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Abstract
Common features of current information systems have significant impact on software
architectures of these systems. The systems can not be realised as monoliths, formal
specification of behaviour and interfaces of the systems’ parts are necessary, as well
as specification of their interaction. Moreover, the systems have to deal with many
problems including the ability to clone components and to move the copies across a
network (component mobility), creation, destruction and updating of components and
connections during the systems’ run-time (dynamic reconfiguration), maintaining compo-
nents’ compatibility, etc. In this paper, we present the component model that addresses
component mobility including dynamic reconfiguration, allows to combine control and
functional interfaces, and separates a component’s specification from its implementation.
We focus on the formal basis of the component model in detail. We also review the related
research on the current theory and practice of formal component-based development of
software systems.

1 Introduction

Increasing globalisation of information society and its progression create needs for ex-
tensive and reliable information technology solutions. Common requirements for current
information systems include adaptability to variable structure of organisations, support
of distributed activities, integration of well-established (third party) software products,
connection to a variable set of external systems, etc. Those features have significant impact
on software architectures of the systems. The systems can not be realised as monoliths,
exact specification of functions and interfaces of the systems’ parts are necessary, as well as
specification of their communication and deployment. Therefore, the information systems
of organisations are realised as networks of quite autonomous, but cooperative, units
communicating asynchronously via messages of appropriate format [7]. Unfortunately,
design and implementation of those systems have to deal with many problems including
the ability to clone components and to move the copies across a network (i.e. component
mobility), creation, destruction and updating of components and connections during the
systems’ run-time (i.e. dynamic reconfiguration), maintaining components’ compatibility,
etc. [6]

Moreover, distributed information systems are getting involved. Their architectures
are evolving during a run-time and formal specifications are necessary, particularly in
critical applications. Design of the systems with dynamic architectures (i.e. architectures
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with dynamic reconfigurations) and mobile architectures (i.e. dynamic architectures with
component mobility) can not be done by means of conventional software design methods.
In most cases, these methods are able to describe semi-formally only sequential processing
or simple concurrent processing bounded to one component without advanced features
such as dynamic reconfiguration.

The component-based development (CBD, see [18]) is a software development method-
ology, which is strongly oriented to composability and re-usability in a software system’s
architecture. In the CBD, from a structural point of view, a software system is composed of
components, which are self contained entities accessible through well-defined interfaces. A
connection of compatible interfaces of cooperating components is realised via their bindings
(connectors). Actual organisation of interconnected components is called configuration.
Component models are specific meta-models of software architectures supporting the CBD,
which define syntax, semantics and composition of components.

Although the CBD can be the right way to cope with the problems of the distributed
information systems, it has some limitations in formal description, which restrict the
full support for the mobile architectures. Those restrictions can be delimited by usage of
formal bases that do not consider dynamic reconfigurations and component mobility, strict
isolation of control and business logic of components that does not allow full integration
of dynamic reconfigurations into the components, etc.

This paper proposes a high-level component model addressing the mentioned issues.
The model allows dynamic reconfigurations and component mobility, defined combination
of control and business logic of components, and separation of a component’s specification
from its implementation. The paper also introduces a formal basis for description of the
component model’s semantics, i.e. the structure and behaviour of the components.

The remainder of this paper is organised as follows. In Section 2, we introduce the
component model in more detail. In Section 3, we provide the formal basis for description
of the component model. In Section 5, we review main approaches that are relevant to our
subject. In Section 6, we discuss advantages and disadvantages of our component model
and its formal description compared with the reviewed approaches and outline the future
work. To conclude, in Section 7, we summarise our approach and current results.

2 Component Model

In this section, we describe our approach to the component model. The component model
is presented in two views: structural and behavioural. At first, in Section 2.1, we introduce
the component model’s meta-model, which describes basic entities of the component model
and their relations and properties. The second view, in Section 2.2, is focused on behaviour
of the component model’s entities, especially on the component mobility.
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Figure 1: The meta-model of the component model (the UML notation [11]).

2.1 Meta-model

The Figure 1 describes an outline of the component model’s meta-model1 in the UML
notation [11]. Three basic entities represent the core entities of a component based
architecture: a component, an interface and a binding (a connector).

The component is an active communicating entity in a component based software
system. In our approach, the component consists of component abstraction and compo-
nent implementation. The component abstraction (CompAbstraction in the meta-model)
represents the component’s specification and behaviour given by the component’s formal
description (semantics of services provided by the component). The component imple-
mentation (CompImplementation) represents a specific implementation of the component’s
behaviour (an implementation of the services). The implementation can be primitive or
composite. The primitive implementation (CompImplPrimitive) is realised directly, beyond
the scope of architecture description (it is “a black-box”). The composite implementation
(CompImplComposite) is decomposable on a system of subcomponents at the lower level of
architecture description (it is “a grey-box”). Those subcomponents are represented by
component abstractions (CompAbstraction and relation “consists of”).

Interfaces of a component are described in relation to the component’s abstraction
(relation “accessible via” from CompAbstraction). We distinguish two types of interfaces:
required and provided (ReqInterface and ProvInterface, respectively), according to the
type of services required or provided by the component from or to its neighbouring
components, respectively, at the same level of hierarchy of components (i.e. not from

1the figured diagram can not describe additional constraints, e.g. a composite component “contains”
bindings that interconnect only interfaces of the component’s subcomponents, not interfaces of its neigh-
bouring components, etc.
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or to subcomponents of a neighbouring component, for example). Moreover, the compos-
ite components’ implementations (CompImplComposite) provide special internal interfaces,
which are available only for the component’s subcomponents and make accessible the com-
ponent’s external interfaces (i.e. the interfaces described in relation to CompAbstraction).
The entity ICProxyInward connects a composite component’s external provided interface
to the component’s internal required interface, while the entity ICProxyOutward connects
a composite component’s internal provided interface to the component’s external required
interface (the relations “outer” and “inner” and vice versa).

