
Optimization of network flow monitoring

Martin Žádník
∗

Faculty of Information Technologies
Brno University of Technology

Božetěchova 2, 612 00 Brno, Czech Republic
izadnik@fit.vutbr.cz

Abstract
A flow cache is a fundamental building block for flow-
based traffic processing. Its efficiency is critical for the
overall performance of a number of networked devices
and systems. The efficiency is mainly dependent on a
utilized replacement policy. This work proposes an ap-
proach based on Genetic Algorithm. The proposed ap-
proach starts from recorded traffic traces and uses Ge-
netic Algorithm to evolve innovative replacement policies
tailored for the flow cache management in particular de-
ployments. An extension of the replacement policy is
proposed to improve the already optimized policy even
further. The extension is based on an evolution of a re-
placement policy and a classifier of packet-header fields.
The results show a consistent decrease in an eviction ratio
in case of two considered problems – reduction of overall
number of evictions and reduction of eviction in case of
heavy-hitting flows.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques,
Performance attribute; D.2.8 [Design Styles]: Cache
memories

Keywords
Replacement policy, flow cache, Genetic Algorithm, heavy-
hitter

1. Introduction
Flow-based network traffic processing, that is, processing
packets based on some state information associated to the
flows which the packets belong to, is a key enabler for a
variety of network services and applications. This form of
stateful traffic processing is used in modern switches and
routers that contain flow tables to implement forward-
ing, firewalls, NAT, QoS, and collect measurements. The

∗Recommended by thesis supervisor: Prof. Ing. Lukáš
Sekanina, Ph.D.
To be defended at Faculty of Information Technologies,
Brno University of Technology.

c© Copyright 2011. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.

number of simultaneous flows increases with the growing
number of new services and applications. It has become a
challenge to keep a state per each flow in a network device
processing high speed traffic. Therefore, a flow table (i.e.,
a structure with flow states) must be stored in a memory
hierarchy. The memory closest to the processing is known
as a flow cache. Flow cache management plays an impor-
tant role in terms of its effective utilization, which affects
the performance of the whole system.

Realistic policies (without a knowledge of the future ac-
cess pattern) are based on heuristics. The heuristic aims
at achieving results of the optimal policy (with the knowl-
edge of the future access pattern) by estimating the future
access based on the past access pattern. A large number
of the heuristics was proposed in various areas (processor
architecture, web objects, databases). But network traf-
fic exhibits specific characteristics, moreover, each net-
work and link may differ in its characteristics. Also each
network application may install specific requirements on
stateful traffic processing. These specifics and require-
ments may render standard replacement policies less ef-
fective.

To this end, this paper proposes an automated design of
cache replacement policy optimized to a deployment on
particular networks. Genetic Algorithm is proposed to
automate the design and the optimization process. Ge-
netic Algorithm generates and evaluates evolved replace-
ment policies by a simulation on the traffic traces until
it finds a fitting replacement policy. The proposed algo-
rithm is evaluated by designing replacement policies for
two variations of the cache management problem. The
first variation is an evolution of the replacement policy
with an overall low number of state evictions from the
flow cache. The second variation represents an evolution
of the replacement policy with a low number of evictions
belonging to heavy-hitting flows only. Optimized replace-
ment policies for both variations are found while exper-
imenting with various encoding of the replacement pol-
icy and genetic operators. An extension of the replace-
ment policy is also proposed. The extension complements
the replacement policy with an additional information ex-
tracted from packet headers.

The paper is divided into the following sections: Section 2
summarizes related work, utilized data sets and flow cache
management problem, Section 3 proposes Genetic Algo-
rithm as a mean to design optimized replacement pol-
icy. Replacement policy is extended with classifier in Sec-
tion 4. The experiments are presented in Section 5 and
the comparison with other policies in Section 6. Section

2 Žádńık, M.: Optimization of network flow monitoring

7 concludes the work and suggests future research.

