
Efficient Evaluation of Multiple-Output Boolean
Functions in Embedded Software or Firmware

Vaclav Dvorak
Brno University of Technology, Brno, Czech Republic

Email: dvorak@fit.vutbr.cz

Abstract — The paper addresses software and firmware
implementation of multiple-output Boolean functions based
on cascades of Look-Up Tables (LUTs). A LUT cascade is
described as a means of compact representation of a large
class of sparse Boolean functions, evaluation of which then
reduces to multiple indirect memory accesses. The method is
compared to a technique of direct PLA emulation and is
illustrated on examples. A specialized micro-engine is
proposed for even faster evaluation than is possible with
universal microprocessors. The presented method is flexible
in making trade-offs between performance and memory
footprint and may be useful for embedded applications
where the processing speed is not critical. Evaluation may
run on various CPUs and DSP cores or slightly faster on
FPGA-based micro-programmed controllers.

Index Terms — Embedded software, Boolean function
evaluation, Binary Decision Diagrams, LUT cascades

I. INTRODUCTION

Efficient evaluation of Boolean functions is an
important part of many embedded software systems.
Functions most frequently used in embedded system
practice are not random, but application-specific with low
complexity. Among them sparse functions defined below
include applications such as encryption, data compression
and conversion, pattern matching and searching, moving
window functions on data streams, etc. We will address
Boolean functions of large numbers (tens, hundreds) of
variables because small size systems can be implemented
directly in hardware, e.g. in PLA, ROM or TCAM
(Ternary Content Addressable Memory).

Software implementation of Boolean functions will be
assumed in a form of a data structure describing the
function and of a compiled program that reads the input
vector and evaluates the function with the use of this data
structure. The size of the code and of the data structure is
one figure of merit and the other is the evaluation time
from reading the input to generating the output.

Hereafter we will use three compact representations: a
PLA-like table, Look-Up Tables (LUTs) and binary
decision diagrams (BDDs). The BDDs are well known,
especially the reduced ordered BDDs (ROBDDs), [1]. On

the base of ROBDDs we will develop a more practical
representation – cascades of LUTs.

Software implementation of Boolean functions has
been up to now studied especially in connection with
PLCs (“ladder diagrams”) [2], digital system simulation,
formal verification and testing [1], or specialized event
processing [3], where either a speed (PLC) or a required
memory were not that important. On the contrary, in
embedded systems we do care for performance, memory
space as well as for power consumption. We will
demonstrate that presently used algorithms (PLA
emulation, a BDD traversal or evaluation of Boolean
expressions) are generally too slow and that the use of
LUT cascades enables faster evaluation. The longer
cascades with simpler LUTs are slower than shorter
cascades with larger LUTs, and thus the processing speed
can be even adjusted to requirements.

The paper is structured as follows. In the following
Section II we introduce terminology and notation
concerning Boolean functions; a traditional approach to
Boolean function evaluation is assessed in Section III.
Binary decision diagrams (BDDs) and LUT cascades are
introduced in Section IV, together with some complexity
issues. Variable ordering in MTBDDs and in LUT
cascades is a subject of Section V. In Section VI we give
examples of LUT cascades for sample Boolean functions
and illustrate trade-offs between speed of evaluation and
required memory space. A micro-engine for LUT cascade
processing is presented in Section VII. Results obtained
with selected functions and some generalizations are
commented on in Conclusions.

II. TERMINOLOGY AND NOTATION

To begin our discussion, we define the following
terminology. A system of m Boolean functions of n
Boolean variables,

 fn
(i)

 : (Z2)
n
 → Z2 , i = 1, 2, ..., m (1)

will be simply referred to as multiple-output Boolean
function Fn with output values from ZR = {0, 1, 2, …,
R-1},

Fn: (Z2)
n
 → ZR , (2)

where R is the number of distinct combinations of m
output binary values enumerated by values from ZR.
Function Fn is incomplete if it is defined only on set
X ⊂ (Z2)

n; (Z2)
n
 \ X = D is the don’t care set.

 The behavior of a combinational circuit can be
described by the system of m explicit complete functions

Based on “Time- and Space-Efficient Evaluation of Sparse Boolean
Functions in Embedded Software”, by Vaclav Dvorak, which appeared
in the Proceedings of the 14th IEEE Int. Conf. and Workshops on the
Engineering of Computer-Based Systems 2007, Tuscon, AZ, USA,
March 2007. © 2007 IEEE.

of n variables
yi = fn

(i)(x1 , x2 , …, xn), i = 1, 2, ..., m (3)
or y = F(x) in vector notation. Alternative implicit
description is based on the so called output characteristic
function [7]

 φ0 (x, y) = 1. (4)
 Machine representation of Boolean functions uses

binary decision diagrams (BDDs), which can have many
forms. Bit-level binary decision diagrams (BDDs),
ordered binary decision diagrams (OBDDs) and reduced
ordered binary decision diagrams (ROBDDs) are well
known representation of a single Boolean function in a
form of a directed acyclic graph [1]. Whereas ROBDD is
a canonical (unique) representation for any given
complete function and an order of variables, incomplete
Boolean functions may be transformed into more than
one complete form and into the associated ROBDD.

Important parameters of a BDD are its size and width,
i.e. the total number of decision nodes and the maximum
number of edges between adjacent levels, where the
edges pointing to the same nodes are counted as one. The
size determines the memory space needed to store the
BDD data structure while the width K (also C-measure,
[4]) determines a BDD form factor since the height is
given by the number of variables. The construction of
minimum-size or by the same token minimum-width
ROBDDs belong among NP-complete problems [5]; the
size and width of the ROBDD depend on variable
ordering and there are n! possible orderings of n
variables. A heuristic approach can be used in a search
for near-optimal orderings [6]. Upper bounds on the
OBDD’s size and width for general random complete
Boolean functions grow exponentially with number of
variables n for any ordering, but functions used in digital
systems design with few exceptions do have a reasonable
BDD size and small width.

 M-ary decision diagrams are straightforward
generalization of BDDs. They have two types of nodes:
decision and terminal nodes. Decision node L is testing
M-ary variable var(L) and its outgoing edges are marked
by its values 0, 1, …, M-1. The terminal node assigns a
single value from ZM (generally ZR, R≠M) to output y =
Fn(x1, x2,…, xn).

To represent a system of Boolean functions (1) by
means of decision diagrams, we can use either m bit-level
BDDs, one for each of m Boolean functions (possibly
sharing some of their sub-diagrams in Shared BDDs or
SBDDs, [7]), or one word-level BDD (WLBDD) with n
Boolean decision variables and with R integer terminal
values. There are many types of WLDDs. Multi-terminal
BDDs have integer leaves and therefore represent
functions from Booleans to integers. A BMD (Binary
Moment Diagram) is more compact representation for
some useful arithmetic functions which have exponential
size if represented by MTBDDs. Hybrid decision
diagrams HDDs are a combination of MTBDDs and
BMDs.

