
CONNECTING JADE WITH PN AGENT
Jakub Žák, Vladimír Janoušek, Radek Kočí, František Zbořil ml.

Faculty of Information Technology, Brno University of Technology
Božetěchova 2, 612 66 Brno, Czech republic

izakjakub@fit.vutbr.cz (Jakub Žák)

Abstract

Since Foundation of Intelligent Physical Agent (FIPA) is one of the biggest
organizations that handles standardization in the field of agent-based
technologies we have chosen their reference implementation called JADE and in
this paper we are describing possibility to interconnect it with other platform
that is not FIPA compliant. Second agent platform, we have chosen, is PN agent
platform, which is BDI agent based on formalism of Object Oriented Petri nets.
PN agent was chosen for the reason of Object Oriented Petri nets used in its base
because when we make PN agent FIPA compliant we open whole new world of
possibilities how to use Petri nets inside of it.
Main purpose of this paper is to show how to interconnect two different
platforms where one is build upon FIPA standards and the other is not. This
scenario is hardened by the fact, that JADE is developed in Java language, while
PN agent framework is created in smalltalk, concretely in its squeak
implementation.
Other topic of our interest is FIPA compliance in agent platforms. This topic
partially covers our effort to bring more openness to the PN agent platform
because when we find out, which agent platforms support FIPA standards then
we will acquire knowledge of who are we compatible with.

Keywords: Agent platform, Connecting agent platforms,Object oriented Petri Nets, PN agent,
JADE, FIPA, FIPA compliance.

Presenting Author’s biography

Leading author is student of PhD study program on Faculty of
Information Technology on Brno University of Technology. He is
studying his first year of his PhD studies and this is his first paper.
Among his interests belongs all related to agent oriented technologies
and modeling systems.

1 Introduction

Nowadays, enterprise developers deal with the
problem of constructing large and very complex
applications. These applications can be worldwide and
must operate across continents or companies, which
means, that they work in heterogeneous and very
dynamic environment. There is often the requirement
to run more instances, which must cooperate with
each other. Developing of such application can be so
difficult that it can be unsolvable with classical
software engineering techniques because of
dynamically changing and unmanaged environments.
Well suited example of such an environment is the
Internet, which is rapidly spreading from its start and
becomes so large and wide network never created
before. At this point agent-based computation seems
to be one promising technology for the development
of distributed, open and intelligent systems. First
important feature is that agent is an autonomous unit,
which can make it's own decisions and plans to
achieve some goals. This capabilities determines
agents to operate in such dynamic environments.
Secondly, multi-agent system (MAS) is inherently
parallel so it can be distributed all over the world and
agents can live (physically run) in any instance of the
application. This implies that one of the key features
within MAS is communication.

At first agent systems were designed with ad-hoc
solutions (communication, language, architecture and
so on) to achieve some specific functionality of an
application [1]. It is obvious that this approach isn't
very effective, because reusability of such agent
system in slightly different scenario is poor. Massive
deployment of multi-agent systems, which are built
each more different than the other, addresses even
more issues. If every solitude system provides some
functionality and each system has its own language,
communication protocols etc. than they cannot
communicate effectively if ever. This gives us many
islands of functionality in the sea of rapidly spreading
Internet, which can operate only with themselves. If
we realize this, we must see that the whole idea of
openness and interconnection is teared apart. Last but
not least is the view of programmer as a creator of
MAS. Many agent frameworks/platforms/toolkits
imply many techniques and comprehensive
knowledge of every one programmer works with.

Agent-based computation in general is young
paradigm and there is no consolidation in software
engineering methods for agent oriented technologies.
As said in [2]:”Agent-based technologies cannot
realize their full potential, and will not become
widespread, until standards to support agent
interoperability are available and used by agent
developers and adequate environments for the
development of agent systems are available.” This
implies the need for some standardization in the area

of agent systems. Several researches has been done for
this topic and few standards has been founded. We can
see for example Knowledge Sharing Effort [3], OMG
[4] and FIPA [5]. For our work we have chosen FIPA
standards, because only FIPA provides specifications
for whole agent-based system and solely for agent-
based system. It also has reference implementation
called JADE [11].