According to the functionality of interfaces, we can distinguish functional, control and
reference interfaces (described by TypeOfInterface). The functional interfaces (ToIFunct-
ional) represent business oriented services with typed input and output parameters
(ToIFuncParam and TypeOfValue). The control interfaces (ToIControl and its attribute’s
type) provide services for obtaining references to a component’s provided functional inter-
faces (type getFuncInterfaces), for binding a component’s required functional interfaces
(type bindFuncInterface), and for changes of behaviour (types start and stop) and archi-
tecture. The services for changes of architecture are clone, attach and detach for obtaining
references to a fresh copy of a component (type “cloning”), attaching of a new component
as a subcomponent and detaching of an old subcomponent, respectively. The reference
interfaces (ToIReference) are able to transmit references to components or interfaces,
which is required to support component mobility.

Finally, the binding describes connection of required and provided interfaces of the
identical types and of components at the same level of the hierarchy into a reliable
communication link (entity Binding). The type of a binding (TypeOfBinding) can specify
a communication style (buffered and unbuffered connection), a type of synchronisation
(blocking and output non-blocking), etc.

2.2 Behaviour and Support of Mobile Architectures

The previous section introduces the structure of the component model. A system described
by means of the component model is one component with provided and required interfaces,
which represent the system’s input and output actions, respectively. The component can
be implemented as a primitive component or as a composite component. The primitive
component is realised directly, beyond the scope of architecture description, while the
composite component is decomposable at the lower level of hierarchy into a system of
subcomponents communicating via their interfaces and their bindings.

Behaviour of a primitive component has to be defined by a developer, simultaneously
with definitions of the component’s interfaces. The primitive component is defined as
“a black-box”, i.e. its behaviour can be described as a dependence relation of input
and output actions. Behaviour of a composite component depends on behaviour of its
subcomponents, but it includes also a description of communication between connected
interfaces of those subcomponents and processing of specific control actions in the com-
ponent (e.g. requests for starting or stopping of the component and their distribution to
the component’s subcomponents, etc.).
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In the following description, we focus on the behaviour of control parts of components
particularly related to the features of mobile architectures, i.e. on creation and destruction
of components and connections and on passing of components. Evolution of a system’s
architecture begins in the state where its initialisation is finished.

A new component can be created as a copy of an existing component by means of its
control interface clone. The resulting new component is deactivated (i.e. stopped) and
packed into a message, which can be sent via outgoing connections into different location
(via interfaces of type ToIRefComp) where it can be placed as a subcomponent of a parent
component (by means of attach interface), connected to local neighbouring components
(by means of bindFuncInterf and getFuncInterf interfaces) and activated (by means
of start interface). Destruction of an old component can be done automatically after
deactivating of the component (by means of stop interface), releasing of all its provided
interfaces and disconnecting from its parent component (by means of detach interface).

Creation of new connections between two compatible functional interfaces can be done
by means of passing of functional interfaces (via interfaces of type ToIRefInt). At first, a
reference to provided functional interface (a target interface) is obtained from a component
(via control interface getFuncInterf). This reference is sent via outgoing connections
into different location (via interfaces of type ToIRefInt), but only in the same parent
component and at the same level of hierarchy of components (i.e. crossing the boundary
of a composite component is not allowed). The reference is received by a component
with compatible required functional interface (a source interface) and a binding of this
interface to referenced interface is created (by means of control interface bindFuncInterf).
Destruction of a connection can be done by rebinding of a required interface participating
in this connection.

As it follows from the description of behaviour, the connections can interconnect
only interfaces of the same types. Moreover, dynamic creation of new connections and
destruction of existing connection are permitted only for functional interfaces (type ToI-

Functional). Those restrictions, together with the restriction of passing of interfaces’
references described in the previous paragraph, prevent architectural erosion and archi-
tectural drift [12], which are caused by uncontrollable evolution of dynamic and mobile
architecture resulting into degradation of the components’ dependencies over time. In the
component model, the architecture of control interfaces and their interconnections, which
allow evolution and component mobility, is a static architecture.

Despite those restrictions, combining of actions of functional interfaces with actions of
control interfaces is permitted inside primitive components. This allows to build systems
where functional (business) requirements imply changes of a systems’ architectures.

3 Formal Description

In this section, formal description of behaviour of the component model’s entities is pre-
sented. The Section 3.1 provides an introduction to the process algebra π-calculus, which
is used in description in Section 3.2. The description is based on our previous research on
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distributed information systems as systems of asynchronous concurrent processes [14] and
the mobile architecture’s features in such systems [16, 15].

3.1 The π-Calculus

The process algebra π-calculus, known also as a calculus of mobile processes [10], is an
extension of Robin Milner’s calculus of communicating systems (CCS). This section briefly
summarises the fundamentals of the π-calculus, a theory of mobile processes, according to
[17]. The following theoretical background is required for the component model’s formal
description in Section 3.2. The π-calculus allows modelling of systems with dynamic
communication structures (i.e. mobile processes) by means of two concepts:

a process — an active communicating entity in a system, primitive or expressed in π-
calculus (denoted by uppercase letters in expressions)2,

a name — anything else, e.g. a communication link (a port), variable, constant (data),
etc. (denoted by lowercase letters in expressions)3.

Processes use names (as communication links) to interact, and pass names (as vari-
ables, constants, and communication links) to another process by mentioning them in
interactions. The names received by a process can be used and mentioned by it in
further interactions (as communication links). This “passing of names” permits mobility
of communication links.

