
1

A Component-based Approach to Verification of
Embedded Control Systems using TLA+

Ondrej Rysavy and Jaroslav Rab
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Email: {rysavy,rabj}@fit.vutbr.cz

Abstract—The method for writing TLA +specifications that
obey formal model called Masaccio is presented in this paper.
The specifications consist of components, which are built from
atomic components by parallel and serial compositions. Using
a simple example, it is illustrated how to write specifications of
atomic components and components that are products of parallel
or serial compositions. The specifications have standard form
of TLA +specifications hence they are amenable to automatic
verification using the TLA+model-checker.

I. I NTRODUCTION

Software running in embedded systems necessary acquires
some properties of the physical world. Usually, these prop-
erties form a part of non-functional aspects in system re-
quirements [1]. To model embedded software, these aspects
must be considered by a specification method otherwise the
model of a system easily diverges from the reality and becomes
inapplicable in further refinement and analysis. Constructing
large systems relies on effective and systematic application of
modular approach. A large class of entities playing the role
of building blocks that can be composed have been defined,
most notably, classes for object-oriented program construction,
components in hardware design, procedures and modules in
procedural programming, and active objects and actors for
reactive programming [2].

This paper deals with a method based on a formalism
called Temporal Logic of Actions [3] that enables to describe
embedded control software in a modular manner and apply
an automatized model-checker tool to verify required prop-
erties of a specification. The main contribution of this paper
lies in demonstration of how the TLA+specifications whose
interpretation is that of a formal model called Masaccio[4]can
be written in a systematic way. The formal model permits to
construct a hierarchical definition of components that are built
from atomic components using operations of parallel compo-
sition, serial composition, renaming of variables, renaming of
locations, hiding of variables, and hiding of locations. Asthe
resulting TLA+specifications have the form of a conjunction
of initial predicate and next-state actions, they are readily
explorable by the TLA+explicit model-checker.

The research has been supported by the Czech Ministry of Education in the
frame of Research Intentions MSM 0021630528, and by the Grant Agency
of the Czech Republic through the grants GACR 201/07/P544 and GACR
102/08/1429.

II. COMPONENT MODEL

This section gives a brief overview of a formal model for
embedded components as defined by Henzinger in [4]. In this
paper, only discrete components are considered, although the
proposed approach relies on the language that can be applied
to hybrid systems [5] as well.

A fundamental entity of the model is a component. The
component structures the system into architectural units that
interact through defined interfaces. It is possible to structure
components into a hierarchy that can be arbitrary nested to
simplify the system design. The componentA consists of
definition of interface and internal behavior. An interface
defines disjoint sets of input variables,V in

A , output variables,
V out

A , and a set of public locations,Lintf
A . An execution of

the component consists of a finite sequence of jumps. A jump
is a pair(p, q) ∈ [V in,out

A] × [V in,out
A]1. An observationp is

called the source of jump(p, q) and an observationq is called
the sink of jump(p, q). A jump v is successive to jumpu if
the source of jumpv is equal to the sink of jumpu. Formally,
an execution ofA is a pair(a, w) or a triple (a, w, b), where
a, b ∈ L

intf
A are interface locations andw = w0 . . . wn is

a nonempty, finite sequence of jumps ofA such that every
jump wi, for 1 ≤ i ≤ n is successive to the immediately
preceding stepwi−1. We write EA for the set of executions
of the componentA.

An atomic componentis the simplest form of components
found in Masaccio. The behavior of the component is solely
specified by its jump action. The interface of atomic com-
ponent exploits input variables read by the component and
output variables controlled by the component. The component
A(J) has two interface locations,from and to; that is,
L

intf

A(J) = {from, to}. The entry condition offrom is the
projection of the jump predicate to the unprimed I/O variables.
The entry condition ofto is unsatisfiable.

Two componentsA and B can be combined to form a
parallel compositionC = A ⊗ B if the output variables
of A and B are disjoint and for each interface locationa
common to bothA and B, the entry conditions ofa are
equivalent inA and in B. The input variables of component
V in

C = (V in
A \ V out

B) ∪ (V in
B \ V out

A). The output variables
of the component areV out

C = V out
A ∪ V out

B . The interface

1[V in,out

A
] stands for a set of all possible assigments of values into input

and output variables of a component.

