
Checker for Communication Protocol between
IP Cores Based on FPGA

Martin Straka and Zdenek Kotasek

Brno University of Technology
Faculty of Information Technology

Bozetechova 2, 612 66 Brno, Czech Republic
{strakam,kotasek}@fit.vutbr.cz

Abstract. In the paper, the principles of a unit design which can be used
for on-line communication protocol checking is presented. It is shown how
the checker can be used to check the communication between IP cores im-
plemented in FPGA. The communication must be precisely defined for
this purpose, a formal approach was developed which allows to describe
ambiguously the conditions which must be satisfied during the commu-
nication. From the description, the checker description in VHDL is gen-
erated (a compiler was developed for this purpose) and implemented into
FPGA. The checker watches the communication and detects such states
which do not satisfy protocol definitions. If such a situation appears, it
is indicated that hardware implementation does not work properly. The
methodology was verified on LocalLink communication protocol devel-
oped by Xilinx, Virtex 2 Pro FPGA was used for the implementation.
Future research will be directed towards the development of fault toler-
ant systems design methodology in which the presented approach can be
possibly used.

1 Introduction

For fault tolerant systems, different units which are able to detect faults must
be developed. They can possibly check the function of units integrated into the
design or communication protocols between them. The research described in
this paper concentrates on the design of the checker for communication protocol
testing.

Method for generating checker circuits from SEREs (Sequential Extended
Regular Expressions) is described in [1]. Such sequences form the core of increasingly-
used ABV (Assertion-Based Verification) languages. A checker generator capable
of transforming assertions into efficient circuits allows the adoption of ABV in
hardware emulation.

In [2], an original method to synthesize monitors from declarative specifica-
tions written in the PSL (Property Specification Language) was developed which
enables standard. Monitors observe sequences of values on their input signals,
and check their conformance to a specified temporal expression.

In [3], design methodology for fault tolerant systems implemented on SoC
(System on Chip) is presented. In the paper, as an example, a complex fault

tolerant finite state machine has been mapped on the FPGA (Field Programable
Gates Area) contained in the SoC. The fault identification has been obtained
by using a checker permitting the identification of class of faults. When a fault
is detected, an interrupt for the microcontroller is generated and the interrupt
handling routine partially reprograms the FPGA to override the part of memory
configuring the faulty block.

The development of test cases based on a formal model is an important issue
for software and hardware testing including conformance testing of communica-
tion protocols and other reactive systems. A number of methods are known for
the development of a test suite based on a specification given in the form of a
FSM (Finite State Machine). In FSM-based on-line testing, one usually assumes
that not only the specification, but also an implementation can be modeled as
a deterministic FSM [4].

Protocols have grown larger and more complex with the advent of computer
and communication technologies [5]. As a result, the task of conformance test-
ing of protocol implementation has also become more complex. The study of
DFT (Design For Testability) is a research area in which researchers investigate
design principles that will help to overcome the ever increasing complexity of
testing distributed systems [6]. Testability metrics are essential for evaluating
and comparing designs. In [7], they introduce a new metric for testability of
communication protocols, based on the detection probability of a default. They
present two approaches for improved testing of a protocol implementation once
those faults that are difficult to detect are identified.

2 Motivation for Research

Very often it is reported that FPGA based designs are constructed as fault
tolerant designs with the possibility of recovering from errors by means of recon-
figuration procedures. In our opinion, testing proper function of communication
protocol can increase significantly the diagnostic quality of the design. It was de-
cided that the checker will operate on different levels of detecting communication
protocol faults:

1. a checker detecting an incorrect combination of control signals.
2. a checker detecting a correct combination of control signals.
3. a checker detecting a correct sequence of control signals.
4. a checker controlling data which can be part of frame.

The complexity of the checker will be different based on the type of commu-
nication protocol fault supposed to be detected by the checker. The complexity
of the checker will influence the area required on the chip and communication
speed. As an important aspect of the methodology we saw that the alternative
of automated design of the checker should be available to a designer. For this
purpose, we felt the need for a formal language by means of which the checker
will be described together with the need for core generator to compile checker
description into VHDL code. These ideas are presented later in the paper.

The paper is organized as follows. In the next section, formal definitions
needed for the methodology presented in the paper are presented. In section
4, basic principles of the checker design methodology are described while the
basic ideas of methodology implementation for LocalLink (LL) are explained in
section 5. Conclusions and plans for future research are summarized in section
6.

3 Formal Definitions

Usually, to describe errors in communication protocols, formal models such as
grammars, FSMs, or formal languages are used. As a result of our research a
language was developed which allows to describe possible failures in communi-
cation protocol. The description is then used as an input to automatic generator
which develops checker description in VHDL language. The main advantage of
this approach is such that based on the language the checker can be generated
automatically without the intervention of experienced designer.

