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Abstract — The paper addresses software and firmware 
implementation of multiple-output Boolean functions based 
on cascades of Look-Up Tables (LUTs). A LUT cascade is 
described as a means of compact representation of a large 
class of sparse Boolean functions, evaluation of which then 
reduces to multiple indirect memory accesses. The method is 
compared to a technique of direct PLA emulation and is 
illustrated on examples. A specialized micro-engine is 
proposed for even faster evaluation than is possible with 
universal microprocessors. The presented method is flexible 
in making trade-offs between performance and memory 
footprint and may be useful for embedded applications 
where the processing speed is not critical. Evaluation may 
run on various CPUs and DSP cores or slightly faster on 
FPGA-based micro-programmed controllers.   
 
Index Terms — Embedded software, Boolean function 
evaluation, Binary Decision Diagrams, LUT cascades    

I.  INTRODUCTION 

Efficient evaluation of Boolean functions is an 
important part of many embedded software systems. 
Functions most frequently used in embedded system 
practice are not random, but application-specific with low 
complexity. Among them sparse functions defined below 
include applications such as encryption, data compression 
and conversion, pattern matching and searching, moving 
window functions on data streams, etc. We will address 
Boolean functions of large numbers (tens, hundreds) of 
variables because small size systems can be implemented 
directly in hardware, e.g. in PLA, ROM or TCAM 
(Ternary Content Addressable Memory).  

Software implementation of Boolean functions will be 
assumed in a form of a data structure describing the 
function and of a compiled program that reads the input 
vector and evaluates the function with the use of this data 
structure. The size of the code and of the data structure is 
one figure of merit and the other is the evaluation time 
from reading the input to generating the output.   

Hereafter we will use three compact representations: a 
PLA-like table, Look-Up Tables (LUTs) and binary 
decision diagrams (BDDs). The BDDs are well known, 
especially the reduced ordered BDDs (ROBDDs), [1]. On 

the base of ROBDDs we will develop a more practical 
representation – cascades of LUTs. 

Software implementation of Boolean functions has 
been up to now studied especially in connection with 
PLCs (“ladder diagrams”) [2], digital system simulation, 
formal verification and testing [1], or specialized event 
processing [3], where either a speed (PLC) or a required 
memory were not that important. On the contrary, in 
embedded systems we do care for performance, memory 
space as well as for power consumption. We will 
demonstrate that presently used algorithms (PLA 
emulation, a BDD traversal or evaluation of Boolean 
expressions) are generally too slow and that the use of 
LUT cascades enables faster evaluation. The longer 
cascades with simpler LUTs are slower than shorter 
cascades with larger LUTs, and thus the processing speed 
can be even adjusted to requirements.    

The paper is structured as follows. In the following 
Section II we introduce terminology and notation 
concerning Boolean functions; a traditional approach to 
Boolean function evaluation is assessed in Section III. 
Binary decision diagrams (BDDs) and LUT cascades are 
introduced in Section IV, together with some complexity 
issues. Variable ordering in MTBDDs and in LUT 
cascades is a subject of Section V. In Section VI we give 
examples of LUT cascades for sample Boolean functions 
and illustrate trade-offs between speed of evaluation and 
required memory space. A micro-engine for LUT cascade 
processing is presented in Section VII. Results obtained 
with selected functions and some generalizations are 
commented on in Conclusions. 

II.   TERMINOLOGY AND NOTATION 

To begin our discussion, we define the following 
terminology. A system of m Boolean functions of n 
Boolean variables, 

          fn
(i)

 : (Z2) 
n
  → Z2 ,  i = 1, 2, ..., m                          (1)                                                         

will be simply referred to as multiple-output Boolean  
function Fn with output values from ZR = {0, 1, 2, …,  
R-1}, 

Fn: (Z2) 
n
  → ZR ,                                    (2)  

where R is the number of distinct combinations of m 
output binary values enumerated by values from ZR. 
Function Fn is incomplete if it is defined only on set  
X ⊂ (Z2) 

n;   (Z2) 
n
 \ X = D is the don’t care set. 

 The behavior of a combinational circuit can be 
described by the system of m explicit complete functions 
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of n variables  
yi =  fn

(i)(x1 , x2 , …, xn),            i = 1, 2, ..., m     (3)  
or y = F(x) in vector notation. Alternative implicit 
description is based on the so called output characteristic 
function [7]  

 φ0 (x, y) = 1.                                            (4) 
 Machine representation of Boolean functions uses   

binary decision diagrams (BDDs), which can have many 
forms. Bit-level binary decision diagrams (BDDs), 
ordered binary decision diagrams (OBDDs) and reduced 
ordered binary decision diagrams (ROBDDs) are well 
known representation of a single Boolean function in a 
form of a directed acyclic graph [1]. Whereas ROBDD is 
a canonical (unique) representation for any given 
complete function and an order of variables, incomplete 
Boolean functions may be transformed into more than 
one complete form and into the associated ROBDD. 

Important parameters of a BDD are its size and width, 
i.e. the total number of decision nodes and the maximum 
number of edges between adjacent levels, where the 
edges pointing to the same nodes are counted as one. The 
size determines the memory space needed to store the 
BDD data structure while the width K (also C-measure,  
[4]) determines a BDD form factor since the height is 
given by the number of variables. The construction of 
minimum-size or by the same token minimum-width 
ROBDDs belong among NP-complete problems [5]; the 
size and width of the ROBDD depend on variable 
ordering and there are n! possible orderings of n 
variables. A heuristic approach can be used in a search 
for near-optimal orderings [6]. Upper bounds on the 
OBDD’s size and width for general random complete 
Boolean functions grow exponentially with number of 
variables n for any ordering, but functions used in digital 
systems design with few exceptions do have a reasonable 
BDD size and small width. 