Processes evolve by performing actions. The capabilities for action are expressed via
three kinds of prefixes (“output”, “input” and “unobservable”, as it is described later).
We can define the π-calculus processes, their subclass and the prefixes as follows.

Definition 1 (π-calculus) The processes, the summations, and the prefixes of the π-
calculus are given respectively by

P ::= M | P | P ′ | (z)P | !P
M ::= 0 | π.P | M + M ′

π ::= x〈y〉 | x(z) | τ

We give a brief, informal account of semantics of π-calculus processes. At first, process
0 is a π-calculus process that can do nothing, it is the null process or inaction. If processes
P and P ′ are π-calculus processes, then following expressions are also π-calculus processes
with formal syntax according to the Definition 1 and given informal semantics:

• x〈y〉.P is an output prefix that can send name y via name x (i.e. via the communi-
cation link x) and continue4 as process P ,

2a parametric process is also called “an agent”
3the names can be called according to their meanings (e.g. a port/link, a message, etc.)
4the prefix ensures that process P can not proceed until a capability of the prefix has been exercised
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• x(z).P is an input prefix that can receive any name via name x and continue as
process P with the received name substituted for every free occurrence5 of name z
in the process,

• τ.P is an unobservable prefix that can evolve invisibly to process P , it can do an
internal (silent) action and continue as process P ,

• P + P ′ is a sum of capabilities of P together with capabilities of P ′ processes,
it proceeds as either process P or process P ′, i.e. when a sum exercises one of its
capabilities, the others are rendered void,

• P | P ′ is a composition of processes P and P ′, which can proceed independently and
can interact via shared names,

• (z)P is a restriction of the scope6 of name z in process P ,

• !P is a replication that means an infinite composition of processes P or, equivalently,
a process satisfying the equation !P = P | !P .

The π-calculus has two name-binding operators. The binding is defined as follows.

Definition 2 (Binding) In each of x(z).P and (z)P , the displayed occurrence of z is
binding with scope P . An occurrence of a name in a process is bound if it is, or it lies
within the scope of, a binding occurrence of the name, otherwise the occurrence is free.

In our notations, we will omit a transmitted name, the second parts of input and
output prefixes in a π-calculus expression, if it is not used anywhere else in its scope (e.g.
instead of (x)((y)x〈y〉.0 | x(z).0), we can write (x)(x.0 | x.0)).

Since the sum and composition operators are associative and commutative (according
to the relation of structural congruence [10]) they can be used with multiple arguments,
independently of their order. Also an order of application of the restriction operator is
insignificant. We will use the following notations:

• for m ≥ 3, let
∏m
i=1 Pi = P1 | P2 | . . . | Pm be a multi-composition of processes

P1, . . . , Pm, which can proceed independently and can interact via shared names,

• for n ≥ 2 and x̃ = (x1, . . . , xn), let (x1)(x2) . . . (xn)P = (x1, x2, . . . , xn)P = (x̃)P be
a multi-restriction of the scope of names x1, . . . , xn to process P .

We will omit the null process if the meaning of the expression is unambiguous according
to the above-mentioned equations (e.g. instead of x〈y〉.0 | x(z).0, we can write x〈y〉 | x(z)).
Moreover, the following equations are true for the null process:

M + 0 = M P | 0 = P (x)0 = 0
5see the Definition 2
6the scope of a restriction may change as a result of interaction between processes
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The π-calculus processes can be parametrised. A parametrised process, an abstraction,
is an expression of the form (x).P . We may also regard abstractions as components of
input-prefixed processes, viewing a(x).P as an abstraction located at name a. In (x).P as
in a(x).P , the displayed occurrence of x is binding with scope P .

Definition 3 (Abstraction) An abstraction of arity n ≥ 0 is an expression of the
form (x1, . . . , xn).P , where the xi are distinct. For n = 1, the abstraction is a monoadic
abstraction, otherwise it is a polyadic abstraction.

When an abstraction (x).P is applied to an argument y it yields process P {y/x}.
Application is the destructor of abstractions. We can define two types of application:
pseudo-application and constant application. The pseudo-application is defined as follows.

Definition 4 (Pseudo-application) If F
def
= (x̃).P is of arity n and ỹ is length n, then

P {ỹ/x̃} is an instance of F . We abbreviate P {ỹ/x̃} to F 〈ỹ〉. We refer to this instance
operation as pseudo-application of an abstraction.

In contract to the pseudo-application that is only abbreviation of a substitution, the
constant application is a real syntactic construct. It allows to describe a recursively defined
process.

Definition 5 (Constant application) A recursive definition of a process constant K
is an expression of the form K

Δ= (x̃).P , where x̃ contains all names that have a free
occurrence in P . A constant application, sometimes referred as an instance of the process
constant K, is a form of process Kbãc.

Communication between processes (a computation step) is formally defined as a re-
duction relation → . It is the least relation closed under a set of reduction rules.

