Efficient Evaluation of Multiple-Output Boolean
Functions in Embedded Software or Firmware

Vaclav Dvorak
Brno University of Technology, Brno, Czech Republic
Email: dvorak@fit.vutbr.cz

Abstract — The paper addresses software and firmware the base of ROBDDs we will develop a more practical
implementation of multiple-output Boolean functionsbased representation — cascades of LUTSs.

on cascades of Look-Up Tables (LUTs). A LUT cascade is goftware implementation of Boolean functions has
described as a means of compact representation oflarge been up to now studied especially in connectiorh wit
class of sparse Boolean functions, evaluation of wh then PLCs (“ladder diagrams”) [2], digital system sintida

reduces to multiple indirect memory accesses. Theathod is f | ificati d testi 1 ializedent
compared to a technique of direct PLA emulation andis ormal verification and testing [1], or specializegen

ilustrated on examples. A specialized micro-engineis ~ Processing [3], where either a speed (PLC) or aired
proposed for even faster evaluation than is possidlwith ~memory were not that important. On the contrary, in
universal microprocessors. The presented method isekible ~ embedded systems we do care for performance, memory
in making trade-offs between performance and memory space as well as for power consumption. We will
footprint and may be useful for embedded applicatios demonstrate that presently used algorithms (PLA
where the processing speed is not critical. Evaluath may emulation, a BDD traversal or evaluation of Boolean
run on various_CPUs and DSP cores or slightly fasteon expressions) are generally too slow and that tre afs
FPGA-based micro-programmed controllers. LUT cascades enables faster evaluation. The longer
cascades with simpler LUTs are slower than shorter

Index Terms — Embedded software, Boolean function : .
evaluation, Binary Decision Diagrams, LUT cascades cascades with larger LUTs, and thus the procespegd
can be even adjusted to requirements.
|. INTRODUCTION The paper is structured as follows. In the follogvin
Section Il we introduce terminology and notation

. Efficient evaluation of Boolean functions is an concerning Boolean functions; a traditional appho&e
important part of many embedded software system$golean function evaluation is assessed in Sedtion
Functions most frequently used in embedded systeminary decision diagrams (BDDs) and LUT cascades ar
practice are not random, but application-speciiiVow introduced in Section 1V, together with some corrije
complexity. Among them sparse functions definedwel jssyes. Variable ordering in MTBDDs and in LUT
include applications such as encryption, data cesHon cascades is a subject of Section V. In Section ¥lgive
and conversion, pattern matching and searchingingov examples of LUT cascades for sample Boolean funstio
window functions on data streams, etc. We will @88r anq jllustrate trade-offs between speed of evalnatind
Boolean functions of large numbers (tens, hundreds) required memory space. A micro-engine for LUT cdsca
variables because small size systems can be imptethe processing is presented in Section VII. Resultsiobt
directly in hardware, e.g. in PLA, ROM or TCAM wjth selected functions and some generalizatiorss ar

(Ternary Content Addressable Memory). commented on in Conclusions.
Software implementation of Boolean functions wil b
assumed in a form of a data structure describirgy th Il. TERMINOLOGY AND NOTATION
function and of a compiled program that reads tiput
vector and evaluates the function with the uséisfdata To begin our discussion, we define the following

structure. The size of the code and of the datetstre is ~ terminology. A system ofm Boolean functions ofn

one figure of merit and the other is the evaluatione ~ Boolean variables,

from reading the input to generating the output. 01 (Z)" - 2, i=1,2,..m 1)
Hereafter we will use three compact representatians Will be simply referred to as multiple-output Boafe

PLA-like table, Look-Up Tables (LUTs) and binary function F, with output values fronzZz = {0, 1, 2, ...,

decision diagrams (BDDs). The BDDs are well known,R-1},

especially the reduced ordered BDDs (ROBDDs), Q. Fo (22" - Zr, 2

where R is the number of distinct combinations wf

Based on “Time- and Spaédficient Evaluation of Sparse Boole output binary values enumerated by values fzxm

Functions in Embedded Software”, by Vaclav Dvorakjich appeare FunctionF, is incomplete if it is defined only on set
in the Proceedings of the 14EEE Int. Conf. and Workshops on XO(Zy)" (Z)"\ X=Disthe don’t care set.
Engineering of Computer-Based Syste2807, Tuscon, AZ, US, The behavior of a combinational circuit can be

March 2007. © 2007 IEEE. described by the system wof explicit complete functions

of n variables means of auxiliary variables. The advantage oBbB®s
yvi= f.00, % s s X),s i=1,2,..m (3) for CF is that tools useful for optimization of BDDr a

or y = F(x) in vector notation. Alternative implicit single Boolean function (4) can be used without

description is based on the so called output cheriatic ~ modification for multiple-output functions as well.

function [7] As the LUT cascades are the main concern of this

@ Xy =1 4)(paper, we will provide a formal definition. A LUTilwbe
Machine representation of Boolean functions useglso interchangeably referred to as a “cell”.

binary decision diagrams (BDDs), which can have ynan Def. 1.A cascade C of a forikix mis the system

forms. Bit-level binary decision diagrams (BDDs), C=[K,M,H,, H,, ...,Hg, 1]

ordered binary decision diagrams (OBDDs) and reducewhere

ordered binary decision diagrams (ROBDDs) are welk < 2 (M < 2") is the number of specified Boolean input

known representation of a single Boolean functiorai vectors ak horizontal (n vertical) cell inputs,

form of a directed acyclic graph [1]. Whereas ROBBD H;: (z,)* x (z,)" - (Z)*, 1 < i < B are functions

a canonical (unique) representation for any given jmplemented by individual cells,

complete function and an order of variables, incien@ B, the cascade length, is the total number of eeits
Boolean functions may be transformed into more thap:- 1 2> B}_ ()™ assignantuples of input variables

one complete form and into the associated ROBDD. % ,i=1,2,....n toB cells in the cascade.

