
An Evolutionary Design Technique for Collective
Communications on Optimal Diameter-Degree Networks

Jiri Jaros
Brno University of Technology

Bozetechova 2
612 66, Brno, CZ
+420 54114 1207

jarosjir@fit.vutbr.cz

Vaclav Dvorak
Brno University of Technology

Bozetechova 2
612 66, Brno, CZ
+420 54114 1149

dvorak@fit.vutbr.cz

ABSTRACT
Scheduling collective communications (CC) in networks based on
optimal graphs and digraphs has been done with the use of the
evolutionary techniques. Inter-node communication patterns
scheduled in the minimum number of time slots have been
obtained. Numerical values of communication times derived for
illustration can be used to estimate speedup of typical applications
that use CC frequently. The results show that evolutionary
techniques often lead to ultimate scheduling of CC that reaches
theoretical bounds on the number of steps. Analysis of fault
tolerance by the same techniques revealed graceful CC
performance degradation for a single link fault. Once the faulty
link is located, CC can be re-scheduled during a recovery period.

Categories and Subject Descriptors
I.2.8 [Artificial intelligence]: Problem Solving, Control Methods
and Search – heuristic methods, scheduling.

General Terms
Algorithms, Performance, Design.

Keywords
Collective communications, communication scheduling,
evolutionary design, interconnection networks.

1. INTRODUCTION
High performance computing platforms have been recently
dominated by clusters of multi-core processor nodes [1] or by
many cores interconnected by a NoC (Network on Chip). The
basic requirement for building the HPC systems turned out to be
the low power consumption, in order that system parts could be
close together and communication time thus minimized. For the
same reason the CPU cores should be simple and processing
nodes should be interconnected directly, without intermediate
switches and routers. A class of interconnection networks of

interest in this paper covers therefore direct networks, which for
performance-driven environments converge on the use of pipe-
lined cut-through (CT)/wormhole (WH) message transmission
and source-based routing algorithms.

In this paper, we want to analyze the complexity of collective
communications in a class of networks whose size is equal or
close to upper bounds known for the given node degree and
diameter. Simply said, as many nodes as possible are connected
by a regular network with a uniform node degree d (a d-regular
network), with inter-node distance up to D. Systems of this sort
are more compact than others and can support faster
communications, too. As far as the authors know, performance of
collective communications on such networks has not been studied
as yet. The reason may be that, until recently [2], these networks
have not been used in commercial systems. Contribution of the
paper is in assessment whether the theoretical lower bounds of CC
times are reachable at all or how close we can get to them. This is
shown directly by designing (evolving) initial invalid schedules
up to the optimal or sub-optimal valid (conflict-free) variants.

Evolutionary techniques applied already to CC scheduling
problem on hypercubes of medium size (tens of nodes) [3] were
able to find optimum solutions obtained by mathematical means.
However, for networks studied in this paper no analytic methods
for scheduling exist. The results can be compared to theoretical
lower bounds only. The paper is structured as follows. In Section
2, Moore networks and networks close to them in size are defined,
based on underlying graphs and digraphs. Section 3 specifies the
scheduling problem for CC and presents an improved
evolutionary algorithm for its solution. The results of CC
scheduling in various network topologies are summarized and
discussed in Section 4. Section 5 deals with fault tolerance of
interconnection networks and possible recovery from a faulty
link. Results obtained by evolutionary approach are discussed in
Conclusion and possible future improvements are suggested.

2. OPTIMAL DIAMETER-DEGREE
NETWORKS
Pair-wise (point-to-point) as well as collective (group)
communications involving all processors are frequently used in
parallel processing and their timing complexity has a dramatic
impact on performance. Since processors are connected only
sparsely, the message can reach a destination processor directly, if
source and destination processors are neighbors, or else through
some intermediate nodes. The communication time from issuing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1539

the send request by one CPU until receiving data by another CPU
represents an overhead of parallel processing which has to be
minimized. The pipelined message transmission is considered
only little sensitive to the source-destination distance; however,
accumulating delays when traversing several nodes on the way
should be minimized as well. Therefore the networks of diameter
D connecting the maximum number of nodes N of the given
degree d are of interest [4].