2. Background
2.1 Replacement policies
Replacement policies may be divided into several cate-
gories, recency, frequency and adaptive. To the best of
our knowledge non of the following policies except LRU
has not been tested for flow cache management. LRU
(Least Recently Used) is a well-known example of recency
based replacement policy that is widely used for manag-
ing virtual memory, file buffer caches, and data buffers in
database systems. However, LRU caches are susceptible
to the eviction of frequently used items during a burst
of new items. Many efforts have been made to address
the inability to cope with access patterns with weak lo-
cality. For example, SLRU (Segmented LRU) keeps the
most utilized items in a protected segment which stays
intact during a burst of new access. Another example is
LRU-2 [7] which considers last two accesses rather than
the last access only.

LIRS (Low Inter-reference Recency Set) [4] policy man-
ages heavily utilized and weakly utilized items in two sep-
arate LRU stacks. Authors of LIRS suggest to allocate
99% of cache size to heavily utilized items.

LFU (Least Frequently Used) is a well-known example of
frequency based replacement policy. But LFU*-aging [8]
is often used rather than LFU. LFU*-aging overcomes
shortcomings of LFU. It prevents prioritization of very
popular items by limiting the access count. LFU*-aging
also periodically decreases the access count. This leads to
aging of very popular items which are no longer popular.
Lastly, it does not insert a new item in the cache if there
are items with more than one access only.

The adaptive policies [5, 2, 6] recognize deviance from a
normal patterns such as linear or cyclic access patterns.
If a specific pattern is recognized the adaptive policy may
change a strategy, for example to switch from LRU to
MRU (Most Recently Used) [6]. A specifics of network
traffic renders it very hard to utilize these adaptive ap-
proaches. There are no specific and obvious patterns since
the IP flows are uncorrelated [?].

2.2 IP flows
A flow F is a set of packets sharing a common identi-
fier [3]. A commonly used identifier is a 5-tuple composed
of IP addresses, port numbers and protocol. A lifetime of
a flow is labeled as |F |t, number of packets in a flow is
labeled as |F |p, number of bytes in a flow is labeled as
|F |b.

We define a heavy-hitting flows (heavy-hitter) as the flow
that utilizes more than a certain percentage of the link
bandwidth. In order to avoid bias to short-lived flows
which overall do not carry significant amount of traffic, we
require the heavy-hitter to exist for at least five seconds
(based on experiments). Therefore, we compute a flow’s
link utilization as |F |b/max(5, |F |t).

Throughout this paper, we group flows into three refer-
ence heavy-hitting categories based on their link utiliza-
tion: L1 flows (> 0.1% of the link capacity), L2 (between
0.1% and 0.01%), L3 (between 0.01% and 0.001%) and
the rest L4.

Table 1: Traffic decomposition.

Mawi-14:00 L1 L2 L3 Total
Flows 0,23% 0,93% 9,43% 10 mil.
Packets 31,97% 18,92% 20,71% 44 mil.
Bytes 68,35% 17,13% 9,22% 32 mil.
Snjc-13:00 L1 L2 L3 Total
Flows 0,00% 0,02% 0,35% 8 mil.
Packets 0,36% 10,15% 17,07% 137 mil.
Bytes 0,85% 24,01% 36,48% 83 mil.
Vut-15:00 L1 L2 L3 Total
Flows 0,10% 0,49% 3,2% 2,5 mil.
Packets 55,64% 15,22% 13,38% 58 mil.
Bytes 76,38% 14,74% 5,75% 47 mil.

t+1

0 1 2 3

insert

acess ... pos

Figure 1: Graphical representation of LRU replacement
policy. LRU = (0, (0, 0, 0, 0)).

2.3 Data set
We use three traces of Internet traffic: a 15-min trace from
the Mawi archive collected at the 155 Mbps WIDE back-
bone link (samplepoint-F on March 4th 2010 at 14:00) [1],
and an anonymized, unidirectional 5-min trace from the
Caida archive collected at the 10 Gbps Equinix San Jose
link (dirA on July 7th 2009 at 13:00 UTC) [10] and VUT
15-min bidirectional campus trace collected on October
18th 15:00.

Table 1 summarizes the working dimensions of our traces
and show a breakdown of the composition of the three
flow categories.