In the next chapter we introduce main goals of our
work, which is basically interconnecting JADE and
PN agent [10]. PN agent is agent framework built on
Object Oriented Petri net (OOPN) paradigm and
programmed in smalltalk. Further we describe some
basic ideas, which led us to start this effort. Following
chapter includes some basic information about FIPA
necessary to understand principles of developed
standards. In fourth chapter are briefly outlined some
FIPA compliant platforms including JADE with aim
on their communication subsystems. Fifth chapter
describes possibilities of interconnecting platforms
and solution implemented.

2 Aims of the work

As said before, our primary objective is to
interconnect PN agent with JADE. By that we enable
PN agent to communicate with other agents but we
can also let it to exploit services of other agents or
parts of platform. Using other agent services can be
useful in at least two scenarios. First of them is very
prosaic. We can certainly imagine scenario where we
are developing an agent or rather agent system for
some purpose [1,6,12,13]. In this scenario we are
creating agents and we want to be able to debug their
conversations somehow. PN agent platform is built
upon Object Oriented Petri Net paradigm, which gives
it strong mathematical background and possibility to
verify agent models, nevertheless it does not have
communication debugging tool providing easy control
of conversations flow. If we realize that JADE has this
tool called sniffer agent we can easily imagine a
situation where we connect our communicating agents
to JADE and sniff their conversation with sniffer
agent. Second scenario assumes similar usage but not
with the platform defined tools (agents). In this case
we can count on any agent created by JADE users and
we can exploit services provided by it (for instance
see [12]).

To facilitate interconnection between platforms there
is necessity to create interface between JADE
platform and PN agent. It should be noted that by
interface we don't mean set of method headers (as in
Java) but we mean interface as a set of functions that
build functionality of gateway between two different
platforms.

PN agent is software framework for creating agents
based on BDI software model and it is implemented in
OOPN by use of smalltalk language concretely its
squeak implementation. JADE on the other side is

implemented solely in Java language, which brings the
obstacle of two different languages. Existence of this
obstacle presents even bigger challenge than
interconnecting platforms written in the same
language. To face this challenge successfully is a
contribution for other scientists who are facing similar
difficulties.

Other topic we have decided to examine is various
platforms compliance with FIPA standards. Since we
work with FIPA specifications it is helpful to know
what platforms are FIPA compatible and how often
they are used in creating agent systems. It is not the
intention of this paper to gabble about all agent
frameworks ever created but some of them, which we
find interesting, will be discussed.

By this knowledge we obtain useful informations
about our compatibility to described platforms. This
means that if we create some sort of gateway between
JADE and PN agent we get compatibility not to JADE
only but to FIPA compliant platforms as well.

Last topic of our interest is modeling nodes of
wireless sensor network. We have fully operational
agent environment [14] and agent language [15] both
created for purposes of execution in wireless sensor
network. These “wireless agents” can be modeled with
use of PN agent so we acquire advantages of formal
mathematical apparatus in agent environment.

3 FIPA

The Foundation of Intelligent Physical Agents [5] is a
non-profit international association of companies and
organizations, which share the effort in the field of
standardization in agent oriented technologies. FIPA
standards aren't just set of rules for a single
application domain but rather a set of general
technologies, which support different areas in agent-
based systems. The main effort here is to bring
interoperability across MAS applications.

To be minimally FIPA compliant, platform must
implement at least Agent Management System and
Agent Communication Language. Nevertheless FIPA
compliance is defined on more levels because
founders of FIPA realize that there is sometimes no
need to implement all functionality of all standards.
To be fully FIPA compliant there is necessity to
implement all specifications with mandatory parts for
internal and external platform behavior [19].

FIPA standards are based on two main thoughts. The
first is that the time to reach consensus in creation
standard should not be long and secondly, it should be
specified only external behavior of system
components, which leaves developers open path in
creating insides of their platform components.

In the bottom-up approach FIPA specifications can be
divided as follows [1]:

1. Agent platform (AP), which presents an
infrastructure where agents perform their
operations.

2. Agent communication language (ACL), that
is used to encode messages agents
exchange. ACL is based on Speech act
theory [7]. By this theory messages are
communicative acts, which means that
there suppose to be an action done or
mental attitude changed by the message.

3. Content language, which is the language to
encode content of the sent message. The
content is a domain knowledge represented
by a content language.

4. Protocols are patterns of message
exchange. They provide standardization in
the flow of conversations among agents.

The FIPA agent reference model (Fig. 1) provide
framework, which supports agent existence,
messaging capabilities and operability. In connection
with agent life cycle management, it creates contexts
for creation, operation and retirement of agents.