 M-ary decision diagrams are straightforward 
generalization of BDDs. They have two types of nodes: 
decision and terminal nodes. Decision node L is testing 
M-ary variable var(L) and its outgoing edges are marked  
by its values 0, 1, …, M-1.  The terminal node assigns a 
single value from ZM (generally ZR, R≠M) to output y = 
Fn(x1, x2,…, xn). 

To represent a system of Boolean functions (1) by 
means of decision diagrams, we can use either m bit-level 
BDDs, one for each of m Boolean functions (possibly 
sharing some of their sub-diagrams in Shared BDDs or 
SBDDs, [7]), or one word-level BDD (WLBDD) with n 
Boolean decision variables and with R integer terminal 
values. There are many types of WLDDs. Multi-terminal 
BDDs have integer leaves and therefore represent 
functions from Booleans to integers. A BMD (Binary 
Moment Diagram) is more compact representation for 
some useful arithmetic functions which have exponential 
size if represented by MTBDDs. Hybrid decision 
diagrams HDDs are a combination of MTBDDs and 
BMDs.  

BDD for Characteristic Function (BDD for CF) [7] is 
yet another representation of multiple-output functions, 
which uses the shortest encoding of output vectors y by 

means of auxiliary variables. The advantage of the BDDs 
for CF is that tools useful for optimization of BDD for a 
single Boolean function (4) can be used without 
modification for multiple-output functions as well. 

As the LUT cascades are the main concern of this 
paper, we will provide a formal definition. A LUT will be 
also interchangeably referred to as a “cell”. 

Def. 1. A cascade C of a form k × m is the system 
C = [ K, M, H1, H2, …, HB, µ] 

where  
K ≤ 2k (M ≤ 2m) is the number of specified Boolean input 

vectors at k horizontal (m vertical) cell inputs, 
Hi: (Z2)

k × (Z2)
m → (Z2)

k, 1 ≤ i ≤ B are functions 
implemented by individual cells, 

B, the cascade length, is the total number of cells and  
µ: {1,2,…, B}→(Z2)

m assigns m-tuples of input variables 
xi , i = 1,2,…, n  to B cells in the cascade. 
The above cascade has the width k horizontal rails 

carrying Boolean values and each cell has m vertical 
(side) inputs. The last cell in the cascade may have r ≠ k 
outputs. 

Def.2. A cascade is said to be non-redundant if each 
variable used at vertical input enters one and only one 
cell. Otherwise the cascade is redundant. If a reference is 
made to a cascade, we will assume implicitly a non-
redundant cascade. The attribute “redundant” will be used 
always explicitly.   

Note. Cascades considered in [16] use cells with 
additional vertical outputs. These intermediate outputs 
can reduce the cascade width k. Intermediate outputs are 
either individual Boolean variables yi as in (3) or the 
complete integer values from ZR as in (2); in the latter 
case BDD leaves appear not only in the bottom of the 
diagram, but span more its levels. A consequence for 
software evaluation is that some partial Boolean outputs 
or   function values are generated earlier than others. 

III.   TRADITIONAL APPROACHES TO EVALUATION OF 

BOOLEAN FUNCTIONS: PLA EMULATION 

Hardware implementation of Boolean functions in 
Programmable Logic Array (PLA) can serve as an initial 
prototype for software implementation. PLA consists of 
AND-matrix and OR-matrix. Rows of the AND-matrix 
define terms and OR-matrix serves for accumulation 
some of them into the binary outputs, Fig.1. 

 
Fig.1. Structure of PLA 

 

AND array OR array 

n inputs r outputs 

p term
s 

 



 The set of p terms produced by AND-matrix (a term 
vector) can be generated in parallel, each term in one bit 
of the computer word. If the capacity w bits in a single 
word is not enough, p/w computer words can be used to 
accommodate all the terms. The terms are evaluated in n 
steps, one input Boolean variable at a time. Two masks 
m0(x) and m1(x) of length p bits are maintained for each 
variable x. The masking bit of mask mv(x), v = 0,1, in a 
position of term t is denoted mv(x, t) and has the 
following value:  

if x occurs in t,   then mv(x, t) = v 
if !x occurs in t,   then mv(x, t) = !v 
if x does not occur in t, mv(x, t) = 1. 
Two masks for each variable are generated only once, 

at the beginning, based on their occurrence in PLA terms. 
The term vector is initialized to all ones and then a 
sequence of masks is applied to it using the bitwise 
logical AND operation. For variable x mask mv(x) is used 
depending on the input value x = v. All the terms are thus 
updated in parallel by the bitwise AND operation and the 
(full) width of computer word is utilized. 

As soon as all terms are ready, we have to emulate 
OR-matrix – apply bitwise OR operation selectively to 
certain bits. Another set of r masks will be used for r 
outputs. Unused terms in the term vector are masked out 
and if at least a single 1 remains, the result TRUE. The 
memory size for storing all sets of masks is thus 

            space = (2n + r) p/w  words                 (5)  
and time complexity is   

              time = C1n + C2 r,                                 (6) 
where C1 and C2 are execution times in clock cycles 
related to mask applications.  

If the number of terms p is less than the number of 
variables n, a dual evaluation method may be more 
advantageous. The relevant terms are generated one after 
another from the input vector using again two sets of 
masks. As soon as the term vector is assembled, the 
outputs are generated the same way as before.  

Similarly, if p < r, we can create the output vector 
faster by ORing  p partial vectors mv(t); partial vector 
mv(t), v = 0,1, is selected if term  t = v. Space and time 
complexities under all conditions are: 
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Example: 
Size of full tables for two sample PLAs is given: 
 

TABLE 1.  
PARAMETERS OF PLA1 AND PLA2 

 
n r p |X| size [B]

PLA1 13 8 31 175 8192
PLA2 11 8 53 632 2048  

 

Data structures for emulation of two PLAs with w = 8 
bits according to (5) take up only 156 and 268 bytes, 
respectively. Time complexity is n + r = 21 and 19 time 
steps provided that C1 ≈ C2.  (End of example.) 