2

Fig. 1. The components Engine and Drive

locations ofA ⊗ B are the interface locations ofA together
with the interface locations ofB. An interface locationa that
is common toA andB and its entry conditions agree in both
components has this entry condition also inA ⊗ B. Other
interface locations cannot be used to entry the component.

The definition of parallel composition specifies that each
jump is done in synchronous manner in both subcomponents.
Moreover, if one component reaches the exit interface location
then the execution in the other component must be terminated.
If both components reach their exit locations one is chosen
nondeterministically. As the consequence of these properties,
parallel composition operation is associative and commutative.

Two componentsA and B can be composed in series to
form a serial compositionC = A ⊕ B if the set of output
variables are identical; that is,V out

A = V out
B . The input

variables of composed component isV in = V in
A ∪ V in

B . The
interface locations ofA ⊕ B are the interface locations ofA
together with the interface locations ofB. If a is an interface
location of bothA and B, then the entry condition ofa in
A ⊕ B is the disjunction of the entry conditions ofa in the
subcomponentsA andB.

The set of execution of the componentC = A ⊕ B

contains 1) the pair(a, w) iff either (a, w|A) is an execution
of A, or (a, w|B) is an execution ofB, 2) the triple(a, w, b)
iff either (a, w|A, b) is an execution ofA, or (a, w|A, b) is
an execution ofB. The operator of serial composition is
associative, commutative, and idempotent.

To support these two compositional operations, the renam-
ing and hiding operations are defined for variables and loca-
tions. The renaming operation maps variables and locations
of different names to each other that allows for sharing data
and control between components. Hiding makes variables or
locations internal to the component, which is useful when a

complex behavior is modeled inside the component.

III. TLA +

Temporal Logic of Actions (TLA) is a variant of linear-time
temporal logic. It was developed by Lamport [3] primarily
for specifying distributed algorithms, but several works shown
that the area of application is much broader. The system of
TLA+ extends TLA with data structures allowing for easier
description of complex specification patterns. TLA+ speci-
fications are organized into modules. Modules can contain
declarations, definitions, and assertions by means of logical
formulas. The declarations consist of constants and variables.
Constants can be uninterpreted until an automated verification
procedure is used to verify the properties of the specification.
Variables keep the state of the system, they can change in the
system and the specification is expressed in terms of transition
formulas that assert the values of the variables as observedin
different states of the system that are related by the system
transitions. The overall specification is given by the temporal
formula defined as a conjunction of the formI ∧�[N]v ∧ L,
where I is the initial condition, N is the next-state relation
(composed from transition formulas), and L is a conjunctionof
fairness properties, each concerning a disjunct of the next-state
relation. Transition formulas, also called actions, are ordinary
formulas of untyped first-order logic defined on a denumerable
set of variables, partitioned into sets of flexible and rigid
variables. Moreover, a set of primed flexible variables, in the
form of v′, is defined. Transition formulas then can contain
all these kinds of variables to express a relation between
two consecutive states. The generation of a transition system
for the purpose of model checking verification or for the
simulation is governed by the enabled transition formulas.The
formula �[N]v admits system transitions that leave a set of

3

1 module Accelerate

2 extends Naturals

3 variables dx , clock , location

4

5 J1
∆

= ∧ location = “from” ∧ location
′ = “from”

6 ∧ dx ∈ (0 . . 20) ∧ dx ′ = dx + 2
7 ∧ clock ′ = ¬clock

9 J2
∆

= ∧ location = “from” ∧ location ′ = “from”

10 ∧ dx ∈ (21 . . 49) ∧ dx ′ = dx + 1
11 ∧ clock ′ = ¬clock

13 J3
∆

= ∧ location = “from” ∧ location ′ = “from”

14 ∧ dx = 50 ∧ dx ′ = 50
15 ∧ clock ′ = ¬clock

17 Init
∆

= ∧ dx ∈ (0 . . 50) ∧ clock ∈ boolean ∧ location = “from”