2.4 Flow cache and replacement policy
In our work, the flow cache is regarded as a list of up to N
flow states. This allows us to treat the cache management
problem as keeping the list of flows ordered by their prob-
ability of being evicted (highest goes last). Then, the role
of the replacement policy is to reorder flow states based
on their access pattern. Each packet causes one cache ac-
cess and one execution of the policy. If the current packet
causes a cache miss (i.e., a new flow arrives) and the cache
is full then the flow at the end of the list is evicted.

Formally, we can express a RP that is based on the access
pattern as a pair (s, U) where s is a scalar representing
an insert position in the list where new flow states are
inserted and U is a vector (u1, u2, . . . , uN) which defines
how the flows are reordered. Specifically, when a flow
F stored at position post(F) is accessed at time t, its
new position is chosen as post+1(F) = upost(F), while all
flows stored in between post+1(F) and post(F) see their
position increased by one. As an example, in Figure 1 we
provide a graphical representation of the LRU policy for
a cache of size 4, which in our formulation is expressed as
LRU = (0, (0, 0, 0, 0)).

In a theoretical situation, the replacement policy keeps
all items globally ordered by their probability of being
evicted. But a practical implementations usually divide
the cache into equal-sized lists (of size R) which are man-
aged independently. Such a scheme may be viewed as a
semi-associative cache or Naive Hash Table (NHT) if the

Information Sciences and Technologies Bulletin of the ACM Slovakia 3

concept is based on using a hash to address a list. The
task of the replacement policy is to order flow states in
each list independently on others.

3. Design by Genetic Algorithm
Finding a highly optimized RP for a particular network
application can be difficult. The design must consider
available cache size, flow size distribution, flow rate, and
other traffic dynamics. We propose using GA to explore
the space of possible RPs to evolve the most effective.

3.1 Fitness
A fitness function expresses a quality of the candidate
policies with respect to a given application, cache size and
traffic characteristics. Throughout this work we consider
two cache management problems – to achieve low number
of total evictions and to achieve low number of evictions
of states belonging to heavy-hitters. The fitness function
representing the first the problem is expressed as:∑

F∈{F0,...,FM}

νF (S) +M, (1)

where M is the number of flows and νF (S) is the number
of cache misses of flow F under policy S. GA tries to
minimize the expression (1), i.e., the number of evictions.

In case of lowering the number of evicted flow states be-
longing to heavy-hitters, the fitness function captures dif-
ferentiation by the heavy-hitter categories as:

100 · (
∑

F∈L1

νF (S) + |L1|)+

+10 · (
∑

F∈L2

νF (S) + |L2|)+

+
∑

F∈L3

νF (S) + |L3|,

(2)

where the number of evictions is weighted by the link uti-
lization in each category. This assigns higher importance
to track the very large flows over the large flows which
themselves have higher importance than the medium flows.

3.2 Representation
The vector-based definition of the RP is a well fit to
encode the representation of the candidate solution. A
search space represented by such encoding contains RR+1

candidate solutions. We observe that without imposing
any constraint on the vector-based definition of RP, we
allow candidate solutions that perform very poorly or are
very similar in their structure. We introduce optimization
to avoid generating bad policies and policies with similar
structure. The optimization Opt1 focuses on candidate
policies that do not utilize full length of the list due to
unreachable positions in the vector U . The optimization
restricts a value of each item ui in the vector U :

u0 = 0, ui = (0, . . . , i− 1), i = 1, . . . , R− 1. (3)

The optimization allow only policies that advance a flow
state to a head of the list. Since a packet-arrival means
an access to the flow state such optimization is legitimate
and does not remove promising candidate solutions from
the search space of size R(R− 2)!.

The optimization Opt2 focuses on merging similar can-
didate policies into a single policy. The optimization is
based on a modification of the vector U encoding. A

new encoding is represented by a vector of triples Q =
((c0, w0, q0), . . . , (cZ−1, wZ−1, qZ−1)) where where cj de-
fines the number of items in a sequence, each sequence
starts with the value wj and qj = {0, 1} is incremented to
the preceding value in the sequence, j = 0, . . . , Z − 1. Z
is the number of the sequences. For example, vector U =
(0, 0, 0, 1, 2, 3) may be represented asQ = ((2, 0, 0), (4, 0, 1))
– the first sequence contains two items with initial value
0 and increment 0, the second sequence contains 4 items
with starting value zero and increment one. At the same
time it holds that

∑
j=0,...,Z−1 cj = R and for each cj :

0 < cj ≤ 8. The first optimization is enforced by con-
straining values wj to ranges 0, . . . ,

∑
k=1,...,j−1 ck for j >

0.