Definition 6 (Reduction) The reduction relation, → , is defined by the following rules:

R-Inter (x〈y〉.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z} R-Tau τ.P + M → P

R-Par
P1 → P ′

1
P1 | P2 → P ′

1 | P2
R-Res P → P ′

(z)P → (z)P ′

R-Struct
P1=P2 → P ′

2=P ′
1

P1 → P ′
1

R-Const Kbãc → P{ã/x̃} K
Δ= (x̃).P

The communication is described by the main reduction rule R-Inter. It means that a
composition of a process proceeding as either process M1 or the process, which sends name
y via name x and continues as process P1, and a process proceeding as either process M2

or the process, which receives name z via name x and continues as process P2, can perform
a reduction step. After this reduction, the process is P1 | P2 {y/z} (all free occurrences of
z in P2 are replaced by y).
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3.2 Description of the Component Model

A software system can be described by means of the component model as one component
with provided and required interfaces, which represent the system’s input and output
actions, respectively. According to the component model’s definition, every component
can be implemented as a primitive component or as a composite component. Since a
primitive component is realised as “a black-box”, its behaviour has to be defined by
its developer. This behaviour can be formally described as a π-calculus process, which
uses names representing the component’s interfaces, but also implements specific control
actions provided by the component (e.g. requests to start or stop the component). On
the contrary, a composite component is decomposable at the lower level of hierarchy into
a system of subcomponents communicating via their interfaces and their bindings (the
component is “a grey-box”). Formal description of the composite component’s behaviour
is a π-calculus process, which is composition of processes representing behaviour of the
component’s subcomponents, processes implementing communication between intercon-
nected interfaces of the subcomponents and internal interfaces of the component and
processes realising specific control actions (e.g. the requests to start or stop the composite
component, but including their distribution to the component’s subcomponents, etc.).

Before we define π-calculus processes implementing the behaviour of a component’s
individual parts, we need to define the component’s interfaces within the terms of the π-
calculus, i.e. as names used by the processes. The following names can be used in external
or internal view of a component, i.e. for the component’s neighbours or the composite
component’s subcomponents, respectively.

• external: s0, s1, c, rs1, . . . , r
s
n, p

g
1, . . . , p

g
m (of a primitive or composite component)

• internal: a, r′s1 , . . . , r
′s
m, p′g1 , . . . , p

′g
n (of a composite component only)

where n is a number of the component’s required functional interfaces, m is a number
of the component’s provided functional interfaces (both from the external view) and the
names have the following semantics:

via s0 – a running component accepts a request for its stopping, which a composite
component distributes also to all its subcomponents,

via s1 – a stopped component accepts a request for its starting, which a composite
component distributes also to all its subcomponents,

via c – a component accepts a request for its cloning and returns a new stopped instance
of the component as a reply,

via rsi – a component accepts a request for binding given provided functional interface
(included in the request) to the required functional interface ri,

via pgj – a component accepts a request for referencing to the provided functional interface
pj that is returned as a reply,

via a – a composite component accepts a request for attaching its new subcomponent, i.e.
for attaching the subcomponent’s s0 and s1 names (stop and start interfaces), which
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can be called when the composite component will be stopped or started, respectively,
and as a reply, it returns a name accepting the request to detach the subcomponent.

We should remark that there is a relationship between the names representing func-
tional interfaces in the external view and the names representing corresponding functional
interfaces in the internal view of the composite component. The composite component
connects its external functional interfaces r1, . . . , rn (required) and p1, . . . , pm (provided)
accessible via names rs1, . . . , r

s
n and pg1, . . . , p

g
m, respectively, to internal functional inter-

faces p′1, . . . , p
′
n (provided) and r′1, . . . , r

′
m (required) accessible via names p′g1 , . . . , p

′g
n and

r′s1 , . . . , r
′s
m, respectively. Requests received via external functional provided interface pj

are forwarded to the interface, which is bound to internal functional required interface r′j
(and analogously for interfaces p′i and ri).

3.2.1 Interface’s References and Binding

At first, we define an auxiliary process Wire7, which can receive a message via name x (i.e.
input) and send it to name y (i.e. output) repeatedly till the process receives a message
via name d (i.e. disable processing).

Wire
Δ= (x, y, d).(x(m).y〈m〉.Wirebx, y, dc + d)

Binding of a component’s functional interfaces is done via control interfaces. These
control interfaces provide references to a component’s functional provided interfaces and
allow to bind a component’s functional required interfaces to referenced funcional pro-
vided interfaces of another local components. Process CtrlIfs implementing the control
interfaces can be defined as follows

SetIf
Δ= (r, s, d).s(p).(d.Wirebr, p, dc | SetIfbr, s, dc)

GetIf
def
= (p, g).g(r).r〈p〉

Plug
def
= (d).d

CtrlIfs
def
= (r1, . . . , rn, rs1, . . . , r

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m).

(
n∏
i=1

(rdi )(Plug〈rdi 〉 | SetIfbri, rsi , rdi c) |
m∏
j=1

!GetIf〈pj , pgj 〉)

where names r1, . . . , rn, rs1, . . . , r
s
n, p1, . . . , pm, pg1, . . . , p

g
m have been defined at the begin-

ning of Section 3.2. Let us assume CtrlIfs shares its names r1, . . . , rn and p1, . . . , pm
with a process implementing a component’s core functionality via its required and pro-
vided interfaces, respectively. Pseudo-application GetIf〈pj , pgj 〉 enables process CtrlIfs
to receive a name x via pgj and to send pj via name x as a reply (it provides a reference
to an interface represented by pj). Constant application SetIfbri, rsi , rdi c enables process
CtrlIfs to receive a name x via rsi , which will be connected to ri by means of a new

7the process will be used also in the following parts of Section 3.2
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instance of process Wire (it binds a required interface represented by ri to a provided
interface represented by x). To remove a former connection of ri, a request is sent via rdi
(in case it is the first connection of ri, i.e. there is no former connection, the request is
accepted by pseudo-application Plug〈rdi 〉).

In a composite component, the names representing external functional interfaces
r1, . . . , rn, p1, . . . , pm are connected to the names representing internal functional interfaces
p′1, . . . , p

′
n, r

′
1, . . . , r

′
m. Requests received via external functional provided interface pj are

forwarded to the interface, which is bound to internal functional required interface r′j (and
analogously for interfaces p′i and ri). This is described in process CtrlEI .

