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Abstract: The paper addresses software implementation of logic-intensive control algorithms whose implementation 
with the smallest memory footprint is often required in embedded systems. A presented heuristic method of 
Multi-Terminal Binary Decision Diagram (MTBDD) synthesis aims to minimize the cost of a resulting 
diagram and thus the required amount of memory to store it. Evaluation of Boolean functions then reduces 
to traversing a MTBDD, one or more variables in a single step, according to a required speed. In terms of 
program execution, the evaluation process essentially does a sequence of indirect memory accesses to 
dispatch tables. The presented method is flexible in making trade-offs between performance and memory 
consumption and may be thus useful for embedded microprocessor or microcontroller software.    

1 INTRODUCTION 

A microprocessor-based control system is today a 
fundamental component in many of the industrial 
control and automation applications. The new 
programmable logic controllers (PLCs) are based on 
embedded PC processors and are sometimes also 
referred to as programmable automation controllers 
(Gilvarry, 2009). Beside the operating system, an 
embedded PC uses a runtime environment for 
simulation of a PLC (soft PLC). New hardware 
platforms (such as the combination of the Intel Atom 
processor paired with the Intel System Controller 
Hub) offer low power consumption and footprint for 
fanless embedded applications. Performance and   
memory space depend on software that must offer 
typical control functions such as digital logic, PID, 
fuzzy logic and the capability to run model-based 
control. In this paper we are interested only in space- 
and time-efficient digital logic control based on 
evaluation of Boolean functions. 

With a changeover from traditional PLC 
(Petruzella, 2004) to open platforms mentioned 
above, we think that the time is ripe to change also 
algorithms and programming of logic-intensive 
control: to trade off serial evaluation of Boolean 
functions for simultaneous group evaluation, 
redundant reading of Boolean variables for read-
once techniques, ladder diagrams (Petruzella, 2004) 

for cube notation and Multi-Terminal Binary 
Decision Diagrams (MTBDDs). Beside PLCs, 
software evaluation of Boolean functions has been 
used in other areas like digital system simulation, 
formal verification and testing or specialized event 
processing (Sosic, 1996), where either a speed or a 
required memory were not that important. On the 
contrary, in embedded systems we do care for 
performance and memory space as well as for power 
consumption. We will demonstrate that presently 
used algorithms (ladder diagrams, PLA emulation, 
BDDs) are generally too slow and that faster 
evaluation is feasible.  

Software implementation of Boolean functions 
will be assumed in a flexible form of a data structure 
describing the function and of a compiled program 
that reads the input vector and evaluates the function 
with the use of this data structure. The size of the 
code and of the data structure is one figure of merit, 
the other is the evaluation time from reading the 
input to generating the output.  

The paper is structured as follows. In the 
following Section 2 we explain representation of 
Boolean functions by means of cubes and decision 
diagrams. In Section 3 we construct a MTBDD for 
the sample function specified by cubes using our 
heuristic approach for minimizing the MTBDD cost 
(and thus the size of relevant data structures – 
dispatch tables). In Section 4 we exemplify creation 
of branching programs and dispatch tables on the 



 

Round Robin (RR) arbiter and show how to trade 
speed of evaluation for memory space. Results of 
MTBDD construction for RR arbiters of various size   
are also presented. The results are commented on in 
Conclusions. 

2 CUBES AND DECISION 
DIAGRAMS  

To begin our discussion, we define the following 
terminology. A system of m Boolean functions of n 
Boolean variables, 

fn
(i) : (Z2)

n → Z2 ,  i = 1, 2, ..., m (1) 

will be simply referred to as a multiple-output 
Boolean function Fn. Instead of a full function table, 
we prefer to use a shorthand description of a system 
(1) in a form of a PLA matrix, i.e., as a set of (n+m)-
tuples, called function cubes, in which an element of 
{0, -, 1}n is called an input cube and element of  
{0, -, 1}m is called an output cube.   

Symbols {0, 1, -} in the PLA matrix are 
interpreted the following way: each position in the 
input plane   corresponds to an input variable where 
a (1) 0 implies that the corresponding input literal 
appears (un-)complemented in the product term. The 
uncertain value "-" can be either 0 or 1. 