The vector Q may be transformed to vector U by the
following algorithm. For i = 0, . . . , R− 1:

ui = w0 + i ∗ q0 for 0 ≤ i < c1, (4)

ui = wj+(i−
∑

k=0,...,j−1

ck)∗qj for
∑

k=0,...,j−1

ck ≤ i <
∑

k=0,...,j

ck.

(5)

This leads to a reduction of the search space by several
orders of magnitude. For line length R = 32 and Z = 8
the upper estimate is 3.3 · 1020. The candidate solution
(s,Q) is decoded by (4), (5) into (s, U) and evaluated by
the simulation of the replacement policy.

3.3 Genetic operators
Three types of mutation operators are defined for the rep-
resentation (s, U). The operator Omut alters the chromo-
some values to a random value with probability pmut. The
operator Ow−mut alters the chromosome values to a ran-
dom value with an increasing probability pmut(u) accord-
ing to its index i. The operator Omut−1 increase or de-
crease value by a random increment from a set {−1, . . . , 1}
with an increasing probability pmut(u) according to its in-
dex i. In order to satisfy Opt1 the range for items in vector
U is constrained to 0, . . . , i− 1 for all operators.

For the representation (s,Q) the only defined operator is
Omut implemented with constraints of Opt2.

A one-point crossover and two-point crossover have been
tested on both representations. The effects of crossover
in comparison to mutations are negligible and are not
discussed further.

4. Replacement Policy Extension
So far, only the access pattern (via a position in the list)
was utilized to perform replacement decisions. Specifi-
cally, a cache hit would always cause the searched flows
state to advance its position toward the head of the list.
This concept is extended with an ability to exploit in-
formation from header fields of the packets that cause a
cache hit. First, a set of packet fields that partially pre-
dict arrival of the next packet or the heavy-hitter must
be identified.

The analysis of relevant fields from a network and trans-
port layer are performed. Based on this analysis follow-
ing fields seems to be the most relevant for prediction:
IP protocol, TCP Flags, TCP Window and Total Length.
Figure 2 shows normalized histograms of flow sizes for
several packet lengths. It is evident that certain packet

4 Žádńık, M.: Optimization of network flow monitoring

1
1
4
0

L3
L2
L1

1
2
4
0

1
3
4
0

1
4
4
0

m
ix

Packet size [B]

 0

 0.2

 0.4

 0.6

 0.8

 1

4
0

1
4
0

2
4
0

3
4
0

4
4
0

5
4
0

6
4
0

7
4
0

8
4
0

9
4
0

1
0
4
0

L4

Figure 2: Normalized histograms of packet sizes with re-
spect to the heavy-hitter category.

sizes (larger than 1000 B) are more likely to appear when
the packet belongs to the heavy-hitter.

Only a combination of these fields may achieve a reason-
ably precise prediction.The combination is done by a de-
cision tree which is trained on a trace annotated by flow
size or next packet arrival.

The decision tree should ideally complement the access-
based replacement policy. To this end, the replacement
policy is evolved together with the decision tree. It is
up to GA how the result of classification is utilized. The
extended replacement policy is defined as Sext = (s, U,A)
(respectively (s,Q,A)), where A is a vector of four values.
Each value corresponds to a length of the next packet
arrival or to the flow category. The position of flow state
after an update is computed as:

post+1(F) = upost(F) + ak, (6)

where k is the result of classifier that is an index of a
particular category.