The upper bounds on the number of P nodes with degree d > 2
that can be connected into an undirected graph, shorty graphs (1),
or directed graph, shortly digraphs (2), of diameter D ≥1 are
known as Moore bounds [4]:

2
2)1()1(...)1(1 1

−
−−

=−++−++≤ −

d
dddddddP

D
D (1)

1
1...1

1
2

−
−

=++++≤
+

d
ddddP

D
D (2)

A regular graph of degree d and diameter D whose number of
vertices equals the above upper bound (1) is Moore graph. If we
exclude fully connected graphs with D = 1, there exist only a few
such graphs:

D=2: d = 3, P = 10 (Petersen graph)

D=2: d = 7, P = 50 (Hoffman-Singleton graph)

and no others with the possible exception d = 57 (which is still
undecided). There are no Moore graphs with D ≥ 3 and no Moore
digraphs either (disregarding trivial cases D = 1 or d = 1).

Whereas all above Moore graphs have length of the shortest cycle
(girth) five, the even girth (6, 8 and 12 only) can also be
considered, what leads to the worse upper bound

∑
−

=

−≤
1

0

)1(2
D

i

idP (3)

and to generalized Moore graphs. Few examples follow:

D= 2: d = 3, P = 6 (utility graph)

D= 3: d = 3, P = 14 (Heawood graph)

D= 4: d = 3, P = 30 (Levi graph).

It is an open problem if there are infinitely many generalized
Moore graphs of each degree.

Since there are not many known Moore graphs, it is of great
interest to find graphs which for a given diameter D and
maximum degree d have a number of vertices as close as possible
to the Moore bound. The largest known graphs and digraphs are
listed in [4] and [5]. The more systematic approach has been used
to design “almost” Moore graphs that miss the upper bound by a
small number [4] or whose number of nodes approximates the
upper bounds asymptotically. The best networks in the latter case
are based on Kautz digraphs with P = dD + dD-1 nodes. Table 1
gives all three upper bounds (1) – (3), the largest known graphs
[4], Kautz digraphs and generalized Moore graphs, all with degree
d = 3. It turns out that the largest known digraphs are Kautz
digraphs and that digraphs (2) are potentially much larger than
graphs (1).

In the following sections we will try to derive communication
schedules on the above graph topologies. Since there have been
no optimum schedules published, we can make comparison only
with the known theoretical lower bounds on communication
complexity. These bounds will serve us as a target we want to
come to as near as possible.

Table 1. The size of graphs and digraphs with degree d = 3
and diameter D

D 2 3 4 5 6 7
(1) 10 22 46 94 190 382
(2) 13 40 121 364 1093 3280
(3) 6 14 30 62 126 254
[4] 10 20 38 70 132 192
Kautz 12 36 108 324 972 2916
Moore 10 14* 30* - - -

* denotes a generalized Moore graph; digraphs are in bold

3. CC SCHEDULING PROBLEM
In this section we are going to analyze only the frequently used
collective communications involving all processors: one-to-all
broadcast (OAB), all-to-all broadcast (AAB), one-to-all scatter
(OAS, a private message to each partner), and all-to-all scatter
(AAS). Some other CCs, like all-to-one gather (AOG), have the
same complexity as the basic four types.

Each CC can be seen as a set of point-to-point communications.
The CC scheduling problem can be simply described as
partitioning this set into as few subsets as possible that follow one
another in a sequence of synchronized steps; all communications
in one subset proceed in parallel. The main goal is to avoid any
conflicts in shared resources – links (channels). Several messages
between source-destination pairs can proceed concurrently and
can be combined into a single subset if their paths are link-
disjoint. If the source and destination nodes are not adjacent, the
messages go via some intermediate nodes, but processors in these
nodes are not aware of it; the messages are routed automatically
by the routers attached to processors.

The number k of bi-directional channels between the CPU and
a router (ports), that can be engaged in communication
simultaneously, has a decisive impact on the number of
communication steps; 1-port (k=1) or all-port (k=d) models are
most common, see Fig. 1. For the highest performance we will
consider only the all-port model (k=d).

local
CPU port

a)

local CPU
ports

b)

Figure 1. Port models for 3-regular networks
a) one-port router b) all-port router

1540

Regardless the graph topology, there are known theoretical lower
bounds on the number of communication steps. The broadcast
communication (OAB) in WH network cannot be done in less
than s steps, where s = ⎡logd+1P⎤ is given by the number of nodes
informed in each step, that is initially 1, 1+1×d after the first step,
(d+1)+(d+1)×d = (d+1)2 after the second step, etc.,…, and (d+1)s

≥ P nodes after step s.