BDD for Characteristic Function (BDD for CF) [7] is
yet another representation of multiple-output functions,
which uses the shortest encoding of output vectors y by

means of auxiliary variables. The advantage of the BDDs
for CF is that tools useful for optimization of BDD for a
single Boolean function (4) can be used without
modification for multiple-output functions as well.

As the LUT cascades are the main concern of this
paper, we will provide a formal definition. A LUT will be
also interchangeably referred to as a “cell”.

Def. 1. A cascade C of a form k × m is the system
C = [K, M, H1, H2, …, HB, µ]

where
K ≤ 2k (M ≤ 2m) is the number of specified Boolean input

vectors at k horizontal (m vertical) cell inputs,
Hi: (Z2)

k × (Z2)
m → (Z2)

k, 1 ≤ i ≤ B are functions
implemented by individual cells,

B, the cascade length, is the total number of cells and
µ: {1,2,…, B}→(Z2)

m assigns m-tuples of input variables
xi , i = 1,2,…, n to B cells in the cascade.
The above cascade has the width k horizontal rails

carrying Boolean values and each cell has m vertical
(side) inputs. The last cell in the cascade may have r ≠ k
outputs.

Def.2. A cascade is said to be non-redundant if each
variable used at vertical input enters one and only one
cell. Otherwise the cascade is redundant. If a reference is
made to a cascade, we will assume implicitly a non-
redundant cascade. The attribute “redundant” will be used
always explicitly.

Note. Cascades considered in [16] use cells with
additional vertical outputs. These intermediate outputs
can reduce the cascade width k. Intermediate outputs are
either individual Boolean variables yi as in (3) or the
complete integer values from ZR as in (2); in the latter
case BDD leaves appear not only in the bottom of the
diagram, but span more its levels. A consequence for
software evaluation is that some partial Boolean outputs
or function values are generated earlier than others.

III. TRADITIONAL APPROACHES TO EVALUATION OF

BOOLEAN FUNCTIONS: PLA EMULATION

Hardware implementation of Boolean functions in
Programmable Logic Array (PLA) can serve as an initial
prototype for software implementation. PLA consists of
AND-matrix and OR-matrix. Rows of the AND-matrix
define terms and OR-matrix serves for accumulation
some of them into the binary outputs, Fig.1.

Fig.1. Structure of PLA

AND array OR array

n inputs r outputs

p term
s

 The set of p terms produced by AND-matrix (a term
vector) can be generated in parallel, each term in one bit
of the computer word. If the capacity w bits in a single
word is not enough, p/w computer words can be used to
accommodate all the terms. The terms are evaluated in n
steps, one input Boolean variable at a time. Two masks
m0(x) and m1(x) of length p bits are maintained for each
variable x. The masking bit of mask mv(x), v = 0,1, in a
position of term t is denoted mv(x, t) and has the
following value:

if x occurs in t, then mv(x, t) = v
if !x occurs in t, then mv(x, t) = !v
if x does not occur in t, mv(x, t) = 1.
Two masks for each variable are generated only once,

at the beginning, based on their occurrence in PLA terms.
The term vector is initialized to all ones and then a
sequence of masks is applied to it using the bitwise
logical AND operation. For variable x mask mv(x) is used
depending on the input value x = v. All the terms are thus
updated in parallel by the bitwise AND operation and the
(full) width of computer word is utilized.

As soon as all terms are ready, we have to emulate
OR-matrix – apply bitwise OR operation selectively to
certain bits. Another set of r masks will be used for r
outputs. Unused terms in the term vector are masked out
and if at least a single 1 remains, the result TRUE. The
memory size for storing all sets of masks is thus

 space = (2n + r) p/w words (5)
and time complexity is

 time = C1n + C2 r, (6)
where C1 and C2 are execution times in clock cycles
related to mask applications.

If the number of terms p is less than the number of
variables n, a dual evaluation method may be more
advantageous. The relevant terms are generated one after
another from the input vector using again two sets of
masks. As soon as the term vector is assembled, the
outputs are generated the same way as before.

Similarly, if p < r, we can create the output vector
faster by ORing p partial vectors mv(t); partial vector
mv(t), v = 0,1, is selected if term t = v. Space and time
complexities under all conditions are:

 
 

 
 









<
≥

+








<
≥









+








=









+








=

rp

rp

np

np
conditions

pC

rC

pC

nC
time

wrp

wpr

wnp

wpn
space

:

)8(

)7(
/2

/

/2

/2

4

2

3

1

Example:
Size of full tables for two sample PLAs is given:

TABLE 1.
PARAMETERS OF PLA1 AND PLA2

n r p |X| size [B]

PLA1 13 8 31 175 8192
PLA2 11 8 53 632 2048

Data structures for emulation of two PLAs with w = 8
bits according to (5) take up only 156 and 268 bytes,
respectively. Time complexity is n + r = 21 and 19 time
steps provided that C1 ≈ C2. (End of example.)

IV. LUT CASCADES, BDDS AND COMPLEXITY ISSUES

A. Relation of MTBDDs and LUT Cascades

Whereas BDDs and MTBDDs proved useful in many
areas of digital design [8] where they provide compact
data structures and a degree of flexibility in manipulating
them, they are not as wonderful for the purpose of
function evaluation. The primary reason is the slow
speed, since the evaluation process inspects one Boolean
variable after another. There is though a certain speedup
in comparison to direct evaluation of Boolean
expressions, because each variable is processed only
once. Straightforward remedy how to speed up the
traversal of a BDD is to process several variables at a
time. This way we will derive LUT cascades, in fact a
special case of LUT networks.

A close relation between both these representations of
multiple-output Boolean functions will be illustrated on a
bit-counting example. The function Fn: Z2

n → Zn counts
the number of 1´s presented at n inputs and represents it
by a binary number. The MTBDD and associated LUT
cascade are displayed in Fig. 2 for n = 4. Generalization
for larger values of n is easy. As the number of nodes
grows linearly from the root to leaves, the width of the
MTBDD is given by the last level of decision nodes and
has the value of K = n.

d d

c c

b b b

a a a a

c

b

a

0 1 2 3 4

0 1

0 1 2

0
1

2 3

Fig.2. Bit counting example

What connects two representations is the concept of

sub-functions. Informally, the sub-function f of Fn is a
function of s variables obtained from Fn by setting n− s
variables to fixed constant values. The number of distinct
sub-functions of s variables, s = 1, 2,…, n-1, the so called
profile, characterizes complexity of the Boolean function.
In Fig.2 we can recognize distinct sub-functions as edges
crossing boundaries between MTBDD layers, counting
edges incident with the same node only once. Edges are
labeled by ID codes of distinct sub-functions. From the
top down, there are 2 sub-functions of variables a, b, c
(ID codes 0, 1), 3 sub-functions of variables a, b (ID
codes 0, 1, 2), 4 sub-functions of variable a (ID codes 0,
1, 2, 3), and 5 sub-functions of zero variables (constant
terminal values 0 to 4). LUT contents are defined by
binary ID codes and a side variable entering a cell, and

binary ID codes generated by the cell. Co-synthesis of
MTBDD and LUT cascade will be presented in Section
V.

