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Abstrakt
Tato disertační práce se zabývá analýzou stability a konvergence klasických numerických

metod pro řešení obyčejných diferenciálních rovnic. Jsou představeny klasické jednokrokové

metody jako je Eulerova metoda, Runge-Kuttovy metody a nepříliš známá, ale rychlá

a přesná metoda Taylorovy řady. V práci uvažujeme zobecnění jednokrokových metod

do vícekrokových metod jako jsou Adamsovy metody a jejich implementaci ve dvojicích

prediktor-korektor. Dále uvádíme generalizaci do vícekrokových metod vyšších derivací,

jako jsou např. Obreshkovovy metody. Dvojice prediktor-korektor jsou často implemen-

továny v kombinacích módů, v práci uvažujeme tzv. módy PEC a PECE. Hlavním cílem

a přínosem této práce je nová metoda čtvrtého řádu, která se skládá z dvoukrokového

prediktoru a jednokrokového korektoru, jejichž formule využívají druhých derivací. V práci

je diskutována Nordsieckova reprezentace, algoritmus pro výběr proměnlivého integračního

kroku nebo odhad lokálních a globálních chyb. Navržený přístup je vhodně upraven pro

použití proměnlivého integračního kroku s přístupem vyšších derivací. Uvádíme srovnání

s klasickými metodami a provedené experimenty pro lineární a nelineární problémy.

Abstract
The aim of this thesis is to analyze the stability and convergence of fundamental numer-

ical methods for solving ordinary differential equations. These include one-step methods

such as the classical Euler method, Runge–Kutta methods and the less well known but

fast and accurate Taylor series method. We also consider the generalization to multistep

methods such as Adams methods and their implementation as predictor–corrector pairs.

Furthermore we consider the generalization to multiderivative methods such as Obreshkov

method. There is always a choice in predictor-corrector pairs of the so-called mode of the

method and in this thesis both PEC and PECE modes are considered. The main goal and

the new contribution of the thesis is the use of a special fourth order method consisting of

a two-step predictor followed by an one-step corrector, each using second derivative formu-

lae. The mathematical background of historical developments of Nordsieck representation,

the algorithm of choosing a variable stepsize or an error estimation are discussed. The cur-

rent approach adapts well to the multiderivative situation in variable stepsize formulations.

Experiments for linear and non-linear problems and the comparison with classical methods

are presented.
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Chapter 1

Introduction

There exists computational systems these days, which can be used to solve huge and time-

consuming scientific calculations. Universal computational systems and equipments solve

these kinds of special algorithms and problems in less shorter time that in former centuries.

One of these problems is the numerical solution of differential equations.

Differential equations have a very long history; they are old as a differential calculus

(Newton 1691). Many mathematicians or researchers have tried to calculate them, to

discover new methods for solving them and to improve methods’ properties since then.

Classic application of differential equations is found in many areas of science and technology.

They can be used for modelling of physical, technical or biological processes such as in the

study of an electric circuit consisting of a resistor, an inductor and a capacitor driven by

an electromotive force, in gravitational equilibrium of a star, chemical reactions kinetic,

in the psychology, in models of the learning of a task involves the equation, in vibrating

strings and propagation of waves, etc. [57, 83]. Movement of celestial bodies, the shape of

a ship’s wake, stress and lift action on aircraft wings, spread of epidemic through a large

population, percolation of crude oil in semi-permeable rock, nuclear processes in the core

of stars, transmission of electric pulses down a nerve fibre, the fickle behaviour of stock

markets, tear and wear of turbine blades – to all intents and purposes the list is infinite,

limited merely by our imagination [66]. Main questions of modern technology are how to

increase the accuracy of calculations considering short computational time, how to decrease

necessary mathematical operations and all these questions have many aspects and criterion,

which we need to explore to get the suitable answer.

My field of study is focused on modelling and simulation of various problem. Each sim-

ulation system includes different type of numerical computations. To summarize numerical

methods is very demanding task in terms of extensiveness. Therefore the thesis is focused

on non-stiff problems described by ordinary differential equations and their solutions using

numerical methods.
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There have been written many great books about numerical methods and a lot of theory

have been discovered, still many mathematicians and engineers research to get better and

faster results for problems which can be described by differential equations. In this thesis

I would like to describe some mathematic background and theory for ordinary differential

equations solved by one-step and multistep methods and pointed out ideas of solving sys-

tems of differential equations by Taylor series method [75]. This thesis is focused on essential

research and contains only a fragmentary amount of the mathematical background.

1.1 Targets of the thesis

Targets of this thesis are divided into two main goals. The first main goal is an original

approach of the predictor–corrector method in Obreshkov quadrature formulae; the new

two-derivative multistep numerical method. This goal also includes the implementation of

the new method with variable stepsize and the implementation of the new method in modes

PEC and PECE.

The second goal is to investigate the convergence and stability analysis for the new

method with constant stepsize for various problems as well as to investigate and to compare

the convergence and stability analysis for selected numerical methods. The analysis of the

new method obtains the variable stepsize analysis.

1.2 Structure of the thesis

The chapter 2 presents the mathematical background of ordinary differential equations

and numerical methods. Required fundamentals and basics are presented to introduce

the notation and chosen problems. The analytical solution is discussed and the example of

analytical solution is given by solving the simple electrical circuit with a resistor, a capacitor

and a coil. Then the focus is transferred to numerical solutions and one-step methods. The

idea of the generalization of Euler method is shown and through Runge-Kutta methods and

Taylor series method we describe interesting notations and approaches.

The attention is dedicated to multistep methods such as linear multistep methods and

predictor–corrector methods from the stability point of view as well as the implementation

point of view in the chapter 3.

The goal of the chapter 4 is to briefly present multiderivative multistep methods. The

predictor–corrector formulae are combined in nontraditional way in the form of Obreshkov

quadrature formulae using variable stepsize. The approach of variable stepsize was pre-

sented by Nordsieck and it is described in this chapter.

The chapter 5 is dedicated to the new contribution, which is closely linked to my stay at
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University of Auckland, Department of Mathematics during the academic year 2008/2009.

Many aspects of the thesis were discussed with the mathematician J. C. Butcher, Emeri-

tus Professor at University of Auckland. In this chapter the new two–derivative multistep

method is introduced. We begin with a discussion of some important tasks of error estima-

tion and choosing the stepsize. Then the results of test problems are compared with results

obtained by classical methods.

Summary and proposed future work is described in the final chapter 6.
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Chapter 2

Ordinary differential equations and

one-step methods

The study of differential equations is a wide field in mathematics, physics and other disci-

plines. It is possible to divide differential equations in many groups of different types. Two

main groups are ordinary differential equations and partial differential equations. Both of

them can be classified as linear and nonlinear. In this thesis, we will assume and solve

ordinary differential equations and systems of ordinary differential equations.

2.1 Ordinary differential equation

Ordinary differential equation (ODE) of first order obtains a single independent variable

and one or more its derivatives with respect to that variable [8]. The equation is given in

the form

y′(x) =f(x, y(x)), (2.1)

y(x0) =y0, (2.2)

where y′(x) = dy
dx
, x is independent variable, y is dependent variable. A function y(x) is

called a solution of equation (2.1) and the initial value (2.2) is given.

A second order ODE for y is, under mild assumptions for (2.1) together with (2.2),

given in the form

y′′ = f(x, y, y′), (2.3)

with two free parameters which represent two uniquely determined initial values

y(x0) = y0, y′(x0) = y′0.

Generally, an order n ODE in x with y(n) has the explicit form

y(n) = f(x, y, y′, · · · , y(n−1)), (2.4)

6



there is a unique solution with n initial values

y(x0) = y0, y′(x0) = y′0, · · · , y(n−1)(x0) = y
(n−1)
0 . (2.5)

Order of differential equation is an order of the highest-order derivatives presented

in the differential equation [98].

To solve the ordinary differential equations we need to ask how we can solve them.

We are also interested in a question if a differential equation has more than one solution.

Here we talk about the uniqueness of the solution. If it has at least one solution we need

to find a solution which satisfies particular conditions. The answer testifies about the

existence of the solution. And we try to discover which method should we use for solving

the differential equation to get the accurate result in a suitable time. There are other

fundamentals which need to be presented. But only in a way to understand the described

methods and generalizations. Generally, the mathematical background is very extensive

and described in many other books.

Explicit solution

Explicit solution (2.4) is called a function Φ(x) when substituted for y in equation (2.4)

satisfies the equation for all x in the interval I [28].

Sometimes the explicit solution does not suit the purpose of a differential equation

because of its properties. Then we need to settle a solution that is defined implicitly.

Implicit solution

A relation (2.6) is said to be an implicit solution to equation (2.4) on the interval I if it

defines one or more explicit solutions on interval I [28].

f
(
x, y, y′, . . . , y(n)

)
= 0 (2.6)

Analytical solution

Many of ordinary differential equations of arbitrary order can be solved analytically. In the

most of cases it is very complicated and time-consuming problem.

Generally, it is possible to determine the analytical solution of the differential equation

as a composition of particular yp(x) and homogeneous yh(x) solutions

y(x) = yp(x) + yh(x).

To present the possibilities of analytical solution, we now introduce a n-th order linear

ordinary differential equation which has the general form of

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y(x) = b(x), (2.7)

7



where an(x), an−1(x), · · · , a0(x) are all functions of x. Assuming that an(x) 6= 0 and

dividing the previous equation by this an(x), we can rewrite the equation in the form

y(n)(x) + pn−1(x)y(n−1)(x) + · · · + p1(x)y(x) = g(x), (2.8)

where the functions pn−1(x), · · · , p1(x), g(x) are continuous on interval I. If g(x) = 0, the

equation is called homogeneous. Otherwise, it is a non-homogeneous differential equation.

For the corresponding homogeneous equation (2.8) to (2.7) there exists a set of n linearly

independent solutions y1, y2, · · · , yn on I.

Such functions form a fundamental solution set and every solution for (2.8) can be

written as a linear combination according to a superposition principle [83]

y(x) = c1y1(x) + · · · + cnyn(x), (2.9)

where c1, c2, · · · , cn are constants. The linear independence of solutions to (2.8) is equivalent

to the non-vanishing on interval I of the Wroskian

W (y1, · · · , yn)(x) = det





y1(x) · · · yn(x)

y′1(x) · · · y′n(x)
...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)




.

When homogeneous equations in the form of (2.8) have (real) constant coefficients then

the problem of determining a fundamental solution set is reduced to the algebraic problem

of solving the auxiliary equation called the characteristic equation

λn + pn−1(x)λn−1 + · · · + p2(x)λ + p1(x) = 0.

Let A(x) be a n × n constant matrix of characteristic equations’ coefficients. The

eigenvalues of A are numbers λ for which

(A − λI)v = 0 (2.10)

has at least one nontrivial solution v(x). The corresponding nontrivial solutions for linear

systems are called the eigenvectors and have different natures: simple and multiple, real

and complex [28].

Let generalize it for a linear homogeneous system of n algebraic equations. The system

has a nontrivial solution if and only if the determinant of its coefficients is zero. Hence

a necessary and sufficient condition for (2.10) to have a nontrivial solution is the charac-

teristic equation of A such that

det(A − λI) = 0. (2.11)

Solutions for homogeneous equations can be divided into groups, see three important

special cases:

8



1. Eigenvalues are real and equal (λ1 = λ2 = λn = λ), we have only one eigenvalue and

only general solution of the system

P (x)eλx,

where P is an arbitrary polynomial of degree n − 1.

2. Eigenvalues are real and distinct (λ1 6= λ2 6= λn)

c1e
λ1x, c2e

λ1x, · · · , cneλ1x.

Since the exponents are negative, both will progressively decay with time. The rates

of decay will be given by the respective eigenvalues and the state will move towards

the eigenvector associated with the larger eigenvalue and finally converge into the

equilibrium point.

If the eigenvalues are real and negative, the system is stable in the sense that any

perturbation from an equilibrium points decays exponentially and the system settles

back to the equilibrium point. If the real parts of the eigenvalues are positive, any

deviation from the equilibrium point grows exponentially and the system is unstable.

If one eigenvalue is real and negative while the others are real and positive, the system

is stable along the eigenvector associated with the negative eigenvalues and is unsta-

ble away from this. The trajectory starting from any initial condition progressively

converges on the eigenvector associated with the positive eigenvalue and moves to in-

finity along that line in the state space. This point is called a saddle and the system

with a saddle is globally unstable. The vector fields of the three types of systems are

shown in figure 2.1 [98].

Figure 2.1: Vector fields of linear systems with two real eigenvalues, (a) both eigenvalues

negative, (b) both eigenvalues positive and (c) one eigenvalue negative and one positive

9



3. If the real matrix A has complex conjugate eigenvalues α ± iβ with corresponding

eigenvectors a ± ib, then two linearly independent real vector solutions are

y1 =eαx
(

cos(βxa) − sin(βxb)
)
,

y2 =eαx
(

cos(βxb) + sin(βxa)
)
.

For initial conditions at various distances from the origin, the trajectories are circles

of various radius and the imaginary part of the eigenvalue gives the period of rota-

tion. The vector field in the state space has the structure shown in Figure 2.2. An

equilibrium point with imaginary eigenvalues is called a centre.

In general, if the eigenvalues are purely imaginary the orbits are elliptical. For initial

conditions at different distances from the equilibrium point the orbits form a family

of geometrically similar ellipses which are inclined at a constant angle to the axes,

but having the same cyclic frequency.

When the eigenvalues are complex, with α nonzero, the sinusoidal variation of the

state variables will be multiplied by an exponential term eαx. If α is negative, this

term will decay as time progresses. Therefore the waveform in time-domain will

be a damped sinusoid and in the state space the state will spiral in towards the

equilibrium point. If α is positive the eαx−term will increase with time and so in the
state space the behavior will be an outgoing spiral, see figure 2.2 [98].

Figure 2.2: Vector fields in state space for (a) imaginary eigenvalues, (b) complex eigenval-

ues with negative real part and (c) complex eigenvalues with positive real part

10



Let yp(x) be a particular solution to the non-homogeneous system on the interval I

and let y1(x), y2(x), · · · , yn(x) be a fundamental solution set on I for the corresponding

homogeneous system. Then every solution to on I can be expressed as composition of

particular and homogeneous solutions

y(x) = yp(x) + c1y1(x) + · · · + cnyn(x), (2.12)

where c1, c2, · · · , cn are constants.

Two useful techniques [83] for finding particular solutions are

1. the annihilator methods,

2. the method of variation of parameters.

Systems of linear differential equations

We can always reduce an explicit linear differential equation of any order to a first order

system of differential equation. We usually use substitutions such as yn = y(n−1) and we

get a first order system of differential equations of dimension n in the form

y′1 =y2, y1(x0) = y01,

y′2 =f1(x, y1, y2), y2(x0) = y02,

...

y′n =fn(x, y1, y2, · · · , yn), yn(x0) = y0n.

Assume that equation (2.8) has pi(x) = ai(x)/an(x) and g(x) = b(x)/an(x), the system of

differential equations is then given by




y′1

y′2
...

y′n




=





0 1 · · · 0

0 0 0
...

. . . 1

−p1(x) −p2(x) −pn(x)









y1

y2

...

yn




+





0

0
...

g(x)




(2.13)

For simplification we denote the vector
(
y1, y2, · · · , yn

)T

by y, the vector
(
0, 0, · · · , g(x)

)T

by f(x) and a matrix by A(x). The equation (2.13) becomes the system of linear differential

equations

y′ = A(x)y+ f(x), (2.14)

A(x) =
(
aij(x)

)
, f(x) =

(
fi(x)

)
, yi(x0) = (y0i), i, j = 1, · · · , n.

Let A be an n × n matrix. The following statements are equivalent and significant for

determining of the solution stability [83]
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• A is singular and does not have an inverse. (A matrix that has an inverse is called

invertible or nonsingular. If no inverse exists the matrix is said to be singular.)

• The determinant of a singular matrix A is zero.

• The system of equations Ay = 0 has a nontrivial solution (x 6= 0).

• The columns (rows) of a singular matrix A form a linearly dependent set.

After the representing the basics of differential equations and some of their property, we

start to solve them.

Example of analytical solution

Description of circuits using differential equations is very convenient for the electrical

circuits’ behavior analysis [76]. Electrical circuits are described by differential equations

for time-dependent elements (capacitors, inductances) together with equations for linear

and non-linear time-independent elements (resistors, diodes and transistors). Well-known

Ohm’s law and Kirchhoff’s laws are part of the electronic circuit description.

Assume the differential equation of second order (2.15) describing the electrical circuit

in the figure 2.3. We assume y′ = dy/dt for this example.

LCu′′

C + RCu′

C + uC = u, uC(0) = 0, u′

C(0) = 0 (2.15)

u

R

C

u C

u
R

L

uL

Figure 2.3: Electrical circuit with serial resistor, capacitor and inductor

The homogeneous equation is transferred to the characteristic equation and solved as

a quadratic equation in the first step

LCλ2 + RCλ + 1 =0

λ1,2 = − RC ∓
√

(RC)2 − 4LC

2LC
.

12



There are three possible choices of the expected eigenvalues according to the value of the

determinant D = (RC)2 − 4LC

1. D > 0 −→ λ1 6= λ2 ∈ Re,

2. D = 0 −→ λ1 = λ2 ∈ Re,

3. D < 0 −→ λ1,2 = a ± ib ∈ Im

and due to three possible homogeneous solutions yh = uCh are expected

1. uCh = C1e
λ1t + C2e

λ2t,

2. uCh = eλt
(
C1t + C2

)
,

3. uCh = eat
(
C1 cos(bt) + C2 sin(bt)

)
.

In this example we assume the multiple root (λ1 = λ2 = −R/2L), so the expected solution

for the circuit is

uCh = eλt(C1t + C2), (2.16)

where C1 and C2 are unknown values.