IV.   LUT  CASCADES, BDDS AND   COMPLEXITY ISSUES  

A.   Relation of MTBDDs and LUT Cascades 

Whereas BDDs and MTBDDs proved useful in many 
areas of digital design [8] where they provide compact 
data structures and a degree of flexibility in manipulating 
them, they are not as wonderful for the purpose of 
function evaluation. The primary reason is the slow 
speed, since the evaluation process inspects one Boolean 
variable after another.  There is though a certain speedup 
in comparison to direct evaluation of Boolean 
expressions, because each variable is processed only 
once. Straightforward remedy how to speed up the 
traversal of a BDD is to process several variables at a 
time. This way we will derive LUT cascades, in fact a 
special case of LUT networks. 

A close relation between both these representations of 
multiple-output Boolean functions will be illustrated on a 
bit-counting example. The function Fn: Z2

n → Zn counts 
the number of 1´s presented at n inputs and represents it 
by a binary number. The MTBDD and associated LUT 
cascade are displayed in Fig. 2 for n = 4. Generalization 
for larger values of n is easy. As the number of nodes 
grows linearly from the root to leaves, the width of the 
MTBDD is given by the last level of decision nodes and 
has the value of K = n. 
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Fig.2.   Bit counting example 
 
What connects two representations is the concept of 

sub-functions. Informally, the sub-function f of Fn is a 
function of s variables obtained from Fn by setting n− s 
variables to fixed constant values. The number of distinct 
sub-functions of s variables, s = 1, 2,…, n-1, the so called 
profile, characterizes complexity of the Boolean function. 
In Fig.2 we can recognize distinct sub-functions as edges 
crossing boundaries between MTBDD layers, counting 
edges incident with the same node only once. Edges are 
labeled by ID codes of distinct sub-functions. From the 
top down, there are 2 sub-functions of variables a, b, c 
(ID codes 0, 1), 3 sub-functions of variables a, b (ID 
codes 0, 1, 2), 4 sub-functions of variable a (ID codes 0, 
1, 2, 3), and 5 sub-functions of zero variables (constant 
terminal values 0 to 4). LUT contents are defined by 
binary ID codes and a side variable entering a cell, and 



binary ID codes generated by the cell. Co-synthesis of 
MTBDD and LUT cascade will be presented in Section 
V.     

As can be seen, the difference between the MTBDD 
and the LUT cascade is in communication among the 
MTBDD layers and LUTs in the cascade: in MTBDD 
each sub-function ID code requires an individual edge 
(”wire”), whereas the ID codes being sent between LUTs 
are binary coded. The number of rails k in the cascade is 
therefore  

k = log2 K.                                    (9) 
This difference of two representations reflects itself in 

the way how the program interprets a certain application-
specific MTBDD or a LUT cascade. In case of the 
MTBDD we may use for each node a record with 3 
fields. A format indicator is one-bit field specifying the 
leaf node (leaf nodes may generally occur at any level of 
the diagram). Two other fields of the leaf node are then 
used for output. If the node is not a leaf, two fields 
(adjacent words) contain pointers to the base addresses of 
other nodes. The base address is then modified by the 
value of a current control variable(s) and is used to 
extract the correct field with the pointer to the next node. 
The program traverses a certain path in the MTBDD from 
the root to a leaf in at most n steps. 

 LUTs are interpreted similarly, only the pointer to the 
next LUT is obtained from the current output by 
concatenating it with the control variable value and 
adding it up to the next LUT base address. If suitable, 
some LUTs can be combined to provide even faster 
processing (see first three cells in Fig.2 combined into 
one). 

B.  Complexity isues 

Many questions arise in connection with 
implementation of the given multiple-output Boolean 
functions by LUT cascades. In our bit-counting example 
the number of sub-functions   from the root to leaves (a 
profile) was increasing linearly. Some other functions 
may have a profile almost constant, what makes the 
number of rails in the cascade also constant – a desirable 
feature. However, for randomly generated functions and 
for multipliers the profile and maximum BDD width K 
increases exponentially   (parameter k = log2 K linearly) 
with the number of variables. The question is, what will 
be the required number of cascade rails in general case. If 
we remove the restriction that each input variable can be 
used only once, the result is available as Theorem 1 for 
multi-valued redundant cascades (repeated BDDs): 

Theorem 1. [9] Every function  
       Fn: (ZM) 

n
  → ZR,         M ≥ 2,  R > 2 

is realizable by the LUT cascade with Bn cells (with K-
valued signals between adjacent cells and external M-
valued signals on side inputs).    
If R = 3, 4, 5, 7, 8, 9, 11, … then K = R else if  
R = 2, 6, 10,…, 2(2t+1), …, then K= R+1; (t=0,1,2,..). 
Bn= M(Bn-1 +1), B1=1. 

Synthesis method based on Theorem 1 is not practical, 
as it produces too long cascades and of the same length 
for functions with different complexity. However, 

redundant use of variables may sometimes be useful to 
reduce the number of cascade rails. Some examples are 
given in [11]. 

The size of the ROBDD for a single Boolean function 
of n variables given by Boolean expression in DNF is 
known to be less than the number of literals in the 
expression. More accurately is the BDD size upper-
bounded by [10] 

  { } ,,...,2,1,12min LkkLP k
n
L

k
=−+−≤       (10) 

where L is the number of literals in DNF. 
Complexity of MTBDDs for general multiple-output 

Boolean functions gives the following  
Theorem 2 [11]: 

Size P and width K of the MTBDD for function  
Fn: (Z2) 

n
  → ZR are upper-bounded by 

[ ])2,min(max

1)2(min

2

2

in

i

in

i

i

i

RK

RRP

−

−

≤

−−+≤
                 (11) 

The width K of MTBDD and thus the cascade width k 
(a number of rails) have reasonably low values for many 
functions arising in practice. One class of such functions 
is defined below. 