FIPA specifications follow some inspiring principles
that are guiding the standardization process. Among
others belongs explicitness, openness and
interoperability.

Openness manifests ability to join and leave platform
by any agent at run time without any need of
reconfiguring or even restart platform. In close
relation with openness is interoperability. FIPA tends
to specify minimum set of requirements needed for
definition of platform in order to avoid any
commitments with specific hardware, operating
system or programming language.

Fig. 1: FIPA agent reference model

Explicitness means, that every information or
assumption about agent system including agent roles,
capabilities or ontologies should be as explicit as

possible. FIPA provides some featured agents to
accomplish this. They are depicted in Fig. 1. First of
them is Agent Management System (AMS). This
agent is supervising access and use of the platform. It
is responsible for authentication of resident agents and
controls registrations within platform. FIPA standards
are speaking in terms of services and AMS is
providing service called white pages, which is a list of
agents in platform. Second depicted agent is directory
facilitator (DF), which is agent that holds service
called yellow pages. Yellow pages are in fact register,
where ordinary agents can expose their services in
order to be exploited by others ordinary agents. Agent
Communication Channel (ACC) provides the
infrastructure for messaging inside and outside the
agent platform.

In FIPA standards there is mandatory support for
Internet Inter-Orb Protocol (IIOP), which is
implementation of General Inter-Orb Protocol (GIOP)
for TCP/IP. GIOP is the abstract protocol founded by
OMG [4]. FIPA demands support of IIOP for
interoperability with other compliant agent platforms.

As claimed before, FIPA created specifications for
agent communication via ACL. Agent communication
is based on passing messages to each other. The ACL
sets out rules for encoding, semantics and pragmatics
of the messages and in the spirit of openness it says
nothing about mechanism of transporting messages,
because of possibility to use various hardware
platforms or network technologies. The syntax of
ACL is very close to the syntax of widely used
Knowledge Query and Manipulation Language [8].
Most evident difference between these two is
existence of formal semantics for FIPA ACL, which
should eliminate any misinterpretation in agent
messaging. There are some interesting features on
FIPA ACL that are worth to mention:

• It is independent on actual message content,
since it defines only communicative intention
of transferred message.

• Its semantics enables agent to consider a
message in an explicit manner, which means
that a communicative act can be planned as a
normal action.

• ACL provides bases for specification of
interaction protocols and common patterns of
conversations between agents.

FIPA supports commonly used protocols to widen its
interoperability possibilities. These range from
simpler ones (such as simple query and request
protocols) to the more complex ones where belongs
Contract Net interaction protocol [9] or well known
English and Dutch auctions.

The remainder of FIPA specifications is focused on
the other aspects of agent system, in particular with
agent-software integration, agent security, agent

mobility, ontology service and others. Since we are
interested in interconnecting platforms we need to
work closely with communication aspects of standards
and that is why informations about FIPA provided
here are mainly focused on this area.

4 FIPA compliant agent platforms

Throughout years lot of researches has been done in
developing agent platforms, frameworks and toolkits
and a lot of them were produced. This chapter aims at
outlining some them and their FIPA compliance. After
reading this article one should acknowledge that FIPA
is if not biggest than at least major player in the field
of agent-based systems standardization. For the full
list of major publicly implementations of agent
platforms which conform to the FIPA Specifications
see [16]. In description of chosen platforms we will
focus mainly on their communication subsystem to
outline interconnection possibilities.

Among compliant platforms is also JADE which
communication subsystem will be described more
precisely to present proper information, which we can
our later effort built upon.

4.1 Zeus

Zeus [17] is the toolkit for creating deliberative agent
systems. It follows principles that makes it generic,
customizable and scalable. Among those principles
belongs delineation, domain-level problem solving
capabilities and agent-level functionality, support for
open design to ensure extensibility and use of
standards wherever possible. As an example of
standard we can name use of KQML communication
language.

Agent in Zeus toolkit is an entity, which architecture
is divided into layers. There are API Layer, Definition
Layer, Organization Layer, Coordination Layer and
Communication Layer. Since we are interested in
communication we briefly describe only
Communication Layer.