~ Important parameters of a BDD are its size andiwidt The apove cascade has the widttorizontal rails
i.e. the total number of decision nodes and theimmax carrying Boolean values and each cell masvertical

number of edges between adjacent levels, where thgje) inputs. The last cell in the cascade mayehat k
edges pointing to the same nodes are counted agbee outputs.

size determines the memory space needed to stere th pef> A cascade is said to be non-redundant if each
BDD data structure while the widiki (also C-measure, ariaple used at vertical input enters one and g
[4]) determines a BDD form factor since the height .|| Otherwise the cascade is redundant. If aeefee is
given by the number of variables. The construcodn 54e to a cascade, we will assume implicitly a non-

minimum-size or by the same token minimum-width ey ndant cascade. The attribute “redundant” vellibed
ROBDDs belong among NP-complete problems [5]; thealways explicitly.

size and width of the ROBDD depend on variable nNote Cascades considered in [16] use cells with

ordering and there are! possible orderings ofn aqgitional vertical outputs. These intermediatepatst
variables. A heuristic approach can be used inacke ¢4 reduce the cascade widdhintermediate outputs are
for near-optimal orderings [6]. Upper bounds on th&imer individual Boolean variableg as in (3) or the

OBDD's size and width for general random complet€,gmpiete integer values fro@k as in (2); in the latter
Boolean functions grow exponentially with number of .;5e BDD leaves appear not only in the bottom ef th

variablesn for any ordering, but functions used in digital diagram, but span more its levels. consequence for
systems design with few exceptions do have a re@en gofyare evaluation is that some partial Booleatpuais

BDD size and small width. _ or function values are generated earlier thaersth
M-ary decision diagrams are straightforward

generalization of BDDs. They have two types of rsode
decision and terminal nodes. Decision nades testing
M-ary variable vat() and its outgoing edges are marked
by its values 0, 1, ..M-1. The terminal node assigns a Hardware implementation of Boolean functions in
single value fronizy, (generallyZz, R#ZM) to outputy = Programmable Logic Array (PLA) can serve as anahit
Fa(Xt, X2y, Xn). prototype for software implementation. PLA consiefs
To represent a System of Boolean functions (1) by\ND-matrix and OR-matrix. Rows of the AND-matrix
means of decision diagrams, we can use eithiit-level ~ define terms and OR-matrix serves for accumulation
BDDs, one for each ofm Boolean functions (possibly some of them into the binary outputs, Fig.1.
sharing some of their sub-diagrams in Shared BDDs o
SBDDs, [7]), or one word-level BDD (WLBDD) with AND array OR arra
Boolean decision variables and wighinteger terminal AAAAAA
values. There are many types of WLDDs. Multi-terahin
BDDs have integer leaves and therefore represer
functions from Booleans to integers. A BMD (Binary
Moment Diagram) is more compact representation for
some useful arithmetic functions which have exptiaén

[ll. TRADITIONAL APPROACHES TO EVALUATION OF
BOOLEAN FUNCTIONS PLA EMULATION

swiar d

size if represented by MTBDDs. Hybrid decision VYVYVYYVYY
diagrams HDDs are a combination of MTBDDs and n inputs I outputs
BMDs.

BDD for Characteristic Function (BDD for CF) [7] is Fig.1. Structure of PLA

yet another representation of multiple-output fiord,
which uses the shortest encoding of output vectdry

The set ofp terms produced by AND-matrix (a term Data structures for emulation of two PLAs with w8=
vector) can be generated in parallel, each teronmbit bits according to (5) take up only 156 and 268 $yte
of the computer word. If the capacity bits in a single respectively. Time complexity is +r = 21 and 19 time
word is not enough p/w] computer words can be used to steps provided that;& C,. (End of example.)
accommodate all the terms. The terms are evaluated
steps, one input Boolean variable at a time. Twek®na
mO(x) andml(x) of lengthp bits are maintained for each

X . . _ . A. Relation of MTBDDs and LUT Cascades
variablex. The masking bit of masky\x), v= 0,1, in a)
position of termt is denotedmy(x, t) and has the Whereas BDDs and MTBDDs proved useful in many

IV. LUT CcASCADES BDDS AND COMPLEXITY ISSUES

following value: areas of digital design [8] where they provide caoip
if xoccurs int, thenmy(x, t) =v data structures and a degree of flexibility in rpaiating
if Ix occurs irt, thenmy(x, t) = Iv them, they are not as wonderful for the purpose of
if x does not occur ity my(x, t) = 1. function evaluation. The primary reason is the slow

Two masks for each variable are generated only,oncéP€ed, since the evaluation process inspects ookedo
at the beginning, based on their occurrence in Rirss. ~ Variable after another. There is though a cespigedup
The term vector is initialized to all ones and then N comparison to direct evaluation of Boolean
sequence of masks is applied to it using the bitwis€Xpressions, because each variable is processsd onl
logical AND operation. For variablemaskmy(x) is used ~Once. Straightforward remedy how to speed up the
depending on the input value= v. All the terms are thus traversal of a BDD is to process several varialaies
updated in parallel by the bitwise AND operationiane ~ time. This way we will derive LUT cascades, in fact
(full) width of computer word is utilized. special case of LUT networks. .

As soon as all terms are ready, we have to emulate A close relation between both these representatibns
OR-matrix — apply bitwise OR operation selectivédy multiple-output Boolean functions will be illusteat on a
certain bits. Another set of masks will be used for bit-counting example. The function:FZ," - Z, counts
outputs. Unused terms in the term vector are masked the number of 1’s presentedraeinputs and represents it
and if at least a single 1 remains, the result TRUEe by a binary number. The MTBDD and associated LUT

memory size for storing all sets of masks is thus cascade are displayed in Fig. 2 for 4. Generalization
space = (2+r) [p/w]| words (5) for larger values ofi is easy. As the number of nodes
and time complexity is grows linearly from the root to leaves, the widthtloe
time = @ + Gr, (6) MTBDD is given by the last level of decision nodewd

where G and G are execution times in clock cycles has the value df =n.
related to mask applications.

If the number of termg is less than the number of
variablesn, a dual evaluation method may be more @
advantageous. The relevant terms are generatedftane @'0 1
another from the input vector using again two s#ts »
masks. As soon as the term vector is assembled, the 0 \é 2
outputs are generated the same way as before. @ o @

Similarly, if p < r, we can create the output vector 0 \@ P U
faster by ORing p partial vectorsmut); partial vector @ @

. : . S - ‘ o 1
myt), v = 0,1, is selected if ternt = v. Space and time
complexities under all conditions are: @ m

b—
-

[[
vV

{Zn(p/M} { r(p/w} } Fig.2. Bit counting example
space= + @)
2p[n/w] 2p[r/w] What connects two representations is the concept of
. cn C,r sub-functions. Informally, the sub-functidnof F, is a
time= {C p}J’{C p} ®) function of s variables obtained frofy by settingn—s
’ ‘ variables to fixed constant values. The numberistfratt
conditions{p 2 n}+{p 2 r} sub-functions o variabless = 1, 2,..., n-1, the so called
p<n p<r profile, characterizes complexity of the Booleandiion.
Example: In Fig.2 we can recognize distinct sub-functionedges
Size of full tables for two sample PLAs is given: crossing boundaries between MTBDD layers, counting
edges incident with the same node only once. Edges
TABLE 1. labeled by ID codes of distinct sub-functions. Frdm
PARAMETERS OFPLAL AND PLA2Z top down, there are 2 sub-functions of variatde®, ¢

(ID codes 0, 1), 3 sub-functions of variablesb (ID
codes 0, 1, 2), 4 sub-functions of variabl@D codes 0,
1, 2, 3), and 5 sub-functions of zero variablesmgtant
terminal values 0 to)4 LUT contents are defined by
binary ID codes and a side variable entering a esld

n r p [X @size[B]
PLA1 | 13| 8 [31|175| 8192
PLA2 | 11| 8 [53| 632| 2048

binary ID codes generated by the célo-synthesis of redundant use of variables may sometimes be useful
MTBDD and LUT cascade will be presented in Sectiorreduce the number of cascade rails. Some exampes a
V. given in [11].