As a second step it is necessary to determine the effect of the right-hand side in the

differential equation (2.15). Let us say the electrical circuit has the alternating voltage

source and the corresponding equation is u = U0 sin(ωt). We simplify the example for

U0 = 1 V and the expected particular equation yp = uCp looks like

uCp = A sin(ωt) + B cos(ωt). (2.17)

To determine the unknown values A and B we derive the particular solution (2.17) up to

the order the given differential equation

u′

Cp =Aω cos(ωt) − Bω sin(ωt)

u′′

Cp = − Aω2 sin(ωt) − Bω2 cos(ωt)

and replace uCp, u′

Cp and u′′

Cp into the given differential equation (2.15)

LCω2(−A sin(ωt)−B cos(ωt))+RCω(A cos(ωt)−B sin(ωt))+A sin(ωt)+B cos(ωt) = sin(ωt)

(2.18)

Comparing functions sin(ωt), cos(ωt) on both sides of the equation (2.18) we get

−ALCω2 − BRCω + A =1

−BLCω2 + ARCω + B =0

A =
1 − LCω2

(LCω2)2 + (RCω)2

B = − RCω

(LCω2)2 + (RCω)2
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In the third step we add both homogeneous and particular parts together

uC =uCh + uCp

uC =e−
R
2L

t(C1t + C2) +
(1 − LCω2) sin(ωt) − RCω cos(ωt)

(LCω2)2 + (RCω)2
(2.19)

To determine the unknown C1 and C2 we insert the initial value uC(0) = 0 into (2.19)

C2 =
RCω

(LCω2)2 + (RCω)2

for inserting second initial value u′

c(0) = 0 we calculate the derivative of the equation (2.19)

u′

C = − R

2L
e−

R
2L

t(C1t + C2) + C1e
−

R
2L

t +
ω(1 − LCω2) cos(ωt) + RCω2 sin(ωt)

(LCω2)2 + (RCω)2
(2.20)

and the initial value u′

C(0) = 0 is now inserted in (2.20)

C1 =
R2Cω − 2Lω(1 − LCω2)

2L
(
(LCω2)2 + (RCω)2

) (2.21)

The analytical solution uC of the differential equation of second order (2.15) with mul-

tiple root for RLC circuit is given by

uC =e−
R
2L

t



R2Cω − 2Lω(1 − LCω2)

2L
(
(LCω2)2 + (RCω)2

) t +
RCω

(LCω2)2 + (RCω)2





+
(1 − LCω2) sin(ωt) − RCω cos(ωt)

(LCω2)2 + (RCω)2
(2.22)

We set the special values of the circuit as

R = 20 Ω, L = 2.5 · 10−2 H, C = 5 · 10−5 F, ω = 1000 rad/s, u = sin(ωt) V

we solve the equation (2.22) and we graphically represent the analytical solution of uC in

the graph 2.4.

Numerical solution

The second way to solve differential equations is the numerical solution. The numerical

solving is based on approximations and it includes many other aspects of chosen numerical

method such as initial conditions, generation and propagation errors, stability and conver-

gence of the method, a variable stepsize etc. By numerical solution of differential equation

we mean a sequence of values y(t0), y(t1), · · · , y(ti) for i = 0, 1, · · · , n.

As the analytical solution is unknown, we need to have initial values and information

about the stability behavior of the solution for all initial values in the neighborhood of

14



Figure 2.4: Voltage uC in RLC circuit - computed from the analytical solution

a certain equilibrium point. We can carry the equilibrium point to the origin and define

the stability of trivial solution such that

y′i = fi(y1, · · · , yn), i = 1, · · · , n (2.23)

is the system with zero initial values. The origin is called stable if for any ε > 0 exists

a ρ < 0 such that for the solution ‖y(x0) < ρ‖ =⇒ ‖y(x) < ε‖ for all x > x0 [57].

In the case of a linear system

y′ = Ay (2.24)

a particular stability property of any solution is equivalent to that stability property of the

trivial solution. Thus one may transfer this property to the equation (2.24) and say that

the equation (2.24) is stable. The stability concepts can be expressed by a matrix A.

A square matrix A is stable if there exists a constant C such that for all n = 0, 1, 2, ...

||An|| ≤ C. Equivalent statements for matrix A of n × n are

• The minimal polynomial of A has all its zeros in the closed unit disc and all its
multiple zeros in the open unit disc.

• The Jordan canonical form of A has all its eigenvalues in the closed unit disc with all
eigenvalues of magnitude 1 lying in 1 × 1 blocks.

• There exists a non-singular matrix S such that ||S−1AS||∞ ≤ 1 [8].

In case of linear system with constant coefficients and with λ1, · · · , λn as eigenvalues of

coefficients matrix A, one can write down equivalent statements:

• The solutions of the system are stable if for all Re(λn) < 0.
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• All solutions of the system are unstable if exists Re(λn) > 0.

• For all eigenvalues such that Re(λn) < 0 and for Re(λi) = 0, λi are simple roots, all

solutions are stable [88].

The convergence is the point of the interest together with stability. This attribute of

numerical methods guaranties the solution reaches the exact solution after few steps of

calculation. The stability and convergence determine the consistency of the method [28].

From this part of the work numerical methods for the solution of the initial value problem

in ordinary differential equations are evaluated and compared. An initial value problem is

specified as follows

y′(x) = f(y(x)), y(x0) = y0. (2.25)

There exist two main types of numerical methods, the first types use for the next

approximation yn only the current already known approximation yn−1, we call them one-

step methods. The other ones called multistep methods solve the next approximation using

current and previous approximations yn, yn−1, yn−2, ...

We proceed from introduction of chosen one-step methods such as the simplest Euler

method through generalizations to chosen multistep methods. These generalizations are

based on more computations in a step, use of more previous values or higher derivatives.

We will see these procedures later.

2.2 Euler method

The simplest and the most analyzed numerical method for solving ordinary differential

equations is Euler method (proposed in the 18th century by Euler). It is the simple recursion

formula which studies the solution for only certain values x = 0, h, 2h, · · · , where h is called

an integration step or a stepsize and assumes that dy/dx is constant between points. The

recursion formula is given by

yn = yn−1 + hf(yn−1), y(0) = y0. (2.26)

The sequence of values starting from the initial value x0 is used for computation and

stepsizes between each values of sequence x1 − x0, x2 − x1, ... are denoted as h1, h2, ...,

the highest is denoted by h. For each value of n, each approximation of yn is computed

using a previous value yn−1 which is exactly equal to y(xn−1). We see that the quality of

approximations of yn−1 depend on the magnitude of h. To analyze how the function hf(yn)

varies, the Lipschitz constant L can be used [45].

The function f satisfied a Lipschitz condition if there is a Lipschitz constant L if for all

all u, v ∈ RN

||f(u) − f(v)|| ≤ L||u − v||. (2.27)
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Figure 2.5: Graphic interpretation of Euler method

Symbols || in ||f(u) − f(v)|| represent the norm.
The function f satisfied a

”
one-side Lipschitz condition“, with

”
one-side Lipschitz

constant“ λ if for all x ∈ [a, b] and all u, v ∈ RN

〈f(x, u) − f(x, v), u − v〉 ≤ λ||u − v||2. (2.28)

The condition for the Lipschitz constant L guarantees the existence and uniqueness of the

solution. We will assume this for the present section also for other methods [16].

The Euler method is based on a truncated Taylor series expansion which implies the

local truncation error ln (or discretization error) of the method as a O(h2). The local

truncation error is an error committed by the method in a single step when the values at

the beginning of that step are assumed to be exact. From this fact we can say, that the

Euler method is first order technique, generally a method with local truncation error equals

to O(hp+1) is said to be of p-th order. At the n-step the error is defined by

ln =y(xn−1 + h) − y(xn−1) − hf(xn−1, y(xn−1))

=y(xn−1) + hy′(xn−1) +
h2

2
y′′(xn−1 + θh) − y(xn−1) − hy′(xn−1)

=
h2

2
y′′(xn−1 + θh), 0 < θ < 1.

The truncation error is different from the global error εn [28], which is defined as

εn = y(xn−1 + h) − yn = y(xn−1) − hf(xn−1, y(xn−1)) + ln − yn−1 − hf(xn−1, yn−1)

= εn−1 − hf(xn−1, y(xn−1)) − hf(xn−1, yn−1) + ln. (2.29)

In the most cases, the exact solution is unknown and hence the global error cannot

be evaluated. Evaluations of errors are closely linked to a variable stepsize determination,

but we will discuss it later. The magnitude of stepsize is important for the convergence of

the method. A convergent numerical method is the one where the numerically computed

17



solution approaches the exact solution as the stepsize approaches 0. For problems with

unknown exact solution, we choose the solution obtained with a sufficiently small time step

as the
”
exact“ solution to study the convergence characteristics. So taking the norm of

global error in (2.29) and applying the triangle inequality, the Lipschitz condition and the

bound on the local error, we get the first-order inequality

||εn|| = (1 + hL)||εn−1|| +
Mh2

2
.

Since ε0 = 0, the inequality has solution given by

||εn|| ≤
Mh

2L
(1 + hL)n

where as n → ∞ and h → 0, we have εn → 0 and yn → y(xn) for some M < ∞ that is the
numerical solution converges to the exact solution. Then we can say that methods of order

higher than one are also convergent [36].

For the Euler methods there are stepsize limitations such as to ensure numerical stability,

reasonable required accuracy, also fast convergence behaviour. A bit of improvement is given

by implicit Euler method

yn = yn−1 + hf(yn), y(0) = y0 (2.30)

For better understanding of stepsize and convergence of the method, have a look to

a simple example also called Dahlquist problem with known exact solution [39].

Example

Consider a Dahlquist problem

y′ = qy, y(0) = 1 (2.31)

with known analytical solution given by y(x) = exp(qx). In this case we choose constant

q = 1.

The solution is computed for stepsizes h = 0.2 (a first case) and h = 0.1 (a second

case), exact solution and solutions for first and second case are plotted in picture 2.6.

The comparison with the exact solution is presented in in the table 2.1 where the second

column represents the exact value in the value xn. The third column, the fifth column yn

respectively show computed values by Euler method with stepsizes 0.2, 0.1 respectively.

And the fourth column, the sixth column respectively determines error between the exact

solution and the computed solution. The Euler method computes less steps for stepsize

h = 0.2 which also cause the bigger global error than error for h=0.1. For the first case the

solution converges slower to the exact value.
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Table 2.1: Solution for Dahlquist problem (2.31) using explicit Euler method

h = 0.2 h = 0.1

xn y(xn) yn err yn err

0.0 1.000000 1.000000 0.000000 1.000000 0.000000

0.1 1.105171 1.100000 0.005171

0.2 1.221403 1.200000 0.021403 1.210000 0.011403

0.3 1.349859 1.331000 0.018859

0.4 1.491825 1.440000 0.051825 1.464100 0.027725

0.5 1.648721 1.610510 0.038211

0.6 1.822119 1.728000 0.094119 1.771561 0.050558

0.7 2.013753 1.948717 0.050558

0.8 2.225541 2.073600 0.151941 2.143589 0.081952

0.9 2.459603 2.357948 0.101655

1.0 2.718282 2.488320 0.229962 2.593742 0.124540

Figure 2.6: Solutions for different stepsizes by Euler method

To check the order of Euler method with the fixed stepsize, we determine the error each

time for n steps and set the stepsize such as h = (tmax − tmin)/n for different n values as

n = 10, 20, 40, · · · 10240, see table 2.2. We plot the order graph with the log of stepsizes

on the x-axis and the log of absolute values of errors on the y-axis.

From now we will use the notation 1e−02, 1e−03, 1e−04, · · · , 1e+03, 1e+04, · · · re-
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spectively for numbers 1 · 10−2, 1 · 10−3, 1 · 10−4, · · · , 1 · 103, 1 · 104, · · · respectively.
Errors give us an order illustrates the rate at which the numerical error decreases with

stepsize, see picture 2.7. Note that the order plot is from now always a log-log plot because

the size of the error spans orders of magnitude. The slope of the error curve on a log-log

plot gives the order of accuracy of the method. If the slope is unity, the error scales linearly

with the stepsize. If the slope is two, then the error scales as the square of the stepsize.

Checking the slope of lines through the points we can say that the order of Euler method

is 1. This means that results are consistent with order 1. Generally holds, that if the method

has order p, the error for small h approximately satisfies an equation

E ≈ Chp (2.32)

assuming that E is the norm of the error and C is some constant so that everything is

scalar and taking logs, we find

log(E) = log(C) + p log(h). (2.33)

This means the graph of E versus h, on a log-log scale should have slope p.

16.79689 · 10−3

8.446252 · 10−3
∼= 1.988680

8.446252 · 10−3

4.235185 · 10−3
∼= 1.994305

4.235185 · 10−3

2.120621 · 10−3
∼= 1.997144

The slope p is computed in the column called ratio in the table 2.2. To show the practical

and fast approach of order checking of Euler method we use errors from the table 2.2. Taking

the error for h = 0.1 ·2−3 and divide it by the error for h = 0.1 ·2−4 we get 1.988680. Taking

the error for h = 0.1 · 2−4 and divide it by the error for h = 0.1 · 2−5 we get 1.994305, etc.

We see that the order of Euler method holds, the ratios are approximately 21 = 2p where

p is the order of the method.

Knowing that the Euler method converges and the error increases for increasing time

over the tolerable limit, let us study the behaviour of the method over extended interval

[39]. Assume the linear system of equations of constant coefficients

y′(x) = My(x) (2.34)

whereM is the constant matrix. This problem can be transformed using a few assumptions

according to [21] to the simpler form

y′(x) = q(x) (2.35)
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Table 2.2: Errors and the order of Euler method for different fixed stepsizes

h err ratio

0.2 0.2299618

0.1 0.1245394
1.846

0.1·2−1 6.498412e-02
1.916

0.1·2−2 3.321799e-02
1.956

0.1·2−3 1.679689e-02
1.978

0.1·2−4 8.446252e-03
1.989

0.1·2−5 4.235185e-03
1.994

0.1·2−6 2.120621e-03
1.997

0.1·2−7 1.061069e-03
1.999

Figure 2.7: Order of Euler method for Dahlquist problem

where z = hq with the exact solution yn+1 = exp(zn)y0 and z is a complex number. Using

fixed stepsize it was said that (1 + hq)n is an acceptable approximation to exp(nhq), where

both expressions as n → ∞ are bounded. That also means that if the stability function

defined as

R(z) =
yn+1

yn
(2.36)

meet the condition R(z) ≤ 1, then |1 + hq| is bounded by 1. The set of values for the exact
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solution is bounded in the non-positive half-plane z ∈ C : R(z) ≤ 0. For this condition is

the set of points for Euler method equals to |1 + z| ≤ 1 (set of points is the closed disc

in the complex plane with the centre in -1 and radius of 1). This property is also called

boundedness. Property of converging is less strict then the unify, the exact solution lays

in the negative left-plane z ∈ C : R(z) < 0, so the set of points for Euler method lays in

the open disc with the centre in -1 and radius of 1. For Euler method and implicit Euler

method have been derived stability regions as follows

R(z) =
{ 1 + z, (Euler method)

1
1−z

. (implicit Euler method)

Stability regions of both methods are plotted and colored in figure 2.8.

a) explicit Euler method b) implicit Euler method

Figure 2.8: Stability regions for Euler method

We say that the stability region is defined as a set of points in the complex plane,

z should stay in the disc for other problems. It can be achieved only by reducing h. This

causes many limitations. For example to solve stiff problems with very negative eigenvalues

it means to decrease h so much that it makes explicit method unusable. If the stability

function has no poles in the left half-plane, this means the stability region includes all zeros

of the left half-plane and the method is said to be A-stable. It also holds that the magnitude

|R(z)| must be bounded by 1 for z on the imaginary axes. A-stability is a very desirable

property for any numerical algorithm, particularly if initial value problems were to be stiff

or stiff oscillatory [64].

Another interesting way how to study the stability region is using order stars technique

[57], see colored regions in figure 2.9. This property of multiplying the stability function

by exp(−z) should make no difference in the characteristic of the method stability. Notice

the behaviour near z = 0 and z = −1. For |Re(z)| large, the behaviour is effected by the
exponential function, the behaviour around zero is the same as for the absolute stability
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region and the behaviour at z = −1 is determined by a pole. The regions intersect with zero

and Re(R(z) exp(−z)) positive are called fingers. Regions with negative Re(R(z) exp(−z))

are known as dual fingers. Similar technique as order stars is the order arrows. The

technique of order arrows is about to plot the paths in the complex plane where ω(z) =

exp(−z)R(z) is real and positive.

a) explicit Euler method b) implicit Euler method

Figure 2.9: Order stars for Euler method

2.3 Taylor series

As we mentioned, Euler method can be generalized in few different ways. Consider the way

of use of higher derivatives. The Euler method can be extended or be a stepwise process.

When an acceptable estimate for y(xn) is given, the coefficients in a series in powers of

(x − xn) can be determined. This series is then used in approximately computing y(xn+1)

where the size of (xn+1−xn) is chosen so that acceptable accuracy is obtain with a reasonable

number of terms in the series. The Taylor polynomial can be used to approximate function

and to bound the error of the approximation [7].

The polynomial

Tn(x) = p(a) + p′(a)(x − a) +
p′′(a)

2
(x− a)2 +

p′′′(a)

3!
(x− a)3 + · · ·+ pn(a)

n!
(x− a)n (2.37)

is called the n-th degree Taylor polynomial for p at a and the expression

pn+1(a)

n + 1!
(x − a)n+1

is called the Lagrange form of the reminder and it is the error of approximating p(x) by

Tn(x).
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Very interesting concept of rooted trees were established by Butcher, Wanner, Hairer

et al. [16, 57]. We write T for the set of all trees and τ for the trivial tree with exactly one

vertex. Let t1 = (V1, R1), t2 = (V2, R2), · · · , ts = (Vs, Rs) as trees where vertices Vs are

suppose to be disjoint and we denote r1, r2, · · · , rs as roots of these trees. Let t = (V,R)

where V = r∪V1∪V2∪· · ·∪Vs with r /∈ V1∪V2∪· · ·∪Vs and R = (r, r1), (r, r2), · · · , (r, rs)∪
R1 ∪ R2 ∪ · · · ∪ Rs. Now we see that t is a tree with the root r such as

t = [t1t2 · · · ts]. (2.38)

For the power notation it is convenient to operate with decomposition and conciseness. If

we have a tree t with more than one vertex, then we can find a decomposition of the form

(2.38) by simply removing the root and all arcs from it and identifying t1, t2, · · · , ts with

the connected components that remain. If we have repeated trees among t1, t2, · · · , ts, we

combine them using the power notation which is the first aspect of the conciseness. That is

e. q. [t1t1t1t2t2] can be written as [t31t
2
2]. The second aspect of the conciseness is to indicate

the matching or repetitions of symbols. Thus we will write for the given example [[[τ ]τ ]],

that can be simplified by [2[τ ]τ ]2 only [16]. We always need to have pairs of brackets [, ]

with the same subscripts. This example will be presented by tree in figure 2.10. Notice

that the symmetric tree has different notation.

a) [2[τ ]τ ]2 b) [2τ [τ ]]2

Figure 2.10: Examples of rooted trees

Different notation is based on a binary operation on T . Define the operation
”
·“ as

T × T → T by the formulae

τ · u = [u]

[t1t2 · · · ts] · u = [t1 t2 · · · tsu]. (2.39)

For simplification it is common to elide the symbol
”
·“ in cases which can not be confusion

of the notation, such as τ · ττ means τ · (τ · τ). From equations (2.39) it is easy to see that

we can write any tree (excepting τ) as the product of two trees with fewer vertices. That
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is we can write any tree in terms of τ and the binary operation ·. According to the rule
tu · v = tv · u where u, v, t ∈ T trees mentioned above have the same description in this

notation, which is τ · (ττ · ττ). All trees with less than six vertices and their notations are

shown in table 2.3 [16].