Def. 3. Sparse functions. 
Under the sparse functions Fn: (Z2)

n
 → ZR we will 

understand functions with the domain (Z2)
n divided into 

two parts X and D,  (Z2)
n
 = X ∪ D, | X | << 2n , if one of 

the following conditions hold: 
1) Fn is an incomplete function in (Z2)

n,   Fn: X → ZR 

   
  and (Z2)

n
 \ X = D is the don’t care set.  

2) Fn: X ∪ D → ZR. Mapping D → ZR is artificially 
    defined to make implementation as easy as possible. 
3) Fn is a fully specified function in (Z2)

n, 
     Fn: [X → ZR\{0}  , D → {0}]  
(without loss of generality, value 0 is  taken as the 
dominant value). 

Functions in three above classes are quite common in 
digital design.. They have low BDD width and are 
suitable for LUT cascade implementation. ROBDDs can 
be obtained by applet [12] and LUT cascades can be 
quickly derived by slicing ROBDDs. Complexity of LUT 
cascades for sparse functions is established by the 
following theorem [11]. 

Theorem 3. 
Every R-valued incomplete function of n binary variables 

Fn: X → ZR,  X ⊂
 
(Z2)

n  
is realizable as the output function of the LUT cascade 
with k ≤ log2 | X | rails. 
Every R-valued complete function of n binary variables 
      Fn: X ∪ D → ZR   [ X → ZR\{0}  , D → {0}] 
is realizable as the output function of  LUT cascade with 
k ≤  log2 (| X | + 1)  rails. 

Another class of sparse functions is defined below. 
Def.4. Multiple-output Boolean functions are symmetric 
if they are invariant under any permutation of inputs. 
Their values depend only on the number of active inputs. 

Theorem 4. MTBDD width K of symmetric functions 
is K = n, the number of Boolean variables. 



Proof: It is clear, that all sub-functions of a symmetric 
function are also symmetric. There are only up to n−s+1 
distinct sub-functions of s free variables corresponding to 
n−s fixed variables at all 0´s, single 1, two 1´s, three 1´s, 
…, all 1´s. Since 1≤ s ≤ n−1, maximum MTBDD width K 
= n is at the lowest level where s = 1. 

C.  Example of a sparse function 

Boolean function of n =N×N variables returns 1 for 
every configuration of 1’s (queens) on the N×N 
chessboard, such that no queen attacks another one. E.g. 
for N = 4 two solutions at Fig.3 can be generated by 
Boolean function F16 
F16 =  !a11*!a12*a13*!a14*a21*!a22*!a23*!a24*!a31*!a32* 
!a33*a34*!a41*a42*!a43*!a44 + !a11*a12*!a13*!a14*!a21* 
!a22*!a23*a24*a31*!a32*!a33*!a34*!a41*!a42*a43*!a44         (12)  
                                             

a11 a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44 
 

 
Fig.3. Two solutions of 4-queens problem 

 
Function F16 is a sparse function (sub-class 3); number of 
literals in Boolean expression is L = 32, n = 16,    the size 
is according to (10) upper bounded by 31 nodes and the 
width is upper-bounded by log2 3 = 2 according to 
Theorem 3. The real ROBDD generated by the applet 
[12] has 29 nodes and is shown in Fig.4. The notation 
used in (12) corresponds to applet [12] and to Fig.3, but 
variables in the ROBDD at Fig. 4 are enumerated from 0 
to 15. 

By slicing the ROBDD horizontally as shown in Fig.4, 
we obtain the LUT cascade. Two sub-function ID codes 
plus constant 0 are transferred between BDD layers, so 
that 2-bit code will do. Possible configurations of LUT 
cascades are in Fig.5. 
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Fig. 5.  LUT cascades for 4-queens problem ( IEEE 2007) 
 
The most efficient representation and evaluation of F16  

is thus clear: two memory words are sufficient to store 
two min-terms in (12) and two bitwise comparisons will 
do for the quickest evaluation. In case of LUT cascades, 
two table look-ups are sufficient in the shorter LUT 
cascade in Fig. 5, giving a similar speed as with two 
bitwise comparisons. However, memory consumption is 
worse, 512 × (2+1) bits against 2 words, 16 bits each.  

Now if we move to 8-queens problem, there will be 92 
solutions described by F64. Solutions can be found by the 
known algorithm [13]. To store 92 binary vectors of 
length 64 is still acceptable, but instead of a linear search 
we can order solutions and do better with the logarithmic 
search in log2 92 = 7 steps at most. 
 

 
 

 
 

Fig.4. ROBDD for 4 queens problem ( IEEE 2007) 

V.  VARIABLE ORDERING FOR MINIMUM WIDTH (SIZE) OF 

THE  MTBDD 

 
Design of LUT cascades by slicing MTBDDs has a 

catch: the size and the width of MTBDD strongly depend 
on variable ordering. The problem of optimal variable 
ordering is unfortunately NP hard [5]. For some 
functions, the size of a BDD may vary between a linear to 
an exponential range depending upon the ordering of the 
variables. Thus the ROBDDs are canonical data structure 
for a fixed ordering only. The problem of ROBDD 
synthesis with optimal variable ordering for a complete 
Boolean function of n variables is computationally 
expensive as it can be done in time O(n23n), [14]. 
Optimization of variable ordering for minimum size of 
ROBDD or MTBDD will very likely produce simul-

The ROBDD size is according to (10) upper-bounded 
by 5535 nodes, so that storing of such BDD would not be 
space efficient at all. A traversal of this ROBDD would 
need 64 steps in the worst case, what is bad as well. A 
LUT cascade could be faster, but at the cost of total 
memory capacity for LUTs.   