As can be seen, the difference between the MTBDD The size of the ROBDD for a single Boolean function
and the LUT cascade is in communication among thef n variables given by Boolean expression in DNF is
MTBDD layers and LUTs in the cascade: in MTBDD known to be less than the number of literals in the
each sub-function ID code requires an individuafjeed expression. More accurately is the BDD size upper-
("wire™), whereas the ID codes being sent betweblTs bounded by [10]
are binary coded. The number of rdilin the cascade is P< min{ L —[kL—|+ 2k _1}, k=12,...L, (10)
therefore K R .

k=log[KI. (9) WhereL is the number of literals in DNF.

This difference of two representations reflectslitin Complexity of MTBDDs for general multiple-output
the way how the program interprets a certain apptia- ~ Boolean functions gives the following
specific MTBDD or a LUT cascade. In case of the Theorem 2[11]: _
MTBDD we may use for each node a record with 35iz€ P and width K of the MTBDD for function
fields. A format indicator is one-bit field spedifig the Fn: (Z2)" - Zr are upper-bounded by

leaf node (leaf nodes may generally occur at angl lef P<min™ +R?)-R-1
the diagram). Two other fields of the leaf node tuen ' (11)
used for output. If the node is not a leaf, twoldfée K Smax[min(Rz‘ ,zn-i)]

(adjacent words) contain pointers to the base addeeof) .
other nodes. The base address is then modifiechédy t The widthK of MTBDD and thus the cascade width
value of a current control variable(s) and is used (& number of rails) have reasonably low valuesnfiany
extract the correct field with the pointer to thexnnode. functions arising in practice. One class of suatcfions
The program traverses a certain path in the MTBRInf IS defined below. _

the root to a leaf in at moststeps. Def. 3.Sparse functions.

LUTSs are interpreted similarly, only the pointerthe ~ Under the sparse functions F (Z)" - Zz we will
next LUT is obtained from the current output byunderstand functions with the domain,)(divided into
concatenating it with the control variable valuedan two partsX andD, (Z,)"=X0OD, | X | << 2, if one of
adding it up to the next LUT base address. If slita the following conditions hold:
some LUTs can be combined to provide even fastet) F, is an incomplete function inz)", F. X - Zg
processing (see first three cells in Fig.2 combiimed and)"\ X=D is the don't care set.
one). 2) F X O D - Zg MappingD - Zg is artificially
_— defined to make implementation as easy as lplessi
B. Complexity |s.ues])) . 3)F,is a fully specified function inz)",

Many questions arise in connection with Fo [X - ZMO} , D - {0}]

implgmentation of the given muItipIe—outpyt Boolean(Wm10ut loss of generality, value 0 is taken &e t
functions by LUT cascades. In our bit-counting eg&m 4o inant value).
the number of sub-functions from the root to E=aya Functions in three above classes are quite common i

profile) was increasing linearly. Some other fuocs digital design.. They have low BDD width and are

may have a pTOf"e almost constant, what ”?akes e itable for LUT cascade implementation. ROBDDs can
number of rails in the cascade also constant -saaide

be obtained by applet [12] and LUT cascades can be
feature. However, for randomly generated functiand I y applet [12]

. . .) quickly derived by slicing ROBDDs. Complexity of OU
for multipliers the profile and maximum BDD widl cqcades for sparse functions is established by the
increases exponentially (parameter log,[K1linearly) toliowing theorem [11].

with the number of variables. The question is, wiit Theorem 3.
be the required number of cascade rails in gewes#. If £yeryR-valued incomplete function of binary variables
we remove the restriction that each input varialale be Foi X = Ze, XO(Z)"

used only once, the result is available as Thedkefor
multi-valued redundant cascades (repeated BDDs):

Theorem 1.[9] Every function

Fn:(ZM)n —>ZR, M>2 R>2

is realizable by the LUT cascade wij cells (with K-
valued signals between adjacent cells and extdvhal
valued signals on side inputs).
If R=23,4,5,7, 8 9, 11, ... thek = R else if

is realizable as the output function of the LUT czate
with k<[log, | X [] rails.
Every R-valued complete function af binary variables
FnXOD - Zg [X - Zg{0} ,D - {0}]

is realizable as the output function bUT cascade with
k< [log, (| X | + 1) rails.

Another class of sparse functions is defined below.
Def.4. Multiple-output Boolean functions are symmetric
R=2 6 10,.., 2(2t+]), ..., thek= R+1; (t=0,1.,2,..). if they arepinvarialljnt under any permutation)(/)f itsu

Bn= M(By.1+1),B;=1. . I
Synthesis method based on Theorem 1 is not prhctica-lr h.?lhre\ggﬁs 4d33$8g8nx§2 ':Eeofn g{/nrr?;re?rﬁc??ﬂﬁlt?gns

as it prodluces too Iong cascades and o_f the samgghle is K = n, the number of Boolean variables.
for functions with different complexity. However,

Proof: It is clear, that all sub-functions of a syetric

Now if we move to 8-queens problem, there will I2e 9

function are also symmetric. There are only ume+1 solutions described bysF Solutions can be found by the
distinct sub-functions of free variables corresponding to known algorithm [13]. To store 92 binary vectors of
n-s fixed variables at all 0’s, single 1, two 1’s, three 1'slength 64 is still acceptable, but instead of adinsearch
..., all 1's. Since 4 s< n-1, maximum MTBDD widthk We can order solutions and do better with the litigraic
=nis at the lowest level whess= 1. search ifhlog, 92] = 7 steps at most.

C. Example of a sparse function
Boolean function ofn =NxN variables returns 1 for

The ROBDD size is according to (10) upper-bounded
by 5535 nodes, so that storing of such BDD woultheo
space efficient at all. A traversal of this ROBD®wid

every configuration of 1's (queens) on thExN neeq 64 steps in the worst case, what is bad ds Avel
chessboard, such that no queen attacks anotheEame. | yT cascade could be faster, but at the cost cdl tot
for N = 4 two solutions at Fig.3 can be generated b}hemory capacity for LUTS.