Now some functions on trees will be defined. Denote r(t) the order of the tree t or the

number of vertices in a tree t.

For the order holds following recursions: for a tree with root r(τ) = 1 and

r([t1 t2 · · · ts]) = 1 + r(t1) + r(t2) + · · · + r(ts),

r(tu) = r(t) + r(u).

Another function which can be defined is height H of the tree t which is given by length

of the longest possible path in the tree

H(τ) = 1

H([t1 t2 · · · ts]) = 1 + max
i

H(ti),

H(tu) = max[H(t), 1 + H(u)].

By the width of the tree w(t) we understand the number of terminal vertices that is the

number of vertices with no successors. There are two known conventions, one defines the

width of simply tree τ as a 0, second convention is using w(t) = 1, to distinguish it denote

the second convention as w̄(t) = 0. We can imply that if w(τ) = 0, w̄(t) = 1 and t 6= τ ,

then w(t) = w̄(t).

Then there is a density γ of the tree which does not have any obvious significance as the

previous functions, but we can simplify the description as a measure of the non-bushiness

of a tree. The density γ of the tree satisfies

γ(τ) = 1,

γ([t1 t2 · · · ts]) = r([t1 t2 · · · ts])γ(t1)γ(t2) · · · γ(t2).

Two extreme cases could happen, first is the type of tree with H(t) = 2 and the second for

a tree with H(t) = r(t), where the density is γ(t) = r(t) and γ(t) = r(t)! respectively.

Next function the symmetry σ of the tree is defined as the order of its symmetry group

which is the group of isomorphisms of the tree with itself. If t = [tn1
1 tn2

2 · · · tns
s ], where

t1, t2, · · · , ts are distinct, then for the symmetry holds

σ(τ) = 1,

σ(t) = n1!n2! · · · ns!σ(t1)
n1σ(t2)

n2 · · · σ(ts)
ns .
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Table 2.3: Notations for trees [16]

τ τ [τ4] (ττ · τ)τ · τ

[τ ] ττ [τ2[τ ]] (ττ · τ) · ττ

[τ2] ττ · τ [τ [τ2]] ττ · (ττ · τ)

[2τ ]2 τ · ττ [τ [2τ ]2] ττ · (τ · ττ)

[τ3] (ττ · τ)τ [[τ ]2] (τ · ττ) · ττ

[τ [τ ]] ττ · ττ [2τ
3]2 τ · (ττ · τ)τ

[2τ
2]2 τ(ττ · τ) [2τ [τ ]]2 τ(ττ · ττ)

[3τ ]3 τ(τ · ττ) [3τ
2]3 τ · τ(ττ · τ)

[4τ ]4 τ · τ(τ · ττ)
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We are also interested in labelling trees. It is described by the function β(t) denoting

the number of ways of labelling a tree t with r(t) − 1 distinct labels where a root of the

tree is not labelled. Or we can use the notation β̄(t) for a number of ways of labelling a

tree with carrying out this labelling with r(t) labels where every vertex is labelled. Then

it holds

β(t) =
[r(t) − 1]!

σ(t)
,

β̄(t) =
r(t)!

σ(t)
. (2.40)

And the final interesting function is a function α(t) which define a number of ways of

labelling a tree t with a given totally ordered set V in such a way that if (m,n) is an arc

then m < n. The function is given by

α(t) =
r(t)!

γ(t)σ(t)
.

For our exemplar trees the functions are determined in table 2.4. Functions for trees up

to order 5 are determined in table 2.5.

Table 2.4: Functions and enumerations of exemplar tree

r(t) = 5, (see a)

σ(t) = 2! = 2

γ(t) = 5 · 1 · 2 · 1 · 2 = 40, (see b)

ω(t) = 2

H(t) = 4

α(t) = r(t)!
σ(t)γ(t) = 5!

2·40 = 3
2

a) b) β(t) = r(t)!
σ(t) = 5!

2 = 60

27



Table 2.5: Functions for trees up to order 5 [16]

t r(t) σ(t) γ(t) ω(t) H(t) α(t) β(t)

1 1 1 0 1 1 1

2 1 2 1 2 1 2

3 2 3 2 2 1 3

3 1 6 1 3 1 6

4 6 4 3 2 1 4

4 1 8 2 3 3 24

4 2 12 2 3 1 12

4 1 24 1 4 1 24

5 24 5 4 2 1 1

5 2 10 3 3 6 12

5 2 15 3 3 4 12

5 1 30 2 4 4 24

5 2 20 2 3 3 12

5 6 20 3 3 1 4

5 1 40 2 4 3 24

5 2 60 2 4 1 12

5 1 120 1 5 1 24
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The trees notation is very convenient for Taylor series. The exact solution of the differ-

ential equation can be expressed by Taylor series and it becomes increasingly complicated

as we evaluate higher derivatives. We need to formulate the second, third, fourth,. . . deriva-

tives. Hence we look for a systematic pattern

y′(x) = f(y(x))

y′′(x) = f ′(y(x))y′(x) = f ′(y(x))f(y(x))

y′′′(x) = f ′′(y(x))
(
f(y(x)), y′(x)

)
+ f ′(y(x))f ′(y(x))y′(x)

= f ′′(y(x))
(
f(y(x)), f(y(x))

)
+ f ′(y(x))f ′(y(x))f(y(x)) (2.41)

Next higher derivatives are increasingly complicated. But using systematic patterns we

write f(y(x)) =f, f ′(y(x)) =f′, f ′′(y(x)) =f′′ and we found they depend on the following

four vectors: f, f′f, f′′(f,f), f′f′f. The motivation of using the systematic patterns is to write

the Taylor series in elementary differentials notation and also in rooted trees notation called

operation diagram.

The elementary differentials noted in operation diagram are presented in the way that

f(n) is an n-ary operator and is always attached to a vertex in a particular diagram and

also to a vertex which has n outward branching arcs. The n operands on which f(n) is to

act in a particular diagram are found from the n subdiagrams rooted to these n outward

branching arcs. In the case n = 0, corresponding to terminal vertices, f(0) =f [16].

It is clear that for any rooted tree it is possible to form the operation diagram and

a corresponding elementary differential. Elementary differentials for trees up to order 5 are

given in table 2.6 in the second column.

Our exemplar tree is presented as on picture 2.11a.

a) f′′f′′(f′f,f) b) fijf
j
kmf

k
l f

lfm

Figure 2.11: Examples of rooted trees notations
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Table 2.6: Elementary differentials up to order 5

t elementary differentials partial derivative

f fi

f′f fijf
j

f′′(f,f) fijk f
jfk

f′f′f fijf
j
kf

k

f′′′(f,f,f) fijklf
jfkfl

f′′(f,f′f) fijkf
jfkl f

l

f′′f′′(f,f) fijf
j
klf

kfl

f′f′f′f fijf
j
kf

k
l f

l

f(4)(f,f,f,f) fijklmf
jfkflfm

f′′′(f,f,f′f) fijklf
jfkflmf

m

f′′(f,f′′(f,f)) fijkf
jfklmf

lfm

f′′(f,f′f′f) fijkf
jfkl f

l
mf

m

f′′(f′f,f′f) fijlf
j
kf

kflmf
m

f′′′f′′′(f,f,f) fijf
j
klmf

kflfm

f′′f′′(f,f′f) fijf
j
klf

kflmf
m

f′′f′′f′′(f,f) fijf
j
kf

k
lmf

lfm

f′f′f′f′f fijf
j
kf

k
l f

l
mf

m
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We can rewrite previous equations (2.41) in elementary differential notation and form

following relation such as

y′(x) = f

y′′(x) = f′f

y′′′(x) = f′′(f, f) + f′f′f

y(4)(x) = f′′′(f, f, f) + f′′(f, f′f) + f′′f′′(f, f) + f′f′f′f

It is possible to write the notation f ′, f′′, f′′′, · · · as f(1), f(2), f(3), · · · and then the vectors
compose in the sense of partial derivative notation. Let fij1j2···jn

= f i
j1j2···jn

(y(x)) denote as

an n-th order partial derivative of component number i of f. The summation convention

applies, it means an implicit summation over every superscript j, k, · · · which appears also
as a subscript. Then the root of the tree is attached by label i and to the other vertices

are labeled j, k, l, ... For each vertex we write down the f and we attach to it a superscript

equal to its label and subscript equal to the labels of each outwardly connected vertex. The

(summed) product of these factors is the expression for the i-th component of the vector

[16]. Our exemplar tree is presented in the partial derivative notation in picture 2.11b.

Partial derivatives for trees up to order 5 are given in table 2.6 in the third column.

The next generalization of the Euler method assumes instead of computing f once in

a step that the method computes f two or more times with different arguments. This

approach defines an important class of one-step method known as Runge-Kutta methods.

2.4 Runge–Kutta methods

Suppose we know y(xn) and we want to determine an approximation yn+1 to y(xn + h).

The idea behind the Runge-Kutta methods is to compute the value of f(x, y) at several

conveniently chosen points near to the solution in the interval (xn, xn + h) and to combine

these values in such a way as to get good accuracy in the computed increment.

Generally, this important section of numerical methods can be written in the form of

equations such as

yn =yn−1 + h
s∑

j=1

bjFj ,

Yi =yn−1 + h

s∑

j<i

aijFj , (2.42)

where Fi = f(Yi) is evaluated by approximations yn to y(xn) for i = 1, 2, · · · , s, constants

bj, aij can be written into table 2.7. Types of methods could be specified by different values

of those coefficients. The tableau was defined by J. C. Butcher [19].

31



Table 2.7: Butcher tableau of Runge–Kutta methods

0

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

To specify some types of the method, one needs to provide the constant number s, which

determines the number of internal stages, and constants aij (for 1 ≤ j < i ≤ s), constants

bi (for i = 1, 2, · · · , s) and constants ci (for i = 2, 3, · · · , s) [8]. For the demonstration we

will use two types of notations to show the whole theory of some methods in this section.

The second notation 2.43 is also quite known, it is given such as

yn+1 =yn + h
s∑

i=1

biki, (2.43)

where ki represent internal stages

k1 =f(tn, yn)

k2 =f(tn + c2h, yn + a21hk1)

...

ki =f(tn + csh, yn + as1hk1 + as2hks + · · · + as,s−1hks−1)

Runge–Kutta methods can be classified into three main classes: explicit, semi-implicit

and implicit. The separation is given by the characteristics in table 2.8.

Table 2.8: Types of Runge–Kutta methods

Type Coefficients No. of coefficients

Explicit aij = 0, j ≥ i
s(s+1)

2

Semi-Implicit aij = 0, j > i
s(s+3)

2

Implicit aij 6= 0 for at least one j > i s(s + 1)

The local truncation error of Runge–Kutta methods cannot be worse than the Euler

method from the view of the consistency condition and it is O(h2). The consistency con-

dition guarantees that at least one independent variable is computed correctly. Due to the

dependency of the local truncation error on constants aij and bi the conditions for a given

order accuracy are determined. Explicit low-order schemes are presented first [11].
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To start with the methods of order 2, methods are already introduced by the work of

Runge. This work was extended by Heun (1900) and by Kutta (1901). Heun who completed

order 3 methods and started the classification for order 4 method and Kutta finished it.

The main idea behind the order of each method is the number of stages s required to

achieve this order and the number of computed free parameters for given number of stages,

for low-order methods are given in table 2.9. The relationship between those numbers is

given by conditions, so-called order conditions. And again we can use the approach of the

rooted trees presented earlier and apply it for the order condition description for all classes

of Runge–Kutta algorithms [19].

Table 2.9: Numbers of stages to achieve specified order of low-order methods

order p 1 2 3 4

number of conditions 1 2 4 8

number of stages 1 2 3 4 5

number of parameters 1 3 6 10 15

For Runge–Kutta explicit method order 1 holds an order condition

b1 + b2 = 1, (2.44)

for second order second order to the condition (2.44) second condition need to be add, it is

b2a21 =
1

2
, (2.45)

for third order needs to hold other two conditions etc. Now we show how to obtain those

specific numbers.

At first we need to present the elementary weight Φi(t) for stage i where i = 1, 2, · · · ,
s + 1. The elementary weight for the rooted tree τ is defined by

Φi(τ) = ci,

Φi([t1t2 · · · tm]) =
s∑

j=1

aijΦj(t1)Φj(t2) · · ·Φj(tm).

The notation rule for formula Φ(t) corresponding to the tree says that the root of the tree

is labeled by i and the other vertices are labeled by j, k, l, · · · . For each arc write down
a factor auv where u, v are labels at the end of each arc. Insert a further factor bi and

then sum each indexes i, j, k, l, · · · through the numbers 1, 2, · · · , s. For example, our

exemplar tree from figure 2.10 first used in the subsection 2.3, is now represented by the
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formula

Φ(t) =
s∑

i,j,k,l,m=1

biaijajkaklajm.

To simplify it, we use the numbers c1, c2, · · · , cs to give

Φ(t) =

s∑

i,j,k=1

biaijajkckcj

by summing over l, m. For a standard Runge–Kutta method of order p for all t ∈ T with

r(t) ≤ p holds the equation (2.46) [16].

Φ(t) =
1

γ(t)
(2.46)

To generalize the approach of rooted trees in subsection 2.3 with using the elementary

weight Φ, we find the order conditions for an arbitrary Runge–Kutta method. The list of

order conditions related to trees for explicit Runge–Kutta methods up to order 5 is given

in table 2.10, where γ(t) was already computed in the previous section.

To illustrate the use of conditions for computing coefficients, we present several methods

up to order 4 of various parameters. The method of order 1 and stage 1, which has only one

possible variation, is Euler method (already mentioned above). The method is described in

table 2.11 by its scheme in the first column, by the Butcher tableau in the second column

and we check that the order conditions are satisfied for given coefficients of specific method

in the third column.

For second order method we obtain two equations (2.47) which gives us three possible

choices for computing coefficients.

b1 + b2 = 1

b2c2 =
1

2
(2.47)

The usual approach is to choose coefficient c2 and then solve coefficients bi. According to

the system of two equations (2.47) and the condition that a21 = c2 we have options for

RK2 given by

1) c2 =
1

2
, b1 = 0, b2 = 1,

2) c2 = 1, b1 = b2 =
1

2
,

3) c2 = arbitrary, b1 = 1 − 1

2c2
, b2 =

1

2c2
.

The second option is called Heun’s method or improved Euler method, more details are

described later in the subsection 3.1. For presenting the order conditions we choose the
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Table 2.10: Order conditions related to trees for explicit RK methods up to order 5

t r(t) ≤ p Φ(t) = 1/γ(t)

1
∑s

i=1 bi = 1

2
∑s

i=1 bici = 1
2

3
∑s

i=1 bic
2
i = 1

3

3
∑s

i=1

∑s
j=1 biaijcj = 1

6

4
∑s

i=1 bic
3
i = 1

4

4
∑s

i=1

∑s
j=1 biciaijcj = 1

8

4
∑s

i=1

∑s
j=1 biaijc

2
j = 1

12

4
∑s

i=1

∑s
j=1

∑s
k=1 biaijajkck = 1

24

5
∑s

i=1 bic
4
i = 1

5

5
∑s

i=1

∑s
j=1 bic

2
i aijcj = 1

10

5
∑s

i=1

∑s
j=1 biciaijc

2
j = 1

15

5
∑s

i=1

∑s
j=1

∑s
k=1 biciaijajkck = 1

30

5
∑s

i=1 bi

(∑s
j=1 ciaijcj

2
)

= 1
20

5
∑s

i=1

∑s
j=1 biaijc

3
j = 1

20

5
∑s

i=1

∑s
j=1

∑s
k=1 biaijcjajkck = 1

40

5
∑s

i=1

∑s
j=1

∑s
k=1 biaijajkc

2
k = 1

60

5
∑s

i=1

∑s
j=1

∑s
k=1 biaijajkaklcl = 1

120
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Table 2.11: Runge–Kutta order 1, stage 1

Scheme B. tableau Order condition

yn+1 = yn + hf(yn)
0 0

1
b1 = 1

Table 2.12: Runge–Kutta order 2, stage 2

Scheme B. tableau Order conditions

yn+1 = yn + 1
4h(k1 + 3k2)

0
2
3

2
3

0 1
4

3
4

b1 + b2 = 1
4 + 3

4 = 1

k1 = f(tn, yn) b2c2 = 3
4

2
3 = 1

2

k2 = f(tn + 2
3h, yn + 2

3hk1)

third option for c2 = 2/3 and we obtain the two-stage Runge–Kutta scheme given by table

2.12.

For the third order method we have four order conditions according to table 2.9 that

assumption gives us four equations

b1 + b2 + b3 = 1,

b2c2 + b3c3 =
1

2
,

b2c
2
2 + b3c

2
3 =

1

3
, (2.48)

b3a32c2 =
1

6
.

Solving the system of equations (2.48) with conditions a21 = c2 and c3 = a31 + a32 give us

several options for coefficients options for RK3 given by

1) c2 6= 2

3
, c2 6= c3, b1 = 1 − b2 − b3, b2 =

c2 − 2
3

2c2(c3 − c2)
, b3 =

2
3 − c2

2c2(c3 − c2)
, a32 =

1

6b3c2
,

2) c2 =
2

3
, c3 = 0, b3 6= 0, b1 =

1

4
− b3, b2 =

3

4
, a32 =

1

4b3
,

3) c2 = c3 =
2

3
, b3 6= 0, b1 =

1

4
, b2 =

3

4
− b3, a32 =

1

4b3
.