In case of AAB communication, since each node has to accept
P−1 distinct messages, the lower bound is ⎡(P−1)/d⎤. A similar
bound is applied to OAS communication, because each node can
inject into the network not more than d messages in one step. P−1
pair-wise communications, d of them per step, must be packed
into the lowest number of steps in such a way that paths traversed
in the optimum broadcast tree are edge-disjoint in each step.

For AAS communication pattern each of P processor sends an
individual message to each of P-1 partners. A lower bound for
AAS can be obtained considering that one half of messages from
each processor cross the bisection and the other half do not. There
will be altogether 2 (P/2)(P/2) of such messages in both ways
and up to BC messages in one step, where BC is the network
bisection width [6]. In case of digraphs (graphs), BC is taken as
the (double) the number of (un)directed edges crossed by the
bisection. However, some Δ messages originating and terminating
in either half of a network cross the bisection as well. This gives
the bound (P2/2 + 2Δ)/BC communication steps, since Δ messages
cross the bisection twice. Another bound that concerns AAS used
to be applied to SF [14] routing only. If Σ denotes the sum of all
shortest paths in a graph (from any source to any destination
node) and if we can utilize only Pd channels in one step to avoid
conflicts, then we cannot schedule AAS in less than ⎡Σ/Pd⎤ steps.
We have found that for the considered class of networks this latter
bound is stronger, even for WH routing.

Table 2 summarizes the lower bounds for general graphs and
numerical values for three 3-regular graphs (Petersen P10, Kautz
K12 and Heawood H14). Of course, communication bounds for
AAB and AAS cannot be ever shorter than those ones for OAB
and OAS respectively, if it applies.

Table 2. Lower bounds on complexity of CC in d-regular
networks with P nodes

CC CT (WH) P10 K12 H14

OAB ⎡log d+1 P ⎤ = ⎡(log P)/log (d+1)⎤ 2 2 2

AAB ⎡(P – 1) / d⎤ 3 4 5

OAS ⎡(P – 1) / d⎤ 3 4 5

AAS max[⎡(P2 /2+2Δ)/BC)⎤, ⎡Σ/(Pd)⎤] 5 7 8

4. CC SCHEDULING ALGORITHM
The selection of Evolutionary Algorithms (EA) for the scheduling
problem has been justified already in [3]. Although a new
methodology of designing near-optimal CC schedules is
independent of the particular evolutionary algorithm, we restricted
ourselves only to a simple EDA evolutionary algorithm without
gene dependencies (UMDA) in this work.

Univariate Marginal Distribution Algorithm (UMDA) [9] is a very
simple EDA [12] (Estimation of Distribution Algorithm) which does

not reflect any interaction between genes (variables/solution
parameters). The main advantages of this algorithm are better
mixing of genetic material than is possible in standard GA [13],
very simple implementation and much faster execution than more
complex EDAs like BOA (Bayesian Optimization Algorithm [12])
algorithm. Of course, any other EA can be employed. Basic
comparison of a success rate and execution time of other types of
EA applied to CC scheduling problem can be found in [10, 11].

This section describes, in more details, the elements of our
evolutionary approach. Section 4.1 shows the global data structure
and a preprocessing phase. Section 4.2 describes how the dataset is
encoded, Section 4.3 presents the evaluation function used in EA
and Section 4.4 briefly describes acceleration and restoration
heuristics used to increase a success rate and reduce execution time
required to reach a good result. Parameters of used EA (UMDA) are
outlined in Section 4.5.

4.1 Preprocessing Phase
An input data structure maintains a topology description, a
definition of CC and a set of senders and receivers. The topology de
description is saved in the form of a neighbors list for each node,
where the nodes are considered to be neighbors only if they are
connected by a simple direct link.

After an input file is loaded, the data have to be preprocessed. The
preprocessor takes the topology description and finds all paths
(shortest ones in the case of minimal routing) between all source-
destination node pairs and stores them into a special data structure.
This task is performed by a modified well known Dijkstra’s
algorithm.

4.2 Encoding
As broadcast and scatter CCs are completely different
communication services, candidate solutions are encoded in separate
ways.

An optimal OAS schedule designed for 8-node bidirectional ring is
shown in Fig. 2. This schedule reaches the lower bound of 4 steps.
The initiator, node no. 0, informs two other nodes in each of the first
three steps by means of some of the shortest paths found in the
preprocessing phase. The last node is informed during the fourth
step via one of two possible paths.