Boolean function E

Fie= lap*la*ais*asfan™az*ass*laslas*asy*
lagg*agg*lasr*ag*lasstlaqs + lagrfatlasstlassflas
lago*lags*ags*as*las *lass™lass las*ass ass*las, (12)

Fig.3. Two solutions of 4-queens problem

Function Rgis a sparse function (sub-class 3); number of
literals in Boolean expressionlis= 32,n = 16, the size

is according to (10) upper bounded by 31 nodesthed
width is upper-bounded bjlog, 3] = 2 according to
Theorem 3. The real ROBDD generated by the applet
[12] has 29 nodes and is shown in Fig.4. The rmati
used in (12) corresponds to applet [12] and to3Figut
variables in the ROBDD at Fig. 4 are enumeratethfto

to 15.

By slicing the ROBDD horizontally as shown in Fig.4
we obtain the LUT cascade. Two sub-function ID code
plus constant O are transferred between BDD laysrs,
that 2-bit code will do. Possible configurations ld§T
cascades are in Fig.5.

Fig.4. ROBDD for 4 queens probler® (EEE 2007)

3} JI’ }3 3} zP V. VARIABLE ORDERING FOR MINIMUM WIDTH (SIZE) OF
THE MTBDD
2 2 1 . -
7 Design of LUT cascades by slicing MTBDDs has a
catch: the size and the width of MTBDD strongly elegh
7} ? on variable ordering. The problem of optimal valgab
Fig. 5. LUT cascades for 4-queens probl@rEEE 2007) ordering is unfortunately NP hard [5]. For some

functions, the size of a BDD may vary between adino
The most efficient representation and evaluatiof,gf an exponential range depending upon the orderirtheof
is thus clear: two memory words are sufficient tores variables. Thus the ROBDDs are canonical data tsirgic
two min-terms in (12) and two bitwise comparisorif w for a fixed ordering only. The problem of ROBDD
do for the quickest evaluation. In case of LUT eas, synthesis with optimal variable ordering for a coetg
two table look-ups are sufficient in the shorter LU Boolean function ofn variables is computationally
cascade in Fig. 5, giving a similar speed as witb t expensive as it can be done in timen@Y), [14].
bitwise comparisons. However, memory consumption i©ptimization of variable ordering for minimum sinodé
worse, 512 (2+1) bits against 2 words, 16 bits each. ROBDD or MTBDD will very likely produce simul-

taneously a minimum BDD width (resulting in the mos variables in each decomposition step and use istieip
efficient LUT cascade). the variable with the minimum sub-function couft

Design of LUT cascades can start by determining thevhat will ensure the minimum number of raiistoo. In
required number of railk from the BDD widthK. The case of ties, select the variable with the largeniper of
value ofK is known for sparse functions (Theorem 3),constant sub-functions. By intuition, the minimaount
for weighted-sum functiong 5], and some other function of sub-functions in one step may hopefully prodace
classes. minimum count of their pairs in the next step, andn.

If BDD width K for the givenfunction cannot be Note also that the above small example with maps of
obtainedfrom known expressions, one can get it fromthe original and intermediate functions was donky by
ROBDD for CF after minimizing its cost. This is, hand for illustration. When we have sparse funciaith
however, a separate problem. Recently, heuristiseveral tens of variables represented by a listedihed
minimization algorithms have been proposgil that points, all the processing is done automaticallytltese
allow reduction of the WLDD size analogously as forlists. The appropriate algorithm for such caseeiscdbed
BDDs. Next we will describe a co-synthesis of bothin [6].

MTBDD and LUT cascade for incompletely specified One layer of the MTBDD or more layers combined can
multiple-output Boolean functions. Let us note thkab- be described by a LUT. For example LUT 4 in Figs8
functions of incomplete function may themselvesals® constructed from the layer of decision nodes adjate
incomplete. A compatibility relation can be defined the leaves in Fig.7. Transformation of 9 functicalues

the co-domain of such sub-functions: don't caraen@ded to 16 ID codes is described by reversed assignments
by “x”) is compatible with any value fro. under the topmost table in Fig.6.

The method is based on the bottom-up heuristic The whole BDD (Fig. 7a) is then described by 4 ISUT
construction of BDDs by an iterative disjunctive as shown in Fig. 7b. The LUT cascade is homogeneous
decomposition. The illustrative incomplete functioh8 but generally the LUTs may have different size.
variables is given in Fig. 6. The map of the fuotat the However, sparse functions are typically implemeletab
top is sparsely populated by 16 function valueso(®). by homogeneous cascades, since the number of sub-
For clarity don't care cells are left empty in ekl but functions (and therefore decision nodes) follows a
otherwise are denoted by symbol “x” in the text. pattern: rising — constant — dropping, [17].

Single-variable sub-functions can be created with Had we used a list of defined points with function
respect to any variable. E.g. two vertically adigceells values, there would be 39 items, 8 (input) + 4 gatjt
correspond to a sub-function of the first varialib@at bits per item, 468 bits in total, i.e. half of thél function
attains alternate values 0 and 1 at even and odlsl (gee table with size 256¢< 4 bits. Since we cannot order the
e.g. [F, 8] in Fig.6). Using compatibility relatiome can items, we would have to use the linear search wjitho
combine pairsd,x] and [xB] into a single sub-function 39 steps in the worst case.

[a,B]. Altogether nine sub-functions of the first vania On the other hand, if we use the LUT cascade
are detected in the topmost table. The first deamitipn according to Fig.7b, the capacity of all tables| i
step is described below the table; each sub-fumdBo 4x(32x4) = 512 bits and only 4 steps (composed of read,
given a new ID code ([1,0]0, [2,7]-1, [F,8]-3, etc.), append a value of a selected variable, add to #se b
thereby removing the first variable from the funoti A address of the table to create a pointer) will @bis
map of the new intermediate Boolean function of 7seems to be the best in speed and memory efficiency
variables is now created replacing sub-functionseyw Four tables may be implemented in memory as orle tab
ID codes. This process repeats 8 times. 32 x 16 bit with the correct output extracted from 16-b

The MTBDD can now be created starting from root Oword as needed. Additional flexibility is obtainedth
Every assignment [a,b] ¢, when reversed, specifies one LUTs as they are combined together. For example @it
decision node with input ¢ and two outputsaad b tables 64x 4 bits, the response will be 2-times faster. The
controlled by the relevant variable. Assignmentstti total size of 2 and 4 LUTs remains the same, habkes
type [a,al- b, [a,X]- ¢, [X,a]-d do not represent decision combined need 64 words in memory, 8 bits per word.
nodes because the outputs are the same (or cofapatip There are other heuristic approaches for MTBDD
such a decision node degenerates to a wire. Gging wptimization. The basic operation for improving the
from the root (a map of 0 variables) to the orijimap of variable ordering is the exchange of two adjacent
8 variables, the OBDD in Fig.7 is created. Usu8lyDs variables. E.g. in sifting method [8] all positioha given
have a root at the top, but we displayed the BDBidep variable in the given ordering are checked suceebsi
down in order to keep the BDD structure in corietat The variable is then left in an optimal positiortiwthe
with the sequence of map transformations in Fiy&des lowest MTBDD size and process repeats for all \des
are labeled by intermediate sub-function valuest 6fu In dynamic variable ordering a windowmifvariables is
46 assignments, 34 correspond to decision noded2nd moved over then variables and in each position all
to wires only. permutations of the variables are considered [8F Fo