19 Next
∆

= J1 ∨ J2 ∨ J3
20

Fig. 2. The TLA+ specification of component Accelerate

variables v unchanged. This is known as stuttering, which
is a key concept of TLA that enables the refinement and
compositional specifications. The initial condition and next-
state relation specify the possible behaviour of the system.
Fairness conditions strengthen the specification by asserting
that given actions must occur. The TLA+ does not formally
distinguish between a system specification and a property.
Both are expressed as formulas of temporal logic and con-
nected by implicationS =⇒ F , where S is a specification
and F is a property. Confirming the validity of this implication
stands for showing that the specification S has the property
F. The TLA+ is accompanied with a set of tools. One of
such tool, the TLA+ model checker, TLC, is state-of-the-art
model analyzer that can compute and explore the state space of
finite instances of TLA+ models. The input to TLC consists
of specification file describing the model and configuration
file, which defines the finite-state instance of the model to be
analysed. An execution of TLC produces a result that gives
answer to the model correctness. In case of finding a problem,
this is reported with a state-sequence demonstrating the trace
in the model that leads to the problematic state. Inevitably,
the TLC suffers the problem of state space explosion that
is, nevertheless, partially addressed by a technique knownas
symmetry reduction allowing for verification of moderate size
system specifications.

IV. SPECIFICATION OFCOMPONENTS

Using a simple example as required by space constraints,
this section explains the construction of TLA+specifications
that corresponds to Masaccio embedded components.

An example represents a specification of component
Engine taken from [4]. This component is a part of a complex
specification that models the control of a railway crossing.In
particular, theEngine component controls acceleration and
deceleration of a train that is moving in a near distance to the
railway crossing. Although this example is rather trivial,it is
sufficient to demonstrate basic principles of the specification
method as it contains both parallel and serial compositions.

The componentEngine and its subcomponents are visually
modeled in figure 1. Components are represented by rectan-
gles. Input and output variables are represented by arrows
connected to component boundaries. Locations are represented
by solid discs. Jump actions are represented by arrows. A jump
is labeled with condition predicate and action predicate, which
computes new values of output variables.

ComponentEngine consists of a serial composition of
two subcompoments, namely,Drive and Halt. An entry
location is directly connected with one of the locations of
Drive component. There is one exit location that is accessible
from both subcomponents. Other interface locations, namely
slowdown and speedup, serve for passing the control flow
betweenDrive andHalt components. The component inter-
acts with the environment by reading input variablebrake and
controlling output variablesx anddx. These variables are also
available to both subcomponents.

ComponentDrive governs train acceleration. The compo-
nent is a parallel composition of three atomic components:
CheckBrake, Accelerate, and Distance. Input variable
brake determines whether the train accelerates or decelerates.
Its value is observed byCheckBrake component that takes
away control fromDrive component if variablebrake signal-
izes the application of train’s brake. In componentAccelerate,
the actual speed of the train is computed. The train dynamics
is simplified by considering that the train accelerates by
1ms−2 if its velocity is greater20ms−1 and by2ms−2 if its
velocity is less than20ms−1, respectively. Finally, component
Distance is responsible for computing the actual distance
from the railway crossing.

ComponentHalt has similar structure to componentDrive.
It’s purpose is to slow the train down as long as input variable
brake is set to true. Ifbrake is released it passes the control
back toDrive component through locationspeedup.

To show that TLA+ specifications conform to Masaccio
interpretation, the interpretation of TLA+ expressions needs
to be defined. The following simplified system is used (for
complete semantics see e.g. [6]). The TLA+ module is called