 



taneously a minimum BDD width (resulting in the most 
efficient LUT cascade). 

Design of LUT cascades can start by determining the 
required number of rails k from the BDD width K. The 
value of K is known for sparse functions    (Theorem 3), 
for weighted-sum functions [15], and some other function 
classes.  

If BDD width K for the given function cannot be 
obtained from known expressions, one can get it from 
ROBDD for CF after minimizing its cost. This is, 
however, a separate problem. Recently, heuristic 
minimization algorithms have been proposed [8] that 
allow reduction of the WLDD size analogously as for 
BDDs.  Next we will describe a co-synthesis of both 
MTBDD and LUT cascade for incompletely specified 
multiple-output Boolean functions. Let us note that sub-
functions of incomplete function may themselves be also 
incomplete. A compatibility relation can be defined on 
the co-domain of such sub-functions: don’t care (denoted 
by “x”) is compatible with any value from ZR . 

The method is based on the bottom-up heuristic 
construction of BDDs by an iterative disjunctive 
decomposition. The illustrative incomplete function of 8 
variables is given in Fig. 6. The map of the function at the 
top is sparsely populated by 16 function values (0 to F). 
For clarity don’t care cells are left empty in tables, but 
otherwise are denoted by symbol “x” in the text.  

Single-variable sub-functions can be created with 
respect to any variable. E.g. two vertically adjacent cells 
correspond to a sub-function of the first variable that 
attains alternate values 0 and 1 at even and odd rows (see 
e.g. [F, 8] in Fig.6). Using compatibility relation we can 
combine pairs [α,x] and [x,β] into a single sub-function 
[α,β]. Altogether nine sub-functions of the first variable 
are detected in the topmost table. The first decomposition 
step is described below the table; each sub-function is 
given a new ID code ([1,0]→0, [2,7]→1, [F,8]→3, etc.), 
thereby removing the first variable from the function. A 
map of the new intermediate Boolean function of 7 
variables is now created replacing sub-functions by new 
ID codes. This process repeats 8 times. 

The MTBDD can now be created starting from root 0. 
Every assignment [a,b]→ c, when reversed, specifies one 
decision node  with  input c  and  two outputs  a  and  b 
controlled by the relevant variable. Assignments of the 
type [a,a]→b, [a,x]→c, [x,a]→d do not represent decision 
nodes because the outputs are the same (or compatible); 
such a decision node degenerates to a wire. Going up 
from the root (a map of 0 variables) to the original map of 
8 variables, the OBDD in Fig.7 is created. Usually BDDs 
have a root at the top, but we displayed the BDD upside 
down in order to keep the BDD structure in correlation 
with the sequence of map transformations in Fig.6. Nodes 
are labeled by intermediate sub-function values. Out of 
46 assignments, 34 correspond to decision nodes and 12 
to wires only.  

 In our example we did not care about variable 
ordering; the ordering was chosen more or less randomly. 
If we want to minimize the size of a BDD, the following 
heuristics can be used: do sub-function counting for all 

variables in each decomposition step and use in this step 
the variable with the minimum sub-function count K, 
what will ensure the minimum number of rails k, too. In 
case of ties, select the variable with the larger number of 
constant sub-functions.  By intuition, the minimum count 
of sub-functions in one step may hopefully produce a 
minimum count of their pairs in the next step, and so on. 

Note also that the above small example with maps of 
the original and intermediate functions was done only by 
hand for illustration. When we have sparse functions with 
several tens of variables represented by a list of defined 
points, all the processing is done automatically on these 
lists. The appropriate algorithm for such case is described 
in [6].   

One layer of the MTBDD or more layers combined can 
be described by a LUT. For example LUT 4 in Fig. 8 is 
constructed from the layer of decision nodes adjacent to 
the leaves in Fig.7. Transformation of 9 function values 
to 16 ID codes is described by reversed assignments 
under the topmost table in Fig.6. 

 The whole BDD (Fig. 7a) is then described by 4 LUTs 
as shown in Fig. 7b. The LUT cascade is homogeneous, 
but generally the LUTs may have different size. 
However, sparse functions are typically implementable 
by homogeneous cascades, since the number of sub-
functions (and therefore decision nodes) follows a 
pattern: rising – constant – dropping, [17]. 

Had we used a list of defined points with function 
values, there would be 39 items, 8 (input) + 4 (output) 
bits per item, 468 bits in total, i.e. half of the full function 
table with size 256 × 4 bits. Since we cannot order the 
items, we would have to use the linear search with up to 
39 steps in the worst case. 

On the other hand, if we use the LUT cascade 
according to Fig.7b, the capacity of all tables will be 
4×(32×4) = 512 bits and only 4 steps (composed of read, 
append a value of a selected variable, add to the base 
address of the table to create a pointer) will do. This 
seems to be the best in speed and memory efficiency. 
Four tables may be implemented in memory as one table 
32 × 16 bit with the correct output extracted from 16-bit 
word as needed. Additional flexibility is obtained with 
LUTs as they are combined together. For example with 2 
tables 64 × 4 bits, the response will be 2-times faster. The 
total size of 2 and 4 LUTs remains the same, but 2 tables 
combined need 64 words in memory, 8 bits per word. 

