be evaluated and select proper state-space 
exploration method (e.g., genetic algorithm).  

For the purpose of evaluating chromosome quality, a function have to be developed that 
assigns a numeric value to a chromosome (i.e., concrete scan layout model). The assigned 
value should be proportional to the cost/quality trade-off level (testability factors, chip area 
overhead and number of I/O pins etc. are processed in the function). Thus, the quality 
(specified by a customer or designer) of two unique chromosomes (each representing unique 
CUA modification, i.e., solution of the scan layout problem) can be easily compared 
numerically and the solution (scan layout) automated DFT process is searching for would be 
represented by a chromosome with the highest possible value that was assigned to it.  

 
 
 



Also, there is an intention to develop state-space restriction methods and to extend 
proposed method to more test techniques than scan. This will offer the possibility to improve 
digital circuit testability through an optimum-close combination of selected DFT techniques 
in an acceptable time, which is a feature that is not available and published yet. 
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