  
Definition 1. Compatibility relation ∼ is  defined on 
the set {0, 1, -}: all pairs except the pairs (0,1) and 
(1,0) are compatible (0 ∼ 0, 1 ∼ 1, - ∼ -, 0 ∼ -, 1 ∼ -, - 
∼ 0, - ∼ 1). 
 Compatibility relation is extended to cubes {0, -, 
1}n: two cubes are compatible if all their homothetic 
elements are compatible (Brzozowski, 1997). 
Definition 2. A binary operation * (intersection or 
product) is defined on the set {0, 1, -}: 
0*0 = 0, 1*1 = 1, -*- = -,  
0*- = -*0 = 0, 1*- = -*1 = 1. 
Operation * is not defined for pairs (0,1) and (1,0). 
The intersection can be further extended to two or 
more compatible cubes if it is applied element-wise.    
 
Function Fn is incomplete if it is defined only on set 
D ⊂ (Z2)

n; (Z2)
n \ D = X is the don’t care set (DC-

set). The elements in X are input vectors that for 
some reason cannot occur. Our concern will be an 
incompletely specified integer (R-valued) function 
of n Boolean variables 

Fn: D → ZR ,                                        (2) 

D ⊆ (Z2)
n, ZR = {0,1,2, …, R − 1}, R ≤ 2m, such that 

no two input cubes are compatible. A min-term 
applied to the input is thus contained in one and only 
one input cube. This restriction greatly simplifies 
algorithms described later on, and can be lifted in 
future. Output cubes are integer values that can be 
recoded back to output binary vectors b ∈ {0,1} m 
when desired. Function Fn is not defined on a don´t 
care set X = (Z2)

n \ D.  
We will use a function F4: D → Z5,  D⊂ (Z2)

4 
with a map at Fig. 1 as a running example of a class 
of functions under our consideration. Here 6 cubes 
are mapped into 5 integer values. The function is not 
defined in |X| = 6 out of 16 points. 
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Figure 1: (a) The map of integer function F4, (b) the 
equivalent cube specification and (c) product terms. 

Machine representation of single-output 
Boolean functions frequently uses Binary Decision 
Diagrams (BDDs), which can have many forms, 
[Yanushkevich, 2006]. Integer-valued or multiple-
output Boolean functions are frequently represented 
by Multi-Terminal Binary Decision Diagrams 
(MTBDDs) or by  BDD  for the characteristic 
function (BDD_for_CF), (Matsuura, 2007). The 
latter type has a drawback of a large size because 
input as well as output variables are used as decision 
variables; it is also more difficult to work with. 
From now on, we will therefore use only MTBDDs.  

The DD size is the important parameter as it 
directly influences the amount of memory storing 
the DD data structure.  However, the size of a DD is 



 

very sensitive to variable ordering and finding a 
good order even for BDDs is an NP-complete 
problem (Yanushkevich, 2006). The size of DDs for 
random functions grows exponentially with the 
number of variables n for any ordering, but functions 
used in digital system design with few exceptions do 
have a reasonable DD size. One exception is the 
class of binary multipliers: for all possible variable 
orderings, the BDD size is exponential for n-bit 
inputs and 2n-bit output (Bryant, 1991). 

We will refer to BDDs or MTBDDs with the 
best variable ordering as to the optimal DDs. The 
term a “sub-optimal DD” will denote a DD with a 
size near to the optimal BDD.  

3 MTBDD SYNTHESIS FROM 
CUBE SPECIFICATION    

In this section we present a heuristic technique for a 
sub-optimal MTBDD synthesis. It is a generalization 
of the BDD construction by means of iterative 
disjunctive decomposition (Dvořák, 2007). Input 
variables are selected one after another in such 
a way that MTBDD cost is locally minimized.  

Before formulation of the algorithm, we prefer 
to illustrate the synthesis technique on the F4 
example in Fig. 2. The integer function z = F4(a, b, 
c, d) of four binary variables is specified by cubes at 
the top of Fig. 2. In the meantime we will select a 
sequence of input variables for iterative decompo-
sition randomly, e.g. d, c, b, a. A single variable 
(highlighted within tables in Fig. 2) will be removed 
from the function in one decomposition step. 
Starting with variable d, we inspect the set of input 
cubes with value 0 or 1 in column d and look for all 
possible compatible pairs of input cubes e = (e1, e2, 
e3, 0)  and e’ = (e’1, e’2, e’3, 1) hiding their values 0 
and 1. One cube (...,0) may be compatible with 
several cubes (...,1) and vice versa. These pairs will 
be referred to as binary pairs (b-pairs). 