Communication subsystem is divided into two parts.
Fist of them is mailbox, which is responsible for
receiving and dispatching incoming messages and also
holds queue of outgoing messages. It consists of two
threads, first, the reader thread, is holding FIFO
incoming message queue with priority and second, the
writer thread, works with outgoing queue of messages.

Writer thread periodically checks outgoing queue for
messages to dispatch. For each found message it looks
to the local address book for recipient. If recipient is
found, writer serializes message into the sequence of
ASCII characters and sends it via network socket.
When no recipient address is found, the writer passes
the message into holding buffer and asks known
nameserver agents for the address. If address is found
by some nameserver agent it returns the address back
to the asking one and message is sent to the proper

destination. When no address is found writer thread
gets aware of that and passes error message into
reader thread incoming queue.

Second part is message handler, which can be
described as the agents internal sorting office. It
continually checks incoming message queue and
forwards messages to the relevant components of
agent.

4.2 FIPA-OS

FIPA-OS is open agent platform from Nortel
Networks. Within main concepts of this platform
belongs openness, which means the ability to be
interconnected with other FIPA compliant platforms.
Openness is even emphasized with distribution under
open-source licensing scheme. Other important feature
of this platform is standards compliance. As the name
suggest FIPA-OS is created under guidance of FIPA
standards. These features makes it a suited tool for
creating open, standards following agent systems and
it has already been used in domains of virtual private
network provisioning, distributed meeting scheduling
and a virtual home environment (all mentioned in
[18]).

FIPA-OS communication is based on ACL language
and module responsible for processing messages is
divided into four layers of components where are
conversation, ACL message, content (syntax) and
ontology (content semantics). This decomposition is
done to support flexibility and needs of various agents
because of heterogeneous world that puts various
demands on their communication. FIPA-OS supports
ASCII and XML encoding of ACL messages and
there is also support for FIPA SL0 and FIPA SL1
content languages.

FIPA-OS support for conversation coordination is
done via conversation layer. Its based on the
assumption that single messages are most of the time
meaningless and there is mostly need to handle more
complex message exchange. Without dialog
management messages are exchanged with no further
context and it is more difficult to detect failures or
inappropriate response occurrences. Firstly,
conversation is defined as an instance of any FIPA
interaction protocol. FIPA-OS uses defined field
Conversation-ID to coordinate conversations. It is
generated by sender agent who initiate conversation
and it is composed from agent ID, time of message
creation and counter, which ensures conversation
uniqueness.

4.3 JADE

JADE is software framework that supports
development of applications fully compliant with
FIPA standards. Main purpose of JADE is to simplify
agent system creation process through a
comprehensive set of system services. To achieve this
simplification JADE offers following list of features:

• FIPA compliant agent platform containing
agent management system (AMS), directory
facilitator (DF) and the agent communication
channel (ACC). Note that DF can be started
multiple times on different hosts to provide
multi-domain environment.

• Distributed agent platform dividable on some
hosts, which needs to run single Java Virtual
Machine (JVM) each.

• Java API to send/receive ACL messages,
which are represented as ordinary Java
objects.

• FIPA97 compliant IIOP and HTTP protocols
to connect different agent platforms.

• Library of FIPA interaction protocols ready
to use.

• Graphical user interface to manage whole
platform. Several tools are manageable from
this gui for instance sniffer agent.

Fig. 2: Jade platform architecture

To understand JADE communication model, we need
to know some basics about JADE software
architecture depicted on Fig. 2. JADE platform
consists of some containers (each provided by single
JVM) where one is main among them. This main

container contains AMS and ACC agents and is
representing platform to the outside world.

Each agent container is a multi-threaded environment
providing one thread for each agent plus some system
threads created for dispatching messages. Each of
these containers is created as RMI (remote method
invocation) object that controls life cycle of its agents
and their creation, state and killing. Besides that
containers also manage dispatching incoming
messages and putting them into proper agents message
queue. To the other side, when sending outgoing
messages, containers look up receiver agent location
and pick suitable type of transport for ACL message
delivery.

When the platform (main container) starts, it creates
an internal RMI registry listening on specified TCP/IP
port. RMI registry is basically a table containing RMI
object reference and when a common container starts
it looks up for specified host to join and if found it
registers itself with main container RMI registry and
thereby joins agent platform. Besides that main
container holds Agent Global Descriptor Table where
each agent name, AMS data and its container's RMI
reference are stored. It is worth mention that each
container holds cache of contacted agents on other
containers. This is done for performance reasons.