CtrlEI
def
= (r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n).

n∏
i=1

(d)Wirebri, p′i, dc |
m∏
j=1

(d)Wirebr′j , pj , dc

3.2.2 Control of a Component’s Life-cycle

Control of a composite component’s life-cycle8 can be described as process CtrlSS .

Dist
Δ= (p,m, r).(p〈m〉.Distbp,m, rc + r)

Life
Δ= (sx, sy, px, py).sx(m).(r)(Distbpx,m, rc | r.Lifebsy, sx, py, pxc)

Attach
def
= (a, p0, p1).a(c0, c1, cd)(d)

(cd(m).d〈m〉.d〈m〉 | Wirebp0, c0, dc | Wirebp1, c1, dc)

CtrlSS
def
= (s0, s1, a).(p0, p1)(Lifebs1, s0, p1, p0c | !Attach〈a, p0, p1〉)

where names s0 and s1 represent the component’s interfaces that accept stop and start
requests, respectively, and name a that can be used to attach a new subcomponent’s stop
and start interfaces (at one step).

The requests for stopping and starting the component are distributed to its subcompo-
nents via names p0 and p1. Constant application Lifebs1, s0, p1, p0c enables process CtrlSS
to receive a message m via s0 or s1. Message m is distributed to the subcomponents by
means of constant application Distbpx,m, rc via shared name px, which can be p0 in case
the component is running or p1 in case the component is stopped. When all subcomponents
accepted message m, it is announced via name r and the component is running or stopped
and ready to receive a new request to stop or start, respectively.

Pseudo-application Attach〈a, p0, p1〉 enables process CtrlSS to receive a message via a,
a request to attach a new subcomponent’s stop and start interfaces represented by names c0
and c1, respectively. The names are connected to p0 and p1 via new instances of processes
Wire. Third name received via a, cd, can be used later to detach the subcomponent’s
previously attached stop and start interfaces.

8a primitive component handles stop and start interfaces directly
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3.2.3 Cloning of Components and Updating of Subcomponents

Cloning of a component allows to transport the component’s fresh copy into different
location, i.e. its subsequent attaching as a subcomponent of other component. The
processes of the cloning can be described as follows

Ctrlclone
Δ= (x).x(k).(s0, s1, c, rs1, . . . , r

s
n, p

g
1, . . . , p

g
m, r, p)

(k〈s0, s1, c, r, p〉 | r〈rs1, . . . , rsn〉 | p〈p
g
1, . . . , p

g
m〉

| Component〈s0, s1, c, rs1, . . . , rsn, p
g
1, . . . , p

g
m〉 | Ctrlclonebxc)

where pseudo-application Component〈s0, s1, c, rs1, . . . , rsn, p
g
1, . . . , p

g
m〉 with well-defined pa-

rameters describes behaviour of the cloned component. When process Ctrlclone receives a
request k via name x, it sends names s0, s1, c, r, p via name k as a reply. The first three
names represent “stop”, “start” and “clone” interfaces of a fresh copy of the component.
The process is also ready to send names representing functional requested and provided
interfaces of the new component, i.e. names rs1, . . . , r

s
n via name r names pg1, . . . , p

g
m via

name p, respectively, and to receive a new request.
The fresh copy of a component can be used to replace a compatible subcomponent

of a composite component. The process of update, which describes the replacing of an
old subcomponent with a new one, is not mandatory part of the composite component’s
behaviour and its implementation depends on particular configuration of the component
(e.g. if the component allows updating of its subcomponents, a context of the replaced
subcomponent, which parts of the component have to be stopped during the updating,
etc.). As an illustrative case, we can describe process Update as follows

Update
Δ= (u, a, s0, sd, rs1, . . . , r

s
m, p

g
1, . . . , p

g
n).(k, s

′
d)

(u〈k〉.k(s′0, s′1, c, r′, p′).s0.a〈s′0, s′1, s′d〉.sd
.r′(r′s1 , . . . , r

′s
n ).(x)(pg1〈x〉.x(p).r′s1 〈p〉 . . . p

g
n〈x〉.x(p).r′sn 〈p〉)

.p′(p′g1 , . . . , p
′g
m).(x)(p′g1 〈x〉.x(p).rs1〈p〉 . . . p

′g
n 〈x〉.x(p).rsm〈p〉)

.s′1.Updatebu, a, s
′
0, s
′
d, r

s
1, . . . , r

s
m, p

g
1, . . . , p

g
nc)

Process Update sends via name u a request for a fresh copy of a cloned component. As a
return value, it receives a vector of names representing all functional interfaces in a process
describing behaviour of the new component, which will replace an old subcomponent in
its parent component implementing the update process. Name a provides the parent
component’s internal control interface to attach the new subcomponent’s stop and start
interfaces (the s′0 and s′1 names) and an interface later used to detach the subcomponent
(name s′d). Name s0 is used to stop the replaced subcomponent and name sd is needed
to detach the old subcomponent’s stop and start interfaces. Finally, names rs1, . . . , r

s
m,

pg1, . . . , p
g
n represent a context of the updated subcomponent, i.e. connected interfaces of

neighbouring subcomponents.
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3.2.4 Primitive and Composite Components

In conclusion, we can describe the complete behaviour of primitive and composite compo-
nents. Let’s assume that process abstraction Compimpl with parameters s0, s1, r1, . . . , rn,
p1, . . . , pm describes behaviour of the core of a primitive component (i.e. excluding process-
ing of control actions), as it is defined by the component’s developer. Further, let’s assume
that process abstraction Compsubcomps with parameters a, r′s1 , . . . , r

′s
m, p′g1 , . . . , p

′g
n describes

behaviour of a system of subcomponents interconnected by means of their interfaces into
a composite component (see Section 3.2.1). Names s0, s1, r1, . . . , rn, p1, . . . , pm and names
a, rs1, . . . , r

s
m, pg1, . . . , p

g
n are defined at the beginning of Section 3.2.