If we choose the third option for b3 = 3/4, we obtain the three-stage Runge–Kutta scheme

given by table 2.13.
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Table 2.13: Runge–Kutta order 3, stage 3

Scheme B. tableau Order conditions

yn+1 = yn + 1
6h(k1 + 4k2 + k3)

0
1
2

1
2

1 −1 2
1
6

4
6

1
6

b1 + b2 + b3 = 1
6 + 4

6 + 1
6 = 1

k1 = f(tn, yn) b2c2 + b3c3 = 4
6

1
2 + 1

61 = 1
2

k2 = f(tn + 1
2h, yn + 1

2hk1) b2c
2
2 + b3c

2
3 = 4

6
1
4 + 1

6 = 1
3

k3 = f(tn + h, yn − hk1 + 2hk2) b3a32c2 = 1
621

2 = 1
6

For fourth order method we have eight order conditions according to table 2.9. That

gives us eight equations for computing coefficients

b1 + b2 + b3 + b4 = 1

b2c2 + b3c3 + b4c4 =
1

2

b2c
2
2 + b3c

2
3 + b4c

2
4 =

1

3

b3a32c2 + b4a42c2 + b4a43c3 =
1

6

b2c
3
2 + b3c

3
3 + b4c

3
4 =

1

4
(2.49)

b3c3a32c2 + b4c4a42c2 + b4c4a43c3 =
1

8

b3a32c
2
2 + b4a42c

2
2 + b4a43c

2
3 =

1

12

b4a43a32c2 =
1

24

Finding results for given system of equations is more complicated, the problem lays in

the last equation. But it was derived and proved that condition for c4 = 1 gives the famous

RK4, which was classified by Kutta, see table 2.14. Other options are presented as

1) c2 = c3 = a21 =
1

2
, b3 6= 0 :

b1 =
1

6
, b2 =

2

3
− b3, b4 =

1

6
, a31 =

3b3 − 1

6b3
, a32 =

1

6b3
,

a41 = 0, a42 = 1 − 3b3, a43 = 3b3,
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2) c2 = a21 6= 0, c3 =
1

2
:

b1 =
1

6
, b2 = 0, b3 =

2

3
, b4 =

1

6
, a31 =

4c2 − 1

8c2
, a32 =

1

8c2
,

a41 =
1 − 2c2

2c2
, a42 = − 1

2c2
, a43 = 2,

3) c2 = a21 =
1

2
, c3 = 0, b3 6= 0 :

b1 =
1

6
− b3, b2 =

2

3
, b4 =

1

6
, a31 = − 1

12b3
, a32 =

1

12b3
,

a41 = −1

2
− 6b3, a42 =

3

2
, a43 = 6b3,

4) c2 = a21 = 1, c3 =
1

2
, b4 6= 0 :

b1 =
1

6
, b2 =

1

6
− b4, b3 =

2

3
, a31 =

3

8
, a32 =

1

8
,

a41 = 1 − 1

4b4
, a42 = − 1

12b4
, a43 =

1

3b4
,

5) c2, c3, 0, 1 all distinct, c2 6= 1

2
and 3 − 4(c2 + c3) + 6c2c3 6= 0 :

b1 =
1 − 2(c2 + c3) + 6c2c3

12c2c3
, b2 =

2c3 − 1

12c2(c3 − c2)(1 − c2)
,

b3 =
1 − 2c3

12c2(c3 − c2)(1 − c2)
, b4 =

3 − 4(c2 + c3) + 6c2c3

12(1 − c2)(1 − c3)
,

a21 = c2, a41 =
c3
2(12c

2
2 − 12c2 + 4) − c3(12c

2
2 − 15c2 + 5) + 4c2

2 − 6c2 + 2

2c2c3[3 − 4(c2 + c3) + 6c2c3]
,

a42 =
(−4c2

3 + 5c3 + c2 − 2)(1 − c2)

2c2(c3 − c2)
(
3 − 4(c2 + c3) + 6c2c3

) , a43 =
(1 − 2c2)(1 − c3)(1 − c2)

c3(c3 − c2)
(
3 − 4(c2 + c3) + 6c2c3

) .

If we choose the option 1 with b3 = 1/3, we get very known RK4, see table 2.14.

The Runge–Kutta methods are divided into two groups according to the number of

stages for a reason. We start with a theorem for s-stage method that the order of the

method cannot exceeds s. It also holds that for low-order Runge-Kutta methods (p ≤ 4)

the greatest achievable order of the s-stage method is equal to s. It was determined and

proved, e. g. by Butcher (1987). We are interested in the high-order Runge–Kutta methods.

Which order can be reached by s-stage method? It has been shown in the table 2.9 that

the order 4 can be reached by 4 stages and 5 stages Runge-Kutta methods. The theorem

holds that there is no p-stage pth-order method with p ≥ 5. Hence, there are determined

bounds for explicit Runge-Kutta methods high-order [16].

For a given number p there exists a method of order p with s1 stages where

s1 =
p2 − 7p + 20

2
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Table 2.14: Runge–Kutta order 4, stage 4

Scheme B. tableau Order conditions

yn+1 = yn + 1
6h(k1 + 2k2 + 2k3 + k4)

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

1
6 + 2

6 + 2
6 + 1

6 = 1

k1 = f(tn, yn) 2
6

1
2 + 2

6
1
2 + 1

6 = 1
2

k2 = f(tn + 1
2h, yn + 1

2hk1)
1
12 + 1

12 + 1
6 = 1

3

k3 = f(tn + 1
2h, yn + 1

2hk2)
1
12 + 0 + 1

12 = 1
6

k4 = f(tn + h, yn + hk3)
1
24 + 1

24 + 1
6 = 1

4
1
24 + 0 + 1

12 = 1
8

1
24 + 0 + 1

24 = 1
12

and if p ≥ 10 the method exists with the required order with

s2 =
p2 − 7p + 10

2

stages [35].

To fulfill the theory for high-order explicit methods numbers of orders and stages are

presented in table 2.15. Notice that for order 5 method 17 order conditions to determine

coefficients need to be accomplished, for method of order 6 there are 37 conditions etc.

Table 2.15: Numbers of values for specific order of high-order methods

order p 5 6 7 8

number of conditions 17 37 85 200

number of stages 6 7 8 9 10 11

number of parameters 21 28 36 45 55 66

We present conditions only for the method of order 5 that means we add another

9 conditions to conditions already mentioned above such as
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s∑

i=1

bic
4
i =

1

5

s∑

i=1

s∑

j=1

bic
2
i aijcj =

1

10

s∑

i=1

s∑

j=1

biciaijc
2
j =

1

15

s∑

i=1

s∑

j=1

s∑

k=1

biciaijajkck =
1

30

s∑

i=1

s∑

j=1

s∑

k=1

biaijcjaikck =
1

20

s∑

i=1

s∑

j=1

biaijc
3
j =

1

20

s∑

i=1

s∑

j=1

s∑

k=1

biaijcjajkck =
1

40

s∑

i=1

s∑

j=1

s∑

k=1

biaijajkc
4
k =

1

60

s∑

i=1

s∑

j=1

s∑

k=1

s∑

l=1

biaijajkaklcl =
1

120

There are known numbers of stages and orders for the method order 9 and 10. The

lower bound for order 9 is the number of 12 stages and upper bound should accomplish

number of 17 stages, to reach the order 10 we need at least 13 stages but no more than 17

stages. The number of conditions for the high-dimensional general problem to have order

p is equal to the number of rooted-trees with less than or equal to p-vertices.

Bounds of explicit methods, also called as barriers, say that p-order Runge–Kutta

method requires more than p-stages if p > 4. According to the fact solving order con-

ditions becoming more difficult for higher p. Hence, here arise the implicit Runge–Kutta

methods. Implicit Runge–Kutta method is given by same the formula as explicit Runge-

Kutta method (2.42) but defining internal approximations as

Yi =yn−1 + h
s∑

j=1

aijf(Yj), i = 1, 2, · · · , s (2.50)

with coefficients aij = 0 for all i ≥ j. The implicit Runge–Kutta methods can be sorted

out to different families. There are Gauss, Radau and Lobatto families. A special case

with aij = 0 for i > j but with at least one of aii is non-zero, lays somewhere between

explicit and implicit are called semi-implicit RK methods. Other groups are singly implicit
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Runge-Kutta methods (SIRK, [23]) and diagonally implicit Runge-Kutta methods (DIRK,

[1]). SIRK can be generalized into diagonally extended singly implicit Runge-Kutta methods

using efficient order (DESIRE, [25]) and diagonally-implicit multi-stage integration methods

(DIMSIM, [17]).

Stability analysis

To illustrate the analysis of the grown of numerical errors in a computed solution to a differ-

ential equation, we consider the equation (2.35) again as in Euler method stability analysis.

As we write hq = z the analysis generalizes in the case of explicit Runge-Kutta methods to

give a result yn computed after n steps from y(0) = 1. The result is given by yn = r(z)n.

The r is a particular polynomial determined by the coefficients in the method. In the case

of implicit Runge-Kutta methods, r is not in general a polynomial but a rational function.

A Runge-Kutta method is said to be A-stable if its stability region contains C−, the

non-positive half-plane. This definition has been redefined in different ways during the

time. More requirements on the qualitative behaviour of numerical solutions were proposed.

Let us introduce some of the requirements. One of them is that a method to be such

that |r(z)| ≤ 1 for all C− and in addition that lim|z|→∞ |r(z)| = 0 and it is known as

a L-stability. Quite standard requirement of A-stability is that the stability region include

the set C(α) = z ∈ C : |arg(−z)| ≤ α and the stability region contains some left half-plane

together with the intersection of the negative half-plane with some open set containing the

real axis. This properties was named A(α)-stability (Widlund, 1967) and later named as

stiff stability (Gear, 1969) [47, 104].

The requirements which refers to the qualitative behaviour of numerical solutions to

certain non-linear problems are given by B-stability (Butcher, 1975). The property says

that for two particular solutions to such a problem the difference between them is non-

increasing and could be applied to numerical solution. This property can be considered also

for non-autonomous differential equations and the method preserves it is called BN -stable

(Burrage and Butcher, 1979) [12, 22].

Consider a Runge–Kutta method given by

Y1 = yn−1,

Y2 = yn−1 + ha21f(Y1),

· · ·

Ys = yn−1 + h
(
as1f(Y1) + as2f(Y2) + · · · + as,s−1f(Ys−1)

)
,

yn = yn−1 + h
(
b1f(Y1) + b2f(Y2) + · · · + bsf(Ys)

)
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using the Dahlquist problem (2.31), z = hq and s the number of stages. We rewrite it as

Y = yn−1e + zAY,

yn = yn−1 + zbT Y,

where e = [1, 1, · · · , 1]T , Y = [Y1, Y2, · · · , Ys]
T and bT = [b1, b2, · · · , bs].

The polynomial r which determines the stability of the method is given by

R(z) =
yn

yn−1
= 1 + zbT (y−1

n−1Y ).

Due to some assumptions [16], we find

R(z) = 1 + z +
z2

2!
+ · · · + zp

p!
+ cp+1z

p+1, (2.51)

A method is said to be A-stable if its stability function is bounded by 1 in the left half-

plane. It is said to be L-stable if it is A-stable and R(∞) = 0. A method of order p has

a stability function with a series that agrees with ez up to terms in hp [21]. Hence we obtain

the stability regions described in the table 2.16 and plotted in the picture 2.12 [13].

Table 2.16: Stability functions for Runge–Kutta methods up to order 4

order R(z)

1 1 + z

2 1 + z + 1
2z2

3 1 + z + 1
2z2 + 1

6z3

4 1 + z + 1
2z2 + 1

6z3 + 1
24z4

...

Notice that stability regions up to order 4 are same for Runge–Kutta method and for

Taylor series method. The A-stability of the implicit algorithms can be tested by the same

procedure as the explicit methods.

The stability function for s-stage implicit Runge–Kutta method is a rational function

R(z) = 1 + zbT (I − zA)−1e,

where z = λh and e is the s-vector e = (1, 1, · · · , 1)T [13].

The disadvantages of the explicit Runge–Kutta methods include relatively large number

of function evaluations at every integration step. A p-th order explicit formula requires at

least p function evaluation per integration step, whereas a corresponding Adams method

will require one function evaluation per step, but usually with more overhead costs and

smaller stepsizes. The second disadvantage lays in the relatively small interval of absolute
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a) second order b) third order

c) fourth order d) fifth order

e) sixth order f) seventh order

Figure 2.12: Stability regions of Runge–Kutta method up to order 7
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stability render them unsuitable for stiff problems. These disadvantages can by handled

with Adams methods such as with classes of implicit and semi-implicit methods proposed

by different people (Butcher, Cash, Nørsett, Rosenbrock etc.) [26, 57].

2.5 Taylor series method

Substituting derivations and initial values into the formula for the Taylor polynomial (2.37),

we than obtain a representation of the solution as a power series about the initial point x0.

This procedure, called the Taylor series method, is illustrated of power series (2.52). The

mathematical background was widely described in the history [4, 5, 75].

yn = yn−1 + hy′n−1 +
h2

2!
y′′n−1 + · · · + hp

p!
y

(p)
n−1 + O(hp+1) (2.52)

The method has been implemented in simulators TKSL/386, TKSL/C (Kunovsky, 1991,

1998) with different approach than the approach brought by Barton, Willers and Zahar

[4]. It uses so-called forming differential equations which implement higher orders more

effectively. The Taylor series method can be used for solving a large number of various

problems and it has an automatic integration method using Taylor series. It could be used

for variable order; the order p is set automatically using as many Taylor series terms for

computing as needed to achieve the required accuracy.

The absolute value of the relative error of the computation is the main criterion to

chosen the order. Maximum order of this method is computed up to 63 of Taylor series

terms. The advantage is in the speed of computation, that is functions are generated by

adding, multiplying and superposing elementary functions. The disadvantage of the method

is the need to generate higher derivatives.

We again present the example of RLC electrical circuit (2.22) as a first test problem to

show the power of Taylor series method. We focus on the numerical solution of the circuit

and we compare it with the analytical solution. We have same constants and we solve the

circuit numerically using differential equations. The numerical solution is plotted in the

graph 2.13. The numerical solution of uC is labelled as uCnumer in the graph. When we

compare the numerical solution uC to an analytical solution uCanalyt we get very small

numbers of the error around values 10−17. Hence, the Taylor series method proves high

accuracy of calculation. For those interested in specific equations TKSL/C source code is

given in the Appendix B.

As second test problem we present Kepler problem also known as one-body problem

which describes the motion of a single planet around a heavy sun. The problem is given by
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Figure 2.13: RLC circuit (2.22) - numerical solution and error

the system of differential equations

y′1 =y3,

y′2 =y4,

y′3 =
−y1

r3
, (2.53)

y′4 =
−y2

r3
, r =

√
y2
1 + y2

2.

We are already assuming that if the M denotes the mass of the sun, γ the gravitational

constant andm the mass of the planet, the attractive force on the planet with the magnitude

γMm

y2
1 + y2

2

can be removed from the given system (2.53) by adjusting the scales of the variables.

The results of the system are known as ellipses, parabolas or hyperbolas, if we ignore the

possibility that the trajectory is a straight line directed either towards or away from the

sun. The initial values have been derived as

y1 =1 − e,

y2 =0,

y3 =0, (2.54)

y4 =

√
1 + e

1 − e
,

where e is the eccentricity of an ellipse on which the orbit lies [18]. The solution of the

Kepler problem is described by that all points on the trajectory lie on the ellipse

(y1 + e)2 +
y2
2

1 − e2
= 1
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with centre (−e, 0), eccentricity e and major and minor axis lengths 1 and
√

1 − e2 respec-

tively [21]. The case of e = 0.75 is described in figure 2.14.

Figure 2.14: Solution of Kepler problem

We demonstrate the variable order setting of Taylor series method by solving the Kepler

problem in program TKSL/386. The program automatically uses variable stepsize and

variable order via number of used Taylor series terms during the calculation to satisfy

the required error tolerance given by the user. Kepler problem is specified by stepsize

DT= 0.001 and the eccentricity e = 0.75. The maximum timesteps of computation is

specified for T = 2π so we can easily check the accuracy from the graph and plotted values

at the end of the calculation. At first we force the program to use the maximum order 5,

see picture 2.15a where time is plotted on the x-axis and variable Y2 and used order ORD

are plotted on the y-axis. We observe that the plotted value Y2 corresponding to unknown

value y2 in the system of equations (2.53) is very close to the exact value. Value y2 should

be at t = 2π equals to 0, the global error is EPS= 5.99538339714e−08 in this case.

If we increase the maximum order to 10, the global error is even smaller. From the

graph 2.15b we see EPS= 7.27709288265e−16 and t is specified on x-axis, Y2 and ORD

on y-axis. Notice that in case a) the number of Taylor series terms differs during the

calculation, but in case b) the program is forced to use tenth terms of the Taylor series

and it uses the maximum order as a minimum order. It is linked with the efficiency of the

computation. The calculation specified by chosen parameters is very time demanding. The

program TKSL/386 is implemented to achieve the best accuracy possible.

We focus on choosing the stepsize in the second experiment. Implementation of Taylor

series method uses the method of halving the stepsize. Experiment with Kepler problem
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a) fifth order b) tenth order

Figure 2.15: Different orders of the Taylor series method for Kepler problem

specified by the eccentricity e = 0.75, maximum time interval T = 50π and starting value

of the stepsize DT= 1 is given by the graph 2.16. The method of halving the stepsize seems

to be quite effective. The accuracy of the calculation is achieved.

Figure 2.16: Taylor series method for Kepler problem with a computing time t = 50π

It has been shown that generally the method is A-stable [102]. Stability regions for

different numbers of Taylor series terms are shown in the section 2.4, where Runge–Kutta

methods were presented, in figure 2.12.

Dahlquist problem (2.31) was chosen for next experiment to check the order of the

Taylor series method. Errors of Dahlquist problem with fixed stepsize are displayed in

table 2.17. The errors of Euler method was also added into the table for comparison. The

order of Euler method and orders of Taylor series method are displayed in the graph 2.17.