Next we will identify input cubes with value "-" 
in column d. From each such cube u = (u1, u2, u3, -) 
we can create a compatible pair u = (u1, u2, u3, 0) 
and u’ = (u1, u2, u3, 1) by substitution 0 and 1 for "-". 
These pairs will be referred to as unary pairs (u-
pairs) because of their origin from one cube. 
Remaining cubes of two types, q = (q1, q2, q3, 0) or 
r = (r1, r2, r3, 1), are not compatible between them-
selves and neither with any cube in binary pairs; we 
will call them orphaned input cubes. This is because 
the compatible cubes q = (q1, q2, q3, 1) or r = (r1, r2, 
r3, 0) map to the don´t care values and therefore are 

not listed in the cube table. We can thus append each 
orphaned cube with the identical invisible input cube 
with DC output value. We will call these pairs 
appended pairs (a-pairs). 

In our example in Fig. 2 we will find 
- only one b-pair, cubes 4&5 
- two u-pairs, cubes 2&2 and 3&3   
- two a-pairs, cubes 0&x, 1&x.  

When we do decomposition of function F4 by 
removal of variable d,  

F4  = H(G(a, b, c), d),                                       (3) 

we have to intersect all b-, u-, and a-pairs of compa-
tible input cubes u = (u1, u2, u3) and v = (v1, v2, v3) in 
order to obtain  cubes of a residual function G and 
map them into pairs of output values :  

Figure 2: Iterative decomposition of an integer function F4 
of 4 binary variables (replacement of DC values in bold).  

F4: u = (u1, u2, u3)       F4 (u1, u2, u3, 0) = P 
F4:       v = (v1, v2, v3)        F4 (v1, v2, v3, 1) = Q      (4)                        
G:   u* v = (z1, z2, z3)                       Z : = [P, Q]     
 
For example, pair of values (4, 0) is produced by 
cubes 4 and 5 in the first table in Fig.2; without 
values of d are these cubes compatible and can be 
replaced in the new table of a residual function G(a, 
b, c) by a single input cube 111 – their intersection. 
The removed variable d is left empty in all cubes of 
the following tables. A pair of output values (4, 0) 
from intersection of cubes 4&5 is replaced by a new 

a b c d z comp.
0 0 0 0 0 0 cubes
1 0 0 1 0 2 4&5 0:= (4,0)
2 0 1 0 - 1 2&2 1:= (1,1)
3 1 0 - - 3 3&3 2:= (3,3)
4 1 1 1 0 4 0&x 3:= (0,0)
5 1 1 1 1 0 1&x 4:= (2,2)

comp.
0 1 1 1 0 cubes
1 0 1 0 1 3&4 0:= (3,4)
2 1 0 - 2 2&2 1:= (2,2)
3 0 0 0 3 0&x 2:= (0,0)
4 0 0 1 4 x&1 3:= (1,1)

comp.
0 0 0 0 cubes
1 1 0 1 0&3 0:= (0,3)
2 1 1 2 1&2 1:= (1,2)
3 0 1 3  

comp.
0 0 0 cubes
1 1 1 0&1 0:= (0,1)



 

integer id (0), as indicated in Fig. 2 by the 
assignment 0 := (4, 0). 

Unary pairs of cubes 2&2 and 3&3 produce 
output pairs of the same values (1, 1) and (3, 3) 
redefined to new identities 1 and 2. Finally input 
cubes 0 and 1 are appended with the same invisible 
cubes to produce output pairs (0, DC) and (2, DC). 
Now the DC values must be defined so as not to 
increase the number of already existing unique pairs. 
If merging with one already found unique pair is not 
possible, like in our case, we will use pairs of the 
same values (0, 0) and (2, 2) and give them new 
identities 3 and 4. Sometimes it may be useful to 
replace all DC values by a special default value that 
will be interpreted as "no _output" or "error". 