In our example we did not care about variablecalled application specific variable ordering (ASV[8]
ordering; the ordering was chosen more or lessomhd uses structural properties of the problem instafuze
If we want to minimize the size of a BDD, the fallmg which the MTBDD has to be constructed.
heuristics can be used: do sub-function countingafb

c F
0 0 C 8| |o
c|l |3]| [F
8/A
5/C
717] 717 707
F
8
4 4 3
E E
1
D
B 2 C
6 3
7|7 9
123F\4a568BC
07AED9AC
el bbbl bl
012345678
0 0 8 BED
8l [2] [|3]2
11 1]1] |5]8 11
3 3
4 4 2 4
5 0
7 1 8
6 1]1] |2 2 6
023851417
023853621
L
0123456738
0 0 3| 1] [2]1]0
5[5 5 [4]3 5[5
6 6] 4] 11 6
6| [8 gls| [7 3|6
012306«x4
54631678
L
01234567
oflolo| [olo 1| [2f1]of0o

ol
~
ol
~
=
(2]
ol
EN
w
ol

0023 x1
534167
I
013524

[ofofol4lofol4al4]5]2]4 o [3[4]2]0]

00 -0 04 - 1 4 4 - 2
52 - 3 4 0 - 4 34 55
10 - 6

[o]1]o[2[3[4]s5]s]
01-0 02 -1 34 5 2
56 - 3

[o[al2Ts] —»[olz] —» [o]

01-0 01-0
2 1

1
3 -

Fig. 6. Iterative decomposition (8 variable®) IEEE 2007)

LUT 1 LUT 2 LUT 3 LUT 4 |—»

L
!

b)

Fig.7. a) The ROBDD of the sample function of Siatles
(0=----- ,1000)
b) LUT cascade® IEEE 2007)

1[2]3]Fl4]s]6][B]cC 0 1
ol7]als]elp|e]Aalc o[1]o
|l|l|l}\l/|l|l|l|l|l| ' 11217
o[1]23]4]5]6][7]8 RN
G|els
4|alE
—P> —> s5[s]D
0-8—» LUT4 —»0-F 6|6]9
—p —> 7|8]aA
—p —» 8|C|C
X IX X
T LUT 4

0/1

Fig.8. Construction of one LUTS(IEEE 2007)

Thorough comparison of all heuristic methods of
optimization, as regards quality of results andaarount
of the required execution time, remains still todome.

cascade for each group. Multiple cascades may be
VI. A CASE STUDY- MCS-51MICROCONTROLLER FAMILY: narrower and shorter than the original one and szae
PLAL1 AND PLA2 IN SOFTWARE some memory space, but number of table lookupsbsill
always greater. A problem how to split output valéz
Space and time efficiency of various configuratiofis optimally into groups is solved typically by hetits
LUT cascades obtained by computer-aided iterativenethods [18], [16]. In case of PLA2 we will splititput
decomposition have been tested on two PLAs uséltkin variables intuitively into two halves and then depmse
core of MCS-51 family of microcontrollers them separately. The result is shown at Fig. 1tie Jize
PLAX - Zg, XO(Z)", Zr O (ZY)', of LUTs is reduced to 1200 bits only, but the spéeed
with parameters in Table 1. Both PLAs implementrspa reduced also. Eight table look-ups are needed ande
(incomplete) Boolean functions, which are afterdone on one CPU core in 8 steps sequentially ca @n
minimization described by Boolean expressionsgladf ~ core processor concurrently in 4 steps.
expressions for PLALl is given in appendix A). The

number of terms in AND arrays ape= 31 and 53. The (10} 19} (46}
size in bytes gives memory spa@ required for storing 3 4 [|5 | 8
full function tables.
TABLE 1. 2 2 2
PARAMETERS OFPLA1 AND PLA2) Q)

n r p [X @size[B]
PLA1 | 13| 8 [31|175]| 8192
PLA2 | 11| 8 [53| 632| 2048

{19} {46}
5 6

Iterative decomposition used the selection of those b)
variables at a time that produced the minimum nurolbe
sub-functions. Not too large size of the probletove¢d Fig.10. Cascade of 4 or 3 cells for PLAR [EEE 2007)

still an exhaustive search — on the Pentium-bagedt P

took tens of seconds. The PLA1 was implementechby t The case study of PLAL1 and PLA2 offered the size of
cascade of 6 cells, Fig. 9a, with the total sized_0ffs data structures and speed of evaluation as givamlie
only 1792 bits. That is reduction by factor of 3Be size 2. The data in the table are valid under the asonm

of LUTs is not uniform and evaluation would takéable - size is in bits, the length of a computer worchig
look-ups. We can make it faster and more uniform byonsidered;
combining 6 cells into 3 as shown in Fig. 9b. Alibs - steps may have different duration at PLA emutatio

functions are counted (results given in {integeddded and LUT cascade processing (mask load + bitwisedbg
and communicated between cells; function values areperation vs table look-ups).

outputs from the last cell only. The total sizeatifLUTs (11} (14} s
is then 2816 bits; if the size of computer wosdis 3 o[1a] 13| |a
known, further optimization can be done to minimikze \j(_[\;F[_ZF[!
total memory space in bytes occupied by all 3 LUTSs.
. 2 2
As far as PLA2 is concerned, computer-generated a)
cascades are shown in Fig. 10. The cascade at®ligis
obtained from the cascade a) by merging first tWil'&. 4 {6} {11}
The capacity of LUTs is 3264 and 3456 bits, respelst 3 2 [|3 e e,
The evaluation speed is given by 4 or 3 table lop&-
2 2
b)
. {;)] {37)] {412)’_‘ {413}’_‘ {517)’_‘ . Fig. 11. Two parallel cascades implementing PLA2.
2 \27(_‘ \q/—‘ \qjl 5(—‘ L?‘ TABLE 2.
a) SOFTWARE IMPLEMENTATIONS OFPLA1 AND PLA2
3 | {12}]—\ {;7)]—\ 8 PLA emulation LUT cascades
AND + OR matrix
\a/—‘ \q/_‘ \ZF‘ size bits steps size bits | steps
b) PLA1 1054 13+8 1792 6
PLA1 1054 31+8 2816 3
Fig. 9. Two cellular cascade implementations of R@& IEEE 2007) PLA2 1590 11+8 3456 3
PLA2 1590 53+8 1200 8