The Taylor series method applies to nonlinear as well as linear equations. One dis-
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Table 2.17: Errors of Euler method and Taylor series method for Dahlquist problem

h errEuler errTs2 ratio errTs4 ratio

0.1 0.1245394 4.200982e-03 2.084324e-06

0.1·2−1 6.498412e-02 1.090774e-03
3.851

1.358027e-07
15.348

0.1·2−2 3.321799e-02 2.778841e-04
3.925

8.666185e-09
15.670

0.1·2−3 1.679689e-02 7.012736e-05
3.963

5.473053e-10
15.834

0.1·2−4 8.446252e-03 1.761434e-05
3.981

3.438494e-11
15.917

0.1·2−5 4.235185e-03 4.413927e-06
3.991

2.155165e-12
15.955

0.1·2−6 2.120621e-03 1.104776e-06
3.995

1.350031e-13
15.964

0.1·2−7 1.061069e-03 2.763559e-07
3.997

4.884981e-15
27.636

Figure 2.17: Orders of Euler method and Taylor series method for Dahlquist problem
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advantage of the Taylor series method is that by computing finitely many terms of the

Taylor expansion, one still has no way of knowing the radius of convergence of the series.

Fortunately, when the differential equation is linear, there are existence theorems that give

a minimum value for its radius [83].

In this chapter the techniques for solving problems by using the single step with one

or more computing and functional evaluating in a step were introduced. The next chapter

will continue in the generalization in such a way to bring more previous values such as the

value yn depends not only on yn−1 and f(yn−1) but also on yn−2 and f(yn−2), yn−3 and

f(yn−3),. . .
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Chapter 3

Multistep methods

Generally, the method is called k-step method. To this group of methods belong linear

multistep methods, which will be presented in the section 3.2 and their combinations to

predictor–corrector pairs, which are described in the section 3.3.

3.1 Improved Euler method

We present the first step of generalization from one-step methods. Let us introduce the

method called improved Euler method. Given an initial value problem (2.25) the improved

Euler method with stepsize h consists in applying the iterative formulae (3.1). The pro-

cedure of this method is following; as a first step we evaluate the function f(xn−1, yn−1)

and we use if to compute the predicted value of y noted as y∗n. In the second step we

use this precomputed value of the solution for evaluating f -function in xn. Last step is to

correct the result value using the new function evaluation. Equations which describe the

predict-evaluate-correct process are given by

F1 =f(xn−1, yn−1)

y∗n =yn−1 + hF1

F2 =f(xn, y∗n) (3.1)

yn =yn−1 +
1

2
h(F1 + F2)

The method computes successive approximations y1, y2, y3, ... to the values y(x1), y(x2),

y(x3), ... of the (exact) solution y = y(x) at the points x1, x2, x3, ... respectively [41].

The improved Euler method is one of a class of numerical techniques known as predictor–

corrector methods. First a predictor y∗n of the next y−value is computed; then it is used to
correct itself in yn. If we rewrite it, the improved Euler method with stepsize h consists in

using predictor

y∗n = yn + hf(xn−1, yn−1) (3.2)
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and the corrector

yn = yn−1 +
1

2
h
(
f(xn−1, yn−1) + f(xn, y∗n)

)
. (3.3)

The stopping rule may be controlled either by comparing the difference of both formulae

to chosen tolerance or by predetermining the number of iterations [101]. More information

about predictor–corrector pairs are presented later in section 3.3.

3.2 Linear multistep methods

The linear multistep method is essentially a polynomial interpolation procedure whereby

the solution or its derivative is replaced by a polynomial of appropriate degree in the inde-

pendent variable x, whose derivative or integral is readily computed. The linear multistep

method for the initial value problem is given by

yn =

k∑

i=1

αiyn−i + h

k∑

i=0

βif(yn−i, yn−i). (3.4)

According to the coefficient b0 one separates methods into Gear methods and Adams meth-

ods: explicit Adams–Bashforth (b0 = 0) and implicit Adams–Moulton (b0 6= 0).

To construct arbitrary linear multistep methods we use order conditions. We replace

the values and their derivatives on the right-hand side of equation (3.4) by the exact values

and apply Taylor series expansions about the point (xn, y(xn)) [55].

a1y(xn − h) + a2y(xn − 2h) + · · · + aky(xn − kh) + h
(
b0y

′(xn) + b1y
′(xn − h) + · · · + bky

′(xn − kh)
)

=a1

(
y(xn) − hy′(xn) +

h2

2
y′′(xn) − h3

6
y′′′(xn) +

h4

24
y(4)(xn) − · · ·

)

+ a2

(
y(xn) − 2hy′(xn) +

4h2

2
y′′(xn) − 8h3

6
y′′′(xn) +

16h4

24
y(4)(xn) − · · ·

)

...

+ ak

(
y(xn) − khy′(xn) +

k2h2

2
y′′(xn) − k3h3

6
y′′′(xn) +

k4h4

24
y(4)(xn) − · · ·

)

+ hb0y
′(xn)

+ hb1

(
y′(xn) − hy′′(xn) +

h2

2
y′′(xn) − h3

6
y′′′(xn) +

h4

24
y(4)(xn) − · · ·

)

+ hb2

(
y′(xn) − 2hy′′(xn) +

4h2

2
y′′(xn) − 8h3

6
y′′′(xn) +

16h4

24
y(4)(xn) − · · ·

)

...

+ hbk

(
y′(xn) − khy′′(xn) +

k2h2

2
y′′(xn) − k3h3

6
y′′′(xn) +

k4h4

24
y(4)(xn) − · · ·

)
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a1y(xn − h) + a2y(xn − 2h) + · · · + aky(xn − kh) + h
(
b0y

′(xn) + b1y
′(xn − h) + · · · + bky

′(xn − kh)
)

=y(xn) (a1 + a2 + · · · + ak)

− hy′(xn) (a1 + 2a2 + · · · + kak − b0 − b1 − b2 − · · · − bk)

+
h2

2
y′′(xn)

(
a1 + 4a2 + · · · + k2ak − 2b1 − 4b2 − · · · − 2kbk

)
(3.5)

...

+
hk

k!
y(k)(xn)

(
a1 + 2ka2 + · · · + kkak − pb1 − 2(p−1)pb2 − · · · − k(p−1)pbk

)

If we equate the left-hand side of equation (3.5) to zero, we find the following order condi-

tions and we get order conditions for linear multistep method.

The linear multistep method is of order m if

a1 + a2 + · · · + ak =1,

Order 1 : a1 + 2a2 + · · · + kak =b0 + b1 + b2 + · · · + bk,

Order 2 : a1 + 22a2 + · · · + k2ak =2(b0 + 2b1 + 3b2 + · · · + kbk),

Order 3 : a1 + 23a2 + · · · + k3ak =3(b0 + 4b1 + 8b2 + · · · + k2bk), (3.6)

Order 4 : a1 + 24a2 + · · · + k4ak =4(b0 + 8b1 + 27b2 + · · · + k3bk),

...

Order p : a1 + 2pa2 + · · · + kpak =p(b0 + 2(p−1)b1 + 3(p−1)b2 + · · · + k(p−1)bk).

The two-step explicit method can attain order 3 while the two-step implicit method can

attain order 4.

Gear methods, especially Gear formula also called backward differentiation formula,

have a great importance within the multistep methods. The conditions are p = k − 1 and

b0 = b1 = · · ·= bk−1 = 0. Using the following equations (3.7) we are able to compute the

coefficients for Gear formula up to order 4, see Table 3.1 [50].

p∑

i=0

ai =1

p∑

i=1

(−i)jai + jb−1 =1, j = 1, · · · , k (3.7)

There is not a stable second order integration method than the Gear’s method of second

order. Only implicit Gear methods with order k ≤ 6 are zero stable.

Adams–Bashforth method is an explicit multistep method whence

p = k − 1, a1 = a2 = · · · = ak−1 = 0, b−1 = 0
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Table 3.1: Gear method’s coefficients up to k = 5 steps

k b−1 a0 a1 a2 a3

2 1 1

3 2
3

4
3 −1

3

4 6
11

18
11 − 9

11
2
11

5 12
25

48
25 −36

25
16
25 − 3

25

defined by

yn = yn−1 + h(a1fn−1 + a2fn−2 + · · · + bkfn−k).

The coefficients ak (see Tab. 3.2) can be determined from (3.6) and rewritten also by

j

p∑

i=0

(−i)j−1bi = 1, j = 1, · · · , k (3.8)

The Adams-Bashforth formula of order 1 for k = 1 yields the (explicit) Euler method, see

table 3.2.

For example, Adams-Bashforth’s coefficients of order 6 (p = 6, k = 7) are derived by

j
7∑

i=0

(−i)j−ibi = 1, j = 1, 2, · · · 7

which gives us

1[(−0)0b0 + (−1)0b1 + (−2)0b2 + (−3)0b3 + (−4)0b4 + (−5)0b5 + (−6)0b6] =1

2[(−0)1b0 + (−1)1b1 + (−2)1b2 + (−3)1b3 + (−4)1b4 + (−5)1b5 + (−6)1b6] =1

3[(−0)2b0 + (−1)2b1 + (−2)2b2 + (−3)2b3 + (−4)2b4 + (−5)2b5 + (−6)2b6] =1

4[(−0)3b0 + (−1)3b1 + (−2)3b2 + (−3)3b3 + (−4)3b4 + (−5)3b5 + (−6)3b6] =1

5[(−0)4b0 + (−1)4b1 + (−2)4b2 + (−3)4b3 + (−4)4b4 + (−5)4b5 + (−6)4b6] =1

6[(−0)5b0 + (−1)5b1 + (−2)5b2 + (−3)5b3 + (−4)5b4 + (−5)5b5 + (−6)5b6] =1

7[(−0)6b0 + (−1)6b1 + (−2)6b2 + (−3)6b3 + (−4)6b4 + (−5)6b5 + (−6)6b6] =1
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



1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0 0 −2 −4 −6 −8 −10 −12

0 0 3 12 27 48 75 108

0 0 −4 −32 −108 −256 −500 −864

0 0 5 80 405 1280 3125 6480

0 0 −6 −192 −1458 −6144 −1875 −46656

0 0 7 448 5103 28672 109375 326592









a7

b0

b1

b2

b3

b4

b5

b6





=





1

1

1

1

1

1

1

1





and the result for Adams-Bashforth method order p = 6, k = 7 is

yn =yn−1 + h
(28369

8634
fn−1 −

5421

733
fn−2 +

46083

395
fn−3 −

10754

945
fn−4 +

5547

824
fn−5

− 2697

1213
fn−6 +

421

1334
fn−7

)

Table 3.2: Adams-Bashforth method’s coefficients up to k = 7 steps

k b1 b2 b3 b4 b5 b6 b7

1 1

2 3
2 −1

2

3 23
12 −16

12
5
12

4 55
24 −59

24
37
24 − 9

24

5 1901
720 −2774

720
2616
720 −1274

720
251
720

6 4277
1440 −7923

1440
9982
1440 −7298

1440
2877
1440 − 475

1440

7 28369
8634 −5421

733
46083
395 −10754

945
5547
824 −2697

1213
421
1334

Adams–Moulton method is an implicit multistep method whence

p = k − 2, a1 = a2 = . . . = ak−2 = 0

defined by

yn = yn−1 + h(b0fn + b1fn−1 + · · · + bk−1fn−k+1).

Similarly, coefficients are obtained for the highest order possible, see table 3.3. And however,

the Adams-Moulton are implicit methods, thus reach order p + 1. The Adams-Moulton

formula of order 1 yields the (implicit) backward Euler integration method and the formula

of order 2 yields method known as the trapezoidal rule.
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Table 3.3: Adams-Moulton method’s coefficients for k = 7 steps for constant stepsize

k b0 b1 b2 b3 b4 b5 b6

1 1

2 1
2

1
2

3 5
12

8
12 − 1

12

4 9
24

19
24 − 5

24
1
24

5 251
720

646
720 −264

720
106
720 − 19

720

6 475
1440

1427
1440 − 798

1440
482
1440 − 173

1440
27

1440

7 925
2931

2713
2520 −2015

2623
586
945 −1321

3953
263
2520 − 37

2593

A comparison of tables 3.2 and 3.3 reveals that the coefficients of the implicit formula

are smaller than those of the corresponding explicit formulas. The smaller coefficients

lead to smaller local truncation errors and, hence, to improved accuracy over the explicit

Adams-Bashforth methods [45].

Stability analysis

A linear multistep method [α, β] is stable if the difference equation (3.9) has only bounded

solution. The difference equation represents an one-dimensional problem to equation (3.4)

with f(x, y) = 0 gives

yn = α1yn−1 + α2yn−2 + · · · + αkyn−k. (3.9)

A linear multistep method is said to be stable if all solution of the difference equation (3.9)

are bounded as n → ∞. Let p(λ) be the corresponding characteristic polynomial

p(λ) = λk − α1λ
k−1 − α2λ

k−2 − · · · − ak.

A method is said to satisfy the root condition if |λj | ≤ 1 for all j, and if |λi| is a repeated
root then |λj | < 1. That is, all roots must lie within the unit circle and those on the

boundary must be simple [21].

The Adams–Bashforth formulae are straightforward computations of yn, but they are

handicapped by lower attainable order compared with the corresponding implicit methods.

Their stability is also quite inferior to that of the corresponding implicit processes [45].

According to Dahlquist (1963) the theorem about the A-stability is given by Barrier theorem

[38]

1. An explicit k-step method cannot be A-stable.
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2. The order p of an A-stable method, linear multistep method cannot exceed 2. The

smallest error constant c = 1/12 is obtained for the trapezoidal rule.

The stability regions for Adams–Bashforth formulae of order up to 6 are presented in

figure 3.1. The stability regions for Adams–Moulton formulae of order up to 6 are presented

in figure 3.2.

3.3 Predictor–corrector methods

Predictor–corrector methods constitute an important algorithm in implementation of linear

multistep methods and the most successful codes for the solution of initial value problems

of ordinary differential equations. Briefly, these methods are successful because they oc-

cur in naturally arising families covering a range of orders, they have reasonable stability

properties, and they allow an easy control via suitable stepsize or order changing policies

and techniques. The major advantage of the multistep methods is that fewer functional

evaluations are usually required per integration step [46].

We obtain different types by combinations of explicit and implicit methods. Usually

the predictor is an Adams-Bashforth formula and it predicts first approximation value of

the solution. The derivative evaluated from this approximation is used in Adams-Moulton

corrector formula in the next step. Apart from the better stability of the predictor-corrector

formulae over the explicit formulae, the predictor-corrector formulae are generally more

accurate and provide reasonable and adequate error estimators [45].

In the calculation of predictor-corrector pairs are three stages:

1. Predict the starting value for the dependent variable yn+k as y∗n+k.

2. Evaluate the derivative at (xn+k, y
∗

n+k).

3. Correct the evaluated predicted value.

A combination of three stages is called PEC (predict–evaluate–correct) mode. It is

often more desirable in terms of stability considerations to incorporate one additional func-

tion evaluation per integration step, thus calculate the PECE (predict–evaluate–correct–

evaluate) mode [70]. Other options of repeating stages are possible but we have in mind

that it is generally considered that functional evaluations are the most expensive part of

the predictor–corrector procedure.

See how the stability regions of different combinations look like. On the picture 3.3

we can see the stability regions of predictor-corrector methods based on Adams-Bashforth

method order 2 and 3 and Adams–Moulton method order 2 and 3.
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Figure 3.1: Regions of absolute stability - Adams–Bashforth method up to order 6
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a) second order AM
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Figure 3.2: Regions of absolute stability - Adams–Moulton method up to order 6
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a) PEC (AB2+AM2) b) PEC (AB3+AM3)

c) PEC (AB2+AM3) d) PEC (AB3+AM2)

Figure 3.3: Regions of absolute stability: predictor–corrector methods
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The stability improvement is given by PECE mode. One more evaluation on the end of

each computational step makes the stability region more wide [71]. Notice the difference in

stability region for Adams-Bashforth method order 2 (AB2) and Adams–Moulton method

order 2 (AM2) in PEC mode presented in picture 3.4a and stability region of same methods

orders 3 (AB3, AM3) in PECE mode in picture 3.4b.

a) PEC mode
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b) PECE mode

Figure 3.4: Regions of absolute stability - Adams-Bashforth method and Adams–Moulton

method of order 2

In this chapter we presented the generalization of using previous values such as the

value yn depends on yn−1, f(yn−1) and on yn−2, f(yn−2), yn−3, f(yn−3),. . . The next

generalization is given by higher derivatives of these previous values, we obtain methods

called multiderivative multistep methods.
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Chapter 4

Multiderivative multistep methods

To obtain the General linear methods we have two options. We generalize Runge–Kutta

methods in case of using more previous values, or we generalize Linear multistep methods

in case of using more stages in the calculation per step. So we have a range of possibilities

from 1 input quantity, as in Runge–Kutta methods, to a large number as in multistep

methods.

4.1 General linear methods

We denote the number of input quantities by r, the number of stages by s and then the

quantities input at the start of step n is y
(n−1)
i for i = 1, 2, · · · , r we got

y(n−1) =





y
(n−1)
1

y
(n−1)
2
...

y
(n−1)
r




. (4.1)

We also need the notation for the stage values computed in step n as Yi for i = 1, 2, · · · , s,

which can be represented by

Y =





Y1

Y2

...

Ys




(4.2)
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and the stage derivatives computed in step n is Fi also for i = 1, 2, · · · , s such as

F =





F1

F2

...

Fs




. (4.3)

Finally the quantities exported at the end of each step is y
(n)
i for i = 1, 2, · · · , r

y(n) =





y
(n)
1

y
(n)
2
...

y
(n)
r




. (4.4)

The formulation of general linear methods for the various steps is given by

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
(n−1)
j , Fi = f(Yi), i = 1, 2, · · · , s

y
(n)
i =

s∑

j=1

bijhFj +

r∑

j=1

uijy
(n−1)
j , i = 1, 2, · · · , r (4.5)

or using a compact notation

Y =(A ⊗ I)hF + (U ⊗ I)y(n−1)

y(n) =(B ⊗ I)hF + (V ⊗ I)y(n−1) (4.6)

To show the process of carrying out the step we follow the given algorithm [20]

1. The subvectors r comprising y
(n−1)
i are imported at the start of step n.

2. The subvectors in Yi and Fj are computed.

3. Each of the Yi is a linear combination of the hFj and the y
(n−1)
j , we obtain the matrices

A and U .

4. The subvectors r comprising y
(n)
i are computed corresponding to the u

(n−1)
ij subvec-

tors.

5. The y
(n)
i are linear combinations of the hFj and the y

(n−1)
j and we obtain the matrices

B and V .