4

1 module Drive

2 extends Integers , Sequences

3 variable brake, x , dx , clock , loc1, loc2, loc3
4

5 driveBrake
∆

= instance DriveBrake with location ← loc1
6 accelerate

∆

= instance Accelerate with location ← loc2
7 distance

∆

= instance Distance with location ← loc3
8

9 Init
∆

= driveBrake!Init ∧ accelereate!Init ∧ distance!Init

11 Next
∆

= driveBrake!Next ∧ accelereate!Next ∧ distance!Next

12

Fig. 3. The TLA+ specification of componentDrive

a standard module if it has the form of conjunction of an
initial state predicate and a next-state action predicate.The
meaning of a standard TLA+ moduleM = 〈V, I, N〉, where
V is a finite set of variables,I is an initial predicate, andN is
a set of next-state actions, is then defined by valuation function
Vs(x), which assigns a value to each variablex ∈ V and each
states, and model satisfying relation,s |=M p, which asserts
that propositionp is true in states in the modelM of module
M . A modelM is a graph that consists of a set of nodes
MN representing states, and a set of edgesME representing
transitions between states. Obviously, a set of initial states of
modelM is defined as all states satisfying the initial predicate;
that is,I = {s ∈ MN : s |=M I}. Each next-state actionn
can be split into a partn1, where only unprimed variables
occur, and a partn2, where also primed variables occur. If
s |=M n1 and r |=M n2 then, necessary,s, r ∈ MN and
〈s, r〉 ∈ ME . Masaccio interpretation is defined in terms
of execution traces. Obviously, an execution is a trace that
can be generated by traversing a graphM. Formally, a
tracew consists of jumps(p, q), such thatp, q ∈ MN and
〈p, q〉 ∈ ME .

A. Specifying atomic components

According to Masaccio semantics, an atomic discrete com-
ponentA(J) is completely specified by a jump predicate that
defines a set of legal jumpsJ . Further, an atomic component
has an arbitrary number of input and output variables. In
each atomic component, there are only two interface locations,
denoted asfrom and to.

The representation of atomic component is straightfor-
ward in TLA+ language. In figure 2, TLA+ description
of Accelerate component is shown. A set of jumps is a
conjunction of three next-state actions. ActionJ1 represents
acceleration of a train in lower speeds. ActionJ2 represents
acceleration of the train in higher speeds. Finally, action
J3 specifies that if the train reaches its maximal speed it
maintains this speed. In addition to state variablelocation

and controlled variabledx, which keeps the actual train’s
speed, the module declares a boolean variableclock, which
models the passing of the time. Introducing the system clock
is necessary for synchronization of the components. While
this simple approach seems to be appropriate in this case,
more flexible approach, e.g. [7], might be considered in more
involved real-time specifications.

The following definition generalizes atomic component
specification rules.

Definition 1 (atomic component):An atomic component
A(J) is a TLA+ moduleM = 〈V, I, N〉 such that:

• it declares a variable for each I/O variable of the atomic
component; that is,∀v : T ∈ V

in,out

A(J) : ∃v ∈ V such that
s |=M v ∈ T for all s ∈ MN .

• it declares a location variable; that is,location ∈ V , and
s |=M v ∈ {from, to} for all s ∈MN .

• the meaning of next-state actionN agrees with the
predicateϕjump

J ; that is,(p, q) |=M N if each unprimed
variablex from N is assigned the valueVp(x) and each
primed variabley from N is assigned the valueVq(y).

• the meaning of initial predicateI agrees with the predi-
cate ϕen

A(J)(from); that is p |=M I for every trace of
atomic componentA(J) with prefix (from, (p, q)) if
each variablex from I is assigned the valueVp(x).

As it can be seen from the TLA+specification in figure 2,
the atomic specification contains variable denoted asclock.
This variable serves to synchronization purposes. It enforces
that parallel actions are executed at the same time. Therefore
all jumps include the condition statingclock′ = ¬clock. Ex-
cept proper actions, there are also specific actions supporting
serial compositions as described later in this section. These
specific actions violate this condition requiring that the time
is stopped; that is,clock′ = clock.

A component can be entered at locationa if an entry con-
dition ϕen

A (a) is satisfied at(p, q′); that is, (p, q′) |= ϕen
A (a).

A valid expression of entry condition is similar to next-state
relation in TLA. It has form of conjunctions of expressions
that can contain unprimed and primed variables. Contrary to
TLA, the entry condition is enabled if both unprimed and
primed parts are satisfied in(p, q), while the TLA action is
enabled if the unprimed part is satisfied in statep. This is
important for guarantee of the dead-lock free property. As TLC
automatically checks whether the given specification is dead-
lock free, it is possible to relax the entry condition into its
weaker formp |= ϕen

A (a), which does not contain the primed
variables.

B. Specifying Composition of Components

The componentDrive shown in figure 1 is a result of par-
allel composition of three subcomponents. The corresponding

5

TLA+ specification is given in figure 3. The semantics of
parallel composition corresponds to joint-action specification
as described by Lamport in [3, p.147]. Its encoding in TLA
is straightforward.