As can be seen, the difference between the MTBDD
and the LUT cascade is in communication among the
MTBDD layers and LUTs in the cascade: in MTBDD
each sub-function ID code requires an individual edge
(”wire”), whereas the ID codes being sent between LUTs
are binary coded. The number of rails k in the cascade is
therefore

k = log2 K. (9)
This difference of two representations reflects itself in

the way how the program interprets a certain application-
specific MTBDD or a LUT cascade. In case of the
MTBDD we may use for each node a record with 3
fields. A format indicator is one-bit field specifying the
leaf node (leaf nodes may generally occur at any level of
the diagram). Two other fields of the leaf node are then
used for output. If the node is not a leaf, two fields
(adjacent words) contain pointers to the base addresses of
other nodes. The base address is then modified by the
value of a current control variable(s) and is used to
extract the correct field with the pointer to the next node.
The program traverses a certain path in the MTBDD from
the root to a leaf in at most n steps.

 LUTs are interpreted similarly, only the pointer to the
next LUT is obtained from the current output by
concatenating it with the control variable value and
adding it up to the next LUT base address. If suitable,
some LUTs can be combined to provide even faster
processing (see first three cells in Fig.2 combined into
one).

B. Complexity isues

Many questions arise in connection with
implementation of the given multiple-output Boolean
functions by LUT cascades. In our bit-counting example
the number of sub-functions from the root to leaves (a
profile) was increasing linearly. Some other functions
may have a profile almost constant, what makes the
number of rails in the cascade also constant – a desirable
feature. However, for randomly generated functions and
for multipliers the profile and maximum BDD width K
increases exponentially (parameter k = log2 K linearly)
with the number of variables. The question is, what will
be the required number of cascade rails in general case. If
we remove the restriction that each input variable can be
used only once, the result is available as Theorem 1 for
multi-valued redundant cascades (repeated BDDs):

Theorem 1. [9] Every function
 Fn: (ZM)

n
 → ZR, M ≥ 2, R > 2

is realizable by the LUT cascade with Bn cells (with K-
valued signals between adjacent cells and external M-
valued signals on side inputs).
If R = 3, 4, 5, 7, 8, 9, 11, … then K = R else if
R = 2, 6, 10,…, 2(2t+1), …, then K= R+1; (t=0,1,2,..).
Bn= M(Bn-1 +1), B1=1.

Synthesis method based on Theorem 1 is not practical,
as it produces too long cascades and of the same length
for functions with different complexity. However,

redundant use of variables may sometimes be useful to
reduce the number of cascade rails. Some examples are
given in [11].

The size of the ROBDD for a single Boolean function
of n variables given by Boolean expression in DNF is
known to be less than the number of literals in the
expression. More accurately is the BDD size upper-
bounded by [10]

  { } ,,...,2,1,12min LkkLP k
n
L

k
=−+−≤ (10)

where L is the number of literals in DNF.
Complexity of MTBDDs for general multiple-output

Boolean functions gives the following
Theorem 2 [11]:

Size P and width K of the MTBDD for function
Fn: (Z2)

n
 → ZR are upper-bounded by

[])2,min(max

1)2(min

2

2

in

i

in

i

i

i

RK

RRP

−

−

≤

−−+≤
 (11)

The width K of MTBDD and thus the cascade width k
(a number of rails) have reasonably low values for many
functions arising in practice. One class of such functions
is defined below.

Def. 3. Sparse functions.
Under the sparse functions Fn: (Z2)

n
 → ZR we will

understand functions with the domain (Z2)
n divided into

two parts X and D, (Z2)
n
 = X ∪ D, | X | << 2n , if one of

the following conditions hold:
1) Fn is an incomplete function in (Z2)

n, Fn: X → ZR

 and (Z2)

n
 \ X = D is the don’t care set.

2) Fn: X ∪ D → ZR. Mapping D → ZR is artificially
 defined to make implementation as easy as possible.
3) Fn is a fully specified function in (Z2)

n,
 Fn: [X → ZR\{0} , D → {0}]
(without loss of generality, value 0 is taken as the
dominant value).

Functions in three above classes are quite common in
digital design.. They have low BDD width and are
suitable for LUT cascade implementation. ROBDDs can
be obtained by applet [12] and LUT cascades can be
quickly derived by slicing ROBDDs. Complexity of LUT
cascades for sparse functions is established by the
following theorem [11].

Theorem 3.
Every R-valued incomplete function of n binary variables

Fn: X → ZR, X ⊂

(Z2)

n
is realizable as the output function of the LUT cascade
with k ≤ log2 | X | rails.
Every R-valued complete function of n binary variables
 Fn: X ∪ D → ZR [X → ZR\{0} , D → {0}]
is realizable as the output function of LUT cascade with
k ≤ log2 (| X | + 1) rails.

Another class of sparse functions is defined below.
Def.4. Multiple-output Boolean functions are symmetric
if they are invariant under any permutation of inputs.
Their values depend only on the number of active inputs.

Theorem 4. MTBDD width K of symmetric functions
is K = n, the number of Boolean variables.

Proof: It is clear, that all sub-functions of a symmetric
function are also symmetric. There are only up to n−s+1
distinct sub-functions of s free variables corresponding to
n−s fixed variables at all 0´s, single 1, two 1´s, three 1´s,
…, all 1´s. Since 1≤ s ≤ n−1, maximum MTBDD width K
= n is at the lowest level where s = 1.

C. Example of a sparse function

Boolean function of n =N×N variables returns 1 for
every configuration of 1’s (queens) on the N×N
chessboard, such that no queen attacks another one. E.g.
for N = 4 two solutions at Fig.3 can be generated by
Boolean function F16
F16 = !a11*!a12*a13*!a14*a21*!a22*!a23*!a24*!a31*!a32*
!a33*a34*!a41*a42*!a43*!a44 + !a11*a12*!a13*!a14*!a21*
!a22*!a23*a24*a31*!a32*!a33*!a34*!a41*!a42*a43*!a44 (12)

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Fig.3. Two solutions of 4-queens problem

Function F16 is a sparse function (sub-class 3); number of
literals in Boolean expression is L = 32, n = 16, the size
is according to (10) upper bounded by 31 nodes and the
width is upper-bounded by log2 3 = 2 according to
Theorem 3. The real ROBDD generated by the applet
[12] has 29 nodes and is shown in Fig.4. The notation
used in (12) corresponds to applet [12] and to Fig.3, but
variables in the ROBDD at Fig. 4 are enumerated from 0
to 15.