There are other heuristic approaches for MTBDD 
optimization. The basic operation for improving the 
variable ordering is the exchange of two adjacent 
variables. E.g. in sifting method [8] all position of a given 
variable in the given ordering are checked successively. 
The variable is then left in an optimal position with the 
lowest MTBDD size and process repeats for all variables. 
In dynamic variable ordering   a window of m variables is 
moved over the n variables and in each position all 
permutations of the variables are considered [8]. The so 
called application specific variable ordering (ASVO) [8] 
uses structural properties of the problem instance for 
which the MTBDD has to be constructed. 
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Fig. 6. Iterative decomposition (8 variables) ( IEEE 2007) 
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Fig.7. a) The ROBDD of the sample function of 8 variables 
( 0 = - - - - - , 1 =  ) 

b) LUT cascade ( IEEE 2007) 
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Fig.8. Construction of one LUT ( IEEE 2007) 
 
Thorough comparison of all heuristic methods of 

optimization, as regards quality of results and an amount 
of the required execution time, remains still to be done.  
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VI.  A CASE STUDY - MCS-51 MICROCONTROLLER FAMILY: 

PLA1 AND PLA2 IN SOFTWARE 
 

Space and time efficiency of various configurations of 
LUT cascades obtained by computer-aided iterative 
decomposition have been tested on two PLAs used in the 
core of MCS-51 family of microcontrollers,  

               PLA: X → ZR, X ⊂ (Z2)
n, ZR ⊂ (Z2)

r, 
with parameters in Table 1. Both PLAs implement sparse 
(incomplete) Boolean functions, which are after 
minimization described by Boolean expressions (a list of 
expressions for PLA1 is given in appendix A). The 
number of terms in AND arrays are p = 31 and 53. The 
size in bytes gives memory space r2n required for storing 
full function tables.  
 

TABLE 1.  
PARAMETERS OF PLA1 AND PLA2 

 
n r p |X| size [B]

PLA1 13 8 31 175 8192
PLA2 11 8 53 632 2048  

Iterative  
Iterative decomposition used the selection of those two 

variables at a time that produced the minimum number of 
sub-functions. Not too large size of the problem allowed 
still an exhaustive search – on the Pentium-based PC it 
took tens of seconds. The PLA1 was implemented by the 
cascade of 6 cells, Fig. 9a, with the total size of LUTs 
only 1792 bits. That is reduction by factor of 36. The size 
of LUTs is not uniform and evaluation would take 6 table 
look-ups. We can make it faster and more uniform by 
combining 6 cells into 3 as shown in Fig. 9b. All sub-
functions are counted (results given in {integer}), coded 
and communicated between cells; function values are 
outputs from the last cell only. The total size of all LUTs 
is then 2816 bits; if the size of computer word w is 
known, further optimization can be done to minimize the 
total memory space in bytes occupied by all 3 LUTs. 

As far as PLA2 is concerned, computer-generated 
cascades are shown in Fig. 10. The cascade at Fig. 10b is 
obtained from the cascade a) by merging first two LUTs. 
The capacity of LUTs is 3264 and 3456 bits, respectively. 
The evaluation speed is given by 4 or 3 table look-ups. 
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Fig. 9. Two cellular cascade implementations of PLA1 ( IEEE 2007) 
 

We can also use an optimization technique based on 
creating groups of outputs and design a separate LUT 

cascade for each group. Multiple cascades may be 
narrower and shorter than the original one and can save 
some memory space, but number of table lookups will be 
always greater. A problem how to split output variables 
optimally into groups is solved typically by heuristic 
methods [18], [16]. In case of PLA2 we will split output 
variables intuitively into two halves and then decompose 
them separately. The result is shown at Fig. 11.  The size 
of LUTs is reduced to 1200 bits only, but the speed is 
reduced also. Eight table look-ups are needed and can be 
done on one CPU core in 8 steps sequentially or on a 2-
core processor concurrently in 4 steps.  
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Fig.10. Cascade of 4 or 3 cells for PLA2 ( IEEE 2007) 
 
The case study of PLA1 and PLA2 offered the size of 

data structures and speed of evaluation as given in Table 
2. The data in the table are valid under the assumptions: 

- size is in bits, the length of a computer word is not 
considered; 

- steps may have different duration at PLA emulation 
and LUT cascade processing (mask load + bitwise logical 
operation vs table look-ups). 
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Fig. 11. Two parallel cascades implementing PLA2. 

 
 

TABLE 2.  
SOFTWARE IMPLEMENTATIONS OF PLA1 AND PLA2 

    
        PLA emulation       LUT cascades
    AND + OR matrix
size bits steps size bits steps

PLA1 1054 13 + 8 1792 6
PLA1 1054 31 + 8 2816 3
PLA2 1590 11 + 8 3456 3
PLA2 1590 53 + 8 1200 8  

 



VII.  MICROPROGRAMMED CONTROLLER WITH MULTI-WAY 

BRANCHING 
 

Evaluation of Boolean functions at the firmware level 
can also benefit from the LUT cascade paradigm. By 
making use of a hardware micro-engine with support for 
multi-way branching, we can speed up evaluation of 
Boolean functions against a general purpose CPU core.  
A suitable architecture of a micro-engine similar to [19] 
is depicted in Fig.12.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. Micro-programmed controller architecture with multi-way 
branching 

 
There are three microinstructions formats (FI = Format 

Indicator):  
FI = 1:  state output (control signals), µIP := µIP+1 
FI = 10:  MXs and BCU control, jump to an address 

specified in micro-instruction modified by BCU   
FI = 11: conditional output, jump to an address 

specified in micro-instruction (no modification). 
The second format is for all kinds of jumps to an 

address specified in micro-instruction. This address is   
modified by external variables, by up to 4 variables at a 
time, including 0 variable (no modification), by means of 
16-way Branch Control Unit (BCU). The task of this unit 
is to shift active inputs, selected by a 4-bit mask, to the 
lowest positions of the 4-bit output vector. This vector is 
then wire-ORed with the address obtained from the 
micro-instruction. If there are more external variables, the 
LUT cascade paradigm is used. LUT output contains not 
only the rail variables, but the whole next LUT base 
address modified by k rail variables in proper positions.  