The special case of general multistep methods is Obreshkov quadrature formulae. We

briefly introduce them in the next section due to the approach of the contribution in the

next chapter.
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4.2 Obreshkov quadrature formulae

It has been described that the suitable way to obtain the s-stage q-derivative method is

to use the collocation method with multiple nodes. For ordinary differential equations it

consists in searching for a polynomial of degree s whose derivative coincides (
”
co-locates“)

at s given points with the vector field of the differential equation.

For s a positive integer and c1, c2, · · · , cs distinct real numbers (typically between

0 and 1), the corresponding collocation polynomial u(x) of degree s is defined by

u′(x0 + cih) = f(x0 + cih, u(x0 + cih)), i = 1, · · · , s, u(x0) = y0 (4.7)

with the numerical solution given by

y1 = u(x0 + h). (4.8)

If some of the ci coincide, the collocation condition will contain higher derivatives so to

obtain the s-stage q-derivative method we can replace equation (4.7) by

u(t)(x0 + cih) = (Dly)(x0 + cih, u(x0 + cih)), i = 1, · · · , s, l = 1, · · · , qi, (4.9)

where u(x) is a polynomial of degree q1 + q2 + · · · + qs, q1, q2, · · · , qs are multiplicities

of nodes c1, c2, · · · , cs and D is a differential operator which, when applied to a function

Ψ(x, y), is given by

(DΨ)(x, y) =
∂Ψ

∂x
(x, y) +

∂Ψ

∂y1
(x, y) · f1(x, y) + · · · + ∂Ψ

∂yn
(x, y) · fn(x, y). (4.10)

Under the generalization we have to replace the Lagrange interpolation by Hermite

interpolation and now we consider the special case of collocation methods with s = 2,

c1 = 0, c2 = 1. The multi-derivative method of order m is then defined by

m∑

j=0

hj(Djy)(x1, y1)P
(m−1)(0) =

m∑

j=0

hj(Djy)(x0, y0)P
(m−1)(1), (4.11)

where P (t) is a polynomial of exact degree m [27, 86].

The next section brings the theory about the Nordsieck representation as an important

approach for variable stepsize.

4.3 Nordsieck representation

There are two important considerations when selecting a multistep method for solving the

initial value problems, the speed and the accuracy. There are three important considerations
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for developing and using the predictor–corrector pairs for solving the initial value problems,

the speed, the truncation error and the stability. The basic factor for speed determination

is the number of functional evaluations required per step. An accuracy is given by the

stability, by the error and by the truncation error of the method. It has been shown that

Adams methods satisfy those requirements in predictor–corrector formulae. The major

problem with these formulae is that interval modification and interpolation is difficult.

Equivalent form to Adams methods has been proposed by Nordsieck (1962). The form

allows to change the stepsize of the method very easily and it accomplishes changing of

stepsize simply and inexpensively. The derivation of Nordsieck form is based on Taylor’s

theorem. The Nordsieck form stores the current values of the higher derivatives of a poly-

nomial approximating the solution. The Nordsieck form of Adams-Moulton method can be

given by

Yn = PYn−1 + LGn, (4.12)

where

Yn =





yn

hy′n
h2

2! y
′′

n

...
hk−1y

(k−1)
n

(k−1)!





, (4.13)

L =





lk,0

lk,1

lk,2

...

lk,k−1





, lk,0 = βk,0, lk,1 = 1, (4.14)

where P = (aij)k×k is a Pascal matrix with elements

a1,j =1, j = 1, 2, · · · , k,

ai,j =0, i = 2, 3, · · · , k, j < i,

ai,j =Ci−1
j−1, i = 2, 3, · · · , k, j ≥ i

and where y(xn) is the exact solution of the initial value problem and

Gn = hfn − hf̃n, hf̃n =

k−1∑

j−1

jhjy
(j)
n−1

j!
,

the y
(j)
n are meant to be approximations to y(j)(xn). Nordsieck determined that values

(lk,0, lk,1, · · · , lk,k−1) accomplish the desirable property of an accuracy. Coefficients are
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chosen such that the error constant of the method vanishes. For each method or order the

coefficients are determined specifically [30, 84].

The construction of a p-th order general linear method requires more specific order

conditions. It can be demonstrated using the theory of B-series [10].

The next chapter is dedicated to the contribution of the thesis and it is based on

methods, forms or formulae already mentioned as well as approaches or ideas which will be

described now.
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Chapter 5

Two-derivative multistep method

The main contribution of this thesis is to extend Adams methods to higher derivative meth-

ods by using Obreshkov quadrature formulae. We consider a two-step predictor followed

by a one-step corrector, in each case using second derivative formulae. There is always

a choice in predictor–corrector pairs of the so-called mode of the method and we consider

both PEC and PECE methods. The Nordsieck representation of Adams methods adapts

well to the multiderivative situation and it makes the variable stepsize convenient.

We start with a generalization of Adams methods to second derivative methods. We

consider problems for which it is efficient to calculate first and second derivatives at any

solution point. We denote first and second derivatives by

y′(x) = f(x, y), y′′(x) = g(x, y).

At the start of the step we assume that we already have computed values in previous points

yn−1, yn−2, · · · , yn−k,

obtained from the starting method. The question of starting method will be discussed later.

We also know from the given problem first and second derivative values,

fn−1, fn−2, . . . , fn−k, gn−1, gn−2, . . . , gn−k,

which are given by fi = f(xi, yi), gi = g(xi, yi).

Adams methods are usually implemented as predictor–corrector pairs. That is, a pre-

dicted part is evaluated by the formula using an explicit method and corrected part is

evaluated by the formula using an implicit formula. The predictor step is generally given

by

yn = yn−1 + h(a1fn−1 + a2fn−2 + · · · + akfn−k)

and the corrector step by

yn = yn−1 + h(b0fn + b1fn−1 + · · · + bk−1fn−k+1).
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Since coefficients are independent of h and n, the order conditions are given by

∫ 0

−1
φ(t)dt =a1φ(−1) + a2φ(−2) + · · · + akφ(−k),

∫ 0

−1
φ(t)dt =b1φ(0) + b2φ(−1) + · · · + bkφ(−k + 1),

whenever φ(t) is a polynomial of degree not exceeding k − 1. We will restrict our attention

to the case k = 2 and to calculate the coefficients ai and bi we can rewrite them in the

Lagrange interpolation formulae

φ(t) = α1(t)φ(−1) + α2(t)φ(−2) + · · · + αk(t)φ(−k),

φ(t) = β1(t)φ(0) + β2(t)φ(−1) + · · · + βk(t)φ(−k + 1)

and we can find coefficients in Adams methods as

ai =

∫ 0

−1
αi(t)dt,

bi =

∫ 0

−1
βi(t)dt, i = 1, 2, · · · , k.

Obreshkov method becomes available if, in addition to a formula for f(x, y), a for-

mula for g(x, y) is also available. The extension to two-derivative methods uses the order

2k-formulae for the predictor equation

yn = yn−1 + h(a1fn−1 + a2fn−2 + · · ·+ akfn−k) + h2(c1gn−1 + c2gn−2 + · · ·+ ckgn−k) (5.1)

and the order 2k-formulae for the corrector equation

yn = yn−1+h(b0fn+b1fn−1+· · ·+bk−1fn−k+1)+h2(d0gn+d1gn−1+· · ·+dk−1gn−k+1). (5.2)

With the restriction to the case k = 2 we can replace the Lagrange integration polyno-

mial by the Lagrange-Hermite integration polynomial

φ(t) =α1(t)φ(−1) + α2(t)φ(−2) + γ1(t)φ
′(−1) + γ2(t)φ

′(−2),

φ(t) =β0(t)φ(0) + β1(t)φ(−1) + δ0(t)φ
′(0) + δ1(t)φ

′(−1),

hence

ai =

∫ 0

−1
αi(t)dt, ci =

∫ 0

−1
γi(t)dt, i = 1, 2,

bi =

∫ 0

−1
βi(t)dt, di =

∫ 0

−1
δi(t)dt, i = 1, 2.
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The coefficients of predictor and corrector formulae are found

a1 = − 1

2
, b0 =

1

2
,

a2 =
3

2
, b1 =

1

2
,

c1 =
17

12
, d0 = − 1

12
,

c2 =
7

12
, d1 =

1

12
.

and the final formula of predictor equation is

y(xn) = yn−1 −
1

2
hfn−1 +

3

2
hfn−2 +

17

12
h2gn−1 +

7

12
h2gn−2 (5.3)

and the corrector equation is

y(xn) = yn−1 +
1

2
hfn +

1

2
hfn−1 −

1

12
h2gn +

1

12
h2gn−1. (5.4)

Due to we assume for the new method usage of the variable stepsize, we implement the

new method in Nordsieck representation.

Predictor-corrector Obreshkov method in Nordsieck represen-

tation

To distinguish between Nordsieck and non-Nordsieck representation of our equations, we

use the notation Nn for Nordsieck vector now. For our purposes we need to specify the

Nordsieck vector as five components due to five terms of the input vector including previous

point xn, xn−1

Nn =





y(xn)

y′(xn)

y′′(xn)

y′′′(xn)

y(4)(xn)





. (5.5)

For the non-Nordsieck representation of our two-step second derivative method with two

derivatives we get

Yn =





y(xn)

y′(xn)

y′′(xn)

y′(xn−1)

y′′(xn−1)





. (5.6)
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To establish the relation between input vector Yn and the Nordsieck vector Nn, we consider

the Taylor expansion of each component. Approximations are derived and the transforma-

tion matrix is given




y(xn)

hy′(xn)

h2y′′(xn)

hy′(xn−1)

h2y′′(xn−1)





=





1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 1 −2 3 −4

0 0 2 −6 12





·





y(xn)

hy′(xn)

1
2!h

2y′′(xn)

1
3!h

3y′′′(xn)

1
4!h

4y(4)(xn)





(5.7)

The relation between non-Nordsieck and Nordsieck is now described by

Yn = TNn. (5.8)

To derive our method, we use the construction of predict–evaluate–correct algorithm and

we approximate the first step using predictor equation without correction. The coefficients

from the predictor equation are written in a the first row of the matrix and the evaluation of

f -function in the second row, and the evaluation of g-function in the third row respectively.

For convenience, from now we will have in our mind that we are using the Nordsieck

representation and we will denote the vector Yn instead of Nn.

The first step in developing the algorithm for a new method is to use the predictor

equation

Y ∗

n =





1 −1
2

17
12

3
2

7
12

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0





Yn−1, (5.9)

where Y ∗

n means the vector of predicted values, Yn−1 is the vector of values in the previous

step and the matrix is denoted as H.

The second step is to evaluate f -function and g-function and add them into the formula

(5.9), we get

Y ∗

n =





1 −1
2

17
12

3
2

7
12

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0





Yn−1 +





0

hf(Y ∗

n )

h2g(Y ∗

n )

0

0





. (5.10)
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The term f(Y ∗

n ) is the f -function evaluation of predicted value Y ∗

n . The term g(Y ∗

n ) is the

g-function evaluation of the predicted value.

Before including the corrector equation into the method we must say that output does

not rely on the second derivatives of previous points at all, so the output of the predicted

value still needs to be uncovered completely. We determine the errors of the algorithm as

δ =hf(Y ∗

n1
) − [0 1 2 3 4]Y ∗

n−1 (5.11)

ε =h2g(Y ∗

n1
) − [0 0 1 3 6]Y ∗

n−1 (5.12)

where Y ∗

n1
means the first component of a vector with predicted values. The error esti-

mations δ and ε will give us the corrected part of the predicted value. Both terms are

evaluations of functions of predicted values. The error δ represents the correction of the

first derivative, the second error ε corrects the error in the second derivative.

To summarize described steps above we write them in the Nordsieck representation as

P = T−1HT + T−1e2[0 1 2 3 4] + 2T−1e3[0 0 1 3 6] (5.13)

which gives us the upper triangular matrix known as the Pascal matrix

P =





1 1 1 1 1

0 1 2 3 4

0 0 1 3 6

0 0 0 1 4

0 0 0 0 1





,

This matrix computes the predicted value Y ∗

n from the given input Yn−1.

To complete the algorithm for the new method, we include the final step which is

a correction equation. The new method is now described by

Yn = PYn−1 + δT−1α + εT−1β, (5.14)

where α is equal to vector e2 with one more correction, that is the corresponding coefficient

b1 = 1/2 from the term 1/2hfn−1 in equation (5.4). Similarly, β is equal to vector e3 with

one more correction, which is the coefficient d1 = −1/12 from the term −1/12h2gn−1 in

equation (5.4). Vectors are defined such as

α =





1
2

1

0

0

0





, β =





− 1
12

0

1

0

0





.
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The final formula in Nordsieck representation for predictor-corrector Obreshkov method

is given by

Yn = PYn−1 + δ





1
2

1

0

−1

−1
2





+ ε





− 1
12

0

1

4
3

1
2





, (5.15)

where it holds

δ =hf(Y ∗

n1
) − [0 1 2 3 4]Y ∗

n−1,

ε =h2g(Y ∗

n1
) − [0 0 1 3 6]Y ∗

n−1.

We now introduce problems which were tested.

Test problems

Differential equations and some systems of differential equations with initial conditions

from DETEST [64] were successfully tested. Problems with known analytical solution were

easily checked, problems with unknown analytical solution were compared with given results

presented in [64]. The program Scilab (version 5.0.3) was chosen for the implementation of

various problems.

Beyond those tests the new method was also successfully tested on a
”
circle test“ given

by

y′′ + y = 0, y(0) = 1, y′(0) = 0,

which is for our method rewritten to the system of differential equations

y′1 =y2, y1(0) = 1, (5.16)

y′2 = − y1, y2(0) = 0. (5.17)

Our method needs to have second derivatives of given problem, we add two equations

y′′1 = − y1, y′1(0) = 0,

y′′2 = − y2, y′2(0) = −1,

with analytical solutions y1 = cos(x) and y2 = − sin(x). Results of circle test are shown in

the Appendix D.

As the first problem from DETEST we present results of very known and already men-

tioned Dahlquist problem given previously in subsection 2.2 by equation (2.31) such as

y′ = qy, y(0) = 1,
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where q is a complex number with a negative real part. The exact solution is given by

y = exp(qx) and decays exponentially from 1. We specify the constant q = 1 and obtain

y′ = y, y(0) = 1 (5.18)

with second derivatives

y′′ = y, y′(0) = 1.

The second test problem known as Prothero-Robinson problem is generally given by

y′ = L
(
y − q(x)

)
+ q′(x), y(0) = 0.

We specify the constant L = −1 and the function q(x) = sin(x) which is also the analytical

solution of the problem in this case. We get the system of two equations for our method

specified by

y′1 = − y1 + sin(y2) + cos(y2), y1(0) = 0,

y′2 =1, y2(0) = 1 (5.19)

and second derivatives easily determined as

y′′1 =y1 − 2 sin(y2), y′1(0) = 0,

y′′2 =0, y′2(0) = 1.

The third problem is Kepler problem already mentioned in section 2.5. The Kepler

problem is given by four differential equations of first order (2.53). We must add second

derivatives for our method which are given by

y′′1 =
−y1

r3
, y′1(0) = 0,

y′′2 =
−y2

r3
, y′2(0) = 0,

y′′3 =
y3(2y

2
1 − y2

2) + 3y1y2y4

r5
, y′3(0) = 0,

y′′4 =
y4(2y

2
2 − y2

1) + 3y1y2y3

r5
, y′4(0) = 0.

Results will be shown in the next few sections. We now introduce the starting method

for our method.

5.1 Starting method

It has been already mentioned that the given problem should be described by its first and

second derivatives for solving by the new method. But it should be emphasized that the
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method requires only initial values for the first derivative. The starting method described

in this subsection determines all necessary information for the next calculation.

As a starting method can be used classical one-step methods such as Runge–Kutta

method of order 4 or Adams-Bashforth method of order 4, but it seems reasonable to use the

predictor–corrector Obreshkov method itself. Due to known initial values of 3 components

of our input vector, we need to derive only the first and second derivative in previous steps.

Same two steps are switched by fixed stepsize, ones it is positive, then it is negative and

repeating until converge or until given number of iterations. The speed of convergence is

given by the chosen tolerance and the starting algorithm will produce results which become

a part of the input vector for our method.

We present a Prothero–Robinson problem (5.19) for describing details due to the fact

that we are able to determine exact initial value for comparison. If we compare results of

the starting procedure for stepsizes after 1, 2, 3, 4, 6, 8, 16 or 32 repetitions (cycles) we

find the natural behaviour for the error between the exact initial values and the computed

initial values. With decreasing value of the stepsize the error decreases with the slope

corresponding to the fifth order. By the cycle we mean 1 step forward and 1 step backward.

Errors for different stepsizes and cycles are represented in table 5.1. We see used stepsizes

in the first column of the table, the error after 1 cycle of the starting method is presented

in the second column. The error after 2 cycles of the starting method is presented in the

third column etc.

Table 5.1: Errors between exact initial values and computed initial values for Prothero-

Robinson problem

h 1 cycle 2 cycles 8 cycles

0.1 2.550e-05 1.101e-06 2.489e-07

0.1·2−1 1.523e-06 3.205e-08 7.80e-09

0.1·2−2 9.305e-08 9.666e-10 2.442e-10

0.1·2−3 5.751e-09 2.968e-11 7.636e-12

0.1·2−4 3.574e-10 9.192e-13 2.387e-13

0.1·2−5 2.228e-11 2.860e-14 7.461e-15

0.1·2−6 1.390e-12 8.918e-16 2.332e-16

0.1·2−7 8.683e-14 2.792e-17 7.338e-18

The starting method uses the following procedure:

1. Evaluate the f -function and g-function for given initial value y(0).
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2. Calculate the PEC mode of a new method.

3. Change the sign of the stepsize.

4. If the step is even, set the output values as input values for the next step,

else reset first three components of the Nordsieck vector and replace them by known

initial values y(0), f(y(0)), g(y(0)) and set last two components of the Nordsieck

vector by computed values in this step.

5. Repeat until converge or until given number of cycles (iterations).

Hence, only two components have an influence on the precision of the calculation, those

are first and second derivatives in a previous point. It has been observed that the global

error of the numerical method is also influenced by the chosen stepsize for a starting method.

Global errors and the speed of convergence of the new method is represented in table 5.2.

Global errors of the new method with exact initial values are represented in the second

column of the table. Then errors of the new method with computed initial values in one

cycle of the starting procedure are represented in the third row, etc. It can be easily

calculated that the method preserve the order 4.