By slicing the ROBDD horizontally as shown in Fig.4,
we obtain the LUT cascade. Two sub-function ID codes
plus constant 0 are transferred between BDD layers, so
that 2-bit code will do. Possible configurations of LUT
cascades are in Fig.5.

 2 2 2 2 2 1

 3 3 3 3 2

 2 2 1

 7 7

Fig. 5. LUT cascades for 4-queens problem ( IEEE 2007)

The most efficient representation and evaluation of F16

is thus clear: two memory words are sufficient to store
two min-terms in (12) and two bitwise comparisons will
do for the quickest evaluation. In case of LUT cascades,
two table look-ups are sufficient in the shorter LUT
cascade in Fig. 5, giving a similar speed as with two
bitwise comparisons. However, memory consumption is
worse, 512 × (2+1) bits against 2 words, 16 bits each.

Now if we move to 8-queens problem, there will be 92
solutions described by F64. Solutions can be found by the
known algorithm [13]. To store 92 binary vectors of
length 64 is still acceptable, but instead of a linear search
we can order solutions and do better with the logarithmic
search in log2 92 = 7 steps at most.

Fig.4. ROBDD for 4 queens problem ( IEEE 2007)

V. VARIABLE ORDERING FOR MINIMUM WIDTH (SIZE) OF

THE MTBDD

Design of LUT cascades by slicing MTBDDs has a

catch: the size and the width of MTBDD strongly depend
on variable ordering. The problem of optimal variable
ordering is unfortunately NP hard [5]. For some
functions, the size of a BDD may vary between a linear to
an exponential range depending upon the ordering of the
variables. Thus the ROBDDs are canonical data structure
for a fixed ordering only. The problem of ROBDD
synthesis with optimal variable ordering for a complete
Boolean function of n variables is computationally
expensive as it can be done in time O(n23n), [14].
Optimization of variable ordering for minimum size of
ROBDD or MTBDD will very likely produce simul-

The ROBDD size is according to (10) upper-bounded
by 5535 nodes, so that storing of such BDD would not be
space efficient at all. A traversal of this ROBDD would
need 64 steps in the worst case, what is bad as well. A
LUT cascade could be faster, but at the cost of total
memory capacity for LUTs.

taneously a minimum BDD width (resulting in the most
efficient LUT cascade).

Design of LUT cascades can start by determining the
required number of rails k from the BDD width K. The
value of K is known for sparse functions (Theorem 3),
for weighted-sum functions [15], and some other function
classes.

If BDD width K for the given function cannot be
obtained from known expressions, one can get it from
ROBDD for CF after minimizing its cost. This is,
however, a separate problem. Recently, heuristic
minimization algorithms have been proposed [8] that
allow reduction of the WLDD size analogously as for
BDDs. Next we will describe a co-synthesis of both
MTBDD and LUT cascade for incompletely specified
multiple-output Boolean functions. Let us note that sub-
functions of incomplete function may themselves be also
incomplete. A compatibility relation can be defined on
the co-domain of such sub-functions: don’t care (denoted
by “x”) is compatible with any value from ZR .

The method is based on the bottom-up heuristic
construction of BDDs by an iterative disjunctive
decomposition. The illustrative incomplete function of 8
variables is given in Fig. 6. The map of the function at the
top is sparsely populated by 16 function values (0 to F).
For clarity don’t care cells are left empty in tables, but
otherwise are denoted by symbol “x” in the text.

Single-variable sub-functions can be created with
respect to any variable. E.g. two vertically adjacent cells
correspond to a sub-function of the first variable that
attains alternate values 0 and 1 at even and odd rows (see
e.g. [F, 8] in Fig.6). Using compatibility relation we can
combine pairs [α,x] and [x,β] into a single sub-function
[α,β]. Altogether nine sub-functions of the first variable
are detected in the topmost table. The first decomposition
step is described below the table; each sub-function is
given a new ID code ([1,0]→0, [2,7]→1, [F,8]→3, etc.),
thereby removing the first variable from the function. A
map of the new intermediate Boolean function of 7
variables is now created replacing sub-functions by new
ID codes. This process repeats 8 times.

The MTBDD can now be created starting from root 0.
Every assignment [a,b]→ c, when reversed, specifies one
decision node with input c and two outputs a and b
controlled by the relevant variable. Assignments of the
type [a,a]→b, [a,x]→c, [x,a]→d do not represent decision
nodes because the outputs are the same (or compatible);
such a decision node degenerates to a wire. Going up
from the root (a map of 0 variables) to the original map of
8 variables, the OBDD in Fig.7 is created. Usually BDDs
have a root at the top, but we displayed the BDD upside
down in order to keep the BDD structure in correlation
with the sequence of map transformations in Fig.6. Nodes
are labeled by intermediate sub-function values. Out of
46 assignments, 34 correspond to decision nodes and 12
to wires only.

 In our example we did not care about variable
ordering; the ordering was chosen more or less randomly.
If we want to minimize the size of a BDD, the following
heuristics can be used: do sub-function counting for all

variables in each decomposition step and use in this step
the variable with the minimum sub-function count K,
what will ensure the minimum number of rails k, too. In
case of ties, select the variable with the larger number of
constant sub-functions. By intuition, the minimum count
of sub-functions in one step may hopefully produce a
minimum count of their pairs in the next step, and so on.

Note also that the above small example with maps of
the original and intermediate functions was done only by
hand for illustration. When we have sparse functions with
several tens of variables represented by a list of defined
points, all the processing is done automatically on these
lists. The appropriate algorithm for such case is described
in [6].

One layer of the MTBDD or more layers combined can
be described by a LUT. For example LUT 4 in Fig. 8 is
constructed from the layer of decision nodes adjacent to
the leaves in Fig.7. Transformation of 9 function values
to 16 ID codes is described by reversed assignments
under the topmost table in Fig.6.

 The whole BDD (Fig. 7a) is then described by 4 LUTs
as shown in Fig. 7b. The LUT cascade is homogeneous,
but generally the LUTs may have different size.
However, sparse functions are typically implementable
by homogeneous cascades, since the number of sub-
functions (and therefore decision nodes) follows a
pattern: rising – constant – dropping, [17].

Had we used a list of defined points with function
values, there would be 39 items, 8 (input) + 4 (output)
bits per item, 468 bits in total, i.e. half of the full function
table with size 256 × 4 bits. Since we cannot order the
items, we would have to use the linear search with up to
39 steps in the worst case.

On the other hand, if we use the LUT cascade
according to Fig.7b, the capacity of all tables will be
4×(32×4) = 512 bits and only 4 steps (composed of read,
append a value of a selected variable, add to the base
address of the table to create a pointer) will do. This
seems to be the best in speed and memory efficiency.
Four tables may be implemented in memory as one table
32 × 16 bit with the correct output extracted from 16-bit
word as needed. Additional flexibility is obtained with
LUTs as they are combined together. For example with 2
tables 64 × 4 bits, the response will be 2-times faster. The
total size of 2 and 4 LUTs remains the same, but 2 tables
combined need 64 words in memory, 8 bits per word.