Figure 2. An OAS schedule reaching the lower bound on

number of communication steps.

0 1 2 3

7 6 5 4

0 2 3

7 6 5 4

1

0 3

7 5 46

1 2 0 3

7 6 5 4

1 2

1st step 2nd step

3rd step 4th step

1541

A direct encoding has been designed for OAS/AAS chromosome;
i.e. a chromosome contains an exact description of a schedule.
The OAS chromosome corresponding to Fig. 2 is displayed in
Fig. 3. The chromosome contains P genes; each one represents a
particular point-to-point communication between the initiator and
a destination node. A gene consists of two items: a utilized path
(the first component) and the used time step (the second
component).

An AAS chromosome is created by extending the vector to a
matrix, each row of which corresponds to one of OAS
communications.

Figure 3. The structure of OAS chromosome for 8-node

bidirectional ring

An optimal OAB schedule designed for 8-node bidirectional ring
is shown in Fig. 4. This schedule reaches the lower bound of 2
steps. The initiator, node no. 0, informs nodes no. 3 and 6 in the
first step (solid arrows). Since the distributed messages are the
same for all nodes, these three nodes can become initiators for the
second step, such nodes no. 7 and 5 receive the message from the
node no. 6, nodes no. 2 and 4 form the node no. 3, and finally
node no. 1 from the node no. 0.

Figure 4. An OAB schedule reaching the lower bound on

number of communication steps

An indirect encoding has been designed for OAB; a chromosome
does not include a broadcast tree, but only instructions how to
create it. Each chromosome consists of P genes, one for each
destination node, see Fig. 5. Individual genes are composed of
three items: a source node index for this destination, the index of
the used path, and a step number.

The main disadvantage of this encoding is possible formation of
some inadmissible solutions during the process of genetic
manipulation. We say that a solution is inadmissible if it cannot
lead to a correct broadcast tree. E.g. the situation when in a
certain step a node should receive a message from a node that has

not received it yet (e.g. node 2 from node 1 in the first step). That
is why admissibility has to be verified for each chromosome
before evaluating fitness and if it is necessary, the chromosome is
restored. The AAB chromosome is then a collection of P OAB
chromosomes, a kind of a matrix chromosome.

Figure 5. The structure of OAB chromosome for 8-node

bidirectional ring

4.3 The Conflict Counting Fitness Function
The main idea of fitness function is based on testing a conflict-
free condition. We say two communications are in conflict if and
only if they share the same channel in the same communication
step (see Fig. 6). The fitness function is based on counting
conflicts between all point-to-point communications realized in
the same steps. The valid communication schedule for a given
number of communication steps must be conflict-free. Valid
schedules are either optimal (the number of steps equals the lower
bound) or suboptimal. Evolution of a valid schedule for the given
number of steps is finished up as soon as fitness (number of
conflicts) drops to zero. If it does not do so in a reasonable time,
the prescribed number of steps must be increased.

conflict conflict free

Figure 6. Two point-to-point communications

4.4 Acceleration and Restoration Heuristics
New heuristics have been developed to improve OAS/AAS
optimization speed taking into account a search space restriction
due to a limited message injection capability of network nodes.
Because no node can send more than k messages in one
communication step (k-port model), an acceleration heuristic
checks this condition in the whole chromosome and redesigns
port’s utilization in all communication steps before the fitness
function is evaluated.

The second OAS/AAS heuristic replaces the mutation operator in
an employed EA. It randomly swaps time slots of two point-to-
point communications. These simple heuristics dramatically
decrease the initial conflict count and lead to the better
convergence of EA.

0 0 1 ……. 0 0 0 6 0 1

0 1 7

destination node step number

message source path index gene
(p2p communication)

2nd step 1st step

0

1 5

3

2

6

4 7

OAB schedule OAB broadcast tree

0 1 2 3

7 6 5 4

 gene
(p2p communication)

0 1 7

0 0 0 1 4 0

destination node

 path index step number

…….

1542

New heuristics for OAB/AAB chromosome restoration have been
also developed and employed. The restoration (a repair of the
broadcast tree) proceeds in subsequent communication steps. A
check is made for every node whether the node receives the
message really from the node already informed. If not so, the
source node of this point-to-point communication is randomly
replaced by a node that has already received the message. A
change of the source node has naturally an impact on utilized
channels. Hence the original path is replaced by newly chosen
one from a list of exploitable paths between new source-
destination pair.