Pairs of different output values correspond to a 
true decision node, whereas pairs of the same output 
values produce degenerate or false decision nodes, 
because variable d in fact does not decide anything. 
Nodes in the MTBDD are labeled by the new 
identities of output pairs. There is one true node (0) 
and four false nodes (1, 2, 3 and 4 shown as black 
dots) in the lowest level of the MTBDD in Fig. 3. 
Dashed edges are taken for 0-value and solid edges 
for 1- or both values of decision variables. 
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Figure 3: The MTBDD of function F4 obtained by iterative 
decomposition. 

By now, we have exhausted all possible pairs of 
compatible cubes of F4 with d = 1 and d = 0 and 
have replaced them by new shorter cubes of the 
residual function G. The same procedure is repeated 
in the following decomposition steps until all 
variables have been removed. We move ahead in a 
backward direction, from the leaves of the MTBDD 
to its root, Fig. 3.   

The remaining question not addressed as yet is, 
which variable should be used in any given step. We 
use a heuristic that strives to minimize the number of 
true nodes t in the current level of the MTBDD. In 
the case of a tie, a variable with a lower number of 

false nodes f is selected. In case of a tie again, a 
variable is chosen randomly.  

The core of the above algorithm, the search for 
the best variable in step i, i in 1 to n, is given below 
(letters S stand for sets, M for tables): 

 
// Determine the best variable vk in step k // 
Mk-1, a cube table of the (k−1)th residual function; 
(M0 is the cube table of the original function); 
Sv, the set of input variables of the (k−1)th residual 
function; 
vk , the best variable in step k; 

 
vbest ← arbitrary variable from Sv,  
tbest ← size(Mk-1), fbest ← 0; 
for all variables v ∈ Sv do 

Mp ← make b- and u-pairs(Mk-1, v);             
Sp ← unique_output pairs(Mp);  
Sm ← merge or add a-pairs(Sp);   
t ← #true nodes(Sm);         
f ←#false nodes(Sm);      
if ( t < tbest) or ((t == tbest) and (f < fbest))  
    then vbest ← v, tbest ← t, fbest ← f; 
endif 

endfor 
vk ← vbest;  
 
The whole algorithm for iterative decomposition has 
been implemented in the SW tool HIDET (Heuristic 
Iterative Decomposition Tool). It has been applied 
successfully to a class of arbiter and allocator 
circuits; parameters of some obtained MTBDDs are 
given in Section 4. 

4 BRANCHING PROGRAMS 
WITH DISPATCH TABLES 
  

Implementing multiple-output Boolean functions on 
a microprocessor can be done in several ways. 
Emulating PLC that evaluates one function after 
another in a sum-of-products form by redundant 
testing values of variables is slow and inefficient. A 
better way makes use of the whole processor word 
as 32 or 64 bits in parallel. The PLA matrix with n 
inputs and m outputs can be emulated in n+m steps. 
A product vector in the AND array is created by 
accumulating contributions from input variables: 
according to the value of an input variable, one of 
two masks is logically multiplied with the product 
vector created so far (and initially with all ones). 
Then m outputs are generated serially applying a 
single mask for each output to the product vector 



 

and detecting presence of at least a single 1. 
However, if the number of cubes is larger than the 
word size, above steps must be repeated several 
times.      

Finally, the method based on MTBDDs takes 
always n or a fraction of n steps. Provided that a 
(sub-)optimal MTBDD of a certain integer function 
is known, writing a branching program is a routine. 
We will illustrate it on the 4-input Round Robin 
Arbiter (RRA) with 4 input request lines r0−r3 and 4 
grant outputs g0−g3. The n-bit priority register p0−p3 
is maintained which points to the requester who is 
next. It contains a single 1 that rotates one position 
after a grant is issued. The MTBDD of this RRA 
obtained by HIDET tool is in Fig. 4. The speed of 
evaluation is given by the number of decision 
variables tested simultaneously.  

The sample of a symbolic program with testing 
two binary inputs at a time is shown at Fig. 5. The 
best performance is obtained by hand coding the 
series of table lookups in assembly language and 
replacing switch statements by dispatch tables.  The 
program uses 9 4-way and of 2 2-way dispatch 
tables. The size of dispatch tables varies depending 
on whether the input edge leads to a true decision 
node (L1-L5, L7-L10) or passes through one or 
more false nodes (L6, L11). In the assembly code, 
the base address of a dispatch table gets modified in 
two least significant bits by values of two variables 
under the test. Items in a dispatch table contain 
either the next base address or the terminal value. 
One bit is used to differentiate between these two 
formats. The total size of all dispatch tables is 
9×4+2×2 = 40  words and an arbitration decision is 
produced after four table lookups. 