There are other heuristic approaches for MTBDD
optimization. The basic operation for improving the
variable ordering is the exchange of two adjacent
variables. E.g. in sifting method [8] all position of a given
variable in the given ordering are checked successively.
The variable is then left in an optimal position with the
lowest MTBDD size and process repeats for all variables.
In dynamic variable ordering a window of m variables is
moved over the n variables and in each position all
permutations of the variables are considered [8]. The so
called application specific variable ordering (ASVO) [8]
uses structural properties of the problem instance for
which the MTBDD has to be constructed.

 C F

 0 0 C 8 0

 C 3 F

 8 A

 5 C

 7 7 7 7 7 7

 F

 8

 4 4 3

 E E

 1

 D

 B 2 C

 6 3 3

 7 7 A 9

 1 2 3 F 4 5 6 B C
 0 7 A 8 E D 9 A C
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 2 3 4 5 6 7 8

 0 0 8 3 0

 8 2 3 2

 1 1 1 1 5 8 1 1

 3 3

 4 4 2 4

 5 0

 7 1 8

 6 1 1 2 2 6

 0 2 3 8 5 1 4 1 7
 0 2 3 8 5 3 6 2 1
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 2 3 4 5 6 7 8

 0 0 3 1 2 1 0

 5 5 5 5 4 3 5 5

 6 6 4 1 6 0

 6 8 8 8 7 1 3 6

 0 1 2 3 0 6 x 4
 5 4 6 3 1 6 7 8
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 2 3 4 5 6 7

 0 0 0 0 0 1 3 1 2 1 0 0

 5 7 5 7 7 1 6 5 4 3 5

 0 0 2 3 x 1
 5 3 4 1 6 7
 ↓ ↓ ↓ ↓ ↓ ↓
 0 1 3 5 2 4

 0 0 0 4 0 0 4 4 5 2 4 0 3 4 1 0

 0 0 → 0 0 4 → 1 4 4 → 2
 5 2 → 3 4 0 → 4 3 4 → 5
 1 0 → 6

 0 1 0 2 3 4 5 6

 0 1 → 0 0 2 → 1 3 4 → 2
 5 6 → 3

 0 1 2 3 0 1 0

 0 1 → 0 0 1 → 0
 2 3 → 1

Fig. 6. Iterative decomposition (8 variables) ( IEEE 2007)

 7 5 2 6 4 3 8 1 0

 B D 5 A 3 9 6 E 4 8 F C 7 2 0 1

 8 4 7 1 6 2 3 5 0

 7 1 6 4 2 3 5 0

 5 4 3 2 1 0

 3 2 1 0

 1 0

 0

 6 5 4 3 2 1 0

a)

LUT 4 LUT 1 LUT 2 LUT 3

b)

Fig.7. a) The ROBDD of the sample function of 8 variables
(0 = - - - - - , 1 = )

b) LUT cascade ( IEEE 2007)

 1 2 3 F 4 5 6 B C 0 1

 0 7 A 8 E D 9 A C 0 1 0
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 1 2 7
 0 1 2 3 4 5 6 7 8 2 3 A
 3 F 8
 4 4 E
 5 5 D
 6 6 9
 7 B A
 8 C C
 x x x

Fig.8. Construction of one LUT ( IEEE 2007)

Thorough comparison of all heuristic methods of

optimization, as regards quality of results and an amount
of the required execution time, remains still to be done.

0/1

0 - 8 0 - F

LUT 4

LUT 4

LUT4

LUT3

LUT2

LUT1

VI. A CASE STUDY - MCS-51 MICROCONTROLLER FAMILY:

PLA1 AND PLA2 IN SOFTWARE

Space and time efficiency of various configurations of
LUT cascades obtained by computer-aided iterative
decomposition have been tested on two PLAs used in the
core of MCS-51 family of microcontrollers,

 PLA: X → ZR, X ⊂ (Z2)
n, ZR ⊂ (Z2)

r,
with parameters in Table 1. Both PLAs implement sparse
(incomplete) Boolean functions, which are after
minimization described by Boolean expressions (a list of
expressions for PLA1 is given in appendix A). The
number of terms in AND arrays are p = 31 and 53. The
size in bytes gives memory space r2n required for storing
full function tables.

TABLE 1.
PARAMETERS OF PLA1 AND PLA2

n r p |X| size [B]

PLA1 13 8 31 175 8192
PLA2 11 8 53 632 2048

Iterative
Iterative decomposition used the selection of those two

variables at a time that produced the minimum number of
sub-functions. Not too large size of the problem allowed
still an exhaustive search – on the Pentium-based PC it
took tens of seconds. The PLA1 was implemented by the
cascade of 6 cells, Fig. 9a, with the total size of LUTs
only 1792 bits. That is reduction by factor of 36. The size
of LUTs is not uniform and evaluation would take 6 table
look-ups. We can make it faster and more uniform by
combining 6 cells into 3 as shown in Fig. 9b. All sub-
functions are counted (results given in {integer}), coded
and communicated between cells; function values are
outputs from the last cell only. The total size of all LUTs
is then 2816 bits; if the size of computer word w is
known, further optimization can be done to minimize the
total memory space in bytes occupied by all 3 LUTs.

As far as PLA2 is concerned, computer-generated
cascades are shown in Fig. 10. The cascade at Fig. 10b is
obtained from the cascade a) by merging first two LUTs.
The capacity of LUTs is 3264 and 3456 bits, respectively.
The evaluation speed is given by 4 or 3 table look-ups.

 1 8

2

{ 4}
 2

{ 7}
 3

{ 12}
 4

{ 13}
 4

{ 17}
 5

2 2 2 2 2

{12}
 4

{17}
 5

4 4 2

3 8

a)

b)

Fig. 9. Two cellular cascade implementations of PLA1 ( IEEE 2007)

We can also use an optimization technique based on
creating groups of outputs and design a separate LUT

cascade for each group. Multiple cascades may be
narrower and shorter than the original one and can save
some memory space, but number of table lookups will be
always greater. A problem how to split output variables
optimally into groups is solved typically by heuristic
methods [18], [16]. In case of PLA2 we will split output
variables intuitively into two halves and then decompose
them separately. The result is shown at Fig. 11. The size
of LUTs is reduced to 1200 bits only, but the speed is
reduced also. Eight table look-ups are needed and can be
done on one CPU core in 8 steps sequentially or on a 2-
core processor concurrently in 4 steps.

3

2

{10}
 4

{19}
 5

{46}
 6

 8

2 2 2

 3

4

{19}
 5

{46}
 6

8

2 2

a)

b)

Fig.10. Cascade of 4 or 3 cells for PLA2 ( IEEE 2007)

The case study of PLA1 and PLA2 offered the size of

data structures and speed of evaluation as given in Table
2. The data in the table are valid under the assumptions:

- size is in bits, the length of a computer word is not
considered;

- steps may have different duration at PLA emulation
and LUT cascade processing (mask load + bitwise logical
operation vs table look-ups).