When a communication protocol is checked, then not only the combinations
of signals must be monitored but also their sequences. The checker behavior
must therefore have features of sequential behavior which can be described by
means of FSM. The definition of language for communication protocol errors
detection therefore arises from the formal description of FSM.

Definition 3.1 A deterministic Finite State Machine is an initialized complete deter-
ministic machine that can be formally defined as a 5-tuple A = (Q, T, P, S0, Serr),
where Q is a finite set of states, S0 is the initial state and S0 ∈ Q, T is a finite
set of input symbols, P is a next state (or transition) function: P : Q × T → Q
and Serr is the finite state and Serr ∈ Q. Furthermore Q ∩ T = ∅.

Definition 3.2 A condition is formally defined as a C(i) = Sig×Oper× Int, where
Sig is a name of control signal, Oper ∈ (<, >, <=, =, ==, <>) is a comparison
operator between controlled signal and Int ∈ N numeric constant. i ∈ 1, 2, 3, ...

Definition 3.3 An input automata symbols are defined as conjunction of conditions,
formally defined as a p(n) =

∧X

i=1
C(i), where n ∈ 1, 2, 3, ..., N and p(n) ∈ T and

X =
∑

(control signals in checking protocol)

Definition 3.4 A transition function which is represented by a set of transitions in
the form and is formally defined as a P (n) : Q× T → Q, where n ∈ 1, 2, 3, ..., N

The language for description behavior of communication protocol is repre-
sented by the following LL1 grammar:

1. program → @ conditions # states $

2. program → e

3. states → (state states

4. states → e

5. state → ID state transition) : ID state ;

6. transition → , INPUT SY M

7. transition → e

8. conditions → INPUT SY M = expression expressions ; conditions

9. conditions → e

10. expressions → AND expression expressions

11. expressions → OR expression expressions

12. expressions → e

13. expression → SIGNAL NAME compare

14. compare → == INT

15. compare → <> INT

16. compare → > INT

17. compare → >= INT

18. compare → < INT

19. compare → <= INT

4 Automated Checker Design

Core generator is a program for automated development of checker structure
based on the description provided in formal language. By means of the formal
language the conditions of communication protocol are described. The process
of generating checker consists of two phases, see Figure 1:

Fig. 1. Phasis of core generator processing

PHASE 1: The input file is analyzed, the conditions which must be satisfied together
with transition functions are transformed into FSM description.

PHASE 2: The transitions reflected by FSM description are mapped into VHDL
processes.

As the first step of the input file analysis, the sym-
bols of the files are analyzed together with condi-
tions assigned to them. The set containing all input
symbols is created and the syntax analysis of condi-
tional statements is performed. For each conditional
statement a syntax tree is formed which is then used
during mapping the conditions onto the description
in VHDL language. As the result of the analysis, an
FSM is constructed, A = (Q,T, P, S0, Serr).
The second phase starts with creating the interface
of the checker. The names of signals are extracted
from transition conditions. The conditions are then
mapped onto VHDL processes. The interface sig-
nals are the input to the process, the output of the
process is the only signal, whose name reflects one of
input symbols. The contents of the process is gener-
ated from the syntax tree developed in the first phase
of the analysis. The mapping of FSM into VHDL is
performed by means of two processes. One of them
operates as a register in which current state is stored
and the second process describes the combinational
logic reflecting transition conditions.

5 Evaluation of Methodology

The proposed approach for generating checker structure was tested on LocalL-
ink (LL) communication protocol developed by Xilinx company which is used
especially for FPGA components interconnection. The LL protocol has been
integrated to many IP Cores.

The LL is based on synchronous point-to-point communication protocol which
transfers data in the form of packets. To the LL advantages generic data width
of transferred data belongs which is a very important aspect for stream process-
ing applications. Additionally, LL offers upstream and downstream flow control,
efficient link bandwidth utilization and optional parity checking. The LL inter-
face contains six control signals, data bus and signals identifying the number of
valid bytes available in the last data word. The example of LL communication
protocol is shows in Figure 2. Detailed specification of LL protocol is available
in [8].