The Drive module contains input and output variables
brake, x, dx and also variablesloc1, loc2 andloc3 that keeps
the state of subcomponentsDriveBrake, Accelerate and
Distance, respectively. These location variables are bound
to variable location in each component during the compo-
nent instantiation as declared on lines 5-7. Line 9 defines a
collection of initial states of the subcomponents. The initial
predicateInit is a conjunction of initial predicates of all sub-
components. Next-state action predicateNext is a conjuction
of next-state predicates of subcomponents, which gives the
intended execution interpretation of the component; that is,
the jumps of subcomponents are executed in parallel and in
synchronous manner.

Definition 2 (parallel composition):A component C =
A ⊗ B composed in parallel from subcomponentsA and B

can be written as TLA+moduleMC = 〈VC , IC , NC〉, where
• VC is a set of module’s variables that includes all input

and output variables of the subcomponents and location
variables (an implicit renaming of location variables is
considered to prevent the slash of their names in module
MC); that isVC = VA ∪ VB.

• IC is an initial predicate that is a conjunction of initial
predicates of both submodules and a component specific
constraints; that isIC = IA ∧ IB ∧ I.

• NC is a next-state action predicate that is defined as a
conjunction of next-state predicates of both submodules;
that isNC = NA ∧NB.

A state space of a composed component is generated according
the initial predicates and next-state actions of its subcom-
ponents. The conjunction of next-state actions requires that
there are simultaneous jumps in each of the subcomponent.
Moreover if one of the subcomponent reaches its end location,
which causes that such component has not enabled action, it
is not possible to execute any jump in any of the contained
components. This configuration is then recognized as the end
location of the component.

The serial composition of components requires that only one
contained component has control at a time. This needs to be
reflected in a location configuration. Therefore a special loca-
tion, denoted as empty string (””), has been added to represent
a state of a component without a control. A component whose
location configuration is ”” cannot execute any of its jumps.
To enable the passing of control between components, specific
actions that modify only location variables are added into the
specification. Their purpose is similar to that of connector
elements that can be found in many architecture description
languages, e.g. [8].

The example of a component composed in series is shown in
figure 4. The moduleEngine instantiates two subcomponents,
namelyDrive and Halt. The initial predicate specifies that
the componentDrive will have control when component
Engine is first executed. This means to define valid initial
interface location for subcomponentDrive, in particular, to
assign valuefrom to dl1, dl2 anddl3 variables, and to define

that Halt subcomponent is in the idle state that is expressed
by assigning ”” to variableshl1, hl2 andhl3. To define next-
state action predicates we assume that specification ofHalt

andDrive were both extended with the following definition:

Idle
∆

= loc1 = ”” ∧ loc2 = ”” ∧ loc3 = ””

This definition asserts that component is in the idle state.
Therefore, actionL1 and actionL2 define a behavior of
the containing component as an execution of component
Drive and componentHalt, respectively, assuming that a
complementing component is being idle during this execution.
Finally, two connector actions are necessary to allow switching
betweenDrive andHalt components. In particular, connector
C1 specifies that ifDrive reaches the end locationslowdown,
which is represented by interface locationsdl1 = ”from” ∧
dl2 = ”to” ∧ dl3 = ”to”, the control is passed toHalt

component entering itsslowdown location. This location is
represented by interface locationhl1 = ”from” ∧ hl2 =
”to” ∧ hl3 = ”to”. The control is removed from component
Drive by assigningdl1′ = ”” ∧ dl2′ = ”” ∧ dl3′ = ””.

Definition 3 (serial composition):A component C com-
posed in series from subcomponentsA and B; that is,C =
A⊕B, can be written as TLA+moduleMC = 〈VC , IC , NC〉,
where

• VC is a set of module’s variables that includes all input
and output variables of the subcomponents and location
variables.

• IC is an initial predicate that is a disjunction of initial
predicates of both submodules annotated with control
flow information in the form of assertions on interface
locations; that is,IC = (IA∧LB)∨(IB∧LB), whereLA

or LB specifies that control can be assigned to component
A or B, respectively.

• NC is a next-state action predicate that is defined as a
disjunction of next-state predicates of both submodules
and all necessary connectorsCi; that is NC = NA ∨
NB ∨ Ci.