3

2

{11}
 4

{14}
 4

{8}
 3

 4

2 2 2

a)

3

2

{4}
 2

{6}
 3

{11}
 4

 4

2 2 2

b)
Fig. 11. Two parallel cascades implementing PLA2.

TABLE 2.
SOFTWARE IMPLEMENTATIONS OF PLA1 AND PLA2

 PLA emulation LUT cascades
 AND + OR matrix
size bits steps size bits steps

PLA1 1054 13 + 8 1792 6
PLA1 1054 31 + 8 2816 3
PLA2 1590 11 + 8 3456 3
PLA2 1590 53 + 8 1200 8

VII. MICROPROGRAMMED CONTROLLER WITH MULTI-WAY

BRANCHING

Evaluation of Boolean functions at the firmware level
can also benefit from the LUT cascade paradigm. By
making use of a hardware micro-engine with support for
multi-way branching, we can speed up evaluation of
Boolean functions against a general purpose CPU core.
A suitable architecture of a micro-engine similar to [19]
is depicted in Fig.12.

Fig.12. Micro-programmed controller architecture with multi-way
branching

There are three microinstructions formats (FI = Format

Indicator):
FI = 1: state output (control signals), µIP := µIP+1
FI = 10: MXs and BCU control, jump to an address

specified in micro-instruction modified by BCU
FI = 11: conditional output, jump to an address

specified in micro-instruction (no modification).
The second format is for all kinds of jumps to an

address specified in micro-instruction. This address is
modified by external variables, by up to 4 variables at a
time, including 0 variable (no modification), by means of
16-way Branch Control Unit (BCU). The task of this unit
is to shift active inputs, selected by a 4-bit mask, to the
lowest positions of the 4-bit output vector. This vector is
then wire-ORed with the address obtained from the
micro-instruction. If there are more external variables, the
LUT cascade paradigm is used. LUT output contains not
only the rail variables, but the whole next LUT base
address modified by k rail variables in proper positions.

We will illustrate rewriting a general multi-way branch
microinstruction into a micro-program. The multi-way
branch has the same structure as a switch. Let us have the
statement

S0: if F = 0 then v0 exit S0
if F = 1 then v1exit S1
if F = 2 then v2 exit S1
if F = 3 then v2 exit S2
if F = 4 then v3 exit S3
else don´t care; (13)

Si´s are state labels, vj´s are conditional output vectors,
F(A,B,C,D): X→ Z5, X ⊂ (Z2)

4 is an incomplete multiple-
output Boolean function, its map is in Fig. 13a.

F(A,B,C,D) CD

AB 00 01 10 11

00 0 1 2 2

01 x 2 2 2

10 x 4 0 1

11 4 x 2 3

S0 exit L@ABCD
...
L@0000 v0 exit S0
L@0001 v1 exit S1
...
...
L@1110 v2 exit S1
L@1111 v2 exit S2

 a) b)
Fig.13. The map of a sample function (a) and a symbolic dispatch table

in the micro-program (b)

The switch statement (13) describes a transition from
present state S0 to one of next states S0 to S3 depending
on the values of 4 external variables A, B, C and D.
During the transition a certain conditional output vector
vj is generated.

If the speed of the micro-engine is the utmost priority,
we should do the testing of external variables in one step.
The 16-way branch is then translated to the dispatch table
in Fig.13b. Replacement of 4 bits in the address is
denoted by operator “@”. If wired OR is used for
replacement, the bits being replaced must be reset to 0.

If saving in hardware (chip area) is more important
than overall speed, we can test variables A, B, C and D in
groups of two. The optimum MTBDD found by the
method described in Section V is shown in Fig. 14,
together with the symbolic micro-program derived from
it. It can be seen, that the second LUT is only partial as
two sub-functions of two variables A, C are constants (2
and 4). Control store capacity is almost half of the
capacity in the previous case and the BCU can be
eliminated.

F:0 1 x 2 2 4 0 1 2 3
v:0 1 x 2 2 3 0 1 2 2
S:0 1 x 1 1 3 0 1 1 2

S0

N2 N3

AC

BD BD

N1

S0 exit N1@AC
N1@00 exit N2@BD
N1@01 v2 exit S1
N1@10 v3 exit S3
N1@11 exit N3@BD

N2@00 v0 exit S0
N2@01 v1 exit S1
N2@10 -
N2@11 v2 exit S1
N3@00 v0 exit S0
N3@01 v1 exit S1
N3@10 v2 exit S1
N3@11 v2 exit S2

LUT 1

LUT 2

a) b)
Fig. 14. LUT cascade (a) and the symbolic micro-program (b) for a

multiway branch example

As the last example we shall consider evaluation of the

following sparse Boolean function of 16 variables: it
attains the value 1 if the given 6-bit string is detected
anywhere within an input string of 16 Boolean values;
otherwise the function has the value 0.

Since the string of 6 consecutive values of variables
may be located in 11 positions (we do not assume that the
pattern wraps around), we can specify the function by 11
words of 16 ternary digits (0, 1, x). The CPU evaluation
of this function by logarithmic search is not possible and
we have to step through these words sequentially. In the
worst case it may take 11 steps.

x1
x2

xn

M
X

ROM

M
X
s

16-way
Branch
Ctrl Unit

µ
I
P

address
sources

+1
Decoder/
Seqencer

µ
I
R

m =4

Wired
OR

FI

The next LUT base address
with up to k bits replaced
by the precomputed LUT
output

 4

We can do much faster with LUTs, though. First the
ROBDD of this function may be obtained using the
applet [12], since the Boolean expression with 11 min-
terms, each with 6 literals, is easy to write down (for a
pattern of six 1´s):

a1*a2*a3*a4*a5*a6+a2*a3*a4*a5*a6*a7+a3*a4*a5*a6*
a7*a8+a4*a5*a6*a7*a8*a9+a5*a6*a7*a8*a9*a10+a6*a
7*a8*a9*a10*a11+a7*a8*a9*a10*a11*a12+a8*a9*a10*
a11*a12*a13+a9*a10*a11*a12*a13*a14+a10*a11*a12*
a13*a14*a15+a11*a12*a13*a14*a15*a16 (14)

The ROBDD is in Fig. 15a, from which an optimal

size and count of LUTs can be determined. We have used
4 LUTs with 3 rails and 4 vertical inputs for the target
micro-controller architecture in Fig.12.