Processes Compprim and Compcomp representing behaviour of the mentioned primitive
and composite components can be described as follows

Compprim
def
= (s0, s1, c, rs1, . . . , r

s
n, p

g
1, . . . , p

g
m).(r1, . . . , rn, p1, . . . , pm)

(CtrlIfs〈r1, . . . , rn, rs1, . . . , rsn, p1, . . . , pm, p
g
1, . . . , p

g
m〉 | Ctrlclonebcc

| Compimpl〈s0, s1, r1, . . . , rn, p1, . . . , pm〉)

Compcomp
def
= (s0, s1, c, rs1, . . . , r

s
n, p

g
1, . . . , p

g
m).

(a, r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n)

(CtrlIfs〈r1, . . . , rn, rs1, . . . , rsn, p1, . . . , pm, p
g
1, . . . , p

g
m〉

| CtrlIfs〈r′1, . . . , r′m, r′s1 , . . . , r′sm, p′1, . . . , p′n, p
′g
1 , . . . , p

′g
n 〉

| CtrlEI〈r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n〉 | Ctrlclonebcc

| CtrlSS〈s0, s1, a〉 | Compsubcomps〈a, r′s1 , . . . , r′sm, p
′g
1 , . . . , p

′g
n 〉)

where processes CtrlIfs represent behaviour of control parts of components related to
their interfaces (see Section 3.2.1), processes Ctrlclone describe behaviour of a control part
of components related to cloning of these components (see Section 3.2.3), process CtrlSS
represents behaviour of a component’s control part handling its stop and start requests
(see Section 3.2.2), and process CtrlEI describes behaviour of communication between
internal and external functional interfaces of a component (see Section 3.2.1).

4 An Example

As an example, we describe a component based system for user authentication and access
control. At first the system receives an input from an user in form (username, password)
and verifies the user’s password in order to check the user’s identity. If the user’s password
passes the verification, the system creates a new session handle reserved for the user. The
session handle is connected to the system’s core. It enables the user to access the system’s
core functionality and performs the access control according to the user’s authorisation.
Finally, the session handle is passed back to the user as a return value of the whole process.

The system is composed of

• Login component verifying the user’s authentication and initiating the new session,
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• Core component providing the system’s core functionality,

• and Session component enabling the user to access the Core component according
to the user’s authorisation.

For simplicity, let’s assume that component Session has only one input interface for the
user’s calls of the system’s core without any explicit authorisation checks and component
Core implements simple shared memory—one storage for all users with two interfaces:
for saving and loading a value to and from the memory, respectively.

4.1 Definition of the Components’ Implementations

At first, we describe behaviour of cores of primitive components, i.e. the components’
implementations, which have to be defined by developer of the system (see Section 3.2.4).
Description of behaviour of the Core component’s implementation is:

Coreimpl
def
= (s0, s1, psave, pload).(val)Core′implbundef, psave, ploadc

Core′impl
Δ= (val, psave, pload).(psave(val′).Core′implbval′, psave, ploadc +

pload(ret).(ret〈val〉 | Core′implbval, psave, ploadc)

where process Coreimpl can save a message received via name psave and load the saved
message and send it as a reply on a request received via name pload.

Description of behaviour of the Session component’s implementation is the following:

Sessionimpl
def
= (s0, s1, rsave, rload, phandle).Session′impl〈rsave, rload, phandle〉

Session′impl
def
= (rsave, rload, phandle).(save, load)(phandle(ret)

.ret〈save, load〉.Session′implbrsave, rload, phandle, save, loadc)

Session′′impl
Δ= (rsave, rload, phandle, save, load).

(save(call).rsave〈call〉.Session′impl〈rsave, rload, phandle〉 +
load(call).rload〈call〉.Session′impl〈rsave, rload, phandle〉)

where process Sessionimpl can receive via name phandle an user’s request, which is specified
subsequently by inputs via names save or load, and pass it to process Coreimpl via names
rsave or rload (the required interfaces), respectively.

Finally, behaviour of the Login component’s implementation can be defined as follows:

Loginimpl
Δ= (s0, s1, pinit, sysattach, sessionclone, coregsave, core

g
load).

pinit(username, password, ret).
(Loginverify〈username, password, ok, fail〉
| Login′implbsysattach, sessionclone, coregsave, core

g
load, ret, ok, failc

| Loginimplbs0, s1, pinit, sysattach, sessionclone, coregsave, core
g
loadc)
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Login′impl
Δ= (sysattach, sessionclone, coregsave, core

g
load, ret, ok, fail).(new, d

′, t)

(fail.ret〈error〉 + ok.sessionclone〈new〉.new(s′0, s
′
1, clone

′, r′, p′)
.sysattach〈s′0, s′1, d′〉.r′(r′ssave, r′sload).p′(p

′g
handle)

.coregsave〈t〉.t(save).r′ssave〈save〉.core
g
load〈t〉.t(load).r′sload〈load〉

.p′ghandle(handle).(s
′
1 | ret〈handle〉)

where process Loginimpl can receive an user’s initial request via name pinit as a triple
of names (username, password, ret) and after successful verification of the user’s name
and password, the process returns a new session’s handle via name ret. Name sysattach
provides an interface to attach new subcomponents into the system (see Section 3.2.2),
name sessionclone is connected to a provided interface for cloning of Session component
(see Section 3.2.3), and names coregsave or coregload are connected to provided control
interfaces for getting references to interfaces save or load of component Core (see Section
3.2.1), respectively. The definition contains pseudo-application of process abstraction
Loginverify〈username, password, ok, fail〉, which represents description of behaviour of

user’s authentication process (e.g. Loginverify
def
= (. . . ).ok for authorising of all users).