5. Experiments
In our approach, we start with a population of C = 6
candidate solutions generated at random. The population
size is a trade-off between evolution progress and popu-
lation diversity. A large population means having a long
time between replacement of generations due to lengthy
evaluation of all candidate solutions. On the other hand,
a small population cannot afford preserving currently low-
scored solutions which could become good solutions. We
use a relatively small population so the evolution pro-
cess can progress faster allowing the RP to be potentially
adapted to ongoing traffic. During each step of evolution,
10 parents out of 5 candidates are selected using tour-
nament selection to produce offspring. Then, mutation
operators are applied and the resulting offspring is evalu-
ated by the fitness function. In each generation, the can-
didates are replaced by the offspring except if the current
generation contains the best candidate which is preserved
(so called elitism). The experiments are done for various
cache size. Throughout the experiments we use flow cache
of 8 K states simulated on Mawi-2010/04/14-14:00 trace.

Many experiments with various genetic operators and rep-
resentations have been done. Only the most important
are presented. Figures 3 and 4 demonstrates difference
between representations Opt1 and Opt2. The figures de-
picts evolution of a replacement policy reducing the total
number of evictions. The x-axis represents the genera-

 50 100 150

p = 0,1

 200

F
it

n
es

s
fu

n
ti

o
n

p = 0,2

Generation

 930000

p = 0,3

 935000

 940000

 945000

 950000

 955000

 0

p = 0,05

Figure 3: Evolution for Opt1 and Omut with pmut(u) =
0.05, 0.1, 0.2, 0.3 (average from ten runs).

 50 100 150

p=0.1

 200
F

it
n
es

s
fu

n
ct

io
n

p=0.2

Generation

 930000

p=0.3

 935000

 940000

 945000

 950000

 955000

 0

p=0.05

Figure 4: Evolution for Opt1 and Omut with pmut =
0.05, 0.1, 0.2, 0.3 (average from ten runs).

tion and the y-axis represents the fitness function. The
graph plots the fitness function of the best candidate in
each generation averaged over ten runs. Although repre-
sentation Opt2 is more constraining in terms of the struc-
ture of the update vector better solutions are evolved.
This is due to a significant reduction of the search space
to the promising solutions. The best replacement poli-
cies are found using Opt2 representation and Omut with
pmut= 0.2. The best evolved replacement policy lowering
the total number of evictions is called GARP (Genetic
Algorithm Replacement Policy). The policy is depicted
on Figure 5. The best evolved replacement policy low-
ering the number of evictions for heavy-hitters is called
GARP-Large (GARP-Large). The policy is depicted on
Figure 6.

Figure 7 depicts the capability of GA to evolve replace-
ment policy together with a classifier. Minimum, maxi-
mum and average fitness value are averaged over ten runs.
During the first 50 generation GA finds a sufficiently good
candidate (see the minimum) but still new and possibly
bad candidates are generated (see the maximum). For the
rest of the evolution GA focuses on optimizing candidates
from a local set of solutions. Based on the observation of
the classification vector A, GA decides to employ classi-
fication results to identify infinite and long intervals be-
tween subsequent packets of the same flow and to identify
L1 and L4 flows in case of the heavy-hitters.

6. Results
We compare the performance of GARP and GARP-Large
with that of LRU, LRU-2, SLRU, LIRS, EXP1, LFU*-
aging, S3-LRU-7 [9] and the optimal policy OPT. OPT
uses the knowledge about future packet arrivals or knowl-
edge about heavy-hitters and their remaining duration.
The evaluation is performed with cache sizes of 64K, 96K,
128K, 160K flow states for Snjc data set, and with 4K,

Information Sciences and Technologies Bulletin of the ACM Slovakia 5

310 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 5: Replacement policy for flow cache reducing total number of evictions GARP = (10,
(0, 0, 0, 0, 0, 0, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 5, 1, 1, 3, 3, 3, 3, 3, 3)).

310 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 6: Replacement policy for heavy-hitter flow cache. GARP-Large = (18, (0, 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 13, 13, 13, 15, 15, 15, 16, 16, 16, 16, 18, 18, 18, 18, 22, 22, 22)).

 150 200

F
it

n
es

s
fu

n
ct

io
n

avg

Generation

 0

 200000

max

 400000

 600000

 800000

 1e+06

 0 50 100

min

Figure 7: Evolution for Opt1 and Omut with pmut = 0.15
(average from ten runs).