We can also use an optimization technique based on
creating groups of outputs and design a separaf€ LU

VII. MICROPROGRAMMED CONTROLLER WITH MULTHWAY
BRANCHING

SO0 exit L@\BCD

F(AB,C.D) CD —» e
]] . 0] o1 10 | 11 L@O000 vO exit SO
Evaluation of Boolean functions at the firmwaredev ol o 111 212 L@001 v1 exit Si1
can also benefit from the LUT cascade paradigm. By al x 121212
making use of a hardware micro-engine with supfmrt ol x 12 lol1 L@110 v2 exit Sl
multi-way branching, we can speed up evaluation of 1l 2 | x| 2 | 3 L@111 v2 exit S2

Boolean functions against a general purpose CP#. cor
A suitable architecture of a micro-engine similar[19]

a) b)
is depicted in Fig.12. Fig.13. The map of a sample function (a) and amfim dispatch table

in the micro-program (b)

The switch statement (13) describes a transitiamfr

H Decoder/ present stat&0 to one of next stateX to S3 depending
L+t | Segencer on the values of 4 external variablés B, C and D.
P _M—| \(’)V'fe Fi Dgring the transition a certain conditional outmettor
o HORL) rom I vj is generated.
address J R If the speed of the micro-engine is the utmostrsip
sources [we should do the testing of external variablesria step.
4 \ The 16-way branch is then translated to the dispiziole
! | in Fig.13b. Replacement of 4 bits in the address is
= 1 Im=4l 16-way The next LUT base address genoted by operator “@”. If wired OR is used for
o X “| Branch | with up tok bits replaced replacement, the bits being replaced must be te€et
) by the precomputed LUT - ; ; . .
x,— < Ctrl Unit output If saving in hardware (chip area) is more important

than overall speed, we can test varialleB, C andD in
groups of two. The optimum MTBDD found by the
method described in Section V is shown in Fig. 14,
together with the symbolic micro-program derivednir
Indicator): it. It can be seen, that the second LUT is onlytiplaas
. . _ two sub-functions of two variables C are constants (2
Fi =1 §tate output (control S|gnal_ﬁ)P =uiP+1 and 4). Control store capacity is almost half oé th
FI.:. 10.' MXS z_;\nd BC.U contr(_)l_, Jump to an aOIOIreSScapacity in the previous case and the BCU can be
specified in micro-instruction modified by BCU eliminated.
FI = 11: conditional output, jump to an address
specified in micro-instruction (no modification).
The second format is for all kinds of jumps to an

Fig.12. Micro-programmed controller architecturehainulti-way
branching

There are three microinstructions formats (FI =nfatr

SO exit NI@C

address specified in micro-instruction. This adslrés m%g S;" LXINtz(%?
modified by external variables, by up to 4 variabée a NL@O v3 exit S3i
time, including O variable (no modification), by ares of {NL@1 exit N3@BD:!
16-way Branch Control Unit (BCU). The task of thisit N2@0 vO exit SO
is to shift active inputs, selected by a 4-bit maskthe N@1 vl exit Sl
lowest positions of the 4-bit output vector. Thictor is $@0 S §

) . . @1 v2 exit Sl:
then wire-ORed with the address obtained from ther0 1 x 2 2 4 0 1 2 3\3@O vO exit SO!
micro-instruction. If there are more external vhles, the v:0 1 x 2 2 3 0 1 2 2\g@1 vl exit Si1;
LUT cascade paradigm is used. LUT output contapts n S0 1 x 11 3 0 1 1 IN3@O0 v2 exit Sl
only the rail variables, but the whole next LUT bas R L,,’\@@},,,\{%)?%U,,,,S,21

address modified bl rail variables in proper positions.
We will illustrate rewriting a general multi-waydnch
microinstruction into a micro-program. The multiyva
branch has the same structure as a switch. Leavues the
statement
S0: if F =0 then vO0 exit SO
if F=1thenvlexitSl
if F=2thenv2 exitS1
if F=3thenv2 exit S2
if F=4then v3 exit S3
else don’t care;

Fig. 14. LUT cascade (a) and the symbolic micragpamn (b) for a
multiway branch example

As the last example we shall consider evaluatiothef
following sparse Boolean function of 16 variablés:
attains the value 1 if the given 6-bit string istedted
anywhere within an input string of 16 Boolean value
otherwise the function has the value 0.

Since the string of 6 consecutive values of vaeabl
may be located in 11 positions (we do not assumiettte
pattern wraps around), we can specify the fundbipri1
words of 16 ternary digits (0, 1, X). The CPU ewadilon

(13)

Si’s are state labels, vj’s are conditional outmdtors,
F(AB,C\D): X Zs, X O (Z,)*is an incomplete multiple-
output Boolean function, its map is in Fig. 13a.

of this function by logarithmic search is not pb$siand
we have to step through these words sequentiallyhé
worst case it may take 11 steps.

We can do much faster with LUTS, though. First thefunction that depends on small number of localaldds
ROBDD of this function may be obtained using thedefined by a window that moves along the data strea
applet [12], since the Boolean expression with lih-m Important application of pattern matching is the IP
terms, each with 6 literals, is easy to write doffor a address lookup, one of the primary functions obater,
pattern of six 1°s): and often also a significant performance bottlenetk

Internet router table is a set of tuples of therfdp, a),
al*a2*a3*a4*ab*a6+a2*a3*ad4*a5*a6*a7+a3*ad*a5*a6* wherep is a binary string whose length is at mogn =
a7*a8+ad*ab*a6*a7*a8*a9+ab*a6*a7*a8*a9*al0+a6*a 32 for IPv4 destination addresses and 128 for IPv6),
7*a8*a9*al0*all+a7*a8*a9*al0*all*al2+a8*a9*al0* anda is an output link (or next hop). When a packehwit
all*al?*al3+a9*alO*all*al?*al3*ald+al0*all*al2* destination addresA arrives at a router, we are to find
al3*al4*alb+all*al?*al3*ald*al5*al6 (14) the pair p, @) in the router table for which is a longest

matching-prefix ofA (i.e., p is a prefix ofA and there is

The ROBDD is in Fig. 15a, from which an optimal no longer prefixq of A such thatd, b) is in the table).
size and count of LUTs can be determined. We haed u Once this pair is determined, the packet is semutput
4 LUTs with 3 rails and 4 vertical inputs for therdet link a. The speed at which the router can route packets i
micro-controller architecture in Fig.12. limited by the time it takes to perform this tabd®kup