When sending a message, three scenarios are possible.

1. In first scenario agents exchanging messages
live on the same container. In this case Java
events are used to send a message. Java ACL
Message object, which represents current
message is simply cloned and given to
recipient agent.

2. This scenario assumes that two agents live
within the same platform but in different
containers. In this case Remote Method
Invocation is used to send a message. This
avoids marshaling and unmarshaling Java
objects and represents clear way to pass
object possibly through network.

3. In the last scenario messages are exchanged
between two platforms. In this case is
necessary to use one of the protocols
supported by JADE for inter platform
communication. There belongs HTTP
protocol and IIOP protocol with OMG IDL
interface. By use of IIOP message is
translated from Java object to Java string and
consequently to byte stream. On the other
side opposite procedure takes place. If the
second platform is not JADE then it must
understand IIOP protocol and translate it to
something it understands. If HTTP protocol
is in use than XML is used for encoding the
message.

The platform represents single interface to the outside
world by the use of FIPA ACC standard agent. This

agent is in fact the CORBA/IIOP server or HTTP
server, which depends of Message Transport Protocol
(MTP) used. When it receives ACL message encoded
as a string (possibly from non-JADE agent) it converts
it to ACLMessage object and sends it to the proper
agent inside the platform and vice versa.

5 Towards FIPA standards

This chapter describes possibilities of interconnection
PN agent and JADE. As said before we are dealing
with two different programming languages and their
cooperation with each other. To beat this challenge we
need to use network communication, which does not
rely on concrete programming language. Other
restriction is that both languages need to actually
support chosen technology.

Two scenarios appear to be usable. In first we create a
proxy agents in JADE and in PN agent. They will be
used as a bridge for messages from PN agent to JADE
agents and vice versa. In second scenario we connect
two different platforms by use of HTTP as a MTS
protocol.

5.1 Proxy agent

First we can disclose that at the end we decided to
implement the entire functionality in squeak so
solution with proxy agent represents just a possibility.
Nevertheless solution with proxy agent is more
generic than the other because it doesn't depend on
any technology used. It presents the concept of
ordinary agent within MAS, which is given additional
functionality to communicate via newly programmed
channel. This approach has only one limitation. It
assumes that programming languages, platforms are
written in, has at least one network protocol that they
both can handle.

When connecting JADE with PN agent we are able to
use network sockets for purposes of connection as in
Fig. 3. Here we evade using of standard Agent
Communication Channel and we establish connection
of our own. Problem is that via network sockets we
can establish only connection, not communication. To
establish communication we need common agent
communication language. Since JADE and PN agent
both use ACL communication language we have no
problem. More precisely PN agent operates with ACL
in the semantics scope so there was necessity to add
syntax parser but this problem we needed to solve
anyway.

The problem will occur if two platforms were using
different language each. In this case there will be need
to develop a translator from one language to the other
and vice versa. This translator can be programmed as
the insides in one of proxy agents. In this scenario
messages are sent in textual form and on one side
proxy agent translates it between languages. Next
problem is that different languages can have various
expressive power. In this case there is necessity to add

support for transferring additional informations that
can't be expressed by translation. Question is if an
additional information is any use in target platform.
Since target language does not support it some
adjustments are necessary in target platform. Here we
are getting to the point, where ends programming
agents on user level and we are getting to the point
where adjustments in target platform are necessary.
This means that we need access to target platform
source code and possibility to change it. Other way
how to evade various expressive powers of languages
is ignoring additional information that language with
more power gives.

 Fig. 3: Communication via proxy agent

5.2 Interconnecting on platform level

Fist step in platform level interconnection is to start
two platforms and establish connection between them.
For purposes of inter platform communication JADE
offers two protocols. First is IIOP/CORBA protocol
and second is HTTP protocol. Since we are creating
solution as flexible as possible we wanted to use IIOP
protocol because is marked by FIPA as mandatory.
Problem is that to this day squeak lacks in IIOP
support. That is why we were forced to use HTTP
protocol, which support in squeak is unarguable.
Connection via HTTP is shown on Fig. 4 and presents
solution, which brings partial FIPA compliance to PN
agent platform by supporting inter platform
communication with use of FIPA ACL message
exchange.
Positive information is that FIPA defines inter
platform communication in textual form. That is
useful feature we can exploit even by using different
programming language on each side of connection
because we don't need to care about marshaling and
unmarshaling objects sent, which is most of the time
language specific process. Since FIPA defines textual
form of the message sent we can show message
insides by packet sniffing. This way is easily
explainable what are necessary parts when composing
message for any JADE agent.