Table 5.2: Errors of the new method given by different number of cycles for starting method

h exact IV’s 1 cycle 2 cycles 8 cycles

0.1 5.1975119719e-07 6.6524014852e-07 5.0145286223e-07 5.0870973866e-07

0.1·2−1 2.7172841532e-08 3.1526897537e-08 2.6743608438e-08 2.6851363132e-08

0.1·2−2 1.5282720644e-09 1.6607170083e-09 1.5170131817e-09 1.5186459867e-09

0.1·2−3 9.0206508929e-11 9.4284802187e-11 8.9887652876e-11 8.9911966760e-11

0.1·2−4 5.4728443998e-12 5.5991877800e-12 5.4628523926e-12 5.4629634149e-12

0.1·2−5 3.3595348725e-13 3.3983926783e-13 3.3562042034e-13 3.3573144264e-13

0.1·2−6 1.9428902930e-14 1.9428902930e-14 1.9428902930e-14 1.9428902930e-14

0.1·2−7 6.3282712403e-15 6.3282712403e-15 6.3282712403e-15 6.3282712403e-15

The suggested approach uses the fixed stepsize for the starting method in effectiveness

point of view, but the value of the stepsize should be at least 2.5e−02 with 8 cycles for the

starting algorithm. Then we get very close approximations to the exact initial values and

very fast convergence. The starting procedure code is presented in the Appendix C.
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5.2 Stepsize control

For the most of multistep methods it is very efficient to use the variable stepsize. It is

very uneconomical to keep the fixed stepsize during computation. As the number of steps

increases, the local error decreases and the stability properties become worse. The task

is to use an automatic procedure that continually adjusts the stepsize to achieve some

target level of accuracy. Choosing the right stepsize is one of the main challenging task

in designing a numerical integration scheme. Many sophisticated procedures have been

described already [97].

In the beginning, the algorithm of choosing the variable stepsize is simplified and pre-

sented

1. Estimate the local error.

2. Decide if the computed value of y can be accepted or if the step needs to be recalcu-

lated with smaller stepsize from the previous point.

3. Determine the new stepsize to use for the recalculation.

4. Adjust the data according to the new stepsize for the next step.

To control the stepsize each part of the algorithm is now described in detail.

Error estimation

The problem of error estimation is the first task for controlling the stepsize during the

computation so that the error in a step is approximately constant. There are few ways how

to determine the local error. For example, starting at (xn, yn) we take one step h and we

denote the result as (xn+1, y
∗

n+1). Then again, we take two steps starting from the same

point (xn, yn), each step of size h/2 and the result denote as (xn+1, y
∗∗

n+1). The local error

of y∗∗n+1 is approximately bounded by

εL =
|y∗n+1 − y∗∗n+1|

2p − 1
,

where p is the order of the method [39]. When the local error εL is an estimate, the standard

procedure is to keep it below a chosen tolerance per unit step. A bound of the global error

could be tolerated, but classical methods are usually designed to control some measure of

the local error. The error tolerance is usually required to be specified.

We use following approach for choosing the stepsize in our method. Assume that our

goal is to compute the error in yn after some short time t and the value of the error should

be less than some constant eps, where eps << 1 and yex is some reference position in time
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tex. Firstly we move from yn to yn+2 by taking two time steps of the length h << t. Then

we return to yn and take one step of the length 2h to reach yn+1. Suppose that the correct

position after an interval 2h is ŷn and our method has order p, the errors in tn+1 and tn+2

may be written

yn+1 − ŷn
∼=(2h)p+1E,

yn+2 − ŷn
∼=(4h)p+1E,

where E is unknown error vector. Subtracting previous equations to eliminate ŷn, we find

that

E =
||yn+1 − yn+2||
2(2p+1 − 1)hp+1

.

As we assume that for a time t we use n = t/h2 time steps of the length h2, the error will

be

ε =nhp+1
2 E,

E =||yn+1 − yn+2||
thp

2

2(2p+1 − 1)hp+1
.

Our goal that |ε| ≤ eps is satisfied if

h2 < hmax ≡
(
2(2p+1 − 1)

h · eps

t(yn+1 − yn+2)

) 1
p
h.

For some predictor–corrector methods the error can be expressed as the difference be-

tween the predicted and the corrected value multiplied by

εL =
CC

CP − CC
,

where CP , CC are known constants. If the inequality between local error and chosen

tolerance is not satisfied, the new stepsize needs to be determined. There are again several

procedures, the important part is the safety factor which assures that the stepsize is upper

and lower bounded [37, 54, 99]. Commonly, safety factors are numbers 0.8 or 0.9.

Assuming we are trying to control the error for our predictor–corrector method as-

sociated with just the single step from xn−1 to xn. Ignoring the higher order terms we

approximately write

y(xn) ≈yP
n − CP hp+1y(p+1)(xn)

y(xn) ≈yC
n − CChp+1y(p+1)(xn)

We want to know the error in the corrected value CChp+1y(p+1)(xn) and we find this by

subtracting the predicted and corrected approximations

yP
n − yC

n ≈ (CP − CC)hp+1y(p+1)(xn)
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hence

CChp+1y(p+1)(xn) ≈ CC

CC − CP
(yC

n − yP
n )

in our case it is

h6y(6)(xn) ≈ 1

30
(yP

n − yC
n ).

The proof is given by power series. The predictor (5.3) of our method is given by

CP = 1 − e−z + 1
2ze−z − 17

12z2e−z − 3
2ze−2z − 7

12z2e−2z

as a series

CP =1 − (1 − z + 1
2z2 − 1

6z3 + 1
24z4 − 1

120z5) + 1
2z(1 − z + 1

2z2 − 1
6z3 + 1

24z4)

− 17
12z2(1 − z + 1

2z2 − 1
6z3) − 3

2z(1 − 2z + 2z2 − 4
3z3 + 2

3z4) − 7
12z2(1 − 2z + 2z2 − 4

3z3)

=(1 − 1) + z(1 + 1
2 − 3

2) + z2(−1
2 − 1

2 − 17
12 + 3 − 7

12 )

+ z3(1
6 + 1

4 + 17
12 − 3 + 7

6) + z4(− 1
24 − 1

12 − 17
24 + 2 − 7

6 ) + z5( 1
120 + 1

48 + 17
72 − 1 + 7

9)

= 31
720z5 + O(z6)

and for the corrector (5.4) it is

CC = 1 − e−z − 1
2z + 1

12z2 − 1
2ze−z − 1

12z2e−z

as a series

CC =1 − (1 − z + 1
2z2 − 1

6z3 + 1
24z4 − 1

120z5) − 1
2z + 1

12z2

− 1
2z(1 − z + 1

2z2 − 1
6z3 + 1

24z4) − 1
12z2(1 − z + 1

2z2 − 1
6z3)

= (1 − 1) + z(1 − 1
2 − 1

2) + z2(−1
2 − 1

12 + 1
2 − 1

12) + z3(1
6 − 1

4 + 1
12)

+ z4(− 1
24 + 1

12 − 1
24) + z5( 1

120 − 1
48 + 1

72 )

= 1
720z5 + O(z6)

Hence, the corrector is 31 times as accurate as the predictor. If we say that Y ∗ is the result

obtained after the predicted part and Y is the result obtained after the correction, it looks

as though the error of the method err can be approximated by

err =
||Y ∗ − Y ||

30
. (5.20)

Choosing stepsize

The next step for controlling stepsize lays in choosing the stepsize for the next step. We

need to take in account the accuracy and the efficiency of the computation which defects

the tolerance for chosen stepsize. If we say that the new stepsize is given by

hnew = r · h
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the task is now to find the constant r. There are known different approaches, one of the

classical ones is to test when the error of the method err exceeds the chosen tolerance eps

[72]. The following expression was determined for constant r such as

r =

(
max

(
min

(
0.9 ·

(eps

err

) 1
5

)
, 2

)
,

1

2

)
. (5.21)

The error tolerance eps is unknown value and it differs in different examples. An estimated

error err is always given by the difference between predicted value and corrected value in

one step. The
”
magic“ numbers 2 and 1/2 guarantee the reasonable interval for chosen

stepsize and the number 0.9 is a safety factor and also guarantee the good direction of

choosing the new stepsize. The constant 1/(p + 1) = 1/5 holds the order p = 4 of our

method. This is an approach called Milne device [81].

The size of the tolerance is made to vary in such a way that methods will choose stepsize

sequences that are reasonably close to the optimal ones. For standard tests we choose the

tolerance to be

eps = 10−i, i = 2, · · · , 9.

The last step of choosing a variable stepsize algorithm is in adjusting data. After the

new stepsize acceptation, data needs to be adjusted according to the chosen constant r.

In our method using the Nordsieck implementation it means to multiply the data by the

matrix

R =





1 0 0 0 0

0 r 0 0 0

0 0 r2 0 0

0 0 0 r3 0

0 0 0 0 r4





To show the algorithm of choosing the stepsize we experiment with Kepler problem. It

is known that Kepler problem belongs to the group of Hamiltonians problem and the big

question is if the method is symplectic and if it preserves the features of the structure. The

method does not preserve the structure for the tolerance equals to eps = 10−7 according

to the figure 5.1a. The parasitic behaviour can be observed. But when we increase the

requirement for the accuracy and decrease the tolerance to eps = 10−10, we obtain better

results. The error decreases even for longer time period 1000π, see figure 5.1b. And when

we decrease the tolerance to the value eps = 10−14 we can see the solution almost without

errors, figure 5.2.

To discover how the variable stepsize is chosen, the algorithm is presented for one cycle

with plotting each step, see figure 5.3. If we imagine the sun at coordinates [0,0], we see
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a) eps = 10−7, tmax=20π b) eps = 10−10, tmax=1000π

Figure 5.1: Kepler problem solutions

Figure 5.2: Kepler problem solution with eps = 10−14, tmax=1000π

that the method is forced to calculate the trajectory of the planet using small stepsizes near

the sun, the imaginary gravity is the biggest. The stepsize is bigger on the opposite side of

the ellipse according to the smaller imaginary gravity.

Values of accepted and rejected stepsizes for same parameters of the problem are shown

in figure 5.4. On part a) of the figure the algorithm is shown for time interval equals to 2π.

Then we extend the time for algorithm to 8π and we observe different values of stepsize in

each cycle, see figure 5.4b. We say that the big tolerance allows to choose stepsize during

the algorithm differently. According to this fact the error of the method grows and the

trajectory after few cycles differs as we saw in figure 5.1a.

Hence we prefer to preserve the high accuracy, so the chosen tolerance should reach the

small tolerance possible. Results for choosing the stepsize with tolerance eps = 10−14 are

shown in figure 5.4c,d. We observe the algorithm accepts same stepsizes in each cycle.
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Figure 5.3: Kepler problem - choosing stepsizes - eps = 10−7, tmax=2π

a) eps = 10−7, tmax=2π b) eps = 10−7, tmax=8π

c) eps = 10−14, tmax=2π d) eps = 10−14, tmax=8π

Figure 5.4: Kepler problem - accepted versus rejected stepsizes
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5.3 Order of the method

To check the order of the new method we show the simplest Dahlquist problem (2.31) with

constant q = 1. We proceed uniformly as described previously in the section 2.2. We

calculate the error each time for n steps h = (tmax − tmin)/n for different n values such as

n = 10, 20, 40, · · · 10240, see table 5.3. We plot the order graph by the log of stepsizes

on the x-axis and by the log of absolute values of errors on the y-axis.

Checking the slope of line through points we say that the order of new method (called

vlgm and represented by violet line in figure 5.5 is 4. For comparison there are also displayed

results for the same problem computed by Euler method (red line), which is the method of

order 1, and Taylor series method of orders 2 (green line) and Taylor series method of order

4 (blue line). The corresponding errors for Euler method, Taylor series method of order 2

and of order 4 and for our method are determined in table 5.3. The interesting fact is that

Taylor series method of order 4 is more precise than the classical Runge–Kutta of order 4.

Ensuring the method stability has order 4 the equation (5.22) should be satisfied.

Φ
(

exp(z), z
)

= O(z5) (5.22)

Table 5.3: Errors for Dahlquist problem of Euler method, Taylor series method and new

method

h errEuler errTs2 errTs4 errvlgm

0.1 6.615560.1 4.200982e-03 2.084324e-06 1.147407e-05

0.1·2−1 3.490674e-01 1.090774e-03 1.358027e-07 7.462822e-07

0.1·2−2 1.794883e-01 2.778841e-04 8.666185e-09 4.757726e-08

0.1·2−3 9.103521e-02 7.012736e-05 5.473053e-10 3.003144e-09

0.1·2−4 4.584725e-02 1.761434e-05 3.438494e-11 1.886535e-10

0.1·2−5 2.300691e-02 4.413927e-06 2.155165e-12 1.187850e-11

0.1·2−6 1.152439e-02 1.104776e-06 1.350031e-13 6.847856e-13

0.1·2−7 5.767443e-03 2.763559e-07 4.884981e-15 4.279039e-14

Other two multistep methods were implemented and results for the problem were calcu-

lated for the comparison. The new method is motivated by Adams methods so to compare

the new method with Adams method in PEC mode is natural. Hence, we implemented and

calculate with Adams-Bashforth Adams-Moulton formulae of order 4 used in PEC mode

(called ABAM4PEC and illustrated only in picture). And the other method is Adams-

Bashforth method of order 4 (AdamBash4). Errors are displayed in table 5.4 and corre-

sponding slopes of orders are plotted in the figure 5.6 for comparing those methods via
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Table 5.4: Errors for Dahlquist problem of RK4, AB4 and new method vlgm

h errRK4 ratio errAdamBash4 ratio errvlgm ratio

0.1 1.133156e-05 3.767292e-04 1.147407e-05

0.1·2−1 7.383001e-07
15.348

2.761708e-05
13.641

7.462822e-07
15.375

0.1·2−2 4.711429e-08
15.670

1.865007e-06
14.808

4.757726e-08
15.686

0.1·2−3 2.975458e-09
15.834

1.211015e-07
15.400

3.003144e-09
15.842

0.1·2−4 1.869447e-10
15.916

7.713870e-09
15.699

1.886535e-10
15.919

0.1·2−5 1.170353e-11
15.973

4.866960e-10
15.849

1.187850e-11
15.882

0.1·2−6 7.265299e-13
16.109

3.055334e-11
15.929

6.847856e-13
17.346

0.1·2−7 6.394885e-14
11.361

1.900702e-12
16.075

4.279039e-14
16.003

Figure 5.5: Errors and orders of different methods for Dahlquist problem with fixed stepsize

positions of lines. Satisfying fact is that our new method has comparable results with

Runge–Kutta method of order four and it is more accurate than Adams-Bashforth Adams-

Moulton formulae of order 4 used in PEC mode.

Then all methods are displayed in one graph for the comparison, see figure 5.7.

To show that our method is powerful for more difficult problem, we again present Kepler

problem (2.53). Errors of methods are displayed in table 5.5. Graphs of orders are displayed

on figure 5.8. For comparison there are Runge–Kutta method of order 4 (RK4) and Adams-

Bashforth Adams-Moulton formulae of order 4 used in PEC mode (called ABAMPEC4 in

picture, ABM in table) also plotted. Notice that solving the Kepler problem by numerical

method such as Runge–Kutta method of order 4 with variable stepsize is difficult. Hence,
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Figure 5.6: Errors and orders of four methods for Dahlquist problem with fixed stepsize

Figure 5.7: Errors and orders of all methods for Dahlquist problem with fixed stepsize

the Kepler problem was simplified by chosen eccentricity e = 0 and by usage of the fixed

stepsize in this case. Then the fixed stepsize for each method can be used without involving

truncation errors in to calculations.

Experiments show that the accuracy of the new method is comparable with classical

and efficient Runge–Kutta method of order 4 and it has better stability properties than

Adams-Bashforth Adams-Moulton formulae of order 4 used in PEC mode. Those results

were expected. The main goal of order graphs was to verify expected results.

Experiments also discovered that the new method is more successful with using the

variable stepsize in the calculation of Kepler problem.
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Table 5.5: Errors for Kepler problem of methods with fixed stepsize and e = 0

stepsize h errorABM errorvlgm

0.1570796 1.116667e-04 8.902963e-05

7.853982e-02 5.074034e-06 2.567462e-06

3.926991e-02 1.686544e-07 8.563243e-08

1.963495e-02 7.574493e-09 6.182604e-09

9.817477e-03 5.613075e-10 4.670812e-10

4.908739e-03 4.087373e-11 3.222429e-11

2.454369e-03 2.772263e-12 2.094210e-12

1.227185e-03 1.858035e-13 1.916790e-13

Figure 5.8: Orders for Kepler problem with fixed stepsize and e = 0

To show where the new method could be more or less successful than other ones, we

present other experiments and tests with function evaluations, PEC and PECE modes and

the stability regions. First, we describe the analysis of function evaluations in the next

section.
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5.4 Function evaluations

The Runge–Kutta method of order 4 requires four function evaluations for each step, which

is its major disadvantage. A multistep method requires only one new function evaluation for

each step. Reducing the number of function evaluations reduces the number of arithmetic

operations involved and therefore reduces the total round-off error. Each evaluation takes

time and the integrand may be arbitrarily complicated.

As an example, solving the Dahlquist problem (2.31) using n steps the Runge–Kutta

method of order 4 requires 4n function evaluations. The Adams-Bashforth multistep

method requires 16 function evaluations for the Runge–Kutta method of order 4 for the

starting method and n−4 for the n Adams-Bashforth steps, giving a total of n+12 function

evaluations for this method. In general the Adams-Bashforth multistep method requires

slightly more than a quarter of the number of function evaluations required for the Runge–

Kutta method of order 4. If the evaluation of f(x, y) is complicated, the multistep method

is more efficient [106].

For our experiment we use Adams-Bashforth Adams-Moulton formulae of order 4 used

in PEC mode (called ABAMPEC4 in picture, ABM in table) instead of Adams-Bashforth

method, but the number of function evaluations per step is the same. The new method

vlgm requires 1 function evaluation per step and as it uses itself as the starting method,

the total number of function evaluations for our method is 2n.

We create a table 5.6 according known facts and numbers of function evaluations for

each method.