To accelerate the convergence of the EA, an OAB/AAB specific
heuristics have been developed. The first optimization injects
good building blocks into the initial population. For all point-to-
point communications of OAB, the time slot is set initially to the
same value (step no. 0). By selecting correct time slots, the
restoration heuristic produces corrected broadcast trees that
violate the conflict-free condition in much fewer cases.

The second heuristic is based on the search space pruning, and
incorporated into the restoration heuristic. If for a given topology,
this formula for lower bounds #(AAB steps) > #(OAB steps) is
valid, AAB can be performed as a controlled flood; all processors
send their message only to uniformed neighbors. In each steps,
messages are propagated in waves through the interconnection
network. This feature of the interconnection network and AAB
communication can be employed with advantage for pruning of
the search space. The set of possible receivers of broadcast
message in a step can be restricted only to nodes within a given
radius 2/,1 Dr∈ . This restriction leads to a massive reduction

of possible engaged shortest paths (alleles for the second gene’s
component). The suitable radius value is chosen according to a
character of the interconnection network; for symmetric
interconnection networks r=1. Generally, the lower values of
radius lead to faster convergence, but in some cases it is necessary
to choose larger values (D/2 in the case of OAB communication)
to ensure retrieval a purposeful schedule.

As a consequence of the reception restriction, the restoration
heuristic has to be modified. In a process of building the
broadcast tree, it can happen that there is no node that can inform
a selected node in a given communication step. In this case, the
communication has to be postponed to the later time slot, where at
least one possible source of broadcast message already exists. In
some cases this postponement can cause a number of
communication steps is in excess of the requested maximum. This
situation is handled by a penalization function. The amount of
penalty is given by the sum of all point-to-point communications
running over the prescribed maximum number of steps. Finally,
this value is added to the conflict count computed by the fitness
function.

4.5 Parameters of EA
The simple UMDA evolutionary algorithm has been used for the
search for near optimal communication schedules. The value of
the population size was set to 60 individuals because higher
values did not improve the quality of founded schedules and did
not justify an increased computation time. The binary tournament
selects the better half of the current population to form the parent
subpopulation. The univariate marginal probabilistic model is

created according to the parent subpopulation in each generation.
New chromosomes are generated by the sampling of the estimated
probabilistic model. Each chromosome is mutated by a simple
mutation operator with probability of 90%. This operator is
responsible for testing and changing possible source-destination
paths for particular point-to-point communications. The mutation
rate is very high due to great number of source-destination pairs
(thousands) whose amount growth exponentially with network
diameter D. Finally, the newly generated solutions replace the
worse half of the current population.

5. RESULTS OF EVOLUTIONARY
OPTIMIZATION
The evolutionary algorithm described previously has been applied
to several networks that either already found the commercial
application (such as scalable Kautz networks, [2]) or are potential
candidates e.g. for NoCs (like non-scalable Petersen (P=10) or
Heawood (P=14) networks, Fig. 7).

11010

01101

1001111100

00111

11001

10101

10110

0111001011

a) b)

Figure 7. Heawood a) and Petersen graph b)

01 02 03

21 20 23

10

13

12

30

31

32

Figure 8. Kautz network with d = 3 and D = 2

As for the 12-node Kautz network (Fig. 8), number of steps in all
four CCs is equal to the lower bound and cannot be improved any
more. The resulting schedules are presented only for the most
complex all-to-all communication patterns in Table 3 and 4. Some
empty slots in Table 3 show that not all links are used in every
step of AAS. On the other hand, the lower bound for AAB is very
tight (12/3=4 steps) and indicates that all the links are busy in all
4 steps.

Let us note that the presented solution is not unique, several
solutions have been found both for AAS and AAB patterns.