The first, LL protocol specification the following correct signal combinations
can be derived, SRC RDY N and DST RDY N being every active:

1. Every frame must start with SOF N signal and no other signal is allowed to be
active.

2. Each frame must contain a header at the beginning. Thus, if SOP N is active, no
other signal is allowed to be active.

3. Each frame must contain a footer. Thus, if EOP N is active, no other signal is
allowed to be active.

Fig. 2. Local Link Protocol Timing Diagram

4. Each frame must be accomplished with EOF N signal, no other signal is allowed
to be active.

5. If data is transported, no other signal except of SRC RDY N and DSC RDY N
signals is allowed to be active.

6. Any others activity or next frame.

This list of rules can be easily rewritten based on formal definitions as follows:

p0 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 0

and SOP N == 1 and EOP N == 1 and EOF N == 1

p1 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 1

and SOP N == 0 and EOP N == 1 and EOF N == 1

p2 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 1

and SOP N == 1 and EOP N == 0 and EOF N == 1

p3 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 1

and SOP N == 1 and EOP N == 1 and EOF N == 0

p4 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 1

and SOP N == 1 and EOP N == 1 and EOF N == 1

p5 = SRC RDY N == 0 or DST RDY N == 0

This approach is limited and can detect only the basic faults caused by
forbidden combinations of signals in the protocol interface.

The second type of rules considers the sequences of control signals. For the
LL protocol the following transition rules can be applied:

(S0, p5) : S0; (S0, p0) : S1;
(S1, p5) : S1; (S1, p1) : S2; (S1, p4) : S1;
(S2, p5) : S2; (S2, p2) : S3; (S2, p4) : S2;
(S3, p5) : S3; (S3, p3) : S0; (S3, p4) : S3;
A = (Q, T, P, S0, Serr)

Fig. 3. Finite state machine for the detection of faults on LocalLink

6 Conclusions and Plans for Future Research

For all types of rules checker structure was generated and correct behavior was
tested on COMBO6X card with FPGA Virtex2 Pro for network traffic. Synthesis
to Virtex2 Pro FPGA was also performed to obtain basic parameters of generated
circuit. For all generated circuits, the maximal frequency was higher than 200
MHz and does not affect maximal frequency of IP cores. FPGA logic utilization
was different for all types of rules and types of diagnostic levels.

The checker design methodology presented in this paper is the first step to-
wards the development of the methodology for fault tolerant systems design. For
the checker design, PSL (Property Specification Language) can be used as well.
So far, it was used for verification purposes only, although some indications of
its possible use for diagnostic purposes appeared recently. Therefore, the aspects
of both methodologies, i. e. that one based on our approach and PSL based
approach will be studied and compared first.

The final objective of the FTS (Fault Tolerant System) design methodology
will aim at the development of such approaches which will allow short avail-
ability and long lifetime parameters to be gained. It will become important in
such applications in which high tolerance parameters will be required. It is ex-
pected that the methodology will be able to distinguish between permanent and
transient errors for which different strategies of fault detection and subsequent
reconfiguration must be used.

Acknowledgements

This work was supported by the Research Project No. MSM 0021630528 -
Security-Oriented Research in Information Technology and by GACR project
No. 102/05/H050 - Integrated Approach to Education of PhD Students in the
Area of Parallel and Distributed Systems (Grant Agency of the Czech Republic).

References

1. Boule, M., Zilic, Z.: Efficient automata-based assertion-checker synthesis of seres for
hardware emulation. In: 12th Asia and South Pacific Design Automation Conference
(ASP-DAC 2007). McGill University, Montreal, Quebec, Canada. (2007).

2. Morin-Allory, K., Borrione, D.: Proven correct monitors from PSL specifications. In:
Proceedings of the conference on Design, automation and test in Europe. Leuven,
Belgium, (2006) p.1246-1251

3. Pontarelli, S., Cardarilli, G.C., Malvoni, A., Ottavi, M., Re, M., Salsano, A.: System-
on-Chip Oriented Fault-Tolerant Sequential Systems Implementation Methodology.
In: Proceedings of the 2001 IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems. (2001).

4. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A., Yevtushenko, N.: Experimental
Evaluation of FSM-Based Testing Methods. In: Lecture Computer Science. (2000).

5. Vuong, T. S., Loureiro, A., Chanson, S. T.: A framework for the design for testability
of communication protocols. In: 6th International IFIP Workshop on Protocol Test
Systems, Pau, France (1993) p.415–438

6. Petrenko, A., Dssouli, R., Koenig, H.: On evaluation of testability of protocol struc-
tures. In: 6th International IFIP Workshop on Protocol Test Systems, Pau, France.
(1993).

7. Chung, A., Huang, T.: A New Metric for the Testability of Communication Pro-
tocols. In: Tnternational Conference on Engineering, Information Technology, e-
Business, and Applications - CSITeA02.(2002).

8. Xilinx Inc. 2100 Logic Drive. LocalLink Interface Specification. San Jose, (2006).