HTTP is client/server request-response protocol and
by use of JADE and PN agent both sides of
communication need to manage HTTP server and also
HTTP client.

Fig. 4: Communication via HTTP

In HTTP request there are data, which client wants to
give to server, therefore POST method is used. In the
following header we can see, what information is
specified by uploading message to the server side.

POST http://sycho-laptop:7778/acc HTTP/1.1
Cache-Control: no-cache
Mime-Version: 1.0
Host: sycho-laptop:7778
Content-Type: multipart/mixed ;
boundary="643caab056c1109c6f0d895cd67e5a4"
Content-Length: 1094
Connection: Keep-Alive

First useful information we can see is that to create
message for remote platform we need to know its
network location. This address needs to be provided
after the POST keyword and must be reachable within
the network. Next important information is Content-
Type field. As we can see JADE uses multipart type,
which is abstraction of encapsulation more entities
within a single message body. Subtype of multipart
type is mixed. That allows putting various fields
within a single message, which is useful for placing
message envelope and message content into single
request.
The message body consists of message envelope and
message itself specified in ACL language. Message
envelope is specified in XML and looks like
following:
Content-Type: application/xml

<?xml version="1.0"?>
<envelope><params index="1">

 <to><agent-identifier>
 <name>pong@P1</name>
 <addresses>
 <url>http://sycho-laptop:7778/acc</url>
 </addresses>
 </agent-identifier></to>

 <from><agent-identifier>
 <name>ping@P2</name>
 <addresses>

 <url>http://izakjakub-desktop:7778/acc
</url>
 </addresses>
 </agent-identifier></from>

 <acl-representation>
 fipa.acl.rep.string.std
 </acl-representation>
 <payload-length>236</payload-length>
 <date>20100603Z003837180</date>

 <intended-receiver><agent-identifier>
 <name>pong@P1</name>
 <addresses>
 <url>http://sycho- laptop:7778/acc</url>
 </addresses>
 </agent-identifier></intended-receiver>

</params></envelope>

As you can see envelope is divided into several parts.
Most important are first two parts, which specify
Message sender and message receiver. Information
about agent name is provided via FIPA defined
name@platform format and URL specified
consequently is address of opposite agent platform.
Envelope continues with some additional information
about class, which was used to encode message, then
is size of payload for control purposes and at last is
date. Last logical unit is intended receiver parameter.
This parameter specifies agent that will receive a copy
of message. If it is not specified then JADE creates
intended receiver (receivers) from agent (or list of
agents) defined in <to> parameter.
Last part of message is ACL message itself. For
purposes of presentation was chosen simple message
that contains as few information as possible. Since
message is encoded to ACL language it strictly
follows its syntax thus presenting rich message would
only bring useless complexity. ACL part of the
message content looks like follows:

Content-Type: application/text

(INFORM
 :sender (agent-identifier :name
ping@P2 :addresses (sequence
http://izakjakub-desktop:7778/acc))
 :receiver (set (agent-identifier :name
pong@P1 :addresses (sequence http://sycho-
laptop:7778/acc)))
 :content "ping"
)

In message we can notice four useful information.
First is message performative, which is in this case
INFORM performative. Next are expected fields such
as sender, receiver and content.

By all this knowledge gathered we can easily simulate
creation of such message and by that accomplish
message exchange between JADE and PN agent
platform.

6 Conclusion

In this paper we presented our research in the area of
agent platform interconnection. We briefly outlined
some of the FIPA principles and standards necessary
to understand what means FIPA compliance. Since we
are interested in interconnecting platforms we
described some of the FIPA compliant platforms and
their messaging subsystems. It turns out that if not all
of them then most of the FIPA compliant platforms
are written in Java programming language. This fact
makes their interconnection easier than we faced.

We have tested our solution with simple ping pong
agents that exchange a message and at the end we can
claim that throughout HTTP protocol there is
possibility to interconnect JADE with PN agent
platform, which is not written in Java but in smalltalk,
concretely in its squeak implementation.

It is worth to mention that we are at the beginning of a
long journey to be FIPA compliant but even this
added ability to exchange messages widens PN agent
use.