1543

Table 3. AAS in 7 steps on Kautz12 network

steps →
src 1 2 3 4 5 6 7
0 9 2,4,5 3,7,A 6,B 1 8
1 7,9 2,A 0,5,8 3 6 4,B
2 7 1,3,8 4,9 0 5,B 6,A
3 1 0,B 8 5,9 2,4,7 6,A
4 A 0,6 1,8 3,B 2,5,9 7
5 4,B 0 A 7,8 2 6,9 1,3
6 2,5 0,4 1 A 8,9 3,7 B
7 0,1,A 6 3,9 8 5,B 2,4
8 2 9,B 1,7,A 4 3 0,5,6
9 6,A 7 2,4 5,8 0,3,B 1
A 1,7,B 8 3,6 2,5,9 4 0
B 5,6 0,2 A 4,7 1,3 8,9

Table 4. AAB on Kautz12 network in
4 steps (x : message does not move)

src id
/msg

three subtrees broadcasting
source message

01=0 0-3-1
0-3-2

0-4-x-x-9
0-4-x-x-A
0-4-x-x-B

0-5-x-6
0-5-x-x-7
0-5-x-x-8

02=1 1-6-3
1-6-4
1-6-x-x-5

1-8-A
1-8-x-9
1-8-x-B

1-x-7-0
1-x-7-x-2

03=2 2-9-8
2-9-x-6
2-9-x-7

2-A-5
2-A-x-4
2-A-x-x-3

2-B-1
2-B-x-0

10=3 3-0-4
3-0-5

3-1-8
3-1-x-6
3-1-x-7

3-2-9
3-2-A
3-2-B

13=4 4-9-6
4-9-7
4-9-x-8

4-A-x-3
4-A-x-x-5

4-B-x-x-0
4-B-x-x-1
4-B-x-x-2

12=5 5-7-2
5-7-x-x-0
5-7-x-x-1

5-x-6-x-3
5-x-6-x-4

5-x-8-A
5-x-8-x-9
5-x-8-x-B

21=6 6-3-x-0
6-3-x-1
6-3-x-2

6-4-9
6-4-x-A
6-4-x-B

6-x-5-7
6-x-5-8

20=7 7-0-x-4
7-0-x-5
7-0-x-x-3

7-2-x-9
7-2-x-A
7-2-x-B

7-x-1-x-6
7-x-1-x-8

23=8 8-9-x-x-6
8-9-x-x-7

8-A-3-x-0
8-A-x-5
8-A-x-x-4

8-x-B-1
8-x-B-2

32=9 9-6-x-3
9-6-x-4
9-6-x-5

9-7-0
9-7-x-1
9-7-x-2-B

9-8-x-x-A

31=A A-3-0
A-3-x-x-1
A-3-x-x-2

A-4-B
A-4-x-9-8

A-5-7
A-5-x-x-6

30=B B-1-6
B-1-x-8
B-1-x-x-7

B-x-0-3
B-x-0-x-4
B-x-0-x-5

B-x-2-x-9
B-x-2-x-A

As the Kautz network is known for its fault tolerance, we have
also tested performance degradation under a single link fault. A
fault diameter of the Kautz12 network is D+2, meaning that
among multiple links between any two nodes the longest path is
4. The network performance under a single link fault is given in
Table 5 (with node 01 as the source node for OAB and OAS), but
the network could operate even under a double link fault. In any
case, when the link fault is detected, the new schedule could be
computed in 20 seconds on a single processor and then the cluster
could continue with a lower performance.

Table 5. Performance of Kautz12 network with a single faulty
link (in # steps). A reduced performance is in bold.

Link OAB AAB OAS AAS
No fault 2 4 4 7
01-10 3 6 6 9
01-12 3 6 6 9
01-13 3 6 6 9
02-20 2 6 4 9
02-21 2 6 4 9
02-23 2 6 4 9
03-30 2 6 4 9
03-31 2 6 4 9
03-32 2 6 4 9
10-01 2 6 4 9
10-02 2 6 5 9
10-03 2 6 5 9
12-20 2 6 4 9
All other 2 6 4 9

Other network topologies investigated in this study have been
Octagon [8] and 16-gon with D=2 and 3 and with d=3. The results
are summarized in Table 6, together with uni- and bi-directional
rings and a hypercube for comparison. Two integers in one cell
separated by a slash indicate that the lower bound (a smaller
integer) has not been reached. A single integer represents both the
lower and the upper identical bounds reached by EA. An asterisk
(*) indicates the fact that a non-minimum routing has been used;
otherwise the minimum routing is used everywhere else.