The micro-program would consist of 16 + 3 × (8 × 16)
= 400 jump microinstructions, but only 4 of them would
be executed for the given input vector. Execution time (of
4 microinstructions) will be somewhere between response
of software realization (4 table lookups) and a hardware
LUT cascade.

a)

a1 a2 a3 a4

b)

Fig. 15. The ROBDD (a) and LUT cascade detecting 6-bit string in 16
bits (b)

To complete the discussion on the pattern detection

example, let us note that LUT cascade can be constructed
for any number of input variables. The width of cascade
remains the same and the BDD has a repetitive nature.
We can think of it as of repeated evaluation of a Boolean

function that depends on small number of local variables
defined by a window that moves along the data stream.

Important application of pattern matching is the IP
address lookup, one of the primary functions of a router,
and often also a significant performance bottleneck. An
Internet router table is a set of tuples of the form (p, a),
where p is a binary string whose length is at most n (n =
32 for IPv4 destination addresses and n = 128 for IPv6),
and a is an output link (or next hop). When a packet with
destination address A arrives at a router, we are to find
the pair (p, a) in the router table for which p is a longest
matching-prefix of A (i.e., p is a prefix of A and there is
no longer prefix q of A such that (q, b) is in the table).
Once this pair is determined, the packet is sent to output
link a. The speed at which the router can route packets is
limited by the time it takes to perform this table lookup
for each packet.

 Prefixes Next hop

 0* 35

 11* 7

 110* 21

 1110* 9

 11000* 1

 11111* 68

 1101010* 51

35

7

21

9

68 1

51

a) b)

2

{1}

 1

{3}

 2

{1}

 1

2 2 1

c)

destination address

output
(next hop)

Fig.16. Prefix table (a), corresponding 1-bit trie (b)
and the LUT cascade with intermediate outputs (c)

An example of prefix table is in Fig.16a. It is in fact

fully specified multiple-output Boolean function with
2n-1, 2n-2,…, and 2 input vectors (destination addresses)
producing the same next hop. The tree-like MTBDD of
such type of function is called trie, Fig.16b [20]. Nodes of
a trie contain two element fields, each element field has
the components child and data (output). Branching is
done based on the bits in the search key. A left-element
child branch is followed if the ith bit of the search key is
0; otherwise a right-element child branch is followed.

Prefix output evaluation is conducted by using the IP
address bits to traverse the trie, starting with the most
significant bit of the address. To speed up this searching
process, multiple bits of the destination address are
compared simultaneously in a multibit trie. m levels of
the binary trie are combined into single LUT what

reduces the number of memory accesses needed to
perform the whole IP address lookup; m is called stride.
In Fig. 16c stride m = 2. Even though the intermediate
outputs are produced often earlier in the cascade, they are
always forwarded to the last LUT, [21]. For high speed
packet forwarding the speed of micro-engine in Fig. 12 is
not sufficient. Two hardware-based solutions are
available: those that involve the use of a CAM or that use
synchronous LUT pipeline (on ASIC or FPGA) [21],
[22]. The CAM can be implemented by a LUT cascade
anyway [23]. In both the cases one additional
complication has to be addressed, namely frequent
modifications of the routing table. Some additional
hardware is required for this functionality and
programmable LUT cascades are thus obtained [24].

VIII. CONCLUSION

There is no single software evaluation method optimal
for all Boolean functions. Complexity of functions that
can appear in embedded systems varies a great deal and
so do their space and time requirements in various
evaluation techniques.

Even though the very narrow analysis done above
cannot be taken as convincing, certain conclusions for
engineering practice can be drawn from it, if the fast and
memory efficient evaluation of sparse Boolean functions
Fn : X → ZR of several tens of variables is the main
concern.

1. If the set X ⊂ Z2
n contains only a small number of

elements, e.g. when the function is specified by DNF
with low tens of min-terms, the search in the ordered list
of min-terms can be very effective solution.

2. If X ⊂{0,1,x} n , sequential TCAM emulation may
be too slow as it takes | X | steps. LUT cascades are a
good solution. Generally speaking, every sparse function
can be implemented as a LUT cascade.

3. OBDDs or ROBDDs may be useful for checking
equivalence between two implementations or for formal
verification [1], but they are less useful for evaluation
purposes in both speed and memory consumption.

4. LUTs obtained from MTBDDs seem to be a very
good and effective data structure and should always be
considered for evaluation of Boolean functions. They are
flexible in making trade-offs between response time and
memory consumption. LUT cascades implemented
directly in hardware can support asynchronous or
synchronous pipeline processing [25]. Otherwise, in case
of software implementation, several LUTs can be
compacted into one block of memory words. The
evaluation then reduces to a short chain of indirect
memory accesses.

Future research will be oriented to applications of the
iterative decomposition and LUT cascades in the area of
secure and safe hardware. The intention is to decompose
large systems of sparse Boolean functions of many
variables, which appear in this area, into LUT cascades
with the aid of evolutionary optimization techniques. A
generalization to LUT networks will also be studied.

APPENDIX A
PROGRAMMABLE LOGIC ARRAY PLA1 IN MCS-51

MICROCONTROLLER FAMILY

Legend: ! = logical negation, * = logical AND,
 + = logical OR

PLA1
Inputs: A, B, C, D, E, F, G, H, I, J, K, L, M
Outputs: SO, CS, BL, NL, V1, V3, V4, V5

S0 = !A*!G*!I*J*M+A*!B*!I*J*M+A*F*!I*M

CS = !A*!B*D*!E*!F*!G*!H*!I*!K*!L*M +
A*B*!E*!F*!G*!H*!I*!J!K*!L*!M + !A*!E*!I*M +
!E*!I*J*M+!D*!I*M

BL = !B*E*!F*!G*!H*!I*!J*!K*!L +
!B*C*!D*!H*!I*!J*M + !B*D*E*!H*!I*!J*M +
!D*!I*!J*K*M + !A*!G*!I*J*M + E*H*!I*!L*M
+C*!D*G*!I*M + !A*F*!I*M + G*!I*K*M +
E*G*!I*M

NL = !B*E*!F*!G*!H*!I*!J*!K*!L + C*!D*!H*!I*L*M
+ !D*!I*!J*K*M + !A*!G*!I*J*M + D*E*!N*!I*M
+ !A*F*!I*M + E*!I*!L*M + G*!I*K*M

V1 = !A*!G*!I*J*M + C*!D*F*!I*M + A*!B*!I*J*M +
!A*F*!I*M + F*!I*K*M + E*F*!I*M

V3 = !B*!C*!D*E*!F*!G*!H*!I*!J*!K*!L +
!B*!G*!I*J*K*M + !D*!I*!J*K*M + B*C*!I*K*M

V4 = !B*C*!D*E*!F*!G*!H*!I*!J*!K*!L +
!B*D*E*!F*!G*!H*I*!J*!K*!L*M +
!A*!G*!I*J*L*M + C*!D*!H*!I*L*M +
!A*F*!I*L*M + C*!D*H*!I*M +D*E*!I*L*M

V5 = !B*D*E*!F*!G*!H*I*!J*!K*!L*M +
!B*E*!F*!G*!H*!I*!J*!K*!L + C*!D*!H*!I*L*M
+!D*!I*!J*K*M + !A*!G*!I*J*M + C*!D*H*!I*M
+ A*!B*!I*J*M + D*E*!I*L*M + !A*F*!I*M +
E*!I*!L*M

ACKNOWLEDGMENT

This research has been carried out under the financial
support of the research grants GA102/07/0850 “Design
and hardware implementation of a patent-invention
machine”, GA102/05/0467 “Architectures of Embedded
Systems Networks”, Grant Agency of Czech Republic,
and “Security-Oriented Research in Information
Technology”, MSM 0021630528.