V. V ERIFICATION USING TLC

In this section, a brief elaboration on results of verification
experiments is presented. The TLC tool was used to check
the basic properties of specifications composed in the styleof
Masaccio model.

Each component can be verified using TLC tool separately.
Nevertheless, often a component depends on its environment
and the environment specification needs to be supplied in order
to get a meaningful results. For instance, componentDistance

that computes a distance according to the actual velocity
requires to provide a specification that sets boundaries on the
behavior of velocity variabledx. Moreover, the dependency
among the components can be circular. Therefore to verify
a component, a suitable context needs to be provided. The
approach used in this paper for verification of the components
stems from the assume-guarantee principle that constraints the
context of a component. This principle was studied in the
frame of Masaccio formalism in [9]. The context does not need
to be specified from scratch. Instead, existing specifications of

6

1 module Engine

2 extends Integers

3 variables brake, x , dx , clock

4 variables hl1, hl2, hl3, dl1, dl2, dl3
5

6 drive
∆

= instance Drive with loc1← dl1, loc2← dl2, loc3← dl3
7 halt

∆

= instance Halt with loc1← hl1, loc2← hl2, loc3← hl3
8

9 I 1
∆

= ∧ dl1 = “from” ∧ dl2 = “from” ∧ dl3 = “from” ∧ drive!Init

10 ∧ hl1 = “” ∧ hl2 = “” ∧ hl3 = “”

12 I 2
∆

= ∧ dl1 = “” ∧ dl2 = “” ∧ dl3 = “”

13 ∧ hl1 = “from” ∧ hl2 = “from” ∧ hl3 = “from” ∧ halt !Init

15 Init
∆

= I 1 ∨ I 2

17 L1
∆

= halt !Idle ∧ drive!Next ∧ unchanged 〈hl1, hl2, hl3〉

19 C1
∆

= ∧ dl1 = “to” ∧ dl2 = “from” ∧ dl3 = “from”

20 ∧ hl1 = “” ∧ hl2 = “” ∧ hl3 = “”

21 ∧ dl1′ = “” ∧ dl2′ = “” ∧ dl3′ = “”

22 ∧ hl1′ = “from” ∧ hl2′ = “from” ∧ hl3′ = “from”

23 ∧ unchanged 〈brake, x , dx , clock〉

25 L2
∆

= drive!Idle ∧ halt !Next ∧ unchanged 〈dl1, dl2, dl3〉

27 C2
∆

= ∧ hl1 = “to” ∧ hl2 = “from” ∧ hl3 = “from”

28 ∧ dl1 = “” ∧ dl2 = “” ∧ dl3 = “”

29 ∧ hl1′ = “” ∧ hl2′ = “” ∧ hl3′ = “”

30 ∧ dl1′ = “from” ∧ dl2′ = “from” ∧ dl3′ = “from”

31 ∧ unchanged 〈brake, x , dx , clock〉

33 Next
∆

= L1 ∨ C1 ∨ L2 ∨C2
34

Fig. 4. The TLA+ specification of componentEngine

components that form the environment of the component being
verified can be turned into a context like specification. More-
over, this context specification can be proved as appropriate
if it satisfies a refinement relation. In many cases, it can be
checked automatically using TLC tool. Interface refinementis
described in [3, p.163] asLSpec

∆

= ∃∃∃∃∃∃ ĥ : IR ∧ HSpec,
whereĥ is a vector of free variables ofHSpec and IR is a
relation between variables of̂h and lower level variables of̂l
of specificationLSpec.

Verification of componentEngine required to compute the
state space consisting of 816288 states. TLC completes this
task roughly within 30 seconds on a computer with 1.66 GHz
processor. It should be noted, that the specification shown in
figure 4 was extended withloop action for the sake of TLC
verification procedure. The loop action is required to prevent
TCL to complain on finding a deadlock state. It just loops
forever if the end location of componentEngine is reached.

loop
∆

= (hl3 = ”to” ∨ dl3 = ”to”)
∧UNCHANGED vars

The specification sent to TLC for verifying properties was as
follows:

Spec == Init ∧�[Next ∨ loop]vars

The verification of componentNear (see [4] for its speci-
fication) took much longer (approx. 15 minutes) and the state
space searched was greater than 7 millions of distinct states.