Table 5.6: Function evaluations for Dahlquist problem

h feRK4 fevlgm feABM

0.1 80 40 32

0.1·2−1 160 80 52

0.1·2−2 320 160 92

0.1·2−3 640 320 172

0.1·2−4 1280 640 332

0.1·2−5 2560 1280 652

0.1·2−6 5120 2560 1292

0.1·2−7 10240 5120 2572

We see that Runge–Kutta method of order 4 is more expensive method than the new

method and the new method is two times more expensive than Adams-Bashforth Adams-
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Moulton formulae of order 4 in PEC mode. The table 5.6 shows numbers of function eval-

uations which includes the starting procedures which are necessary for obtaining starting

values for multistep method such as the new method and Adams-Bashforth Adams-Moulton

formulae of order 4. Results are plotted in figure 5.9. The graph is again plotted by log

scale, where the error at the end of the calculation is illustrated on the x-axis and the

number of function evaluations in the completed calculation is illustrated on the y-axis.

It holds that the lowest line is the most effective one. In this case it is Adams-Bashforth

Adams-Moulton formulae of order 4 in PEC mode followed by the new method.

Figure 5.9: Function evaluations for Dahlquist problem

Now we demonstrate numbers of function evaluations for more difficult Kepler problem.

Again we simplify the problem using fixed stepsize and eccentricity e = 0. And due to the

fact that the Kepler problem is defined by four differential equations of first order, numbers

of function evaluations are exactly four times bigger. The Runge–Kutta method of order

four now requires 16 evaluations per step, which is 16n total function evaluations. The

Adams-Bashforth Adams-Moulton formulae of order 4 in PEC mode requires 4 evaluations

per step and it uses Runge–Kutta method of order 4 for the starting procedure, which

includes −16 precomputed evaluations. So the total number of function evaluations for

Adams-Bashforth Adams-Moulton formulae of order 4 in PEC mode is 4n + 48. And our

method requires 8n of total function evaluations including the starting method. Those

facts are demonstrated in the table 5.7 and the graph gives similar comparison as for the

Dahlquist problem, the Runge–Kutta method of order 4 is the most expensive method, our

method is less expensive and the Adams-Bashforth Adams-Moulton formulae of order 4 in

PEC mode costs minimum.
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Table 5.7: Function evaluations for Kepler problem

h feRK4 fevlgm feABM

0.1 320 160 128

0.1·2−1 640 320 208

0.1·2−2 1280 640 368

0.1·2−3 2560 1280 688

0.1·2−4 5120 2560 1328

0.1·2−5 10240 5120 2608

0.1·2−6 20480 10240 5168

0.1·2−7 40960 20480 10288

For a conclusion we need to add that the f -function evaluation and the g-function

evaluation cost the same for our new method solving Dahlquist problem. Solving the Kepler

problem via new method the g-function evaluation costs more than f -function evaluation.

We see that the cost of the calculation descends with the complexity of the problem and

the accuracy is preserved.

5.5 PEC and PECE modes

We are concerned about the different modes of the method. Our method is represented in

a PEC mode. We discovered that as we repeat the evaluate–correct step one more time after

one cycle of predict–evaluate–correct procedure, results will be improved in the accuracy

point of view according to experiments. It means in the pseudo code

% step 1. predict

Ypred = P * Yinp;

% step 2. evaluate functions f, g;

f=eval(yprime);

g=eval(ydoubleprime);

% step 3. calculate corrections

delta = h * f - Ypred(2);

epsilon = 1/2 * h^2 * g - Ypred(3);

Yout = Ypred + (delta * alpha) + (epsilon * beta);
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after steps 1., 2. and 3. (called PEC mode) we again calculate steps 2. and 3. (called PECE

mode), errors are smaller for PECE mode. Those results are expected and it corresponds

to the behaviour of classic PEC–PECE implementation of Adams methods.

As we repeat steps 2. and 3. one more time and we call it PECECE (or PE(CE)2) mode,

results are still improved according to a PEC mode, but they are slightly less accurate than

errors for a PECE mode. Those result were also expected, this behaviour occurs in some

problems even for classical Adams methods in corresponding modes.

The Prothero–Robinson problem (5.19) was chosen for the demonstration. Three modes

PEC, PECE and PE(CE)2 are plotted in the graph 5.10a. Slopes represent orders of our

methods in three different modes. It is not very clear that error values of PECE and

PE(CE)2 are very close to each other, even if the graph is plotted for smaller error interval,

see 5.10b.

a) b)

Figure 5.10: New method modes’ in Prothero-Robinson problem

To specify the accuracy for Prothero–Robinson problem with fixed stepsize more pre-

cisely, errors are written in tables. As expected the PECE mode brings improvement into

calculation. Errors of PECE mode are smaller than errors of PEC mode, see the table 5.8.

Ratios numbers represent 2p with the order p of the new method in corresponding mode.

The column ratio after the column errorPEC represents 2p with the order p of the new

method in PEC mode and it is calculated by the error number divided by the error number

below it. The column ratio after the column errorPECE represents the order of the new

method in PECE mode. Notice that the order is more closer to the expected order 4 of our

method for smaller stepsizes. And also the order is more closer to the expected order 4 of

our method for the mode PECE than the mode PEC. The value around 3 in the last row

is influenced by using very small stepsize and also with round-of error.
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The procedure for PE(CE)2 mode with two more evaluate–correct steps also brings

improvement into calculation of PEC mode, but it is less effective than using only one

repetition, in the table 5.9 you can observe that errors of PE(CE)2 mode are bigger than

errors of PECE mode.

Table 5.8: Errors for Prothero–Robinson problem of our method in different modes

h errorPEC ratio errorPECE ratio

0.1 5.197512e-07 3.928242e-07

0.1·2−1 2.717284e-08
19.128

2.338723e-08
16.780

0.1·2−2 1.528272e-09
17.780

1.413994e-09
16.540

0.1·2−3 9.020651e-11
16.942

8.671031e-11
16.307

0.1·2−4 5.472844e-12
16.483

5.365375e-12
16.161

0.1·2−5 3.359535e-13
16.290

3.330669e-13
16.109

0.1·2−6 1.942890e-14
17.291

1.931788e-14
17.241

0.1·2−7 6.328271e-15
3.070

6.328271e-15
3.053

Table 5.9: Errors for Prothero–Robinson problem of our method in different modes

h errorPECE ratio errorPE(CE)2 ratio

0.1 3.928242e-07 3.999541e-07

0.1·2−1 2.338723e-08
16.780

2.348635e-08
17.029

0.1·2−2 1.413994e-09
16.540

1.415450e-09
16.593

0.1·2−3 8.671031e-11
16.307

8.673218e-11
16.320

0.1·2−4 5.365375e-12
16.161

5.365819e-12
16.164

0.1·2−5 3.330669e-13
16.109

3.330669e-13
16.110

0.1·2−6 1.931788e-14
17.241

1.942890e-14
17.143

0.1·2−7 6.328271e-15
3.053

6.328272e-15
3.070

89



5.6 Stability analysis

The stability analysis for two-derivative multistep method is presented in this section. For

plotting the stability region we use predictor and corrector equations of our method.

We present stability regions of our method in picture 5.11. For the PECE mode holds

that only the region to the left of zero is stable. Regions to the right of the zero are very

unstable because they have both eigenvalues outside the unit disc.

a) PEC b) PECE

Figure 5.11: Stability regions of the new method

To illustrate how the stability regions can be plotted, we take the PECE mode of our

method. We remind the predictor formula of the method

y(xn) = yn−1 −
1

2
hfn−1 +

3

2
hfn−2 +

17

12
h2gn−1 +

7

12
h2gn−2

and the corrector formula the method

y(xn) = yn−1 +
1

2
hfn +

1

2
hfn−1 −

1

12
h2gn +

1

12
h2gn−1

and we rewrite them such as z = hq

y∗n =
(
1 − z

2
+

17

12
z2
)
yn−1 +

(3z

2
+

7

12
z2
)
yn−2, (5.23)

yn =
(1

2
z − 1

12
z2
)
y∗n +

(
1 +

1

2
z +

1

12
z2
)
yn−1, (5.24)

where y∗n represents the predicted value. We use the predicted formula to update the

corrector formula only in the current step in the case of PECE mode as already indicated

in equation (5.24). Thus we substitute the equation (5.23) into the equation (5.24), we get

yn =
(
1 + z − 1

4
z2 +

3

4
z3 − 17

144
z4
)
yn−1 +

(3

4
z +

1

6
z3 − 7

144
z4
)
yn−2. (5.25)
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The matrix notation can be used


 yn

yn−1



 =



 1 + z − 1
4z2 + 3

4z3 − 17
144z4 3

4z + 1
6z3 − 7

144z4

1 0







 yn−1

yn−2



 (5.26)

and the stability region is calculated and plotted.

The analysis of PEC modes is given by the comparison of Adams-Bashforth Adams-

Moulton method of order 4 (ABAM4) and the new method, see figure 5.12. It is satisfying

that the size of stability region is bigger for our method than the stability region of Adams-

Bashforth Adams-Moulton method of order 4. The same characteristics holds for the PECE

mode.

a) ABAM4 b) the new method

Figure 5.12: Stability regions comparison of PEC modes
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Chapter 6

Conclusions

In this thesis, we explored several numerical methods. We have explored the relationship

between stability and convergence for chosen numerical methods for solving non-stiff prob-

lems. A wide class of Runge–Kutta methods have been described and very interesting

approach of rooted trees was introduced to analyze the order of accuracy of these methods.

The Taylor series was introduced in the view of the systematic patterns where the moti-

vation was found in elementary differentials notation and in rooted trees notation. Linear

multistep methods were also introduced and important stability aspect of the predictor–

corrector modes of Adams method was analyzed.

The contribution of the thesis is the new two-derivative method of order four. The

method is combined in nontraditional way in the form of Obreshkov formulae using variable

stepsize in the predictor-=corrector pairs. It has been shown that the method is usable for

solving linear as well as non-linear problems.

Convergence and stability analysis for the predictor–corrector method in Obreshkov

quadrature formulae with constant stepsize for various problems have been shown as well

as the comparison between the new method, classical Runge–Kutta method of order four,

Taylor series method, Adams–Bashforth Adams–Moulton method of order four in PEC

mode and others selected numerical methods. The new method with fixed stepsize and also

with variable stepsize was implemented and tested in various problems. The implementation

of the new method in different modes PEC and PECE was tested.

Predictor–corrector methods are often preferred over Runge–Kutta methods for the

numerical solution of ordinary differential equations, since the former may involve fewer

derivative evaluations per step. It has been suggested that the number of function evalu-

ations can be reduced in a way of implementing predictor–corrector method in Nordsieck

representation. The new two-derivative multistep method has been introduced and the

method turned out to be just as reliable as the traditional methods. The cost of new

method decreases with the complexity of the problem and the accuracy is preserved. The
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higher order of new method will be more accurate than the classical Adams method.

The size of the stability region for the resulting algorithm is still small, but the stability

region is larger than commonly used methods such as Adams–Bashforth Adams–Moulton

method of order four in PEC mode or Adams–Bashforth method of order 4. Hence, the

new algorithm may be of interest of applications where stability is a strong limitation.

The differential equations and some systems of differential equations with initial condi-

tions from DETEST [64] were successfully tested. Tests examples were implemented and

some experiments were chosen and described. There were no anomalies in the behaviour

of the method for this reason only a few examples were chosen to be described in detail.

Detailed results for the individual methods were collected.

The performance of the method can be improved, especially the algorithm for choosing

the stepsize. Suggested approach is to implement the PI control in the future. It has been

proved that a convergence method of some fixed order is always better than a method of

lower order provided the tolerance is stringent enough. If a method is to be a good general-

purpose method, and hence perform wide range of tolerances, it must be able to choose its

own order. And that is another goal for future work.
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Appendix B

TKSL/C code

The code for RLC circuit for TKSL/C is presented here.

omega=1e+3;

R=20;

L=2.5e-2;

C=5e-5;

u=sin(omega*t);

% numerical solution

uC’=1/C*i &0;

i’ =1/L*uL &0;

uL =u-R*i-uC;

% analytical solution

uCanalyt=exp(-400*t)*(16/17*cos(800*t) +13/17*sin(800*t))

-4/17*sin(omega*t) -16/17*cos(omega*t);

% error between solutions

err=uC-uCanalyt;

The program TKSL/C is available on http://www.fit.vutbr.cz/ kunovsky/TKSL/download.html.

To run the computation copy the code above to the text file named input by the command

in the terminal

cltksl -t 0.1 -s 1e-4 input > output

The output is in the format showed in table B.1 where each column represents a com-

puted variable. Time t in the first column implicitly shows the used stepsize, a variable

err describes the local error between analytical and numerical solutions. The error should

be in the absolute value, unfortunately the function is not implemented in the program.

A variable u is auxiliary and it represents the alternating source of the voltage. There are

columns of numerical uC and analytical uCanalyt solutions, the column with a variable uL

is the voltage on the conduction coil and numbers in the column # represent the number

of Taylor series terms used in each step.
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Table B.1: Results for RLC circuit solved by TKSL/C

t err i u uC uCanalyt uL #

0 0 0 0 0 0 0 0

1e-04 -1.3358644703e-20 1.9447859599e-04 9.9833416646e-02 1.3059108589e-04 1.3059108589e-04 9.5813253640e-02 7

2e-04 -1.0328719430e-19 7.5440946600e-04 1.9866933079e-01 1.0216381129e-03 1.0216381129e-03 1.8255950336e-01 7

3e-04 -3.3615028076e-19 1.6416342446e-03 2.9552020666e-01 3.3664991265e-03 3.3664991265e-03 2.5932102264e-01 7

4e-04 -7.6658988333e-19 2.8146553789e-03 3.8941834230e-01 7.7787653106e-03 7.7787653106e-03 3.2534646941e-01 7

5e-04 -1.4371107721e-18 4.2293067859e-03 4.7942553860e-01 1.4786251761e-02 1.4786251761e-02 3.8005315112e-01 7

6e-04 -2.3778859751e-18 5.8394300519e-03 5.6464247339e-01 2.4826336283e-02 2.4826336283e-02 4.2302753607e-01 7

7e-04 -3.6068178252e-18 7.5975492364e-03 6.4421768723e-01 3.8242650339e-02 3.8242650339e-02 4.5402405216e-01 6

8e-04 -5.1297964683e-18 9.4555375338e-03 7.1735609089e-01 5.5283112557e-02 5.5283112557e-02 4.7296222766e-01 6

9e-04 -6.9411609871e-18 1.1365269293e-02 7.8332690962e-01 7.6099281993e-02 7.6099281993e-02 4.7992224176e-01 6
...

9.97e-02 1.2905973593e-16 -4.2688144771e-02 -7.3858222513e-01 -4.6072268119e-01 -4.6072268119e-01 5.7590335149e-01 6

9.98e-02 1.2977384614e-16 -4.0175105886e-02 -6.6758835430e-01 -5.4365505368e-01 -5.4365505368e-01 6.7956881710e-01 6

9.99e-02 1.2919129897e-16 -3.7260650623e-02 -5.8992416131e-01 -6.2115540458e-01 -6.2115540458e-01 7.7644425572e-01 6

1e-01 1.2731791506e-16 -3.3973899255e-02 -5.0636564110e-01 -6.9244937600e-01 -6.9244937600e-01 8.6556172001e-01 6
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Appendix C

Starting method

The code of the starting procedure for Dahlquist problem is presented here. This version

is compatible with Scilab version 5.0.3.

y=1;

y10=y;

f10=eval(f);

g10=eval(g);

Yinp=[y10 f10*h g10*h^2/2 h^3/6 h^4/24]’;

while count < no.cycles

Ypred = P * Yinp;

y = Ypred(1);

f1=eval(f);

g1=eval(g);

delta1 = h * f1 - Ypred(2,1);

epsilon1 = 1/2 * h^2 * g1 - Ypred(3,1);

Yout = Ypred + (delta1 * alfa) + (epsilon1 * betha);

r=-1;

h=-h;

Yout = diag([1,r,r^2,r^3,r^4])*Yout;

if (modulo(count,2)==0)

Yinp = Yout;

else

Yinp = [y10 f10*h g10*h^2/2 Yout(4,1) Yout(5,1)]’;

end

count=count+1;

end

Yinp = [y10 f10*h g10*h^2/2 Yout(4,1) Yout(5,1)]’;
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Appendix D

Results of circle test

Results of circle test (5.17) are computed by the new method for h = tmax/n where

tmax=2π and steps n = 160. Results are displayed in table D. In the first column there are

numbers of timesteps called x. In the second step there are computed values of y1 which

gives the expected known solution y1 = cos(x). In the third column there are numbers of

y2 correspond to y1 = sin(x). Results can be easily checked.

Results are plotted in picture D.1.

Figure D.1: Circle test results

The order of the new method and errors at the end of the algorithm for different fixed

stepsizes are presented in table D.1. The chosen stepsizes are displayed in the first column

of the table and the error at the end of the calculation is presented in the second row. The

column called ratio represents the order check of the method. As we presented the order of

our method is four (p = 4), thereof numbers of ratios (ratio = 2p = 24) correspond to our

claim.
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x y1 = cos(x) y2 = − sin(x)

0 1 0

3.926991e-02 9.9922903625e-01 -3.9259815629e-02

7.853982e-02 9.9691733377e-01 -7.8459097415e-02

1.178097e-01 9.9306845707e-01 -1.1753740096e-01

1.570796e-01 9.8768834053e-01 -1.5643447037e-01

1.963495e-01 9.8078528001e-01 -1.9509032918e-01
...

...
...

3.063053e+00 -9.9691736340e-01 -7.8458957877e-02

3.102323e+00 -9.9922906079e-01 -3.9259675044e-02

3.141593e+00 -1.0000000192e+00 1.4338736063e-07

3.180863e+00 -9.9922905001e-01 3.9259961617e-02

3.220132e+00 -9.9691734187e-01 7.8459243844e-02

3.259402e+00 -9.9306845930e-01 1.1753754761e-01
...

...
...

6.086836e+00 9.8078537172e-01 1.9509005503e-01

6.126106e+00 9.8768842189e-01 1.5643419292e-01

6.165376e+00 9.9306852796e-01 1.1753712058e-01

6.204645e+00 9.9691739419e-01 7.8458814480e-02

6.243915e+00 9.9922908593e-01 3.9259530548e-02

6.283185e+00 1 -2.8875906233e-07

Table D.1: Order and errors for circle test

h error ratio

0.2·2−1 3.876048e-06

0.2·2−2 2.320613e-07
16.70

0.2·2−3 1.416207e-08
16.39

0.2·2−4 8.742641e-10
16.20

0.2·2−5 5.430012e-11
16.10

0.2·2−6 3.384626e-12
16.04

0.2·2−7 2.219336e-13
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