The micro-program would consist of 16 +38 x 16) for each packet.
= 400 jump microinstructions, but only 4 of themula
be executed for the given input vector. Executioret(of Prefixes Next hop

4 microinstructions) will be somewhere betweenoese o+ 35
of software realization (4 table lookups) and adiare
LUT cascade. 11* 7
110* 21
1110* 9
0] -
g\q 11000* 1 (Al J LT 1 [Ted
® & 11111 68 (1]
QOO
MOXOROXO) 11010104 51 [51] |
g_ ® g PEOXS) a) b)
ORORONONCO,
@0 o ®® 2 " output
] —
|'I /@ . , {1} {3} {1 (next hop)
T xon -3
/00000 1 2 1
,® ©/@ @ destination addres
B0 0
_./"’ ! C)
. @ ® Fig.16. Prefix table (a), corresponding 1-bit {t¢
g 5 AN @ and the LUT cascade with intermediate outputs (c)
a) An example of prefix table is in Fig.16a. It is fact
fully specified multiple-output Boolean function thi
21 272 .., and 2 input vectors (destination addresses)
al a2 a3 aa — producing the same next hop. The tree-like MTBDD of
such type of function is called trie, Fig.16b [2Rpdes of
a trie contain two element fields, each element fleas
TTTT TTTT TTTT TTTT the components child and data (output). Branchimg i
b) done based on the bits in the search key. A leftaeht

Fig. 15. The ROBDD (a) and LUT cascade detectiit 8tring in 16 child branch is followed if the ith bit of the sehrkey is
bits (b) 0; otherwise a right-element child branch is foléaly

_ . . Prefix output evaluation is conducted by using lfhe

To complete the discussion on the pattern detectiogqqress bits to traverse the trie, starting with thost

example, let us note that LUT cascade can be aanstt gjgnificant bit of the address. To speed up tharating
for any number of input variables. The width of@@® rgcess, multiple bits of the destination address a
remains the same and the BDD has a repetitive @atulcompared simultaneously in a multibit trie levels of

We can think of it as of repeated evaluation ofa@Ban o binary trie are combined into single LUT what

reduces the number of memory accesses needed to APPENDIXA

perform the whole IP address lookup;is called stride. PROGRAMMABLE LOGIC ARRAY PLA1 INMCS-51
In Fig. 16¢ stridem = 2. Even though the intermediate MICROCONTROLLER FAMILY

outputs are produced often earlier in the casdhey, are

always forwarded to the last LUT, [21]. For highesd Legend: ! = logical negation, * = logical AND,

packet forwarding the speed of micro-engine in ER)is + = logical OR

not sufficient. Two hardware-based solutions are PLA1

available: those that involve the use of a CAMhattuse Inputs: A,B,C,D,E,F,G,H,I,J,K L, M
synchronous LUT pipeline (on ASIC or FPGA) [21], Outputs: SO, CS, BL, NL, V1, V3, V4, V5

[22]. The CAM can be implemented by a LUT ca_s_cad 0 = IAIGHI* J*M+ A*IB*1I* JM+A*E*I1*M

anyway [23]. In both the cases one additional

complication has to be addressed, namely frequet@fS = IAMB*DHEXFHGHHAIIKXIL*M +

modifications of the routing table. Some additional ~A*BEMFXGHHMMJIIKHLYM + IAMEXI*M +

hardware is required for this functionality and EXII*MHDHIM

programmable LUT cascades are thus obtained [24]. BL = IB*E*IF*IG*IH*II*IJ*IK*IL +
IB*C*ID*IH*![*IJ*M + IB*D*E*IH*!I*IJ*M +
ID*I*IJ*K*M + TA*¥IG**J*M + E*H*I|*IL*M

VIIl. CONCLUSION +C*ID*G*II*M + IA*F*II*M + G*IIPK*M +

E*G*!I*M

There is no single software evaluation method ogitim
NL = IB*E*IF*IG*IH*![*IJ*IK*IL + C*ID*IH*![*L*M

for all Boolean functions. Complexity of functionisat
can appear in embedded systems varies a greatdeal + IDHMI'KTM + IAMGHIXI™M + D*E*IN®IM
so do their space and time requirements in various +IATFHIPM + EXIFILM + GHIFKM
evaluation techniques. V1 = IA¥IG*I*J*M + C*ID*F*II*M + A*IB*I[*J*M +

Even though the very narrow analysis done above !'A*F*II*M + F*I*K*M + E*F*!I*M
cannot be taken as convincing, certain conclusfons /3 = IB*IC*ID*E*IF*IG*I H*I[*IJ*IK*IL +
engineering practice can be drawn from it, if tastfand IB*IG*|*J*K*M + ID*I[*IJ*K*M + B*C*II*K*M
memory efficient evaluation of sparse Boole_an flom | V4 = IB*CHD*EHFAIGHH KL +
F.: X - Zg of several tens of variables is the main IB*D*E*I E*IGH H*I*IJ* K*IL*M +
concern. _ IA¥IGHI*J*L*M + CHID*IH*I*L*M +

| 1. If the setX thzn i:r?nt?lns tpnly_a smallfnlémkl))eéDoll‘l IA*E*I*L*M + C*ID*H*II*M +D*E*!|I*L*M
elements, e.g. when the function is specified byl _
with low tens of min-terms, the search in the oedelist V5 B BYDEHFAGHHIMIMKILM +
; ; ; IB*E*IF*IG*IH*II*IJ*IK*IL + C*ID*IH*!I*L*M

of min-terms can be very effective solution. FIDHMIMKAM + IAMGHI*IHM + CHD*HH M

2. If X 0{0,1,x}" , sequential TCAM emulation may + AMIBHI*I*M + D*E*IL*M + IAFEHI*M +
be too slow as it takes | X | steps. LUT cascadesaa e ' ' '

|||| *
good solution. Generally speaking, every sparsetioim EAFLM
can be implemented as a LUT cascade.