An issue lies in the use of integer variables for meassuring
distance and actual speed of the train and the necessity to
check whether the property holds for any combination of
these values. The solution is to merge concrete values into
significant intervals, i.e. fordx there are two such intervals,
in particular, hispeed = (21..50) and lospeed = (0..20).
Also distance variablex can be defined to be from a
set of intervals, e.g.extdist+ = (∞, 5000), fardist+ =
(5000, 1000), neardist+ = (1000, 0).

VI. CONCLUSION

In this paper, the overview of the method capable of
formal specifying and verifying embedded control systems has
been presented. The method is based on the TLA+, which
allows to produce clear and simple specifications because of
its very expressive language. An accompanying tool, TLC
model checker, can be employed to show that the specification
exposes intended properties. This method was illustrated on a
simple example in this paper. The semantics of specification
can be defined in terms of Masaccio interpretation, including
serial and parallel component compositions.

In addition to clarification of the basic facts on the method
for writing TLA+specifications under Masaccio interpretation,
the several topics for future work were revealed during the
work on this paper:

• Deeper understanding of the assume-guarantee refine-
ment in the TLA+specification framework is required and

7

the proof that these specifications obey assume-guarantee
principle as specified for Masaccio model should be
given.

• Specification of hybrid systems as proposed by Masac-
cio was not addressed in the paper. As shown in [5],
TLA+is expressive enough to capture a large class of
hybrid system specifications. The question is whether
the verification can be adequately supported by the tools
available for TLA+.

• As expected and shown by the example, the state explo-
sion is a problem in the case of verification of non-trivial
systems. While TLA+model-checker can explore several
hundreds of millions of states, there is also possibility to
apply state space reduction techniques. The TLC poses
symmetry reduction mechanism [3, p.245] that can reduce
significantly state space for design that contains multiple
same or similar parts.

The formal model and the presented specification and ver-
ification method is suitable, in particular, for application to
the domain of distributed time-triggered systems [10]. The
intention is to integrate this method in a visual modeling
framework [11] to enable automatic checking of properties
of systems being visually modeled.

REFERENCES

[1] P. Cousot and R. Cousot, “Verification of embedded software: Problems
and perspectives,”Lecture Notes in Computer Science, vol. 2211, pp.
97–114, 2001.

[2] E. A. Lee, “Embedded software,”Advances in Computers, vol. 56, pp.
56–97, 2002.

[3] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Professional, 2003.

[4] T. A. Henzinger, “Masaccio: A formal model for embedded compo-
nents,” inTCS ’00: Proceedings of the International Conference IFIP on
Theoretical Computer Science, Exploring New Frontiers of Theoretical
Informatics. London, UK: Springer-Verlag, 2000, pp. 549–563.

[5] L. Lamport, “Hybrid systems in tla+,” in Hybrid Systems, ser. Lecture
Notes in Computer Science, vol. 736. Springer, 1992, pp. 77–102.

[6] M. Kaminski and Y. Yariv, “A real-time semantics of temporal logic of
actions,”Journal of Logic and Computation, vol. 13, no. 6, pp. 921–937,
2001.

[7] L. Lamport, “Real-time model checking is really simple,” in CHARME,
2005, pp. 162–175.

[8] K.-K. Lau, V. Ukis, P. Velasco, and Z. Wang, “A component model
for separation of control flow from computation in component-based
systems,”Electronic Notes in Theoretical Computer Science, vol. 163,
no. 1, pp. 57–69, September 2006.

[9] T. A. Henzinger, M. Minea, and V. Prabbu,Hybrid Systems: Computa-
tion and Control, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, January 2001, vol. 2034/2001, ch. Assume-
Guarantee Reasoning for Hierarchical Hybrid Systems, pp. 275–290.

[10] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, ser. The Springer International Series in Engineer-
ing and Computer Science. Springer Netherlands, 2002, vol.395, ch.
The Time-Triggered Architecture, pp. 285–297.

[11] M. Faugere, T. Bourbeau, R. de Simone, and S. Gerard, “Marte: Also an
uml profile for modeling aadl applications,” inICECCS ’07: Proceedings
of the 12th IEEE International Conference on Engineering Complex
Computer Systems (ICECCS 2007). Washington, DC, USA: IEEE
Computer Society, 2007, pp. 359–364.