Table 6. Performance of selected networks (in steps)

all-port model d OAB AAB OAS AAS
Ring 8 1 3 7 7 16
Ring 8 2 2 4 4 8
Octagon 8 3 2 3 3 4
Petersen 10 3 2 3 3 5
Kautz 12 3 2 4 4 7
Heawood 14 3 2 5 5 9/10
16-gon 3 2 5 5 13/17
Levi 30 3 3 10 10 28/31
Hypercube 32 5 2 7 7 16
Kautz 36 3 3 12 12 * 31/34

In the simplest linear time model of CT (WH) communication in
distributed memory systems, the real CC times can be obtained as
a sum of communication steps, each step composed of a start-up
delay plus the serialization delay m t1

1544

,steps #)(10 ×+= mtttCC (4)

where m is a message length (in bytes) and t1 per byte transfer
time. Start-up latency t0 is the sw- and hw-based latency in the
source and destination nodes for initializing the cache-to-cache or
memory-to-memory DMA transfer and includes possible
synchronization overhead. The hardware overhead in routers
along the traversed path has been neglected in (4). Contention for
links is associated delays are completely avoided in our
schedules.

For example a duration of one communication step in CC for
typical cluster parameters [7] t0=1 μs, t1= 0.5 ns/byte and the
message size 1024 byte has the value of 1.512 μs and the
resulting CC times range from 4.54 μs (3 steps) up to 55μs (34
steps). According to frequency of CCs and an amount of
interleaved computation in a certain application, efficiency of
parallel processing can be estimated.

Table 7 shows average execution times of the EA during 5
successful runs. For OAB communication, the values are less than
one second for simple network topologies. The longest execution
time (hypercube-32) is about 41 seconds. OAS communication is
relatively easy; a solution takes always less than one second. On
the other hand, a suitable solution for all-to-all communication
takes much longer time, especially for AAS communication. An
exponential increase of the execution time with network can be
observed.

All experiments were realized in sequential manner on IBM Blade
servers equipped with 2x dualcore AMD Opteron 275 processors
and 4GB RAM.

Table 7. Execution times of EA in seconds, minutes, hours and
days (average values during 5 successful runs)

all-port model d OAB AAB OAS AAS
Ring 8 1 <1s <1s <1s 5m6s
Ring 8 2 <1s <1s <1s 57s
Octagon 8 3 <1s <1s <1s 2s
Petersen 10 3 <1s 2s <1s 12s
Kautz 12 3 <1s 3s <1s 23s
Heawood 14 3 <1s 5s <1s 9m17s
16-gon 3 3s 1m41s <1s 22m36s
Levi 30 3 3s 2h2m <1s 1d6h
Hypercube 32 5 41s 28m38s <1s 4d5h
Kautz 36 3 20s 9h50m <1s 3d5h

6. CONCLUSIONS
It is seen from the results, that for the networks of interest in this
paper, the obtained upper bounds are mostly close or equal to
theoretical lower bounds. The only exception is AAS
communication in larger networks, where the lower bounds are
apparently too tight. In fact, the obtained numerical results have
led us to an improvement of theoretical lower bounds for AAS
communication. The lower bound for AAS and WH networks in
wide use has been [6], [14]

⎥
⎥

⎤
⎢
⎢

⎡
=

CB
P

2
)steps AAS(#

2
 (5)

and we have improved it to

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡
⎥
⎥

⎤
⎢
⎢

⎡ Δ+
= ∑

PdB
P

C

,)22/(max)steps AAS(#

2
 (6)

For orthogonal topologies such as hypercubes, the correction is
not needed as Δ=0 and two expressions the maximum is sought of
are equivalent. However, for other networks is the inclusion of the
correction essential and may change the bound dramatically. E.g.
for Kautz12 network the lower bound has changed from 3 to 7
steps. The following Table 8 gives the old and new values of
lower bounds, as well as all relevant parameters of the networks.
(The number of nodes is given at the name of the network). The
correction in bold digits has a dominant impact on the bound. If
both corrections are in bold, they have the same influence.