Had we used only single variable tests (a 
branching program with 2-way tables), we would 
need 17 dispatch tables of size 2, i.e. 34 words in 
total. However, the performance would be 2- times 
lower due to execution of a chain of 8 table lookups, 
one in each level of the MTBDD. Faster processing 
in three steps could test groups of 2, 3, 3 or 2, 2, 4 
decision variables. The fastest execution would test 
4 decision variables at a time and use 16-way 
branching. The features of various options are 
summarized in Table 1. The space × time product is 
a figure of merit of quality of the implementation. It 
gets the best (lowest) value for testing four variables 
at a time.  

With the aid of HIDET tool, MTBDDs of many 
types of arbiters of different size have been obtained, 
among others priority encoders, RR, LGLP (Last 
Granted Lowest Priority) and LRS (Least Recently 
Serviced) arbiters. Cube tables were obtained 
automatically by means of small routines in C which 
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Figure 4: MTBDD of the 4-input  RR arbiter 

Figure 5: A symbolic program for the 4-input RRA. 

enable scaling to the desired size. The results for 
RRAn arbiters with n inputs, m outputs and specified 

L1: input x ←r3r2 ;    L10: input  x ←p2p0; 
       switch (x) {  switch (x) { 
           case 0:        case 0: 
               goto L2;                          output g4;  
           case 1:                                goto End; 
               goto L4;               case 1: 
           case 2:                                output g1;                            
               goto L5;                          goto End; 
           case 3:                            case 2: 
               goto L5;                          output g3; 

   }                                           goto End; 
L2:  input x ←r1r0;                    case 3: 
       switch (x) {                             output g3; 
           case 0:                                goto End; 
               output no_g;            }             
               goto End;         L11: input  x ←p0; 
           case 1:                          switch (x) {                                                                             
               goto L6;                      case 0: 
           case 2:                                output g4; 
               goto L3;                          goto End; 
           case 3:                            case 1: 
               goto L3;                          output g1; 

   }                                           goto End; 
    …                                        {                                                
                                         End:                                                
 



 

by #cubes are given in Tab. 2. The number of true 
nodes multiplied by 2 gives the lower bound on 
memory space (in words) for dispatch tables.  

Table 1: Various RRA4 program options. 

 tested  Σ dispatch # table space x 
 variables: table size lookups time 
 8 x 1  34 8 272 
 4 x 2 40 4 160 
 2, 3, 3 52 3 156 
 2, 2, 4 64 3 192 
 4, 4 72 2 144 
 8 256 1 256 

 

    Table 2: MTBDDs for Round Robin Arbiters. 

   in   out 
 n m 

#cubes 
bbb 

# true 
nodes 

RRA3 6 3 10 10 
RRA4 8 4 17 17 
RRA6 12 6 37 40 
RRA8 16 8 65 75 
RRA12 24 12 145 189 

 

5 CONCLUSIONS 

Programming a digital logic component of micro-
processor-based control systems need not rely only 
on ladder diagrams anymore. Modern digital logic 
design offers multi-terminal BDDs that can specify 
groups of Boolean functions simultaneously, are 
non-redundant and allow direct conversion to 
branching programs with dispatch tables. 
The advantages of the presented technique are 
twofold: 
1. The transition from cube specification to the 
MTBDD and then to the assembly program is 
relatively easy and can be automated. The latter 
transition is of course depending on a target 
processor. 
2. As soon as the MTBDD is known, the most 
suitable program implementation can be chosen   
trading-off performance for memory space (mainly 
to store dispatch tables).  
The programming technique has been demonstrated 
on (but it is not limited to) the class of arbiter 
circuits. Currently it is applicable to integer 
functions of Boolean variables with don´t cares.   

Future research will address multiple-output 
Boolean functions with compatible input cubes and 
incidentally with ternary output cubes c ∈ {0, -, 1}m. 
This extension could provide appropriate design 
techniques for new classes of functions.  
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