8K, 12K and 16K flow states for Mawi and Vut. The line
size is 32 states.

Table 2 captures the results when considering the prob-
lem of reducing the total number of evictions. For each
policy, the table contains the ratio of evictions to the total
number of packets (M1) and the increase in the number of
reported flows (M2); if a flow is evicted before its end then
two or more flows is reported. Table 2 that the frequency
based policies such as EXP1 or LFU*-aging are not de-
signed to cope with the specific characteristics of network
traffic. Recency based policies such as LIRS, LRU, SLRU
perform better. Interestingly LRU and LRU-2 provide
same results. The LRU-2 reduces to a plain LRU if there
are states with no more than a single packet received.
Since the traffic contains many of such flows both poli-
cies selects same flow states for eviction most of the time.
SLRU performs close the optimized GARP. The size of
the protected segment was set up to 7 flow states ac-
cording to the experiments with various sizes of protected

Table 2: Comparison of replacement policies in the ability
to reduce the eviction rate (flow cache size is 64K flow
states for Snjc trace and 8K for Mawi and Vut trace).

Mawi-14:15 Snjc-13:05 Vut-15:05
Policy M1 M2 M1 M2 M1 M2

EXP1 18,8 257,1 17,7 298,3 19,9 600,5
LFU*-
aging

8,3 169,1 5,8 163,8 2,5 162,6

LIRS 7,8 164,2 6,8 174,3 3,1 177,1
LRU-3 6,1 150,8 4,5 148,6 2,4 159,2
LRU-2 6,1 150,8 4,5 148,6 2,4 159,2
LRU 6,1 150,8 4,5 148,6 2,4 159,2
SLRU-7 6 149,1 4,3 146,4 2,3 157,7
GARP 5,3 144,8 4,1 144,1 2 151,6
GARP +
+ Class.

4,4 139,8 3,8 139,2 1,9 150

OPT 1,9 115,6 0,9 109,3 0,9 122,7

segment. GARP and GARP with classifier of next packet
arrivals operate closest to the achievable minimum repre-
sented by the OPT.

Table 3 captures the results when considering the problem
of reducing the number of evicted heavy-hitters on the
Mawi trace. The results display the ratio of evicted heavy-
hitter states to the total number of heavy-hitter packets
for each category (M3) and the ratio of heavy-hitters that
witness at least one miss to the total number of heavy-
hitters (M4).

The results show that GARP-Large outperforms other
RPs even the S3-LRU-7 policy which is specifically de-
signed to prioritize heavy-hitter flow states, or SLRU-21

6 Žádńık, M.: Optimization of network flow monitoring

Table 3: Comparison of heavy-hitter replacement policies
Mawi-14:15.

M3 M4

Policy L1 L2 L3 L1 L2 L3

LFU*-aging 29% 37% 21% 79% 91% 85%
LIRS 21% 33% 27% 50% 88% 71%
LRU-2 19% 30% 10% 79% 95% 48%
LRU 19% 30% 10% 79% 95% 48%
SLRU-21 14% 17% 8% 33% 47% 22%
S3-LRU-7 5% 14% 21% 26% 68% 55%
GARP-L. 4% 8% 12% 9% 21% 34%
GARP-L. +
+ Class.

2% 3% 8% 6% 6% 22%

OPT-L. 0% 1% 6% 0% 2% 36%

where a large protected segment for 21 flow states allows
to keep heavy-hitters protected against small flows. Most
of the heavy-hitters do not witness any cache miss (see the
low number of M4). Moreover, if a heavy-hitter witness
the cache miss it is only one in most of the cases (75%).

7. Conclusion
This work focused on the optimization of network flow
monitoring by designing the customized replacement pol-
icy. To this end, the GA was proposed to evolve the
replacement policy that would fit a particular utilization.
The evolved replacement policy was compared with other
policies in terms of reducing the number of total evic-
tions and of reducing the number of evictions for heavy-
hitters. The results showed that GA is capable to evolve
the optimized replacement policy which works close to the
optimal solution. The replacement policy extension was
proposed to complement replacement policy with predic-
tive information from the packet headers. The extension
brought the replacement policy even closer to the opti-
mum. The approach proposed in this work may find its
utilization in various applications, such as route caching,
software defined networking and NetFlow monitoring.