REFERENCES

[1] B.M. Moret: Decision Trees and Diagrams. Computing
Surveys, Vol.14, No.4, Dec. 1982, pp. 593-623.

[2] F. D. Petruzella: Programmable Logic Controllers,
McGraw Hill Science/Engineering/Math, 2004.

[3] R. Sosic, J. Gu, and R. Johnson. “The Unison algorithm:
Fast evaluation of Boolean expressions”. ACM
Transactions on Design Automation of Electronic Systems,
1(4): pp. 456--477, Oct. 1996.

[4] T. Sasao, Y. Iguchi, M. Matsuura, "LUT cascades and
emulators for realizations of logic functions," RM2005,
Tokyo, Japan, Sept. 5 - Sept. 6, 2005, pp.63-70.

[5] B. Bollig, I. Wegener, “Improving the Variable Ordering of
OBDDs Is NP-Complete”. IEEE Transactions on
Computers, 45(9):993––1002, September 1996.

[6] V. Dvořák: An optimization technique for ordered (binary)
decision diagrams, In: Proceedings of the 6th Annual
European Computer Conference CompEuro' 92, Hague,
NL, 1992, pp. 1-4, ISBN 0-8186-2760

[7] A. Mishchenko, T. Sasao: Logic Synthesis of LUT Cascades
with Limited Rails－ A Direct Implementation of Multi-
Output Functions. Technical report of IEICE, The Institute
of Electronics, Information and Communication Engineers
Vol.102, No.476(20021121) pp. 103-108. VLD2002-99,
ISSN:09135685.

[8] R. Drechsler, B. Becker, Binary Decision Diagrams -
Theory and Implementation. Springer 1998.

[9] M. Yoeli : The Synthesis of Multivalued Cellular Cascades.
IEEE Trans. On Computers, Vol. C-9, pp.1089-1090, Nov.
1970

[10] V. Dvořák: Bounds on Size of Decision Diagrams, JUCS -
The Journal of Universal Computer Science (JUCS),
Vol..3, pp. 2-23, 1997.

[11] V. Dvořák: A cascade implementation of digital systems.
In: Microprocessing and Microprogramming (North-
Holland), Vol. 29, No. 1, 1990, pp. 151-163, ISSN 0165-
6074.

[12] University of Hamburg, Department of Informatics,
http://tams-www.informatik.uni-hamburg.de/applets

[13] W. Stallings, Computer Organization and Architecture,
Sixth Edition, Prentice Hall, 2005.

[14] S.J.Friedman, K.J.Supowit: Finding the Optimal Variable
Ordering for Binary Decision Diagrams. IEEE
Transactions on Computers, Vol. 39, No. 5, pp.710-713,
May 1990.

[15] T. Sasao: Analysis and Synthesis of Weighted-Sum
Functions. Proc. Of the Int. Workshop on Logic and
Synthesis, Lake Arrowhead, CA, USA, June 8-10, 2005,
pp.455-462.

[16] T.Sasao, M.Matsuura: A Method to Decompose Multiple-
Output Logic Functions. Proc. of the 41st Design
Automation Conference, San Diego, CA, USA, June 2-6,
2004, pp.428-433.

[17] V. Dvořák: Decomposition Theory with Applications in
Programmable Digital Systems. A thesis required for
Doctor of Sciences degree. Faculty of El. Engineering,
Technical University of Brno, May 1989. (224 pages, in
Czech).

[18] R. Drechsler, M. Herbstritt, B. Becker Grouping heuristics
for word-level decision diagrams. Proceedings of the 1999
IEEE International Symposium on Circuits and System
ISCAS '99, pp. 411--415.

[19] V. Dvořák: Microsequencer architecture supporting
arbitrary branching up to 2^m targets, Computer
Architecture News, IEEE Publ., US, March 1990, pp. 9-16.

[20] K.S. Kim, S. Sahni: Efficient Construction of Pipelined
Multibit-Trie Router-Tables. IEEE/ACM Transactions on
Networking (TON), Volume 11 , Issue 4 , August 2003,
pp. 650 – 662. ISSN:1063-6692

[21] T. Henriksson, I.Verbauwhede: Fast IP Lookup Engine for
SoC Integration. Proc. of IEEE Design and Diagnostics of
Electronic Ciruits and Systems Workshop, April 17-19,
2002, Brno, Czech Republic, pp.200-210.

[22] D. E. Taylor, J. W. Lockwood, T. S. Sproull, J. S. Turner,
D. B. Parlour: Scalable IP Lookup for Programmable
Routers. Tech. Rep. WUCS-01-33, Dept. of Computer
Science, Applied Research Lab, Washington University,
2001.

[23] T.Sasao and J. T. Butler, "Implementation of multiple-
valued CAM functions by LUT cascades," ISMVL-2006,
Singapore, May 17-20, 2006.

[24] H. Nakahara, T. Sasao, M.Matsuura: A CAM Emulator
Using Look-Up Table Cascades. 14th Reconfigurable
Architectures Workshop RAW 2007, March 2007, Long
Beach California, USA. CD-ROM RAW-9-paper-2.

[25] K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K.
Yoshizumi, H. Qin, and Y. Iguchi, "Programmable logic
device with an 8-stage cascade of 64K-bit asynchronous
SRAMs," Cool Chips VIII, April 20-22, 2005, Yokohama,
Japan.

Vaclav Dvorak obtained M.Sc. degree in El. Engineering and
Ph.D. degree in Applied Cybernetics from Brno University of
Technology, Czech Republic, in 1963 and 1968. He was
awarded a distinguished DrSc degree in Computer Science and
Engineering in 1990.

Since 1963 he was 10 years with the Research Institute of
Mathematical Machines Prague. Then he joined Brno
University of Technology, Faculty of Information Technology,
as a research associate and later as Associate and Full Professor.
The major field of his interest has been computer hardware and
architecture. He interleaved the work at the home university
with acting as visiting scientist, lecturer and professor at a
number of foreign institutions, over 8 years in all. (Canada,
Malta, Libya, New Zealand, Australia, Tenerife-Spain). His
research is recently oriented into application specific and
parallel architectures.

Prof. Dvorak is a member of Computer Society and IEEE, a
member of the Scientific Board of the Faculty of Information
Technology, committees for Bc, MSc and Ph.D. studies in
Information Technology and a member of JUCS and JEE
Editorial Boards.