We will illustrate rewriting a general multi-way branch 
microinstruction into a micro-program. The multi-way 
branch has the same structure as a switch. Let us have the 
statement 

S0: if  F = 0 then v0 exit S0 
if  F = 1 then v1exit S1 
if  F = 2 then v2 exit S1 
if  F = 3 then v2 exit S2 
if  F = 4 then v3 exit S3 
else don´t care;                                              (13) 
 

Si´s are state labels, vj´s are conditional output vectors, 
F(A,B,C,D): X→ Z5,  X ⊂ (Z2)

4 is an incomplete multiple-
output Boolean function, its map is in Fig. 13a. 

 

F(A,B,C,D) CD    

AB 00 01 10 11 

00 0 1 2 2 

01 x 2 2 2 

10 x 4 0 1 

11 4 x 2 3 

S0 exit L@ABCD 
... 
L@0000 v0 exit S0 
L@0001 v1 exit S1 
... 
... 
L@1110 v2 exit S1 
L@1111 v2 exit S2  

 
  a)                                                b) 
Fig.13. The map of a sample function (a) and  a symbolic dispatch table 

in the micro-program (b) 
 

The switch statement (13) describes a transition from 
present state S0 to one of next states S0 to S3 depending 
on the values of 4 external variables A, B, C and D. 
During the transition a certain conditional output vector 
vj is generated. 

If the speed of the micro-engine is the utmost priority, 
we should do the testing of external variables in one step. 
The 16-way branch is then translated to the dispatch table 
in Fig.13b. Replacement of 4 bits in the address is 
denoted by operator “@”. If wired OR is used for 
replacement, the bits being replaced must be reset to 0. 

If saving in hardware (chip area) is more important 
than overall speed, we can test variables A, B, C and D in 
groups of two. The optimum MTBDD found by the 
method described in Section V is shown in Fig. 14, 
together with the symbolic micro-program derived from 
it. It can be seen, that the second LUT is only partial as 
two sub-functions of two variables A, C  are constants (2 
and 4). Control store capacity is almost half of the 
capacity in the previous case and the BCU can be 
eliminated. 
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v:0    1     x    2   2     3   0    1    2     2 
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N2 N3 

AC 

BD BD 

N1 

S0 exit N1@AC 
N1@00 exit N2@BD 
N1@01 v2 exit S1 
N1@10 v3 exit S3 
N1@11 exit N3@BD 
 

N2@00 v0 exit S0 
N2@01 v1 exit S1 
N2@10 -  
N2@11 v2 exit S1 
N3@00 v0 exit S0 
N3@01 v1 exit S1 
N3@10 v2 exit S1 
N3@11 v2 exit S2 
 
 

LUT 1 

LUT 2 

a) b) 
Fig. 14. LUT cascade (a) and the symbolic micro-program (b) for a 

multiway branch example 
 
As the last example we shall consider evaluation of the 

following sparse Boolean function of 16 variables: it 
attains the value 1 if the given 6-bit string is detected 
anywhere within an input string of 16 Boolean values; 
otherwise the function has the value 0. 

Since the string of 6 consecutive values of variables 
may be located in 11 positions (we do not assume that the 
pattern wraps around), we can specify the function by 11 
words of 16 ternary digits (0, 1, x). The CPU evaluation 
of this function by logarithmic search is not possible and 
we have to step through these words sequentially. In the 
worst case it may take 11 steps.  
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We can do much faster with LUTs, though. First the 
ROBDD of this function may be obtained using the 
applet [12], since the Boolean expression with 11 min-
terms, each with 6 literals, is easy to write down (for a 
pattern of six 1´s): 
 
a1*a2*a3*a4*a5*a6+a2*a3*a4*a5*a6*a7+a3*a4*a5*a6*
a7*a8+a4*a5*a6*a7*a8*a9+a5*a6*a7*a8*a9*a10+a6*a
7*a8*a9*a10*a11+a7*a8*a9*a10*a11*a12+a8*a9*a10*
a11*a12*a13+a9*a10*a11*a12*a13*a14+a10*a11*a12*
a13*a14*a15+a11*a12*a13*a14*a15*a16                  (14) 

 
The ROBDD is in Fig. 15a, from which an optimal 

size and count of LUTs can be determined. We have used 
4 LUTs with 3 rails and 4 vertical inputs for the target   
micro-controller architecture in Fig.12.  

The micro-program would consist of 16 + 3 × (8 × 16) 
= 400 jump microinstructions, but only 4 of them would 
be executed for the given input vector. Execution time (of 
4 microinstructions) will be somewhere between response 
of software realization (4 table lookups) and a hardware 
LUT cascade. 

 
a) 
 

 

a1 a2 a3 a4 

       
b) 

Fig. 15.  The ROBDD (a) and LUT cascade detecting 6-bit string in 16 
bits (b)  

 
To complete the discussion on the pattern detection 

example, let us note that LUT cascade can be constructed 
for any number of input variables. The width of cascade 
remains the same and the BDD has a repetitive nature. 
We can think of it as of repeated evaluation of a Boolean 

function that depends on small number of local variables 
defined by a window that moves along the data stream. 

Important application of pattern matching is the IP 
address lookup, one of the primary functions of a router, 
and often also a significant performance bottleneck. An 
Internet router table is a set of tuples of the form (p, a), 
where p is a binary string whose length is at most n (n = 
32 for IPv4 destination addresses and n = 128 for IPv6), 
and a is an output link (or next hop). When a packet with 
destination address A arrives at a router, we are to find 
the pair (p, a) in the router table for which p is a longest 
matching-prefix of A (i.e., p is a prefix of A and there is 
no longer prefix q of A such that (q, b) is in the table). 
Once this pair is determined, the packet is sent to output 
link a. The speed at which the router can route packets is 
limited by the time it takes to perform this table lookup 
for each packet. 
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Fig.16. Prefix table (a), corresponding 1-bit trie (b) 
and  the LUT cascade with intermediate outputs (c) 

 
An example of prefix table is in Fig.16a. It is in fact 

fully specified multiple-output Boolean function with  
2n-1, 2n-2,…, and 2 input vectors (destination addresses) 
producing the same next hop. The tree-like MTBDD of 
such type of function is called trie, Fig.16b [20]. Nodes of 
a trie contain two element fields, each element field has 
the components child and data (output). Branching is 
done based on the bits in the search key. A left-element 
child branch is followed if the ith bit of the search key is 
0; otherwise a right-element child branch is followed.  