The future work will focus on improving the classification
procedure. If the results of classification or certain statis-
tics were stored in the flow state the classification would
have been more precise. Another challenge is to evolve
the policy in an online manner.

Acknowledgments. The author would like to thank his
supervisor Prof. Ing. Lukáš Sekanina, Ph.D. and a consul-
tant Ing. Jan Kořenek, Ph.D. for their advice and valu-
able comments.

References
[1] The mawi archive, 2010.
[2] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. An implementation

study of a detection-based adaptive block replacement scheme. In
Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 18–18, Berkeley, CA, USA, 1999.
USENIX Association.

[3] B. Claise. Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow Information.
RFC 5101 (Proposed Standard), Jan. 2008.

[4] S. Jiang and X. Zhang. Lirs: an efficient low inter-reference
recency set replacement policy to improve buffer cache
performance. SIGMETRICS Perform. Eval. Rev., 30:31–42, June
2002.

[5] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim. A low-overhead high-performance unified buffer
management scheme that exploits sequential and looping
references. In Proceedings of the 4th conference on Symposium on
Operating System Design & Implementation - Volume 4,
OSDI’00, pages 9–9, Berkeley, CA, USA, 2000. USENIX
Association.

[6] N. Megiddo and D. S. Modha. Outperforming lru with an adaptive
replacement cache algorithm. Computer, 37(4):58–65, Apr. 2004.

[7] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The lru-k page
replacement algorithm for database disk buffering. SIGMOD Rec.,
22:297–306, June 1993.

[8] U. Vallamsetty, P. Mohapatra, R. Iyer, and K. Kant. Improving
cache performance of network intensive workloads. In
Proceedings of the International Conference on Parallel
Processing, pages 87 –94, Washington, DC, USA, sept. 2001.
IEEE Computer Society.

[9] M. Žádník, M. Canini, A. W. Moore, D. J. Miller, and W. Li.
Tracking elephant flows in internet backbone traffic with an
fpga-based cache. In Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on,
pages 640 –644, 31 2009-sept. 2 2009.

[10] C. Walsworth, E. Aben, kc claffy, and D. Andersen. The caida
anonymized 2009 internet traces, 2009.

Selected Papers by the Author
M. Žádník, M. Canini. Evaluation and Design of Cache Replacement

Policies under Flooding Attacks. In: Proceedings of the 7th
International Wireless Communications and Mobile Computing
Conference, Istanbul, TR, IEEE CS, 2011, s. 1292-1297

M. Žádník, M. Canini. Evolution of Cache Replacement Policies to
Track Heavy-hitter Flows. In: Passive and Active Measurement,
Atlanta, US, Springer, 2011, s. 21-31, ISBN 978-3-642-19259-3,
ISSN 0302-9743

M. Žádník, M. Canini. Evolution of Cache Replacement Policies to
Track Heavy-hitter Flows (poster). In: Proceedings of the 6th
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, La Jolla, US, ACM, 2010, s. 2, ISBN
978-1-4503-0379-8

M. Canini, W. Li, M. Žádník, and A. W. Moore. Experience with
high-speed automated application-identification for
network-management. In Proceedings of the 5th ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems, ANCSŠ09, pages 209Ű218, New
York, NY, USA, 2009.

M. Žádník. Flow Measurement Extension for Application
Identification In Networking Studies IV, Selected Technical
Reports, Prague, CZ, CESNET, 2010, s. 57-70, ISBN
978-80-904173-8-0

M. Žádník, et al. Tracking Elephant Flows in Internet Backbone
Traffic with an FPGA-based Cache. In: 19th International
Conference on Field Programmable Logic and Applications,
Prague, CZ, IEEE, 2009, s. 640-644, ISBN 978-1-4244-3892-1

M. Žádník, J. Kořenek, O. Lengál, P. Kobierský Network Probe for
Flexible Flow Monitoring. In: Proc. of 2008 IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop,
Bratislava, SK, IEEE CS, 2008, s. 213-218, ISBN
978-1-4244-2276-0