Table 8. Old (5) and new (6) lower bounds on the number of
AAS communication steps

 all-port model d Bc 2Δ Σ (5) (6)
Ring 8 1 2 0 128 16 16
Ring 8 2 4 0 128 8 8
Octagon 8 3 12 8 88 3 4
Petersen 10 3 14 20 150 4 5
Kautz 12 3 24 80 228 3 7
Heawood 14 3 14 8 378 7 9
16-gon 3 20 48 624 7 13
Levi 30 3 22 76 2520 21 28
Hypercube 32 5 32 0 2560 16 16
Kautz 36 3 72 720 3252 9 31

From all optimal diameter-degree networks, Kautz networks
promise the best scalable performance, even though the node
count can attain only a few values. However, the performance can
be fine-tuned by the number of processors per node. Inter-node
CC is then implemented by message passing, whereas intra-node
CC can utilize either a synchronized access to the shared L2
cache by threads or again passing messages among processes [2].
CC schedules designed by the presented evolutionary technique
are targeted for micro-programmed DMA engines residing in
nodes of the network. They can be easily re-programmed in case
of a link failure so that CC can sustain the highest possible
performance even under limited connectivity.

Some of the found CC schedules attain the theoretical lower
bound on the number of communication steps and thus there is no
way to improve them further. Future research may reveal limits
on a size of networks that can be handled by parallel
implementation of evolutionary techniques. Another direction for
future research could explore a combining model for CC on Kautz
networks or generalize the obtained results for Kautz networks
with fat nodes. A router architecture and local (intra-node)
communication could also be a subject of future optimization.

1545

7. ACKNOWLEDGMENTS
This research has been carried out under the financial support of
the research grants “Design and hardware implementation of a
patent-invention machine”, GA102/07/0850 (2007-9), “Safety and
security of networked embedded system applications”,
GA102/08/1429 (2008-10), both care of Grant Agency of Czech
Republic, and “Security-Oriented Research in Information
Technology”, MSM 0021630528 (2007-13).

8. REFERENCES
[1] van der Steen, A. J., Dongarra, J. J. Overview of Recent

Supercomputers. TOP 500® Supercomputer Sites, Nov.
2007 Edition, http://www.arcade-eu.org/overview/.

[2] Stewart, L. C., Gingold, D. A New Generation of Cluster
Interconnect. White Paper, SiCortex Inc., Dec. 2006.

[3] Jaroš J., Ohlídal M., Dvořák V. An Evolutionary Approach
to Collective Communication Scheduling, In: 2007 Genetic
and Evolutionary Computational Conference, New York,
US, ACM, 2007,pp. 2037-2044.

[4] Miller, M., Širáň, J. Moore graphs and beyond: A survey of
the degree/diameter problem. The Electronic Journal of
Combinatorics, 2005, Dynamic Survey #DS14.

[5] The (Degree, Diameter) problem for graphs. World
Combinatorics Exchange, www-mat.upc.es
/grup_de_grafs/grafs/taula_delta_d.html.

[6] Duato, J., Yalamanchili, S. Interconnection Networks – An
Engineering Approach, Morgan Kaufman Publishers,
Elsevier Science, 2003.

[7] Hennessy, J. L., Patterson, D.A.:Computer Architecture - A
Quantitative Approach. 4th Edition, Morgan Kaufman
Publishers, Inc., 2006.

[8] Karim, F., Nguyen, A. An Interconnect Architecture for
Networking Systems on Chips. IEEE Micro, Sept. – Oct.
2002, pp.36-45.

[9] Mühlenbein, H., Paaß, G. From recombination of genes to
the estimation of distributions I. Binary parameters. In
Lecture Notes in Computer Science 1411: Parallel Problem
Solving from Nature – PPSN IV, pp. 178-187, 1996.

[10] Jaroš, J., Dvořák, V. Speeding-up OAS and AAS
Communication in Networking System on Chips, In: Proc. of
8th IEEE Workshop on Design and Diagnostic of Electronic
Circuits and Systems, Sopron, HU, UWH, 2005, pp. 4, ISBN
9639364487.

[11] Ohlídal, M., Jaroš, J., Dvořák, V., Schwarz, J. Evolutionary
Design of OAB and AAB Communication Schedules for
Interconnection Networks, In: Lecture Notes in Computer
Science, 2006, no. 3907, DE, pp. 267-278, ISSN 0302-9743.

[12] Larrañaga, P., Lozano, J. A. Estimation of Distribution
Algorithms. Kluwer Academic Publishers, London 2002,
ISBN 0-7923-7466-5.

[13] Goldberg D. Genetics Algorithms in Search, Optimization,
and Machine Learning, Addision-Wesley Publishing
Company, 1989.

[14] Dally, W., Towles, B.: Principles and Practices of
Interconnection Networks, The Morgan Kaufmann Series in
Computer Architecture and Design, Morgan Kaufman
Publishers, 2004.

1546