Prefix output evaluation is conducted by using the IP 
address bits to traverse the trie, starting with the most 
significant bit of the address. To speed up this searching 
process, multiple bits of the destination address are 
compared simultaneously in a multibit trie. m levels of 
the binary trie are combined into single LUT what 



reduces the number of memory accesses needed to 
perform the whole IP address lookup; m is called stride. 
In Fig. 16c stride m = 2. Even though the intermediate 
outputs are produced often earlier in the cascade, they are 
always forwarded to the last LUT, [21]. For high speed 
packet forwarding the speed of micro-engine in Fig. 12 is 
not sufficient. Two hardware-based solutions are 
available: those that involve the use of a CAM or that use 
synchronous LUT pipeline (on ASIC or FPGA) [21], 
[22]. The CAM can be implemented by a LUT cascade 
anyway [23]. In both the cases one additional 
complication has to be addressed, namely frequent 
modifications of the routing table. Some additional 
hardware is required for this functionality and 
programmable LUT cascades are thus obtained [24]. 

 

VIII.  CONCLUSION 

There is no single software evaluation method optimal 
for all Boolean functions. Complexity of functions that 
can appear in embedded systems varies a great deal and 
so do their space and time requirements in various 
evaluation techniques.  

Even though the very narrow analysis done above 
cannot be taken as convincing, certain conclusions for 
engineering practice can be drawn from it, if the fast and 
memory efficient evaluation of sparse Boolean functions 
Fn : X → ZR  of several tens of variables is the main 
concern.   

1. If the set X ⊂ Z2
n contains only a small number of 

elements, e.g. when the function is specified by DNF 
with low tens of min-terms, the search in the ordered list 
of min-terms can be very effective solution.  

2. If X ⊂{0,1,x} n , sequential TCAM emulation may 
be too slow as it takes | X | steps. LUT cascades are a 
good solution. Generally speaking, every sparse function 
can be implemented as a LUT cascade.  

3. OBDDs or ROBDDs may be useful for checking 
equivalence between two implementations or for formal 
verification [1], but they are less useful for evaluation 
purposes in both speed and memory consumption. 

4. LUTs obtained from MTBDDs seem to be a very 
good and effective data structure and should always be 
considered for evaluation of Boolean functions. They are 
flexible in making trade-offs between response time and 
memory consumption. LUT cascades implemented 
directly in hardware can support asynchronous or 
synchronous pipeline processing [25]. Otherwise, in case 
of software implementation, several LUTs can be 
compacted into one block of memory words. The 
evaluation then reduces to a short chain of indirect 
memory accesses. 

Future research will be oriented to applications of the 
iterative decomposition and LUT cascades in the area of 
secure and safe hardware.  The intention is to decompose 
large systems of sparse Boolean functions of many 
variables, which appear in this area, into LUT cascades 
with the aid of evolutionary optimization techniques. A 
generalization to LUT networks will also be studied. 

APPENDIX A    
PROGRAMMABLE LOGIC ARRAY PLA1  IN MCS-51 

MICROCONTROLLER FAMILY 

Legend: ! = logical negation, * = logical AND,  
              + = logical OR 

PLA1 
Inputs:  A, B, C, D, E, F, G, H, I, J, K, L, M 
Outputs: SO, CS, BL, NL, V1, V3, V4, V5 

 

S0 = !A*!G*!I*J*M+A*!B*!I*J*M+A*F*!I*M 

CS = !A*!B*D*!E*!F*!G*!H*!I*!K*!L*M + 
A*B*!E*!F*!G*!H*!I*!J!K*!L*!M + !A*!E*!I*M + 
!E*!I*J*M+!D*!I*M 

BL = !B*E*!F*!G*!H*!I*!J*!K*!L + 
!B*C*!D*!H*!I*!J*M + !B*D*E*!H*!I*!J*M + 
!D*!I*!J*K*M + !A*!G*!I*J*M + E*H*!I*!L*M 
+C*!D*G*!I*M + !A*F*!I*M + G*!I*K*M + 
E*G*!I*M 

NL = !B*E*!F*!G*!H*!I*!J*!K*!L + C*!D*!H*!I*L*M 
+ !D*!I*!J*K*M + !A*!G*!I*J*M + D*E*!N*!I*M 
+ !A*F*!I*M + E*!I*!L*M + G*!I*K*M 

V1 = !A*!G*!I*J*M + C*!D*F*!I*M + A*!B*!I*J*M + 
!A*F*!I*M + F*!I*K*M + E*F*!I*M 

V3 = !B*!C*!D*E*!F*!G*!H*!I*!J*!K*!L + 
!B*!G*!I*J*K*M + !D*!I*!J*K*M + B*C*!I*K*M 

V4 = !B*C*!D*E*!F*!G*!H*!I*!J*!K*!L + 
!B*D*E*!F*!G*!H*I*!J*!K*!L*M + 
!A*!G*!I*J*L*M + C*!D*!H*!I*L*M + 
!A*F*!I*L*M + C*!D*H*!I*M +D*E*!I*L*M 

V5 = !B*D*E*!F*!G*!H*I*!J*!K*!L*M + 
!B*E*!F*!G*!H*!I*!J*!K*!L + C*!D*!H*!I*L*M 
+!D*!I*!J*K*M + !A*!G*!I*J*M + C*!D*H*!I*M 
+ A*!B*!I*J*M + D*E*!I*L*M + !A*F*!I*M + 
E*!I*!L*M 
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