4.2 Description of the Component Based System

Now, we can describe behaviour of individual components including their control parts,
as well as behaviour and structure of a composite component, which represents the whole
component based system. According to Section 3.2.4, behaviour of components Core and
Session can be described as follows:

Core
def
= (s0, s1, c, pgsave, p

g
load).(psave, pload)

(CtrlIfs〈psave, pload, pgsave, p
g
load〉 | Ctrlclonebcc

| Coreimpl〈s0, s1, psave, pload〉)

Session
def
= (s0, s1, c, rssave, r

s
load, p

g
handle).(rsave, rload, phandle)

(CtrlIfs〈rsave, rload, rssave, rsload, phandle, p
g
handle〉 | Ctrlclonebcc

| Sessionimpl〈s0, s1, rsave, rload, phandle〉)

Behaviour of component Login has to be described differently from the others, because
it uses control interfaces sysattach, sessionclone, core

g
save, core

g
load, which can not be

referenced (contrary to functional interfaces, see Section 2.2). This case can be compared
with the description of Update process in Section 3.2.3. The behaviour of component
Login can be described as follows:

Login
def
= (s0, s1, c, p

g
init, sysattach, sessionclone, core

g
save, core

g
load).(pinit)

(CtrlIfs〈pinit, pginit〉 | Ctrlclonebcc
| Loginimplbs0, s1, pinit, sysattach, sessionclone, coregsave, core

g
loadc)

Finally, behaviour and structure of a composite component, which represents the whole
component based system, can be described as follows:
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System
def
= (s0, s1, c, p

g
init).(a, pinit, r

′
init, r

′s
init)

(CtrlIfs〈pinit, pginit〉 | CtrlIfs〈r
′
init, r

′s
init〉 | CtrlEI〈pinit, r′init〉

| Ctrlclonebcc | CtrlSS〈s0, s1, a〉 | System′〈a, r′sinit〉)

System′
def
= (sysattach, rsinit).

(pginit, core
g
save, core

g
load, sess

s
save, sess

s
load, sess

g
handle, loginclone, coreclone)

(sessclone, s
login
0 , slogin1 , dlogin, score0 , score1 , dcore, ssess0 , ssess1 , dsess)

(Login〈slogin0 , slogin1 , loginclone, p
g
init, sysattach, sessclone, core

g
save, core

g
load〉

| Core〈score0 , score1 , coreclone, core
g
save, core

g
load〉

| Session〈ssess0 , ssess1 , sessclone, sess
s
save, sess

s
load, sess

g
handle〉

| sysattach〈slogin0 , slogin1 , dlogin〉 | sysattach〈score0 , score1 , dcore〉
| sysattach〈ssess0 , ssess1 , dsess〉 | pginit〈t〉.t(init).rsinit〈init〉)

5 Related Work

There have been proposed several component models [8]. In this section, we focus on two
contemporary component models supporting some features of dynamic architectures and
formal descriptions.

5.1 Fractal

The component model Fractal [3] is a general component composition framework with
support for dynamic architectures. A Fractal component is formed out of two parts: a
controller and a content. The content of a composite component is composed of a finite
number of nested components. Those subcomponents are controlled by the controller (“a
membrane”) of the enclosing component. A component can be shared as a subcomponent
by several distinct components. A component with empty content is called a primitive
component. Every component can interact with its environment via operations at external
interfaces of the component’s controller, while internal interfaces are accessible only from
the component’s subcomponents. The interfaces can be of two sorts: client (required) and
server (provided). Besides, a functional interface requires or provides functionalities of a
component, while a control interface is a server interface with operations for introspection
of the component and to control its configuration. There are two types of directed
connections between compatible interfaces of components: primitive bindings between
a pair of components and composite bindings, which can interconnect several components
via a connector.

Behaviour of Fractal components can be formally described by means of parametrised
networks of communicating automata language [2]. Behaviour of each primitive com-
ponent is modelled as a finite state parametrised labelled transition system (pLTS) – a
labelled transition system with parametrised actions, a set of parameters of the system
and variables for each state. Behaviour of a composed Fractal component is defined using
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a parametrised synchronisation network (pNet). It is a pLTS computed as a product of
subcomponents’ pLTSs and a transducer. The transducer is a pLTS, which synchronises
actions of the corresponding LTSs of the subcomponents. When synchronisation of the
actions occurs, the transducer changes its state, which means reconfiguration of the com-
ponent’s architecture. Also behaviour of a Fractal component’s controller can be formally
described by means of pLTS/pNet. The result is composition of pLTSs for binding and
unbinding of each of the component’s functional interfaces (one pLTS per one interface)
and pLTS for starting and stopping the component.

5.2 SOFA and SOFA 2.0

In the component model SOFA [13], a part of SOFA project (SOFtware Appliances), a
software system is described as a hierarchical composition of primitive and composite
components. A component is an instance of a template, which is described by its frame
and architecture. The frame is a “black-box” specification view of the component defining
its provided and required interfaces. Primitive components are directly implemented by
described software system – they have a primitive architecture. The architecture of a
composed component is a “grey-box” implementation view, which defines first level of
nesting in the component. It describes direct subcomponents and their interconnections
via interfaces. The connections of the interfaces can be realised via connectors, implicitly
for simple connections or explicitly. Explicit connectors are described in a similar way
as the components, by a frame and architecture. The connector frame is a set of roles,
i.e. interfaces, which are compatible with interfaces of components. The connector archi-
tecture can be simple (for primitive connectors), i.e. directly implemented by described
software system, or compound (for composite connectors), which contains instances of
other connectors and components.