7 References

[1] Charlton P., Cattoni R., Potrich A., Mamdani E.
Evaluating the FIPA standards and its role in
achieving cooperation in multi-agent systems,
“Multi-agent systems, Internet and applications”,
HICS-33 software technology minitrack, Mawi,
Hawaii, January, 2000.

[2] Bellifemine F., Poggi A., Rimassi G., JADE: A
FIPA-Compliant agent framework, In: Proc.
Practical Applications of Intelligent Agents and
Multi-Agents, pages 97-108, April, 1999.

[3] Patil R.S., Fikes R.E., Patel-Scheneider P.F.,
McKay D., Finin T., Gruber T., Neches R. The
DARPA knowledge sharing effort: progress
report. In: Proc. Third Conf. on Principles of
Knowledge Representation and Reasoning,
Cambridge, MA., pages 103-114, 1992.

[4] Object Management Group [online], [cit. 2010-
06-10], <http://www.omg.org >.

[5] Welcome to the Foundation for Intelligent
Physical Agents [online], [cit. 2010-06-10],
<http://www.fipa.org>.

[6] Frost H. R., Cutkosky M. R., Design for
Manufacturability via Agent Interaction, Paper
No. 96-DETC/DFM-1302, In: Proceedings of the
1996 ASME Computers in Engineering
Conference, Irvine, CA, pages 1-8, August 18-22,
1996.

[7] Searle J. R., Speech Acts, Cambridge University
Press, Cambridge, 1969.

[8] Finin T., Labrou Y., KQML as an agent
communication language, J.M. In: Bradshaw

(ed.), Software Agents, pages. 291-316,
Cambridge, MA, 1997.

[9] FIPA Contract Net Interaction Protocol
Specification [online] [cit. 2010-06-10],
<http://www.fipa.org/specs/fipa00029/SC00029H.
html>.

[10] Mazal Z., Kočí R., Janoušek V., Zbořil F.,
PNagent: a Framework for Modelling BDI Agents
using Object Oriented Petri Nets, In: Proceedings
of the 8th ISDA. IEEE Computer Society.

[11] Bellifemine F., Caire G., Greenwood D.,
Developing Multi-Agent Systems with JADE,
Chichester, West Sussex: John Willey & Sons
Ltd., 2007, pages 286, ISBN 978-0-470-05747-6.

[12] Cowan D., Griss M., Making Software Agent
Technology available to Enterprise Applications
[online] [cit. 2010-06-10],
<martin.griss.com/pubs/agents-j2ee.pdf>.

[13] Greenwood D., Lyell M., Mallya A., Suguri H.,
The IEEE FIPA Approach to Integrating Software
Agents and Web Services, In: AAMAS '07:
Proceedings of the 6th international joint
conference on Autonomous agents and multiagent
systems, Article No.: 274, 2007

[14] Horáček J., Platforma pro mobilní agenty v
bezdrátových senzorových sítích, diplomová
práce, Brno, FIT VUT v Brně, 2009.

[15] Zbořil F., Low Level Language for Agent
Behaviour Control, In Proceedings of XXVIIth
International Autumn Colloquium ASIS, pages
138-143, Ostrava CZ, 2005, ISBN 80-86840-16-6.

[16] Publicly Available Implementations of FIPA
Specifications [online] [cit. 2010-06-10],
<http://www.fipa.org/resources/livesystems.html>

[17] Nwana H. S., Ndumu D. T., Lee L. C., Collis J.
C., ZEUS: A Toolkit for Building Distributed
Multi-Agent Systems, Applied Artifical
Intelligence Journal, volume 13, pages 129-186,
1999.

[18] Poslad S., Buckle P., Hadingham R., The FIPA-
OS agent platform: Open Source for Open
Standards, 2000

[19] Minimal FIPA and FIPA Compliance Levels
Work Plan [online] [cit. 2010-06-10],
<http://www.fipa.org/docs/wps/f-wp-00018/f-wp-
00018.html>.

	1 Introduction
	2 Aims of the work
	3 FIPA
	4 FIPA compliant agent platforms
	4.1 Zeus
	4.2 FIPA-OS
	4.3 JADE

	5 Towards FIPA standards
	5.1 Proxy agent
	5.2 Interconnecting on platform level

	6 Conclusion
	7 References