3. OBDDs or ROBDDs may be useful for checking ACKNOWLEDGMENT
equivalence between two implementations or for fdrm))]
verification [1], but they are less useful for aation This research has been carried out under the filanc

4. LUTs obtained from MTBDDs seem to be a veryand hardware implementation of a patent-invention
good and effective data structure and should alvimys machine”, GA102/05/0467 “Architectures of Embedded
considered for evaluation of Boolean functions. yrhee ~ Systems Networks®, Grant Agency of Czech Republic,
flexible in making trade-offs between response tamel and “Security-Oriented Research in Information
memory consumption. LUT cascades implemented €chnology”, MSM 0021630528.
directly in hardware can support asynchronous or
synchronous pipeline processing [25]. Otherwisezadge REFERENCES
of software_ implementation, several LUTs can be[1] B.M. Moret: Decision Trees and Diagrams. Compatin
compacted into one block of memory words. The Surveys, Vol.14, No.4, Dec. 1982, pp. 593-623
evaluation then reduces to a short chain of indire o ’ . :
memory accesses C[2] F. D. Petruzella: Programmable Logic Controllers,

Future research will be oriented to applicationghaf 3 RMCS%EZV :“” Gsucgr:]c;elgngg::srl)nr?/liﬂ;:re], Uzr?ig::ﬁ thro:
iterative decomposition and LUT cascades in the afe 8] Fast evaluatic ¢ Boolean) ,Arg:/'l
secure and safe hardware. The intention is tordpose ast evaluation —of -~ Boolean — expressionss
large systems of sparse Boolean functions of many Transactions on Design Automation of Electronict&ys
variables, which appear in this area, into LUT eadss 1(4): pp. 456--477, Oct. 1996.)
with the aid of evolutionary optimization technigue [4] T- Sasao, Y. Iguchi, M. Matsuura, "LUT cascacesd

generalization to LUT networks will also be studied emulators for realizations of logic functionsRM2005
Tokyo, Japan, Sept. 5 - Sept. 6, 2005, pp.63-70.

[5] B. Bollig, I. Wegener, “Improving the Variable @ering of [19] V. Dvorak: Microsequencer architecture supporting

OBDDs Is NP-Complete”. IEEE Transactions on arbitrary branching up to 2"m targetsComputer
Computers45(9):993—1002, September 1996. Architecture NewslEEE Publ., US, March 1990, pp. 9-16.
[6] V. Dvorak: An optimization technique for ordered (binary) [20] K.S. Kim, S. Sahni: Efficient Construction ofpelined
decision diagrams, InProceedings of the 6th Annual Multibit-Trie Router-TableslEEE/ACM Transactions on
European Computer Conference CompEuro;, Blague, Networking(TON), Volume 11, Issue 4 , August 2003,
NL, 1992, pp. 1-4, ISBN 0-8186-2760 pp. 650 — 662. ISSN:1063-6692
[7] A. Mishchenko, T. Sasao: Logic Synthesis of LQ&scades [21] T. Henriksson, I.Verbauwhede: Fast IP Lookuygie for
with Limited Rails- A Direct Implementation of Multi- SoC Integration.Proc. of IEEE Design and Diagnostics of
Output FunctionsTechnical report of IEICEThe Institute Electronic Ciruits and Systems Workshépril 17-19,
of Electronics, Information and Communication Engirse 2002, Brno, Czech Republic, pp.200-210.
Vol.102, No0.476(20021121) pp. 103-108. VLD2002-99,[22] D. E. Taylor, J. W. Lockwood, T. S. Sproull,S. Turner,
ISSN:09135685. D. B. Parlour: Scalable IP Lookup for Programmable
[8] R. Drechsler, B. BeckerBinary Decision Diagrams - Routers. Tech. Rep. WUCS-01-3Pept. of Computer
Theory and ImplementatioSpringer 1998. Science, Applied Research Lab, Washington University
[9] M. Yoeli : The Synthesis of Multivalued Cellul&@ascades. 2001.
IEEE Trans. On Computer¥ol. C-9, pp.1089-1090, Nov. [23] T.Sasao and J. T. Butler, "Implementation ofltiple-
1970 valued CAM functions by LUT cascadesSMVL-2006

[10] V. Dvorak: Bounds on Size of Decision Diagrams, JUCS - Singapore, May 17-20, 2006.
The Journal of Universal Computer Scien¢8UCS), [24] H. Nakahara, T. Sasao, M.Matsuura: A CAM Enmila

Vol..3, pp. 2-23, 1997. Using Look-Up Table Cascaded4th Reconfigurable
[11] V. Dvorak: A cascade implementation of digital systems. Architectures WorkshofRAW 2007, March 2007, Long
In: Microprocessing and MicroprogrammingNorth- Beach California, USA. CD-ROM RAW-9-paper-2.

Holland), Vol. 29, No. 1, 1990, pp. 151-163, ISSM6B- [25] K. Nakamura, T. Sasao, M. Matsuura, K. TanaKa,

6074. Yoshizumi, H. Qin, and Y. Iguchi, "Programmable itog
[12] University of Hamburg, Department of Inforncsj device with an 8-stage cascade of 64K-bit asynausn

http://tams-www.informatik.uni-hamburg.de/applets SRAMSs," Cool Chips VII| April 20-22, 2005, Yokohama,
[13] W. Stallings, Computer Organization and Architecture Japan.

Sixth Edition, Prentice Hall, 2005.
[14] S.J.Friedman, K.J.Supowit: Finding the Optinvariable

Ordenng. for Binary Decision Diagrams.|EEE Vaclav Dvorak obtained M.Sc. degree in El. Engineering and
Transactions on Computers/ol. 39, No. 5, pp.710-713, ph.p. degree in Applied Cybernetics from Brno Uniitgrsf
May 1990. Technology, Czech Republic, in 1963 and 1968. He was

[15] T. Sasao: Analysis and Synthesis of WeightathS awarded a distinguished DrSc degree in Computem&eiand
Functions. Proc. Of the Int. Workshop on Logic and Engineeringin 1990.

SynthesisLake Arrowhead, CA, USA, June 8-10, 2005, Since 1963 he was 10 years with the Research fresiitl
Dp.455-462 Mathematical Machines Prague. Then he joined Brno

University of Technology, Faculty of Information drenology,
[16] T.Sasao, M.Matsuura: A Method to Decomposetilg- 45 5 research associate and later as Associafeuiierofessor.
Output Logic Functions.Proc. of the 41 Design The major field of his interest has been computedware and
Automation ConferenceSan Diego, CA, USA, June 2-6, architecture. He interleaved the work at the homearsity
2004, pp.428-433. with acting as visiting scientist, lecturer and fpssor at a
[17] V. Dvorék: Decomposition Theory with Applications in Number of foreign institutions, over 8 years in. gCanada,
Programmable Digital SystemsA thesis required for Malta, Libya, New Zealand, Australia, Tenerife-SpaiHis

)) . research is recently oriented into application Bjgeand
Doctor of Sciences degree. Faculty of El. Engimegri parallel architectures.

Technical University of Brno, May 1989. (224 pages, Prof. Dvorak is a member of Computer Society andBF&
Czech). member of the Scientific Board of the Faculty ofommhation

[18] R. Drechsler, M. Herbstritt, B. Becker Groupingufistics ~ Technology, committees for Bc, MSc and Ph.D. studies
for word-level decision diagramBroceedings of the 1999 Information Technology and a member of JUCS and JEE
IEEE International Symposium on Circuits and Systeand'tO”al Boards.

ISCAS '99, pp411--415.