The SOFA uses a component definition language (CDL) [9] for specification of compo-
nents and behaviour protocols (BPs) for formal description of their behaviours. The BPs
[21] are regular-like expressions on the alphabet of event tokens representing emitting and
accepting method calls. Behaviour of a component (its interface, frame and architecture)
can be described by a BP (interface, frame and architecture protocol, respectively) as
the set of all traces of event tokens generated by the BP. The architecture protocols can
be generated automatically from architecture description by a CDL compiler. A protocol
conformance relation ensures the architecture protocol generates only traces allowed by the
frame protocol. From dynamic architectures, the SOFA allows only a dynamic update of
components during a system’s runtime. The update consists in change of implementation
(i.e. an architecture) of the component by a new one. Compatibility of the implementa-
tions is guaranteed by the conformance relation of a protocol of the new architecture and
the component’s frame protocol.

Recently, the SOFA team is working on a new version of the component model. The
component model SOFA 2.0 [5] aims at removing several limitations of the original version
of SOFA – mainly the lack of support of dynamic reconfigurations of an architecture, well-
structured and extensible control parts of components, and multiple communication styles
among components.
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6 Discussion and Future Work

The component model proposed in this paper is able to handle mobile architectures,
unlike the SOFA that supports only a subset of dynamic architectures (implementing the
update operation) or the Fractal/Fractive, which does not support components mobility.
As is described in Section 3.2, the π-calculus provides fitting formalism for description of
software systems based upon the component model.

The proposed semantics of the component model permits to combine control interfaces
and functional interfaces inside individual primitive components where the control actions
can be invoked by the functional actions, i.e. by a system’s business logic represented
by business oriented services. This allows to build systems where functional (business)
requirements imply changes of the systems’ architectures. Regardless, in some cases, this
feature can lead to architectural erosion and architectural drift [12], i.e. unpredictable
evolution of the system’s architecture. For that reason, the component model forbids
dynamic changes of connections between control interfaces, which reduces architecture
variability to patterns predetermined at a design-time. Formal description of the compo-
nents integrating the control and functional actions can be compared with the transducer
in the Fractal/Fractive approach (see Section 5.1).

The next feature of the component model is partially independence of a component’s
specification from its implementation (see the description of entities CompAbstraction and
CompImplementation in Section 2.1). This feature is similar to the SOFA’s component-
template relationship. It allows to control behaviour of a primary component’s implemen-
tation, define a composite component’s border that isolates its subcomponents, which is
called “a membrane” in the Fractal, etc. (for comparison, see Section 5.1 and Section 5.2)

The attentive reader will have noticed that the process algebra π-calculus, as it is
defined in Section 3.1 and applied to the formal description of behaviour of the compo-
nent model’s entities in Section 3.2, allows to describe only synchronous communication.
Although, in most cases, we need to apply the component model to distributed software
systems with asynchronous communication. This limitation is a consequence of the re-
duction relation’s definition (see Definition 6 in Section 3.1). The problem can be solved
by proposing of a “buffered” version of communication between interfaces (i.e. in process
Wire from Section 3.2.1) or, alternatively, by using of an asynchronous π-calculus [17].

The next important extension of the presented approach is application of typed π-
calculus [10, 17], which allows to distinguish types of names. This feature is necessary to
formally describe constraints of the type system of interfaces in behaviour of components.
In the component model’s metamodel, the type system is defined by instances of entity
TypOfInterface and its descendants and related entities (see Section 2.1).

However, the above mentioned modifications are out of scope of this paper and a final
version of the component model’s formal description including the proposed extensions is
part of current work. Further ongoing work is related to the realisation of a supporting
environment, which allows integration of the component model into software development
processes, including integration of verification tools and implementation support. The idea
is to use results of the ArchWare project [1], especially for theorem-proving and model-
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checking9. We intend to use the Eclipse Modeling Framework (EMF) [4, 20] for modeling
and code generation of tools based on the component model and the Eclipse Graphical
Modeling Framework (GMF) [19] for developing graphical editors according to the rules
described in the component model’s metamodel (based on EMF).

7 Conclusion

In this paper, we have presented an approach, which contributes to specify component-
based software systems with features of dynamic and mobile architectures. The proposed
component model splits a software system into primitive and composite components
according to decomposability of its parts, and the components’ functional and control
interfaces according to the types of required or provided services. The components can be
described at different levels of abstraction, as their specifications and implementations.

Semantics of the component model’s entities is formally described by means of the
process algebra π-calculus (known as a calculus of mobile processes). Formal description
of behaviour of a whole system can be derived from the visible behaviour of its primitive
components and their compositions and communication, both defined at a design-time.
The result is a π-calculus process, which describes the system’s architecture, including its
evolution and component mobility, and communication behaviour of the system. There-
after, critical properties of the system can be verified by means of π-calculus model checker.

We are currently working on extending our approach to use asynchronous communi-
cation between components and a type system for their interfaces. Future work is related
to integration of the component model into software development processes, including
application of verification tools and implementation support. In the broader context,
the research is a part of a project focused on formal specifications and prototyping of
distributed information systems.

This research has been supported by the Research Plan No. MSM 0021630528 “Security-
Oriented Research in Information Technology”.

References

[1] ArchWare project. http://www.arch-ware.org/, Nov. 2006.

[2] T. Barros. Formal specification and verification of distributed component systems. PhD thesis,
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